summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/intel/igc/igc_i225.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/intel/igc/igc_i225.c')
-rw-r--r--drivers/net/ethernet/intel/igc/igc_i225.c641
1 files changed, 641 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/igc/igc_i225.c b/drivers/net/ethernet/intel/igc/igc_i225.c
new file mode 100644
index 000000000..17546a035
--- /dev/null
+++ b/drivers/net/ethernet/intel/igc/igc_i225.c
@@ -0,0 +1,641 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (c) 2018 Intel Corporation */
+
+#include <linux/delay.h>
+
+#include "igc_hw.h"
+
+/**
+ * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the necessary semaphores for exclusive access to the EEPROM.
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -IGC_ERR_NVM (-1).
+ */
+static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
+{
+ return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
+}
+
+/**
+ * igc_release_nvm_i225 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ * then release the semaphores acquired.
+ */
+static void igc_release_nvm_i225(struct igc_hw *hw)
+{
+ igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
+}
+
+/**
+ * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ */
+static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
+{
+ s32 timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+ u32 swsm;
+
+ /* Get the SW semaphore */
+ while (i < timeout) {
+ swsm = rd32(IGC_SWSM);
+ if (!(swsm & IGC_SWSM_SMBI))
+ break;
+
+ usleep_range(500, 600);
+ i++;
+ }
+
+ if (i == timeout) {
+ /* In rare circumstances, the SW semaphore may already be held
+ * unintentionally. Clear the semaphore once before giving up.
+ */
+ if (hw->dev_spec._base.clear_semaphore_once) {
+ hw->dev_spec._base.clear_semaphore_once = false;
+ igc_put_hw_semaphore(hw);
+ for (i = 0; i < timeout; i++) {
+ swsm = rd32(IGC_SWSM);
+ if (!(swsm & IGC_SWSM_SMBI))
+ break;
+
+ usleep_range(500, 600);
+ }
+ }
+
+ /* If we do not have the semaphore here, we have to give up. */
+ if (i == timeout) {
+ hw_dbg("Driver can't access device - SMBI bit is set.\n");
+ return -IGC_ERR_NVM;
+ }
+ }
+
+ /* Get the FW semaphore. */
+ for (i = 0; i < timeout; i++) {
+ swsm = rd32(IGC_SWSM);
+ wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
+ break;
+
+ usleep_range(500, 600);
+ }
+
+ if (i == timeout) {
+ /* Release semaphores */
+ igc_put_hw_semaphore(hw);
+ hw_dbg("Driver can't access the NVM\n");
+ return -IGC_ERR_NVM;
+ }
+
+ return 0;
+}
+
+/**
+ * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ */
+s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
+{
+ s32 i = 0, timeout = 200;
+ u32 fwmask = mask << 16;
+ u32 swmask = mask;
+ s32 ret_val = 0;
+ u32 swfw_sync;
+
+ while (i < timeout) {
+ if (igc_get_hw_semaphore_i225(hw)) {
+ ret_val = -IGC_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync = rd32(IGC_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /* Firmware currently using resource (fwmask) */
+ igc_put_hw_semaphore(hw);
+ mdelay(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ ret_val = -IGC_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync |= swmask;
+ wr32(IGC_SW_FW_SYNC, swfw_sync);
+
+ igc_put_hw_semaphore(hw);
+out:
+ return ret_val;
+}
+
+/**
+ * igc_release_swfw_sync_i225 - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ */
+void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ /* Releasing the resource requires first getting the HW semaphore.
+ * If we fail to get the semaphore, there is nothing we can do,
+ * except log an error and quit. We are not allowed to hang here
+ * indefinitely, as it may cause denial of service or system crash.
+ */
+ if (igc_get_hw_semaphore_i225(hw)) {
+ hw_dbg("Failed to release SW_FW_SYNC.\n");
+ return;
+ }
+
+ swfw_sync = rd32(IGC_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ wr32(IGC_SW_FW_SYNC, swfw_sync);
+
+ igc_put_hw_semaphore(hw);
+}
+
+/**
+ * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the Shadow Ram to read
+ * @words: number of words to read
+ * @data: word read from the Shadow Ram
+ *
+ * Reads a 16 bit word from the Shadow Ram using the EERD register.
+ * Uses necessary synchronization semaphores.
+ */
+static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ s32 status = 0;
+ u16 i, count;
+
+ /* We cannot hold synchronization semaphores for too long,
+ * because of forceful takeover procedure. However it is more efficient
+ * to read in bursts than synchronizing access for each word.
+ */
+ for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
+ count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
+ IGC_EERD_EEWR_MAX_COUNT : (words - i);
+
+ status = hw->nvm.ops.acquire(hw);
+ if (status)
+ break;
+
+ status = igc_read_nvm_eerd(hw, offset, count, data + i);
+ hw->nvm.ops.release(hw);
+ if (status)
+ break;
+ }
+
+ return status;
+}
+
+/**
+ * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
+ * @hw: pointer to the HW structure
+ * @offset: offset within the Shadow Ram to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the Shadow Ram
+ *
+ * Writes data to Shadow Ram at offset using EEWR register.
+ *
+ * If igc_update_nvm_checksum is not called after this function , the
+ * Shadow Ram will most likely contain an invalid checksum.
+ */
+static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct igc_nvm_info *nvm = &hw->nvm;
+ s32 ret_val = -IGC_ERR_NVM;
+ u32 attempts = 100000;
+ u32 i, k, eewr = 0;
+
+ /* A check for invalid values: offset too large, too many words,
+ * too many words for the offset, and not enough words.
+ */
+ if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
+ words == 0) {
+ hw_dbg("nvm parameter(s) out of bounds\n");
+ return ret_val;
+ }
+
+ for (i = 0; i < words; i++) {
+ ret_val = -IGC_ERR_NVM;
+ eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
+ (data[i] << IGC_NVM_RW_REG_DATA) |
+ IGC_NVM_RW_REG_START;
+
+ wr32(IGC_SRWR, eewr);
+
+ for (k = 0; k < attempts; k++) {
+ if (IGC_NVM_RW_REG_DONE &
+ rd32(IGC_SRWR)) {
+ ret_val = 0;
+ break;
+ }
+ udelay(5);
+ }
+
+ if (ret_val) {
+ hw_dbg("Shadow RAM write EEWR timed out\n");
+ break;
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
+ * @hw: pointer to the HW structure
+ * @offset: offset within the Shadow RAM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the Shadow RAM
+ *
+ * Writes data to Shadow RAM at offset using EEWR register.
+ *
+ * If igc_update_nvm_checksum is not called after this function , the
+ * data will not be committed to FLASH and also Shadow RAM will most likely
+ * contain an invalid checksum.
+ *
+ * If error code is returned, data and Shadow RAM may be inconsistent - buffer
+ * partially written.
+ */
+static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ s32 status = 0;
+ u16 i, count;
+
+ /* We cannot hold synchronization semaphores for too long,
+ * because of forceful takeover procedure. However it is more efficient
+ * to write in bursts than synchronizing access for each word.
+ */
+ for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
+ count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
+ IGC_EERD_EEWR_MAX_COUNT : (words - i);
+
+ status = hw->nvm.ops.acquire(hw);
+ if (status)
+ break;
+
+ status = igc_write_nvm_srwr(hw, offset, count, data + i);
+ hw->nvm.ops.release(hw);
+ if (status)
+ break;
+ }
+
+ return status;
+}
+
+/**
+ * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ */
+static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
+{
+ s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
+ u16 *data);
+ s32 status = 0;
+
+ status = hw->nvm.ops.acquire(hw);
+ if (status)
+ goto out;
+
+ /* Replace the read function with semaphore grabbing with
+ * the one that skips this for a while.
+ * We have semaphore taken already here.
+ */
+ read_op_ptr = hw->nvm.ops.read;
+ hw->nvm.ops.read = igc_read_nvm_eerd;
+
+ status = igc_validate_nvm_checksum(hw);
+
+ /* Revert original read operation. */
+ hw->nvm.ops.read = read_op_ptr;
+
+ hw->nvm.ops.release(hw);
+
+out:
+ return status;
+}
+
+/**
+ * igc_pool_flash_update_done_i225 - Pool FLUDONE status
+ * @hw: pointer to the HW structure
+ */
+static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
+{
+ s32 ret_val = -IGC_ERR_NVM;
+ u32 i, reg;
+
+ for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
+ reg = rd32(IGC_EECD);
+ if (reg & IGC_EECD_FLUDONE_I225) {
+ ret_val = 0;
+ break;
+ }
+ udelay(5);
+ }
+
+ return ret_val;
+}
+
+/**
+ * igc_update_flash_i225 - Commit EEPROM to the flash
+ * @hw: pointer to the HW structure
+ */
+static s32 igc_update_flash_i225(struct igc_hw *hw)
+{
+ s32 ret_val = 0;
+ u32 flup;
+
+ ret_val = igc_pool_flash_update_done_i225(hw);
+ if (ret_val == -IGC_ERR_NVM) {
+ hw_dbg("Flash update time out\n");
+ goto out;
+ }
+
+ flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
+ wr32(IGC_EECD, flup);
+
+ ret_val = igc_pool_flash_update_done_i225(hw);
+ if (ret_val)
+ hw_dbg("Flash update time out\n");
+ else
+ hw_dbg("Flash update complete\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * igc_update_nvm_checksum_i225 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM. Next commit EEPROM data onto the Flash.
+ */
+static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
+{
+ u16 checksum = 0;
+ s32 ret_val = 0;
+ u16 i, nvm_data;
+
+ /* Read the first word from the EEPROM. If this times out or fails, do
+ * not continue or we could be in for a very long wait while every
+ * EEPROM read fails
+ */
+ ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
+ if (ret_val) {
+ hw_dbg("EEPROM read failed\n");
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
+ * because we do not want to take the synchronization
+ * semaphores twice here.
+ */
+
+ for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+ ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ hw->nvm.ops.release(hw);
+ hw_dbg("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16)NVM_SUM - checksum;
+ ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
+ &checksum);
+ if (ret_val) {
+ hw->nvm.ops.release(hw);
+ hw_dbg("NVM Write Error while updating checksum.\n");
+ goto out;
+ }
+
+ hw->nvm.ops.release(hw);
+
+ ret_val = igc_update_flash_i225(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * igc_get_flash_presence_i225 - Check if flash device is detected
+ * @hw: pointer to the HW structure
+ */
+bool igc_get_flash_presence_i225(struct igc_hw *hw)
+{
+ bool ret_val = false;
+ u32 eec = 0;
+
+ eec = rd32(IGC_EECD);
+ if (eec & IGC_EECD_FLASH_DETECTED_I225)
+ ret_val = true;
+
+ return ret_val;
+}
+
+/**
+ * igc_init_nvm_params_i225 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ */
+s32 igc_init_nvm_params_i225(struct igc_hw *hw)
+{
+ struct igc_nvm_info *nvm = &hw->nvm;
+
+ nvm->ops.acquire = igc_acquire_nvm_i225;
+ nvm->ops.release = igc_release_nvm_i225;
+
+ /* NVM Function Pointers */
+ if (igc_get_flash_presence_i225(hw)) {
+ nvm->ops.read = igc_read_nvm_srrd_i225;
+ nvm->ops.write = igc_write_nvm_srwr_i225;
+ nvm->ops.validate = igc_validate_nvm_checksum_i225;
+ nvm->ops.update = igc_update_nvm_checksum_i225;
+ } else {
+ nvm->ops.read = igc_read_nvm_eerd;
+ nvm->ops.write = NULL;
+ nvm->ops.validate = NULL;
+ nvm->ops.update = NULL;
+ }
+ return 0;
+}
+
+/**
+ * igc_set_eee_i225 - Enable/disable EEE support
+ * @hw: pointer to the HW structure
+ * @adv2p5G: boolean flag enabling 2.5G EEE advertisement
+ * @adv1G: boolean flag enabling 1G EEE advertisement
+ * @adv100M: boolean flag enabling 100M EEE advertisement
+ *
+ * Enable/disable EEE based on setting in dev_spec structure.
+ **/
+s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
+ bool adv100M)
+{
+ u32 ipcnfg, eeer;
+
+ ipcnfg = rd32(IGC_IPCNFG);
+ eeer = rd32(IGC_EEER);
+
+ /* enable or disable per user setting */
+ if (hw->dev_spec._base.eee_enable) {
+ u32 eee_su = rd32(IGC_EEE_SU);
+
+ if (adv100M)
+ ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
+ else
+ ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
+
+ if (adv1G)
+ ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
+ else
+ ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
+
+ if (adv2p5G)
+ ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
+ else
+ ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
+
+ eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
+ IGC_EEER_LPI_FC);
+
+ /* This bit should not be set in normal operation. */
+ if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
+ hw_dbg("LPI Clock Stop Bit should not be set!\n");
+ } else {
+ ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
+ IGC_IPCNFG_EEE_100M_AN);
+ eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
+ IGC_EEER_LPI_FC);
+ }
+ wr32(IGC_IPCNFG, ipcnfg);
+ wr32(IGC_EEER, eeer);
+ rd32(IGC_IPCNFG);
+ rd32(IGC_EEER);
+
+ return IGC_SUCCESS;
+}
+
+/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
+ * @hw: pointer to the HW structure
+ * @link: bool indicating link status
+ *
+ * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
+ * settings, otherwise specify that there is no LTR requirement.
+ */
+s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
+{
+ u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
+ u16 speed, duplex;
+ s32 size;
+
+ /* If we do not have link, LTR thresholds are zero. */
+ if (link) {
+ hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
+
+ /* Check if using copper interface with EEE enabled or if the
+ * link speed is 10 Mbps.
+ */
+ if (hw->dev_spec._base.eee_enable &&
+ speed != SPEED_10) {
+ /* EEE enabled, so send LTRMAX threshold. */
+ ltrc = rd32(IGC_LTRC) |
+ IGC_LTRC_EEEMS_EN;
+ wr32(IGC_LTRC, ltrc);
+
+ /* Calculate tw_system (nsec). */
+ if (speed == SPEED_100) {
+ tw_system = ((rd32(IGC_EEE_SU) &
+ IGC_TW_SYSTEM_100_MASK) >>
+ IGC_TW_SYSTEM_100_SHIFT) * 500;
+ } else {
+ tw_system = (rd32(IGC_EEE_SU) &
+ IGC_TW_SYSTEM_1000_MASK) * 500;
+ }
+ } else {
+ tw_system = 0;
+ }
+
+ /* Get the Rx packet buffer size. */
+ size = rd32(IGC_RXPBS) &
+ IGC_RXPBS_SIZE_I225_MASK;
+
+ /* Convert size to bytes, subtract the MTU, and then
+ * convert the size to bits.
+ */
+ size *= 1024;
+ size *= 8;
+
+ if (size < 0) {
+ hw_dbg("Invalid effective Rx buffer size %d\n",
+ size);
+ return -IGC_ERR_CONFIG;
+ }
+
+ /* Calculate the thresholds. Since speed is in Mbps, simplify
+ * the calculation by multiplying size/speed by 1000 for result
+ * to be in nsec before dividing by the scale in nsec. Set the
+ * scale such that the LTR threshold fits in the register.
+ */
+ ltr_min = (1000 * size) / speed;
+ ltr_max = ltr_min + tw_system;
+ scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
+ IGC_LTRMINV_SCALE_32768;
+ scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
+ IGC_LTRMAXV_SCALE_32768;
+ ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
+ ltr_min -= 1;
+ ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
+ ltr_max -= 1;
+
+ /* Only write the LTR thresholds if they differ from before. */
+ ltrv = rd32(IGC_LTRMINV);
+ if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
+ ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
+ (scale_min << IGC_LTRMINV_SCALE_SHIFT);
+ wr32(IGC_LTRMINV, ltrv);
+ }
+
+ ltrv = rd32(IGC_LTRMAXV);
+ if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
+ ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
+ (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
+ wr32(IGC_LTRMAXV, ltrv);
+ }
+ }
+
+ return IGC_SUCCESS;
+}