summaryrefslogtreecommitdiffstats
path: root/drivers/net/fddi/defxx.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/fddi/defxx.c')
-rw-r--r--drivers/net/fddi/defxx.c3867
1 files changed, 3867 insertions, 0 deletions
diff --git a/drivers/net/fddi/defxx.c b/drivers/net/fddi/defxx.c
new file mode 100644
index 0000000000..1fef8a9b1a
--- /dev/null
+++ b/drivers/net/fddi/defxx.c
@@ -0,0 +1,3867 @@
+/*
+ * File Name:
+ * defxx.c
+ *
+ * Copyright Information:
+ * Copyright Digital Equipment Corporation 1996.
+ *
+ * This software may be used and distributed according to the terms of
+ * the GNU General Public License, incorporated herein by reference.
+ *
+ * Abstract:
+ * A Linux device driver supporting the Digital Equipment Corporation
+ * FDDI TURBOchannel, EISA and PCI controller families. Supported
+ * adapters include:
+ *
+ * DEC FDDIcontroller/TURBOchannel (DEFTA)
+ * DEC FDDIcontroller/EISA (DEFEA)
+ * DEC FDDIcontroller/PCI (DEFPA)
+ *
+ * The original author:
+ * LVS Lawrence V. Stefani <lstefani@yahoo.com>
+ *
+ * Maintainers:
+ * macro Maciej W. Rozycki <macro@orcam.me.uk>
+ *
+ * Credits:
+ * I'd like to thank Patricia Cross for helping me get started with
+ * Linux, David Davies for a lot of help upgrading and configuring
+ * my development system and for answering many OS and driver
+ * development questions, and Alan Cox for recommendations and
+ * integration help on getting FDDI support into Linux. LVS
+ *
+ * Driver Architecture:
+ * The driver architecture is largely based on previous driver work
+ * for other operating systems. The upper edge interface and
+ * functions were largely taken from existing Linux device drivers
+ * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
+ * driver.
+ *
+ * Adapter Probe -
+ * The driver scans for supported EISA adapters by reading the
+ * SLOT ID register for each EISA slot and making a match
+ * against the expected value.
+ *
+ * Bus-Specific Initialization -
+ * This driver currently supports both EISA and PCI controller
+ * families. While the custom DMA chip and FDDI logic is similar
+ * or identical, the bus logic is very different. After
+ * initialization, the only bus-specific differences is in how the
+ * driver enables and disables interrupts. Other than that, the
+ * run-time critical code behaves the same on both families.
+ * It's important to note that both adapter families are configured
+ * to I/O map, rather than memory map, the adapter registers.
+ *
+ * Driver Open/Close -
+ * In the driver open routine, the driver ISR (interrupt service
+ * routine) is registered and the adapter is brought to an
+ * operational state. In the driver close routine, the opposite
+ * occurs; the driver ISR is deregistered and the adapter is
+ * brought to a safe, but closed state. Users may use consecutive
+ * commands to bring the adapter up and down as in the following
+ * example:
+ * ifconfig fddi0 up
+ * ifconfig fddi0 down
+ * ifconfig fddi0 up
+ *
+ * Driver Shutdown -
+ * Apparently, there is no shutdown or halt routine support under
+ * Linux. This routine would be called during "reboot" or
+ * "shutdown" to allow the driver to place the adapter in a safe
+ * state before a warm reboot occurs. To be really safe, the user
+ * should close the adapter before shutdown (eg. ifconfig fddi0 down)
+ * to ensure that the adapter DMA engine is taken off-line. However,
+ * the current driver code anticipates this problem and always issues
+ * a soft reset of the adapter at the beginning of driver initialization.
+ * A future driver enhancement in this area may occur in 2.1.X where
+ * Alan indicated that a shutdown handler may be implemented.
+ *
+ * Interrupt Service Routine -
+ * The driver supports shared interrupts, so the ISR is registered for
+ * each board with the appropriate flag and the pointer to that board's
+ * device structure. This provides the context during interrupt
+ * processing to support shared interrupts and multiple boards.
+ *
+ * Interrupt enabling/disabling can occur at many levels. At the host
+ * end, you can disable system interrupts, or disable interrupts at the
+ * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
+ * have a bus-logic chip interrupt enable/disable as well as a DMA
+ * controller interrupt enable/disable.
+ *
+ * The driver currently enables and disables adapter interrupts at the
+ * bus-logic chip and assumes that Linux will take care of clearing or
+ * acknowledging any host-based interrupt chips.
+ *
+ * Control Functions -
+ * Control functions are those used to support functions such as adding
+ * or deleting multicast addresses, enabling or disabling packet
+ * reception filters, or other custom/proprietary commands. Presently,
+ * the driver supports the "get statistics", "set multicast list", and
+ * "set mac address" functions defined by Linux. A list of possible
+ * enhancements include:
+ *
+ * - Custom ioctl interface for executing port interface commands
+ * - Custom ioctl interface for adding unicast addresses to
+ * adapter CAM (to support bridge functions).
+ * - Custom ioctl interface for supporting firmware upgrades.
+ *
+ * Hardware (port interface) Support Routines -
+ * The driver function names that start with "dfx_hw_" represent
+ * low-level port interface routines that are called frequently. They
+ * include issuing a DMA or port control command to the adapter,
+ * resetting the adapter, or reading the adapter state. Since the
+ * driver initialization and run-time code must make calls into the
+ * port interface, these routines were written to be as generic and
+ * usable as possible.
+ *
+ * Receive Path -
+ * The adapter DMA engine supports a 256 entry receive descriptor block
+ * of which up to 255 entries can be used at any given time. The
+ * architecture is a standard producer, consumer, completion model in
+ * which the driver "produces" receive buffers to the adapter, the
+ * adapter "consumes" the receive buffers by DMAing incoming packet data,
+ * and the driver "completes" the receive buffers by servicing the
+ * incoming packet, then "produces" a new buffer and starts the cycle
+ * again. Receive buffers can be fragmented in up to 16 fragments
+ * (descriptor entries). For simplicity, this driver posts
+ * single-fragment receive buffers of 4608 bytes, then allocates a
+ * sk_buff, copies the data, then reposts the buffer. To reduce CPU
+ * utilization, a better approach would be to pass up the receive
+ * buffer (no extra copy) then allocate and post a replacement buffer.
+ * This is a performance enhancement that should be looked into at
+ * some point.
+ *
+ * Transmit Path -
+ * Like the receive path, the adapter DMA engine supports a 256 entry
+ * transmit descriptor block of which up to 255 entries can be used at
+ * any given time. Transmit buffers can be fragmented in up to 255
+ * fragments (descriptor entries). This driver always posts one
+ * fragment per transmit packet request.
+ *
+ * The fragment contains the entire packet from FC to end of data.
+ * Before posting the buffer to the adapter, the driver sets a three-byte
+ * packet request header (PRH) which is required by the Motorola MAC chip
+ * used on the adapters. The PRH tells the MAC the type of token to
+ * receive/send, whether or not to generate and append the CRC, whether
+ * synchronous or asynchronous framing is used, etc. Since the PRH
+ * definition is not necessarily consistent across all FDDI chipsets,
+ * the driver, rather than the common FDDI packet handler routines,
+ * sets these bytes.
+ *
+ * To reduce the amount of descriptor fetches needed per transmit request,
+ * the driver takes advantage of the fact that there are at least three
+ * bytes available before the skb->data field on the outgoing transmit
+ * request. This is guaranteed by having fddi_setup() in net_init.c set
+ * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
+ * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
+ * bytes which we'll use to store the PRH.
+ *
+ * There's a subtle advantage to adding these pad bytes to the
+ * hard_header_len, it ensures that the data portion of the packet for
+ * an 802.2 SNAP frame is longword aligned. Other FDDI driver
+ * implementations may not need the extra padding and can start copying
+ * or DMAing directly from the FC byte which starts at skb->data. Should
+ * another driver implementation need ADDITIONAL padding, the net_init.c
+ * module should be updated and dev->hard_header_len should be increased.
+ * NOTE: To maintain the alignment on the data portion of the packet,
+ * dev->hard_header_len should always be evenly divisible by 4 and at
+ * least 24 bytes in size.
+ *
+ * Modification History:
+ * Date Name Description
+ * 16-Aug-96 LVS Created.
+ * 20-Aug-96 LVS Updated dfx_probe so that version information
+ * string is only displayed if 1 or more cards are
+ * found. Changed dfx_rcv_queue_process to copy
+ * 3 NULL bytes before FC to ensure that data is
+ * longword aligned in receive buffer.
+ * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
+ * LLC group promiscuous mode if multicast list
+ * is too large. LLC individual/group promiscuous
+ * mode is now disabled if IFF_PROMISC flag not set.
+ * dfx_xmt_queue_pkt no longer checks for NULL skb
+ * on Alan Cox recommendation. Added node address
+ * override support.
+ * 12-Sep-96 LVS Reset current address to factory address during
+ * device open. Updated transmit path to post a
+ * single fragment which includes PRH->end of data.
+ * Mar 2000 AC Did various cleanups for 2.3.x
+ * Jun 2000 jgarzik PCI and resource alloc cleanups
+ * Jul 2000 tjeerd Much cleanup and some bug fixes
+ * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
+ * Feb 2001 Skb allocation fixes
+ * Feb 2001 davej PCI enable cleanups.
+ * 04 Aug 2003 macro Converted to the DMA API.
+ * 14 Aug 2004 macro Fix device names reported.
+ * 14 Jun 2005 macro Use irqreturn_t.
+ * 23 Oct 2006 macro Big-endian host support.
+ * 14 Dec 2006 macro TURBOchannel support.
+ * 01 Jul 2014 macro Fixes for DMA on 64-bit hosts.
+ * 10 Mar 2021 macro Dynamic MMIO vs port I/O.
+ */
+
+/* Include files */
+#include <linux/bitops.h>
+#include <linux/compiler.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/eisa.h>
+#include <linux/errno.h>
+#include <linux/fddidevice.h>
+#include <linux/interrupt.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/netdevice.h>
+#include <linux/pci.h>
+#include <linux/skbuff.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/tc.h>
+
+#include <asm/byteorder.h>
+#include <asm/io.h>
+
+#include "defxx.h"
+
+/* Version information string should be updated prior to each new release! */
+#define DRV_NAME "defxx"
+#define DRV_VERSION "v1.12"
+#define DRV_RELDATE "2021/03/10"
+
+static const char version[] =
+ DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
+ " Lawrence V. Stefani and others\n";
+
+#define DYNAMIC_BUFFERS 1
+
+#define SKBUFF_RX_COPYBREAK 200
+/*
+ * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
+ * alignment for compatibility with old EISA boards.
+ */
+#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
+
+#ifdef CONFIG_EISA
+#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
+#else
+#define DFX_BUS_EISA(dev) 0
+#endif
+
+#ifdef CONFIG_TC
+#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
+#else
+#define DFX_BUS_TC(dev) 0
+#endif
+
+#if defined(CONFIG_EISA) || defined(CONFIG_PCI)
+#define dfx_use_mmio bp->mmio
+#else
+#define dfx_use_mmio true
+#endif
+
+/* Define module-wide (static) routines */
+
+static void dfx_bus_init(struct net_device *dev);
+static void dfx_bus_uninit(struct net_device *dev);
+static void dfx_bus_config_check(DFX_board_t *bp);
+
+static int dfx_driver_init(struct net_device *dev,
+ const char *print_name,
+ resource_size_t bar_start);
+static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
+
+static int dfx_open(struct net_device *dev);
+static int dfx_close(struct net_device *dev);
+
+static void dfx_int_pr_halt_id(DFX_board_t *bp);
+static void dfx_int_type_0_process(DFX_board_t *bp);
+static void dfx_int_common(struct net_device *dev);
+static irqreturn_t dfx_interrupt(int irq, void *dev_id);
+
+static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
+static void dfx_ctl_set_multicast_list(struct net_device *dev);
+static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
+static int dfx_ctl_update_cam(DFX_board_t *bp);
+static int dfx_ctl_update_filters(DFX_board_t *bp);
+
+static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
+static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
+static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
+static int dfx_hw_adap_state_rd(DFX_board_t *bp);
+static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
+
+static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
+static void dfx_rcv_queue_process(DFX_board_t *bp);
+#ifdef DYNAMIC_BUFFERS
+static void dfx_rcv_flush(DFX_board_t *bp);
+#else
+static inline void dfx_rcv_flush(DFX_board_t *bp) {}
+#endif
+
+static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
+ struct net_device *dev);
+static int dfx_xmt_done(DFX_board_t *bp);
+static void dfx_xmt_flush(DFX_board_t *bp);
+
+/* Define module-wide (static) variables */
+
+static struct pci_driver dfx_pci_driver;
+static struct eisa_driver dfx_eisa_driver;
+static struct tc_driver dfx_tc_driver;
+
+
+/*
+ * =======================
+ * = dfx_port_write_long =
+ * = dfx_port_read_long =
+ * =======================
+ *
+ * Overview:
+ * Routines for reading and writing values from/to adapter
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ * offset - register offset from base I/O address
+ * data - for dfx_port_write_long, this is a value to write;
+ * for dfx_port_read_long, this is a pointer to store
+ * the read value
+ *
+ * Functional Description:
+ * These routines perform the correct operation to read or write
+ * the adapter register.
+ *
+ * EISA port block base addresses are based on the slot number in which the
+ * controller is installed. For example, if the EISA controller is installed
+ * in slot 4, the port block base address is 0x4000. If the controller is
+ * installed in slot 2, the port block base address is 0x2000, and so on.
+ * This port block can be used to access PDQ, ESIC, and DEFEA on-board
+ * registers using the register offsets defined in DEFXX.H.
+ *
+ * PCI port block base addresses are assigned by the PCI BIOS or system
+ * firmware. There is one 128 byte port block which can be accessed. It
+ * allows for I/O mapping of both PDQ and PFI registers using the register
+ * offsets defined in DEFXX.H.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * bp->base is a valid base I/O address for this adapter.
+ * offset is a valid register offset for this adapter.
+ *
+ * Side Effects:
+ * Rather than produce macros for these functions, these routines
+ * are defined using "inline" to ensure that the compiler will
+ * generate inline code and not waste a procedure call and return.
+ * This provides all the benefits of macros, but with the
+ * advantage of strict data type checking.
+ */
+
+static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
+{
+ writel(data, bp->base.mem + offset);
+ mb();
+}
+
+static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
+{
+ outl(data, bp->base.port + offset);
+}
+
+static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
+{
+ struct device __maybe_unused *bdev = bp->bus_dev;
+
+ if (dfx_use_mmio)
+ dfx_writel(bp, offset, data);
+ else
+ dfx_outl(bp, offset, data);
+}
+
+
+static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
+{
+ mb();
+ *data = readl(bp->base.mem + offset);
+}
+
+static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
+{
+ *data = inl(bp->base.port + offset);
+}
+
+static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
+{
+ struct device __maybe_unused *bdev = bp->bus_dev;
+
+ if (dfx_use_mmio)
+ dfx_readl(bp, offset, data);
+ else
+ dfx_inl(bp, offset, data);
+}
+
+
+/*
+ * ================
+ * = dfx_get_bars =
+ * ================
+ *
+ * Overview:
+ * Retrieves the address ranges used to access control and status
+ * registers.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ * bar_start - pointer to store the start addresses
+ * bar_len - pointer to store the lengths of the areas
+ *
+ * Assumptions:
+ * I am sure there are some.
+ *
+ * Side Effects:
+ * None
+ */
+static void dfx_get_bars(DFX_board_t *bp,
+ resource_size_t *bar_start, resource_size_t *bar_len)
+{
+ struct device *bdev = bp->bus_dev;
+ int dfx_bus_pci = dev_is_pci(bdev);
+ int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+ int dfx_bus_tc = DFX_BUS_TC(bdev);
+
+ if (dfx_bus_pci) {
+ int num = dfx_use_mmio ? 0 : 1;
+
+ bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
+ bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
+ bar_start[2] = bar_start[1] = 0;
+ bar_len[2] = bar_len[1] = 0;
+ }
+ if (dfx_bus_eisa) {
+ unsigned long base_addr = to_eisa_device(bdev)->base_addr;
+ resource_size_t bar_lo;
+ resource_size_t bar_hi;
+
+ if (dfx_use_mmio) {
+ bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
+ bar_lo <<= 8;
+ bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
+ bar_lo <<= 8;
+ bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
+ bar_lo <<= 8;
+ bar_start[0] = bar_lo;
+ bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
+ bar_hi <<= 8;
+ bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
+ bar_hi <<= 8;
+ bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
+ bar_hi <<= 8;
+ bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
+ 1;
+ } else {
+ bar_start[0] = base_addr;
+ bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
+ }
+ bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
+ bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
+ bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
+ bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
+ }
+ if (dfx_bus_tc) {
+ bar_start[0] = to_tc_dev(bdev)->resource.start +
+ PI_TC_K_CSR_OFFSET;
+ bar_len[0] = PI_TC_K_CSR_LEN;
+ bar_start[2] = bar_start[1] = 0;
+ bar_len[2] = bar_len[1] = 0;
+ }
+}
+
+static const struct net_device_ops dfx_netdev_ops = {
+ .ndo_open = dfx_open,
+ .ndo_stop = dfx_close,
+ .ndo_start_xmit = dfx_xmt_queue_pkt,
+ .ndo_get_stats = dfx_ctl_get_stats,
+ .ndo_set_rx_mode = dfx_ctl_set_multicast_list,
+ .ndo_set_mac_address = dfx_ctl_set_mac_address,
+};
+
+static void dfx_register_res_err(const char *print_name, bool mmio,
+ unsigned long start, unsigned long len)
+{
+ pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n",
+ print_name, mmio ? "MMIO" : "I/O", len, start);
+}
+
+/*
+ * ================
+ * = dfx_register =
+ * ================
+ *
+ * Overview:
+ * Initializes a supported FDDI controller
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * bdev - pointer to device information
+ *
+ * Functional Description:
+ *
+ * Return Codes:
+ * 0 - This device (fddi0, fddi1, etc) configured successfully
+ * -EBUSY - Failed to get resources, or dfx_driver_init failed.
+ *
+ * Assumptions:
+ * It compiles so it should work :-( (PCI cards do :-)
+ *
+ * Side Effects:
+ * Device structures for FDDI adapters (fddi0, fddi1, etc) are
+ * initialized and the board resources are read and stored in
+ * the device structure.
+ */
+static int dfx_register(struct device *bdev)
+{
+ static int version_disp;
+ int dfx_bus_pci = dev_is_pci(bdev);
+ int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+ const char *print_name = dev_name(bdev);
+ struct net_device *dev;
+ DFX_board_t *bp; /* board pointer */
+ resource_size_t bar_start[3] = {0}; /* pointers to ports */
+ resource_size_t bar_len[3] = {0}; /* resource length */
+ int alloc_size; /* total buffer size used */
+ struct resource *region;
+ int err = 0;
+
+ if (!version_disp) { /* display version info if adapter is found */
+ version_disp = 1; /* set display flag to TRUE so that */
+ printk(version); /* we only display this string ONCE */
+ }
+
+ dev = alloc_fddidev(sizeof(*bp));
+ if (!dev) {
+ printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
+ print_name);
+ return -ENOMEM;
+ }
+
+ /* Enable PCI device. */
+ if (dfx_bus_pci) {
+ err = pci_enable_device(to_pci_dev(bdev));
+ if (err) {
+ pr_err("%s: Cannot enable PCI device, aborting\n",
+ print_name);
+ goto err_out;
+ }
+ }
+
+ SET_NETDEV_DEV(dev, bdev);
+
+ bp = netdev_priv(dev);
+ bp->bus_dev = bdev;
+ dev_set_drvdata(bdev, dev);
+
+ bp->mmio = true;
+
+ dfx_get_bars(bp, bar_start, bar_len);
+ if (bar_len[0] == 0 ||
+ (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) {
+ bp->mmio = false;
+ dfx_get_bars(bp, bar_start, bar_len);
+ }
+
+ if (dfx_use_mmio) {
+ region = request_mem_region(bar_start[0], bar_len[0],
+ bdev->driver->name);
+ if (!region && (dfx_bus_eisa || dfx_bus_pci)) {
+ bp->mmio = false;
+ dfx_get_bars(bp, bar_start, bar_len);
+ }
+ }
+ if (!dfx_use_mmio)
+ region = request_region(bar_start[0], bar_len[0],
+ bdev->driver->name);
+ if (!region) {
+ dfx_register_res_err(print_name, dfx_use_mmio,
+ bar_start[0], bar_len[0]);
+ err = -EBUSY;
+ goto err_out_disable;
+ }
+ if (bar_start[1] != 0) {
+ region = request_region(bar_start[1], bar_len[1],
+ bdev->driver->name);
+ if (!region) {
+ dfx_register_res_err(print_name, 0,
+ bar_start[1], bar_len[1]);
+ err = -EBUSY;
+ goto err_out_csr_region;
+ }
+ }
+ if (bar_start[2] != 0) {
+ region = request_region(bar_start[2], bar_len[2],
+ bdev->driver->name);
+ if (!region) {
+ dfx_register_res_err(print_name, 0,
+ bar_start[2], bar_len[2]);
+ err = -EBUSY;
+ goto err_out_bh_region;
+ }
+ }
+
+ /* Set up I/O base address. */
+ if (dfx_use_mmio) {
+ bp->base.mem = ioremap(bar_start[0], bar_len[0]);
+ if (!bp->base.mem) {
+ printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
+ err = -ENOMEM;
+ goto err_out_esic_region;
+ }
+ } else {
+ bp->base.port = bar_start[0];
+ dev->base_addr = bar_start[0];
+ }
+
+ /* Initialize new device structure */
+ dev->netdev_ops = &dfx_netdev_ops;
+
+ if (dfx_bus_pci)
+ pci_set_master(to_pci_dev(bdev));
+
+ if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
+ err = -ENODEV;
+ goto err_out_unmap;
+ }
+
+ err = register_netdev(dev);
+ if (err)
+ goto err_out_kfree;
+
+ printk("%s: registered as %s\n", print_name, dev->name);
+ return 0;
+
+err_out_kfree:
+ alloc_size = sizeof(PI_DESCR_BLOCK) +
+ PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
+#ifndef DYNAMIC_BUFFERS
+ (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
+#endif
+ sizeof(PI_CONSUMER_BLOCK) +
+ (PI_ALIGN_K_DESC_BLK - 1);
+ if (bp->kmalloced)
+ dma_free_coherent(bdev, alloc_size,
+ bp->kmalloced, bp->kmalloced_dma);
+
+err_out_unmap:
+ if (dfx_use_mmio)
+ iounmap(bp->base.mem);
+
+err_out_esic_region:
+ if (bar_start[2] != 0)
+ release_region(bar_start[2], bar_len[2]);
+
+err_out_bh_region:
+ if (bar_start[1] != 0)
+ release_region(bar_start[1], bar_len[1]);
+
+err_out_csr_region:
+ if (dfx_use_mmio)
+ release_mem_region(bar_start[0], bar_len[0]);
+ else
+ release_region(bar_start[0], bar_len[0]);
+
+err_out_disable:
+ if (dfx_bus_pci)
+ pci_disable_device(to_pci_dev(bdev));
+
+err_out:
+ free_netdev(dev);
+ return err;
+}
+
+
+/*
+ * ================
+ * = dfx_bus_init =
+ * ================
+ *
+ * Overview:
+ * Initializes the bus-specific controller logic.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * dev - pointer to device information
+ *
+ * Functional Description:
+ * Determine and save adapter IRQ in device table,
+ * then perform bus-specific logic initialization.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * bp->base has already been set with the proper
+ * base I/O address for this device.
+ *
+ * Side Effects:
+ * Interrupts are enabled at the adapter bus-specific logic.
+ * Note: Interrupts at the DMA engine (PDQ chip) are not
+ * enabled yet.
+ */
+
+static void dfx_bus_init(struct net_device *dev)
+{
+ DFX_board_t *bp = netdev_priv(dev);
+ struct device *bdev = bp->bus_dev;
+ int dfx_bus_pci = dev_is_pci(bdev);
+ int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+ int dfx_bus_tc = DFX_BUS_TC(bdev);
+ u8 val;
+
+ DBG_printk("In dfx_bus_init...\n");
+
+ /* Initialize a pointer back to the net_device struct */
+ bp->dev = dev;
+
+ /* Initialize adapter based on bus type */
+
+ if (dfx_bus_tc)
+ dev->irq = to_tc_dev(bdev)->interrupt;
+ if (dfx_bus_eisa) {
+ unsigned long base_addr = to_eisa_device(bdev)->base_addr;
+
+ /* Disable the board before fiddling with the decoders. */
+ outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
+
+ /* Get the interrupt level from the ESIC chip. */
+ val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+ val &= PI_CONFIG_STAT_0_M_IRQ;
+ val >>= PI_CONFIG_STAT_0_V_IRQ;
+
+ switch (val) {
+ case PI_CONFIG_STAT_0_IRQ_K_9:
+ dev->irq = 9;
+ break;
+
+ case PI_CONFIG_STAT_0_IRQ_K_10:
+ dev->irq = 10;
+ break;
+
+ case PI_CONFIG_STAT_0_IRQ_K_11:
+ dev->irq = 11;
+ break;
+
+ case PI_CONFIG_STAT_0_IRQ_K_15:
+ dev->irq = 15;
+ break;
+ }
+
+ /*
+ * Enable memory decoding (MEMCS1) and/or port decoding
+ * (IOCS1/IOCS0) as appropriate in Function Control
+ * Register. MEMCS1 or IOCS0 is used for PDQ registers,
+ * taking 16 32-bit words, while IOCS1 is used for the
+ * Burst Holdoff register, taking a single 32-bit word
+ * only. We use the slot-specific I/O range as per the
+ * ESIC spec, that is set bits 15:12 in the mask registers
+ * to mask them out.
+ */
+
+ /* Set the decode range of the board. */
+ val = 0;
+ outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
+ val = PI_DEFEA_K_CSR_IO;
+ outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
+
+ val = PI_IO_CMP_M_SLOT;
+ outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
+ val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
+ outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
+
+ val = 0;
+ outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
+ val = PI_DEFEA_K_BURST_HOLDOFF;
+ outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
+
+ val = PI_IO_CMP_M_SLOT;
+ outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
+ val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
+ outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
+
+ /* Enable the decoders. */
+ val = PI_FUNCTION_CNTRL_M_IOCS1;
+ if (dfx_use_mmio)
+ val |= PI_FUNCTION_CNTRL_M_MEMCS1;
+ else
+ val |= PI_FUNCTION_CNTRL_M_IOCS0;
+ outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
+
+ /*
+ * Enable access to the rest of the module
+ * (including PDQ and packet memory).
+ */
+ val = PI_SLOT_CNTRL_M_ENB;
+ outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
+
+ /*
+ * Map PDQ registers into memory or port space. This is
+ * done with a bit in the Burst Holdoff register.
+ */
+ val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
+ if (dfx_use_mmio)
+ val |= PI_BURST_HOLDOFF_M_MEM_MAP;
+ else
+ val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
+ outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
+
+ /* Enable interrupts at EISA bus interface chip (ESIC) */
+ val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+ val |= PI_CONFIG_STAT_0_M_INT_ENB;
+ outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+ }
+ if (dfx_bus_pci) {
+ struct pci_dev *pdev = to_pci_dev(bdev);
+
+ /* Get the interrupt level from the PCI Configuration Table */
+
+ dev->irq = pdev->irq;
+
+ /* Check Latency Timer and set if less than minimal */
+
+ pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
+ if (val < PFI_K_LAT_TIMER_MIN) {
+ val = PFI_K_LAT_TIMER_DEF;
+ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
+ }
+
+ /* Enable interrupts at PCI bus interface chip (PFI) */
+ val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
+ dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
+ }
+}
+
+/*
+ * ==================
+ * = dfx_bus_uninit =
+ * ==================
+ *
+ * Overview:
+ * Uninitializes the bus-specific controller logic.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * dev - pointer to device information
+ *
+ * Functional Description:
+ * Perform bus-specific logic uninitialization.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * bp->base has already been set with the proper
+ * base I/O address for this device.
+ *
+ * Side Effects:
+ * Interrupts are disabled at the adapter bus-specific logic.
+ */
+
+static void dfx_bus_uninit(struct net_device *dev)
+{
+ DFX_board_t *bp = netdev_priv(dev);
+ struct device *bdev = bp->bus_dev;
+ int dfx_bus_pci = dev_is_pci(bdev);
+ int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+ u8 val;
+
+ DBG_printk("In dfx_bus_uninit...\n");
+
+ /* Uninitialize adapter based on bus type */
+
+ if (dfx_bus_eisa) {
+ unsigned long base_addr = to_eisa_device(bdev)->base_addr;
+
+ /* Disable interrupts at EISA bus interface chip (ESIC) */
+ val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+ val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
+ outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+
+ /* Disable the board. */
+ outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
+
+ /* Disable memory and port decoders. */
+ outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
+ }
+ if (dfx_bus_pci) {
+ /* Disable interrupts at PCI bus interface chip (PFI) */
+ dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
+ }
+}
+
+
+/*
+ * ========================
+ * = dfx_bus_config_check =
+ * ========================
+ *
+ * Overview:
+ * Checks the configuration (burst size, full-duplex, etc.) If any parameters
+ * are illegal, then this routine will set new defaults.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
+ * PDQ, and all FDDI PCI controllers, all values are legal.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * dfx_adap_init has NOT been called yet so burst size and other items have
+ * not been set.
+ *
+ * Side Effects:
+ * None
+ */
+
+static void dfx_bus_config_check(DFX_board_t *bp)
+{
+ struct device __maybe_unused *bdev = bp->bus_dev;
+ int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+ int status; /* return code from adapter port control call */
+ u32 host_data; /* LW data returned from port control call */
+
+ DBG_printk("In dfx_bus_config_check...\n");
+
+ /* Configuration check only valid for EISA adapter */
+
+ if (dfx_bus_eisa) {
+ /*
+ * First check if revision 2 EISA controller. Rev. 1 cards used
+ * PDQ revision B, so no workaround needed in this case. Rev. 3
+ * cards used PDQ revision E, so no workaround needed in this
+ * case, either. Only Rev. 2 cards used either Rev. D or E
+ * chips, so we must verify the chip revision on Rev. 2 cards.
+ */
+ if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
+ /*
+ * Revision 2 FDDI EISA controller found,
+ * so let's check PDQ revision of adapter.
+ */
+ status = dfx_hw_port_ctrl_req(bp,
+ PI_PCTRL_M_SUB_CMD,
+ PI_SUB_CMD_K_PDQ_REV_GET,
+ 0,
+ &host_data);
+ if ((status != DFX_K_SUCCESS) || (host_data == 2))
+ {
+ /*
+ * Either we couldn't determine the PDQ revision, or
+ * we determined that it is at revision D. In either case,
+ * we need to implement the workaround.
+ */
+
+ /* Ensure that the burst size is set to 8 longwords or less */
+
+ switch (bp->burst_size)
+ {
+ case PI_PDATA_B_DMA_BURST_SIZE_32:
+ case PI_PDATA_B_DMA_BURST_SIZE_16:
+ bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
+ break;
+
+ default:
+ break;
+ }
+
+ /* Ensure that full-duplex mode is not enabled */
+
+ bp->full_duplex_enb = PI_SNMP_K_FALSE;
+ }
+ }
+ }
+ }
+
+
+/*
+ * ===================
+ * = dfx_driver_init =
+ * ===================
+ *
+ * Overview:
+ * Initializes remaining adapter board structure information
+ * and makes sure adapter is in a safe state prior to dfx_open().
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * dev - pointer to device information
+ * print_name - printable device name
+ *
+ * Functional Description:
+ * This function allocates additional resources such as the host memory
+ * blocks needed by the adapter (eg. descriptor and consumer blocks).
+ * Remaining bus initialization steps are also completed. The adapter
+ * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
+ * must call dfx_open() to open the adapter and bring it on-line.
+ *
+ * Return Codes:
+ * DFX_K_SUCCESS - initialization succeeded
+ * DFX_K_FAILURE - initialization failed - could not allocate memory
+ * or read adapter MAC address
+ *
+ * Assumptions:
+ * Memory allocated from dma_alloc_coherent() call is physically
+ * contiguous, locked memory.
+ *
+ * Side Effects:
+ * Adapter is reset and should be in DMA_UNAVAILABLE state before
+ * returning from this routine.
+ */
+
+static int dfx_driver_init(struct net_device *dev, const char *print_name,
+ resource_size_t bar_start)
+{
+ DFX_board_t *bp = netdev_priv(dev);
+ struct device *bdev = bp->bus_dev;
+ int dfx_bus_pci = dev_is_pci(bdev);
+ int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+ int dfx_bus_tc = DFX_BUS_TC(bdev);
+ int alloc_size; /* total buffer size needed */
+ char *top_v, *curr_v; /* virtual addrs into memory block */
+ dma_addr_t top_p, curr_p; /* physical addrs into memory block */
+ u32 data; /* host data register value */
+ __le32 le32;
+ char *board_name = NULL;
+
+ DBG_printk("In dfx_driver_init...\n");
+
+ /* Initialize bus-specific hardware registers */
+
+ dfx_bus_init(dev);
+
+ /*
+ * Initialize default values for configurable parameters
+ *
+ * Note: All of these parameters are ones that a user may
+ * want to customize. It'd be nice to break these
+ * out into Space.c or someplace else that's more
+ * accessible/understandable than this file.
+ */
+
+ bp->full_duplex_enb = PI_SNMP_K_FALSE;
+ bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
+ bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
+ bp->rcv_bufs_to_post = RCV_BUFS_DEF;
+
+ /*
+ * Ensure that HW configuration is OK
+ *
+ * Note: Depending on the hardware revision, we may need to modify
+ * some of the configurable parameters to workaround hardware
+ * limitations. We'll perform this configuration check AFTER
+ * setting the parameters to their default values.
+ */
+
+ dfx_bus_config_check(bp);
+
+ /* Disable PDQ interrupts first */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+
+ /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
+
+ (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
+
+ /* Read the factory MAC address from the adapter then save it */
+
+ if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
+ &data) != DFX_K_SUCCESS) {
+ printk("%s: Could not read adapter factory MAC address!\n",
+ print_name);
+ return DFX_K_FAILURE;
+ }
+ le32 = cpu_to_le32(data);
+ memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
+
+ if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
+ &data) != DFX_K_SUCCESS) {
+ printk("%s: Could not read adapter factory MAC address!\n",
+ print_name);
+ return DFX_K_FAILURE;
+ }
+ le32 = cpu_to_le32(data);
+ memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
+
+ /*
+ * Set current address to factory address
+ *
+ * Note: Node address override support is handled through
+ * dfx_ctl_set_mac_address.
+ */
+
+ dev_addr_set(dev, bp->factory_mac_addr);
+ if (dfx_bus_tc)
+ board_name = "DEFTA";
+ if (dfx_bus_eisa)
+ board_name = "DEFEA";
+ if (dfx_bus_pci)
+ board_name = "DEFPA";
+ pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
+ print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
+ (long long)bar_start, dev->irq, dev->dev_addr);
+
+ /*
+ * Get memory for descriptor block, consumer block, and other buffers
+ * that need to be DMA read or written to by the adapter.
+ */
+
+ alloc_size = sizeof(PI_DESCR_BLOCK) +
+ PI_CMD_REQ_K_SIZE_MAX +
+ PI_CMD_RSP_K_SIZE_MAX +
+#ifndef DYNAMIC_BUFFERS
+ (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
+#endif
+ sizeof(PI_CONSUMER_BLOCK) +
+ (PI_ALIGN_K_DESC_BLK - 1);
+ bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
+ &bp->kmalloced_dma,
+ GFP_ATOMIC);
+ if (top_v == NULL)
+ return DFX_K_FAILURE;
+
+ top_p = bp->kmalloced_dma; /* get physical address of buffer */
+
+ /*
+ * To guarantee the 8K alignment required for the descriptor block, 8K - 1
+ * plus the amount of memory needed was allocated. The physical address
+ * is now 8K aligned. By carving up the memory in a specific order,
+ * we'll guarantee the alignment requirements for all other structures.
+ *
+ * Note: If the assumptions change regarding the non-paged, non-cached,
+ * physically contiguous nature of the memory block or the address
+ * alignments, then we'll need to implement a different algorithm
+ * for allocating the needed memory.
+ */
+
+ curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
+ curr_v = top_v + (curr_p - top_p);
+
+ /* Reserve space for descriptor block */
+
+ bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
+ bp->descr_block_phys = curr_p;
+ curr_v += sizeof(PI_DESCR_BLOCK);
+ curr_p += sizeof(PI_DESCR_BLOCK);
+
+ /* Reserve space for command request buffer */
+
+ bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
+ bp->cmd_req_phys = curr_p;
+ curr_v += PI_CMD_REQ_K_SIZE_MAX;
+ curr_p += PI_CMD_REQ_K_SIZE_MAX;
+
+ /* Reserve space for command response buffer */
+
+ bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
+ bp->cmd_rsp_phys = curr_p;
+ curr_v += PI_CMD_RSP_K_SIZE_MAX;
+ curr_p += PI_CMD_RSP_K_SIZE_MAX;
+
+ /* Reserve space for the LLC host receive queue buffers */
+
+ bp->rcv_block_virt = curr_v;
+ bp->rcv_block_phys = curr_p;
+
+#ifndef DYNAMIC_BUFFERS
+ curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
+ curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
+#endif
+
+ /* Reserve space for the consumer block */
+
+ bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
+ bp->cons_block_phys = curr_p;
+
+ /* Display virtual and physical addresses if debug driver */
+
+ DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
+ print_name, bp->descr_block_virt, &bp->descr_block_phys);
+ DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
+ print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
+ DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
+ print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
+ DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
+ print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
+ DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
+ print_name, bp->cons_block_virt, &bp->cons_block_phys);
+
+ return DFX_K_SUCCESS;
+}
+
+
+/*
+ * =================
+ * = dfx_adap_init =
+ * =================
+ *
+ * Overview:
+ * Brings the adapter to the link avail/link unavailable state.
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * bp - pointer to board information
+ * get_buffers - non-zero if buffers to be allocated
+ *
+ * Functional Description:
+ * Issues the low-level firmware/hardware calls necessary to bring
+ * the adapter up, or to properly reset and restore adapter during
+ * run-time.
+ *
+ * Return Codes:
+ * DFX_K_SUCCESS - Adapter brought up successfully
+ * DFX_K_FAILURE - Adapter initialization failed
+ *
+ * Assumptions:
+ * bp->reset_type should be set to a valid reset type value before
+ * calling this routine.
+ *
+ * Side Effects:
+ * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
+ * upon a successful return of this routine.
+ */
+
+static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
+ {
+ DBG_printk("In dfx_adap_init...\n");
+
+ /* Disable PDQ interrupts first */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+
+ /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
+
+ if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
+ {
+ printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
+ return DFX_K_FAILURE;
+ }
+
+ /*
+ * When the PDQ is reset, some false Type 0 interrupts may be pending,
+ * so we'll acknowledge all Type 0 interrupts now before continuing.
+ */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
+
+ /*
+ * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
+ *
+ * Note: We only need to clear host copies of these registers. The PDQ reset
+ * takes care of the on-board register values.
+ */
+
+ bp->cmd_req_reg.lword = 0;
+ bp->cmd_rsp_reg.lword = 0;
+ bp->rcv_xmt_reg.lword = 0;
+
+ /* Clear consumer block before going to DMA_AVAILABLE state */
+
+ memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
+
+ /* Initialize the DMA Burst Size */
+
+ if (dfx_hw_port_ctrl_req(bp,
+ PI_PCTRL_M_SUB_CMD,
+ PI_SUB_CMD_K_BURST_SIZE_SET,
+ bp->burst_size,
+ NULL) != DFX_K_SUCCESS)
+ {
+ printk("%s: Could not set adapter burst size!\n", bp->dev->name);
+ return DFX_K_FAILURE;
+ }
+
+ /*
+ * Set base address of Consumer Block
+ *
+ * Assumption: 32-bit physical address of consumer block is 64 byte
+ * aligned. That is, bits 0-5 of the address must be zero.
+ */
+
+ if (dfx_hw_port_ctrl_req(bp,
+ PI_PCTRL_M_CONS_BLOCK,
+ bp->cons_block_phys,
+ 0,
+ NULL) != DFX_K_SUCCESS)
+ {
+ printk("%s: Could not set consumer block address!\n", bp->dev->name);
+ return DFX_K_FAILURE;
+ }
+
+ /*
+ * Set the base address of Descriptor Block and bring adapter
+ * to DMA_AVAILABLE state.
+ *
+ * Note: We also set the literal and data swapping requirements
+ * in this command.
+ *
+ * Assumption: 32-bit physical address of descriptor block
+ * is 8Kbyte aligned.
+ */
+ if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
+ (u32)(bp->descr_block_phys |
+ PI_PDATA_A_INIT_M_BSWAP_INIT),
+ 0, NULL) != DFX_K_SUCCESS) {
+ printk("%s: Could not set descriptor block address!\n",
+ bp->dev->name);
+ return DFX_K_FAILURE;
+ }
+
+ /* Set transmit flush timeout value */
+
+ bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
+ bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
+ bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
+ bp->cmd_req_virt->char_set.item[0].item_index = 0;
+ bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
+ if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+ {
+ printk("%s: DMA command request failed!\n", bp->dev->name);
+ return DFX_K_FAILURE;
+ }
+
+ /* Set the initial values for eFDXEnable and MACTReq MIB objects */
+
+ bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
+ bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
+ bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
+ bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
+ bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
+ bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
+ bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
+ bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
+ if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+ {
+ printk("%s: DMA command request failed!\n", bp->dev->name);
+ return DFX_K_FAILURE;
+ }
+
+ /* Initialize adapter CAM */
+
+ if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
+ {
+ printk("%s: Adapter CAM update failed!\n", bp->dev->name);
+ return DFX_K_FAILURE;
+ }
+
+ /* Initialize adapter filters */
+
+ if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
+ {
+ printk("%s: Adapter filters update failed!\n", bp->dev->name);
+ return DFX_K_FAILURE;
+ }
+
+ /*
+ * Remove any existing dynamic buffers (i.e. if the adapter is being
+ * reinitialized)
+ */
+
+ if (get_buffers)
+ dfx_rcv_flush(bp);
+
+ /* Initialize receive descriptor block and produce buffers */
+
+ if (dfx_rcv_init(bp, get_buffers))
+ {
+ printk("%s: Receive buffer allocation failed\n", bp->dev->name);
+ if (get_buffers)
+ dfx_rcv_flush(bp);
+ return DFX_K_FAILURE;
+ }
+
+ /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
+
+ bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
+ if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+ {
+ printk("%s: Start command failed\n", bp->dev->name);
+ if (get_buffers)
+ dfx_rcv_flush(bp);
+ return DFX_K_FAILURE;
+ }
+
+ /* Initialization succeeded, reenable PDQ interrupts */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
+ return DFX_K_SUCCESS;
+ }
+
+
+/*
+ * ============
+ * = dfx_open =
+ * ============
+ *
+ * Overview:
+ * Opens the adapter
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * dev - pointer to device information
+ *
+ * Functional Description:
+ * This function brings the adapter to an operational state.
+ *
+ * Return Codes:
+ * 0 - Adapter was successfully opened
+ * -EAGAIN - Could not register IRQ or adapter initialization failed
+ *
+ * Assumptions:
+ * This routine should only be called for a device that was
+ * initialized successfully.
+ *
+ * Side Effects:
+ * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
+ * if the open is successful.
+ */
+
+static int dfx_open(struct net_device *dev)
+{
+ DFX_board_t *bp = netdev_priv(dev);
+ int ret;
+
+ DBG_printk("In dfx_open...\n");
+
+ /* Register IRQ - support shared interrupts by passing device ptr */
+
+ ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
+ dev);
+ if (ret) {
+ printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
+ return ret;
+ }
+
+ /*
+ * Set current address to factory MAC address
+ *
+ * Note: We've already done this step in dfx_driver_init.
+ * However, it's possible that a user has set a node
+ * address override, then closed and reopened the
+ * adapter. Unless we reset the device address field
+ * now, we'll continue to use the existing modified
+ * address.
+ */
+
+ dev_addr_set(dev, bp->factory_mac_addr);
+
+ /* Clear local unicast/multicast address tables and counts */
+
+ memset(bp->uc_table, 0, sizeof(bp->uc_table));
+ memset(bp->mc_table, 0, sizeof(bp->mc_table));
+ bp->uc_count = 0;
+ bp->mc_count = 0;
+
+ /* Disable promiscuous filter settings */
+
+ bp->ind_group_prom = PI_FSTATE_K_BLOCK;
+ bp->group_prom = PI_FSTATE_K_BLOCK;
+
+ spin_lock_init(&bp->lock);
+
+ /* Reset and initialize adapter */
+
+ bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
+ if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
+ {
+ printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
+ free_irq(dev->irq, dev);
+ return -EAGAIN;
+ }
+
+ /* Set device structure info */
+ netif_start_queue(dev);
+ return 0;
+}
+
+
+/*
+ * =============
+ * = dfx_close =
+ * =============
+ *
+ * Overview:
+ * Closes the device/module.
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * dev - pointer to device information
+ *
+ * Functional Description:
+ * This routine closes the adapter and brings it to a safe state.
+ * The interrupt service routine is deregistered with the OS.
+ * The adapter can be opened again with another call to dfx_open().
+ *
+ * Return Codes:
+ * Always return 0.
+ *
+ * Assumptions:
+ * No further requests for this adapter are made after this routine is
+ * called. dfx_open() can be called to reset and reinitialize the
+ * adapter.
+ *
+ * Side Effects:
+ * Adapter should be in DMA_UNAVAILABLE state upon completion of this
+ * routine.
+ */
+
+static int dfx_close(struct net_device *dev)
+{
+ DFX_board_t *bp = netdev_priv(dev);
+
+ DBG_printk("In dfx_close...\n");
+
+ /* Disable PDQ interrupts first */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+
+ /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
+
+ (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
+
+ /*
+ * Flush any pending transmit buffers
+ *
+ * Note: It's important that we flush the transmit buffers
+ * BEFORE we clear our copy of the Type 2 register.
+ * Otherwise, we'll have no idea how many buffers
+ * we need to free.
+ */
+
+ dfx_xmt_flush(bp);
+
+ /*
+ * Clear Type 1 and Type 2 registers after adapter reset
+ *
+ * Note: Even though we're closing the adapter, it's
+ * possible that an interrupt will occur after
+ * dfx_close is called. Without some assurance to
+ * the contrary we want to make sure that we don't
+ * process receive and transmit LLC frames and update
+ * the Type 2 register with bad information.
+ */
+
+ bp->cmd_req_reg.lword = 0;
+ bp->cmd_rsp_reg.lword = 0;
+ bp->rcv_xmt_reg.lword = 0;
+
+ /* Clear consumer block for the same reason given above */
+
+ memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
+
+ /* Release all dynamically allocate skb in the receive ring. */
+
+ dfx_rcv_flush(bp);
+
+ /* Clear device structure flags */
+
+ netif_stop_queue(dev);
+
+ /* Deregister (free) IRQ */
+
+ free_irq(dev->irq, dev);
+
+ return 0;
+}
+
+
+/*
+ * ======================
+ * = dfx_int_pr_halt_id =
+ * ======================
+ *
+ * Overview:
+ * Displays halt id's in string form.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * Determine current halt id and display appropriate string.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * None
+ *
+ * Side Effects:
+ * None
+ */
+
+static void dfx_int_pr_halt_id(DFX_board_t *bp)
+ {
+ PI_UINT32 port_status; /* PDQ port status register value */
+ PI_UINT32 halt_id; /* PDQ port status halt ID */
+
+ /* Read the latest port status */
+
+ dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
+
+ /* Display halt state transition information */
+
+ halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
+ switch (halt_id)
+ {
+ case PI_HALT_ID_K_SELFTEST_TIMEOUT:
+ printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
+ break;
+
+ case PI_HALT_ID_K_PARITY_ERROR:
+ printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
+ break;
+
+ case PI_HALT_ID_K_HOST_DIR_HALT:
+ printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
+ break;
+
+ case PI_HALT_ID_K_SW_FAULT:
+ printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
+ break;
+
+ case PI_HALT_ID_K_HW_FAULT:
+ printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
+ break;
+
+ case PI_HALT_ID_K_PC_TRACE:
+ printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
+ break;
+
+ case PI_HALT_ID_K_DMA_ERROR:
+ printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
+ break;
+
+ case PI_HALT_ID_K_IMAGE_CRC_ERROR:
+ printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
+ break;
+
+ case PI_HALT_ID_K_BUS_EXCEPTION:
+ printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
+ break;
+
+ default:
+ printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
+ break;
+ }
+ }
+
+
+/*
+ * ==========================
+ * = dfx_int_type_0_process =
+ * ==========================
+ *
+ * Overview:
+ * Processes Type 0 interrupts.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * Processes all enabled Type 0 interrupts. If the reason for the interrupt
+ * is a serious fault on the adapter, then an error message is displayed
+ * and the adapter is reset.
+ *
+ * One tricky potential timing window is the rapid succession of "link avail"
+ * "link unavail" state change interrupts. The acknowledgement of the Type 0
+ * interrupt must be done before reading the state from the Port Status
+ * register. This is true because a state change could occur after reading
+ * the data, but before acknowledging the interrupt. If this state change
+ * does happen, it would be lost because the driver is using the old state,
+ * and it will never know about the new state because it subsequently
+ * acknowledges the state change interrupt.
+ *
+ * INCORRECT CORRECT
+ * read type 0 int reasons read type 0 int reasons
+ * read adapter state ack type 0 interrupts
+ * ack type 0 interrupts read adapter state
+ * ... process interrupt ... ... process interrupt ...
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * None
+ *
+ * Side Effects:
+ * An adapter reset may occur if the adapter has any Type 0 error interrupts
+ * or if the port status indicates that the adapter is halted. The driver
+ * is responsible for reinitializing the adapter with the current CAM
+ * contents and adapter filter settings.
+ */
+
+static void dfx_int_type_0_process(DFX_board_t *bp)
+
+ {
+ PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
+ PI_UINT32 state; /* current adap state (from port status) */
+
+ /*
+ * Read host interrupt Type 0 register to determine which Type 0
+ * interrupts are pending. Immediately write it back out to clear
+ * those interrupts.
+ */
+
+ dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
+ dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
+
+ /* Check for Type 0 error interrupts */
+
+ if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
+ PI_TYPE_0_STAT_M_PM_PAR_ERR |
+ PI_TYPE_0_STAT_M_BUS_PAR_ERR))
+ {
+ /* Check for Non-Existent Memory error */
+
+ if (type_0_status & PI_TYPE_0_STAT_M_NXM)
+ printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
+
+ /* Check for Packet Memory Parity error */
+
+ if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
+ printk("%s: Packet Memory Parity Error\n", bp->dev->name);
+
+ /* Check for Host Bus Parity error */
+
+ if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
+ printk("%s: Host Bus Parity Error\n", bp->dev->name);
+
+ /* Reset adapter and bring it back on-line */
+
+ bp->link_available = PI_K_FALSE; /* link is no longer available */
+ bp->reset_type = 0; /* rerun on-board diagnostics */
+ printk("%s: Resetting adapter...\n", bp->dev->name);
+ if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
+ {
+ printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
+ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+ return;
+ }
+ printk("%s: Adapter reset successful!\n", bp->dev->name);
+ return;
+ }
+
+ /* Check for transmit flush interrupt */
+
+ if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
+ {
+ /* Flush any pending xmt's and acknowledge the flush interrupt */
+
+ bp->link_available = PI_K_FALSE; /* link is no longer available */
+ dfx_xmt_flush(bp); /* flush any outstanding packets */
+ (void) dfx_hw_port_ctrl_req(bp,
+ PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
+ 0,
+ 0,
+ NULL);
+ }
+
+ /* Check for adapter state change */
+
+ if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
+ {
+ /* Get latest adapter state */
+
+ state = dfx_hw_adap_state_rd(bp); /* get adapter state */
+ if (state == PI_STATE_K_HALTED)
+ {
+ /*
+ * Adapter has transitioned to HALTED state, try to reset
+ * adapter to bring it back on-line. If reset fails,
+ * leave the adapter in the broken state.
+ */
+
+ printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
+ dfx_int_pr_halt_id(bp); /* display halt id as string */
+
+ /* Reset adapter and bring it back on-line */
+
+ bp->link_available = PI_K_FALSE; /* link is no longer available */
+ bp->reset_type = 0; /* rerun on-board diagnostics */
+ printk("%s: Resetting adapter...\n", bp->dev->name);
+ if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
+ {
+ printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
+ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+ return;
+ }
+ printk("%s: Adapter reset successful!\n", bp->dev->name);
+ }
+ else if (state == PI_STATE_K_LINK_AVAIL)
+ {
+ bp->link_available = PI_K_TRUE; /* set link available flag */
+ }
+ }
+ }
+
+
+/*
+ * ==================
+ * = dfx_int_common =
+ * ==================
+ *
+ * Overview:
+ * Interrupt service routine (ISR)
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * This is the ISR which processes incoming adapter interrupts.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * This routine assumes PDQ interrupts have not been disabled.
+ * When interrupts are disabled at the PDQ, the Port Status register
+ * is automatically cleared. This routine uses the Port Status
+ * register value to determine whether a Type 0 interrupt occurred,
+ * so it's important that adapter interrupts are not normally
+ * enabled/disabled at the PDQ.
+ *
+ * It's vital that this routine is NOT reentered for the
+ * same board and that the OS is not in another section of
+ * code (eg. dfx_xmt_queue_pkt) for the same board on a
+ * different thread.
+ *
+ * Side Effects:
+ * Pending interrupts are serviced. Depending on the type of
+ * interrupt, acknowledging and clearing the interrupt at the
+ * PDQ involves writing a register to clear the interrupt bit
+ * or updating completion indices.
+ */
+
+static void dfx_int_common(struct net_device *dev)
+{
+ DFX_board_t *bp = netdev_priv(dev);
+ PI_UINT32 port_status; /* Port Status register */
+
+ /* Process xmt interrupts - frequent case, so always call this routine */
+
+ if(dfx_xmt_done(bp)) /* free consumed xmt packets */
+ netif_wake_queue(dev);
+
+ /* Process rcv interrupts - frequent case, so always call this routine */
+
+ dfx_rcv_queue_process(bp); /* service received LLC frames */
+
+ /*
+ * Transmit and receive producer and completion indices are updated on the
+ * adapter by writing to the Type 2 Producer register. Since the frequent
+ * case is that we'll be processing either LLC transmit or receive buffers,
+ * we'll optimize I/O writes by doing a single register write here.
+ */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
+
+ /* Read PDQ Port Status register to find out which interrupts need processing */
+
+ dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
+
+ /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
+
+ if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
+ dfx_int_type_0_process(bp); /* process Type 0 interrupts */
+ }
+
+
+/*
+ * =================
+ * = dfx_interrupt =
+ * =================
+ *
+ * Overview:
+ * Interrupt processing routine
+ *
+ * Returns:
+ * Whether a valid interrupt was seen.
+ *
+ * Arguments:
+ * irq - interrupt vector
+ * dev_id - pointer to device information
+ *
+ * Functional Description:
+ * This routine calls the interrupt processing routine for this adapter. It
+ * disables and reenables adapter interrupts, as appropriate. We can support
+ * shared interrupts since the incoming dev_id pointer provides our device
+ * structure context.
+ *
+ * Return Codes:
+ * IRQ_HANDLED - an IRQ was handled.
+ * IRQ_NONE - no IRQ was handled.
+ *
+ * Assumptions:
+ * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
+ * on Intel-based systems) is done by the operating system outside this
+ * routine.
+ *
+ * System interrupts are enabled through this call.
+ *
+ * Side Effects:
+ * Interrupts are disabled, then reenabled at the adapter.
+ */
+
+static irqreturn_t dfx_interrupt(int irq, void *dev_id)
+{
+ struct net_device *dev = dev_id;
+ DFX_board_t *bp = netdev_priv(dev);
+ struct device *bdev = bp->bus_dev;
+ int dfx_bus_pci = dev_is_pci(bdev);
+ int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+ int dfx_bus_tc = DFX_BUS_TC(bdev);
+
+ /* Service adapter interrupts */
+
+ if (dfx_bus_pci) {
+ u32 status;
+
+ dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
+ if (!(status & PFI_STATUS_M_PDQ_INT))
+ return IRQ_NONE;
+
+ spin_lock(&bp->lock);
+
+ /* Disable PDQ-PFI interrupts at PFI */
+ dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
+ PFI_MODE_M_DMA_ENB);
+
+ /* Call interrupt service routine for this adapter */
+ dfx_int_common(dev);
+
+ /* Clear PDQ interrupt status bit and reenable interrupts */
+ dfx_port_write_long(bp, PFI_K_REG_STATUS,
+ PFI_STATUS_M_PDQ_INT);
+ dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
+ (PFI_MODE_M_PDQ_INT_ENB |
+ PFI_MODE_M_DMA_ENB));
+
+ spin_unlock(&bp->lock);
+ }
+ if (dfx_bus_eisa) {
+ unsigned long base_addr = to_eisa_device(bdev)->base_addr;
+ u8 status;
+
+ status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+ if (!(status & PI_CONFIG_STAT_0_M_PEND))
+ return IRQ_NONE;
+
+ spin_lock(&bp->lock);
+
+ /* Disable interrupts at the ESIC */
+ status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
+ outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+
+ /* Call interrupt service routine for this adapter */
+ dfx_int_common(dev);
+
+ /* Reenable interrupts at the ESIC */
+ status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+ status |= PI_CONFIG_STAT_0_M_INT_ENB;
+ outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+
+ spin_unlock(&bp->lock);
+ }
+ if (dfx_bus_tc) {
+ u32 status;
+
+ dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
+ if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
+ PI_PSTATUS_M_XMT_DATA_PENDING |
+ PI_PSTATUS_M_SMT_HOST_PENDING |
+ PI_PSTATUS_M_UNSOL_PENDING |
+ PI_PSTATUS_M_CMD_RSP_PENDING |
+ PI_PSTATUS_M_CMD_REQ_PENDING |
+ PI_PSTATUS_M_TYPE_0_PENDING)))
+ return IRQ_NONE;
+
+ spin_lock(&bp->lock);
+
+ /* Call interrupt service routine for this adapter */
+ dfx_int_common(dev);
+
+ spin_unlock(&bp->lock);
+ }
+
+ return IRQ_HANDLED;
+}
+
+
+/*
+ * =====================
+ * = dfx_ctl_get_stats =
+ * =====================
+ *
+ * Overview:
+ * Get statistics for FDDI adapter
+ *
+ * Returns:
+ * Pointer to FDDI statistics structure
+ *
+ * Arguments:
+ * dev - pointer to device information
+ *
+ * Functional Description:
+ * Gets current MIB objects from adapter, then
+ * returns FDDI statistics structure as defined
+ * in if_fddi.h.
+ *
+ * Note: Since the FDDI statistics structure is
+ * still new and the device structure doesn't
+ * have an FDDI-specific get statistics handler,
+ * we'll return the FDDI statistics structure as
+ * a pointer to an Ethernet statistics structure.
+ * That way, at least the first part of the statistics
+ * structure can be decoded properly, and it allows
+ * "smart" applications to perform a second cast to
+ * decode the FDDI-specific statistics.
+ *
+ * We'll have to pay attention to this routine as the
+ * device structure becomes more mature and LAN media
+ * independent.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * None
+ *
+ * Side Effects:
+ * None
+ */
+
+static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
+ {
+ DFX_board_t *bp = netdev_priv(dev);
+
+ /* Fill the bp->stats structure with driver-maintained counters */
+
+ bp->stats.gen.rx_packets = bp->rcv_total_frames;
+ bp->stats.gen.tx_packets = bp->xmt_total_frames;
+ bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
+ bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
+ bp->stats.gen.rx_errors = bp->rcv_crc_errors +
+ bp->rcv_frame_status_errors +
+ bp->rcv_length_errors;
+ bp->stats.gen.tx_errors = bp->xmt_length_errors;
+ bp->stats.gen.rx_dropped = bp->rcv_discards;
+ bp->stats.gen.tx_dropped = bp->xmt_discards;
+ bp->stats.gen.multicast = bp->rcv_multicast_frames;
+ bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
+
+ /* Get FDDI SMT MIB objects */
+
+ bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
+ if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+ return (struct net_device_stats *)&bp->stats;
+
+ /* Fill the bp->stats structure with the SMT MIB object values */
+
+ memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
+ bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
+ bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
+ bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
+ memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
+ bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
+ bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
+ bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
+ bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
+ bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
+ bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
+ bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
+ bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
+ bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
+ bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
+ bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
+ bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
+ bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
+ bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
+ bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
+ bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
+ bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
+ bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
+ bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
+ bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
+ bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
+ bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
+ bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
+ bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
+ memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
+ memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
+ memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
+ memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
+ bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
+ bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
+ bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
+ memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
+ bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
+ bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
+ bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
+ bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
+ bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
+ bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
+ bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
+ bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
+ bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
+ bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
+ bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
+ bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
+ bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
+ bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
+ bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
+ bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
+ memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
+ bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
+ bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
+ bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
+ bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
+ bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
+ bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
+ bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
+ bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
+ bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
+ bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
+ memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
+ memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
+ bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
+ bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
+ bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
+ bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
+ bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
+ bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
+ bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
+ bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
+ bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
+ bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
+ bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
+ bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
+ bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
+ bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
+ bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
+ bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
+ bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
+ bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
+ bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
+ bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
+ bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
+ bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
+ bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
+ bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
+ bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
+ bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
+
+ /* Get FDDI counters */
+
+ bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
+ if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+ return (struct net_device_stats *)&bp->stats;
+
+ /* Fill the bp->stats structure with the FDDI counter values */
+
+ bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
+ bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
+ bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
+ bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
+ bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
+ bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
+ bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
+ bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
+ bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
+ bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
+ bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
+
+ return (struct net_device_stats *)&bp->stats;
+ }
+
+
+/*
+ * ==============================
+ * = dfx_ctl_set_multicast_list =
+ * ==============================
+ *
+ * Overview:
+ * Enable/Disable LLC frame promiscuous mode reception
+ * on the adapter and/or update multicast address table.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * dev - pointer to device information
+ *
+ * Functional Description:
+ * This routine follows a fairly simple algorithm for setting the
+ * adapter filters and CAM:
+ *
+ * if IFF_PROMISC flag is set
+ * enable LLC individual/group promiscuous mode
+ * else
+ * disable LLC individual/group promiscuous mode
+ * if number of incoming multicast addresses >
+ * (CAM max size - number of unicast addresses in CAM)
+ * enable LLC group promiscuous mode
+ * set driver-maintained multicast address count to zero
+ * else
+ * disable LLC group promiscuous mode
+ * set driver-maintained multicast address count to incoming count
+ * update adapter CAM
+ * update adapter filters
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * Multicast addresses are presented in canonical (LSB) format.
+ *
+ * Side Effects:
+ * On-board adapter CAM and filters are updated.
+ */
+
+static void dfx_ctl_set_multicast_list(struct net_device *dev)
+{
+ DFX_board_t *bp = netdev_priv(dev);
+ int i; /* used as index in for loop */
+ struct netdev_hw_addr *ha;
+
+ /* Enable LLC frame promiscuous mode, if necessary */
+
+ if (dev->flags & IFF_PROMISC)
+ bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
+
+ /* Else, update multicast address table */
+
+ else
+ {
+ bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
+ /*
+ * Check whether incoming multicast address count exceeds table size
+ *
+ * Note: The adapters utilize an on-board 64 entry CAM for
+ * supporting perfect filtering of multicast packets
+ * and bridge functions when adding unicast addresses.
+ * There is no hash function available. To support
+ * additional multicast addresses, the all multicast
+ * filter (LLC group promiscuous mode) must be enabled.
+ *
+ * The firmware reserves two CAM entries for SMT-related
+ * multicast addresses, which leaves 62 entries available.
+ * The following code ensures that we're not being asked
+ * to add more than 62 addresses to the CAM. If we are,
+ * the driver will enable the all multicast filter.
+ * Should the number of multicast addresses drop below
+ * the high water mark, the filter will be disabled and
+ * perfect filtering will be used.
+ */
+
+ if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
+ {
+ bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
+ bp->mc_count = 0; /* Don't add mc addrs to CAM */
+ }
+ else
+ {
+ bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
+ bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */
+ }
+
+ /* Copy addresses to multicast address table, then update adapter CAM */
+
+ i = 0;
+ netdev_for_each_mc_addr(ha, dev)
+ memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
+ ha->addr, FDDI_K_ALEN);
+
+ if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
+ {
+ DBG_printk("%s: Could not update multicast address table!\n", dev->name);
+ }
+ else
+ {
+ DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
+ }
+ }
+
+ /* Update adapter filters */
+
+ if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
+ {
+ DBG_printk("%s: Could not update adapter filters!\n", dev->name);
+ }
+ else
+ {
+ DBG_printk("%s: Adapter filters updated!\n", dev->name);
+ }
+ }
+
+
+/*
+ * ===========================
+ * = dfx_ctl_set_mac_address =
+ * ===========================
+ *
+ * Overview:
+ * Add node address override (unicast address) to adapter
+ * CAM and update dev_addr field in device table.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * dev - pointer to device information
+ * addr - pointer to sockaddr structure containing unicast address to add
+ *
+ * Functional Description:
+ * The adapter supports node address overrides by adding one or more
+ * unicast addresses to the adapter CAM. This is similar to adding
+ * multicast addresses. In this routine we'll update the driver and
+ * device structures with the new address, then update the adapter CAM
+ * to ensure that the adapter will copy and strip frames destined and
+ * sourced by that address.
+ *
+ * Return Codes:
+ * Always returns zero.
+ *
+ * Assumptions:
+ * The address pointed to by addr->sa_data is a valid unicast
+ * address and is presented in canonical (LSB) format.
+ *
+ * Side Effects:
+ * On-board adapter CAM is updated. On-board adapter filters
+ * may be updated.
+ */
+
+static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
+ {
+ struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
+ DFX_board_t *bp = netdev_priv(dev);
+
+ /* Copy unicast address to driver-maintained structs and update count */
+
+ dev_addr_set(dev, p_sockaddr->sa_data); /* update device struct */
+ memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
+ bp->uc_count = 1;
+
+ /*
+ * Verify we're not exceeding the CAM size by adding unicast address
+ *
+ * Note: It's possible that before entering this routine we've
+ * already filled the CAM with 62 multicast addresses.
+ * Since we need to place the node address override into
+ * the CAM, we have to check to see that we're not
+ * exceeding the CAM size. If we are, we have to enable
+ * the LLC group (multicast) promiscuous mode filter as
+ * in dfx_ctl_set_multicast_list.
+ */
+
+ if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
+ {
+ bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
+ bp->mc_count = 0; /* Don't add mc addrs to CAM */
+
+ /* Update adapter filters */
+
+ if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
+ {
+ DBG_printk("%s: Could not update adapter filters!\n", dev->name);
+ }
+ else
+ {
+ DBG_printk("%s: Adapter filters updated!\n", dev->name);
+ }
+ }
+
+ /* Update adapter CAM with new unicast address */
+
+ if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
+ {
+ DBG_printk("%s: Could not set new MAC address!\n", dev->name);
+ }
+ else
+ {
+ DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
+ }
+ return 0; /* always return zero */
+ }
+
+
+/*
+ * ======================
+ * = dfx_ctl_update_cam =
+ * ======================
+ *
+ * Overview:
+ * Procedure to update adapter CAM (Content Addressable Memory)
+ * with desired unicast and multicast address entries.
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * Updates adapter CAM with current contents of board structure
+ * unicast and multicast address tables. Since there are only 62
+ * free entries in CAM, this routine ensures that the command
+ * request buffer is not overrun.
+ *
+ * Return Codes:
+ * DFX_K_SUCCESS - Request succeeded
+ * DFX_K_FAILURE - Request failed
+ *
+ * Assumptions:
+ * All addresses being added (unicast and multicast) are in canonical
+ * order.
+ *
+ * Side Effects:
+ * On-board adapter CAM is updated.
+ */
+
+static int dfx_ctl_update_cam(DFX_board_t *bp)
+ {
+ int i; /* used as index */
+ PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
+
+ /*
+ * Fill in command request information
+ *
+ * Note: Even though both the unicast and multicast address
+ * table entries are stored as contiguous 6 byte entries,
+ * the firmware address filter set command expects each
+ * entry to be two longwords (8 bytes total). We must be
+ * careful to only copy the six bytes of each unicast and
+ * multicast table entry into each command entry. This
+ * is also why we must first clear the entire command
+ * request buffer.
+ */
+
+ memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
+ bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
+ p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
+
+ /* Now add unicast addresses to command request buffer, if any */
+
+ for (i=0; i < (int)bp->uc_count; i++)
+ {
+ if (i < PI_CMD_ADDR_FILTER_K_SIZE)
+ {
+ memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
+ p_addr++; /* point to next command entry */
+ }
+ }
+
+ /* Now add multicast addresses to command request buffer, if any */
+
+ for (i=0; i < (int)bp->mc_count; i++)
+ {
+ if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
+ {
+ memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
+ p_addr++; /* point to next command entry */
+ }
+ }
+
+ /* Issue command to update adapter CAM, then return */
+
+ if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+ return DFX_K_FAILURE;
+ return DFX_K_SUCCESS;
+ }
+
+
+/*
+ * ==========================
+ * = dfx_ctl_update_filters =
+ * ==========================
+ *
+ * Overview:
+ * Procedure to update adapter filters with desired
+ * filter settings.
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * Enables or disables filter using current filter settings.
+ *
+ * Return Codes:
+ * DFX_K_SUCCESS - Request succeeded.
+ * DFX_K_FAILURE - Request failed.
+ *
+ * Assumptions:
+ * We must always pass up packets destined to the broadcast
+ * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
+ * broadcast filter enabled.
+ *
+ * Side Effects:
+ * On-board adapter filters are updated.
+ */
+
+static int dfx_ctl_update_filters(DFX_board_t *bp)
+ {
+ int i = 0; /* used as index */
+
+ /* Fill in command request information */
+
+ bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
+
+ /* Initialize Broadcast filter - * ALWAYS ENABLED * */
+
+ bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
+ bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
+
+ /* Initialize LLC Individual/Group Promiscuous filter */
+
+ bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
+ bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
+
+ /* Initialize LLC Group Promiscuous filter */
+
+ bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
+ bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
+
+ /* Terminate the item code list */
+
+ bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
+
+ /* Issue command to update adapter filters, then return */
+
+ if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+ return DFX_K_FAILURE;
+ return DFX_K_SUCCESS;
+ }
+
+
+/*
+ * ======================
+ * = dfx_hw_dma_cmd_req =
+ * ======================
+ *
+ * Overview:
+ * Sends PDQ DMA command to adapter firmware
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * The command request and response buffers are posted to the adapter in the manner
+ * described in the PDQ Port Specification:
+ *
+ * 1. Command Response Buffer is posted to adapter.
+ * 2. Command Request Buffer is posted to adapter.
+ * 3. Command Request consumer index is polled until it indicates that request
+ * buffer has been DMA'd to adapter.
+ * 4. Command Response consumer index is polled until it indicates that response
+ * buffer has been DMA'd from adapter.
+ *
+ * This ordering ensures that a response buffer is already available for the firmware
+ * to use once it's done processing the request buffer.
+ *
+ * Return Codes:
+ * DFX_K_SUCCESS - DMA command succeeded
+ * DFX_K_OUTSTATE - Adapter is NOT in proper state
+ * DFX_K_HW_TIMEOUT - DMA command timed out
+ *
+ * Assumptions:
+ * Command request buffer has already been filled with desired DMA command.
+ *
+ * Side Effects:
+ * None
+ */
+
+static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
+ {
+ int status; /* adapter status */
+ int timeout_cnt; /* used in for loops */
+
+ /* Make sure the adapter is in a state that we can issue the DMA command in */
+
+ status = dfx_hw_adap_state_rd(bp);
+ if ((status == PI_STATE_K_RESET) ||
+ (status == PI_STATE_K_HALTED) ||
+ (status == PI_STATE_K_DMA_UNAVAIL) ||
+ (status == PI_STATE_K_UPGRADE))
+ return DFX_K_OUTSTATE;
+
+ /* Put response buffer on the command response queue */
+
+ bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
+ ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
+ bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
+
+ /* Bump (and wrap) the producer index and write out to register */
+
+ bp->cmd_rsp_reg.index.prod += 1;
+ bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
+ dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
+
+ /* Put request buffer on the command request queue */
+
+ bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
+ PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
+ bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
+
+ /* Bump (and wrap) the producer index and write out to register */
+
+ bp->cmd_req_reg.index.prod += 1;
+ bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
+ dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
+
+ /*
+ * Here we wait for the command request consumer index to be equal
+ * to the producer, indicating that the adapter has DMAed the request.
+ */
+
+ for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
+ {
+ if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
+ break;
+ udelay(100); /* wait for 100 microseconds */
+ }
+ if (timeout_cnt == 0)
+ return DFX_K_HW_TIMEOUT;
+
+ /* Bump (and wrap) the completion index and write out to register */
+
+ bp->cmd_req_reg.index.comp += 1;
+ bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
+ dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
+
+ /*
+ * Here we wait for the command response consumer index to be equal
+ * to the producer, indicating that the adapter has DMAed the response.
+ */
+
+ for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
+ {
+ if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
+ break;
+ udelay(100); /* wait for 100 microseconds */
+ }
+ if (timeout_cnt == 0)
+ return DFX_K_HW_TIMEOUT;
+
+ /* Bump (and wrap) the completion index and write out to register */
+
+ bp->cmd_rsp_reg.index.comp += 1;
+ bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
+ dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
+ return DFX_K_SUCCESS;
+ }
+
+
+/*
+ * ========================
+ * = dfx_hw_port_ctrl_req =
+ * ========================
+ *
+ * Overview:
+ * Sends PDQ port control command to adapter firmware
+ *
+ * Returns:
+ * Host data register value in host_data if ptr is not NULL
+ *
+ * Arguments:
+ * bp - pointer to board information
+ * command - port control command
+ * data_a - port data A register value
+ * data_b - port data B register value
+ * host_data - ptr to host data register value
+ *
+ * Functional Description:
+ * Send generic port control command to adapter by writing
+ * to various PDQ port registers, then polling for completion.
+ *
+ * Return Codes:
+ * DFX_K_SUCCESS - port control command succeeded
+ * DFX_K_HW_TIMEOUT - port control command timed out
+ *
+ * Assumptions:
+ * None
+ *
+ * Side Effects:
+ * None
+ */
+
+static int dfx_hw_port_ctrl_req(
+ DFX_board_t *bp,
+ PI_UINT32 command,
+ PI_UINT32 data_a,
+ PI_UINT32 data_b,
+ PI_UINT32 *host_data
+ )
+
+ {
+ PI_UINT32 port_cmd; /* Port Control command register value */
+ int timeout_cnt; /* used in for loops */
+
+ /* Set Command Error bit in command longword */
+
+ port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
+
+ /* Issue port command to the adapter */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
+ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
+ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
+
+ /* Now wait for command to complete */
+
+ if (command == PI_PCTRL_M_BLAST_FLASH)
+ timeout_cnt = 600000; /* set command timeout count to 60 seconds */
+ else
+ timeout_cnt = 20000; /* set command timeout count to 2 seconds */
+
+ for (; timeout_cnt > 0; timeout_cnt--)
+ {
+ dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
+ if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
+ break;
+ udelay(100); /* wait for 100 microseconds */
+ }
+ if (timeout_cnt == 0)
+ return DFX_K_HW_TIMEOUT;
+
+ /*
+ * If the address of host_data is non-zero, assume caller has supplied a
+ * non NULL pointer, and return the contents of the HOST_DATA register in
+ * it.
+ */
+
+ if (host_data != NULL)
+ dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
+ return DFX_K_SUCCESS;
+ }
+
+
+/*
+ * =====================
+ * = dfx_hw_adap_reset =
+ * =====================
+ *
+ * Overview:
+ * Resets adapter
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ * type - type of reset to perform
+ *
+ * Functional Description:
+ * Issue soft reset to adapter by writing to PDQ Port Reset
+ * register. Use incoming reset type to tell adapter what
+ * kind of reset operation to perform.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * This routine merely issues a soft reset to the adapter.
+ * It is expected that after this routine returns, the caller
+ * will appropriately poll the Port Status register for the
+ * adapter to enter the proper state.
+ *
+ * Side Effects:
+ * Internal adapter registers are cleared.
+ */
+
+static void dfx_hw_adap_reset(
+ DFX_board_t *bp,
+ PI_UINT32 type
+ )
+
+ {
+ /* Set Reset type and assert reset */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
+ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
+
+ /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
+
+ udelay(20);
+
+ /* Deassert reset */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
+ }
+
+
+/*
+ * ========================
+ * = dfx_hw_adap_state_rd =
+ * ========================
+ *
+ * Overview:
+ * Returns current adapter state
+ *
+ * Returns:
+ * Adapter state per PDQ Port Specification
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * Reads PDQ Port Status register and returns adapter state.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * None
+ *
+ * Side Effects:
+ * None
+ */
+
+static int dfx_hw_adap_state_rd(DFX_board_t *bp)
+ {
+ PI_UINT32 port_status; /* Port Status register value */
+
+ dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
+ return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
+ }
+
+
+/*
+ * =====================
+ * = dfx_hw_dma_uninit =
+ * =====================
+ *
+ * Overview:
+ * Brings adapter to DMA_UNAVAILABLE state
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * bp - pointer to board information
+ * type - type of reset to perform
+ *
+ * Functional Description:
+ * Bring adapter to DMA_UNAVAILABLE state by performing the following:
+ * 1. Set reset type bit in Port Data A Register then reset adapter.
+ * 2. Check that adapter is in DMA_UNAVAILABLE state.
+ *
+ * Return Codes:
+ * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
+ * DFX_K_HW_TIMEOUT - adapter did not reset properly
+ *
+ * Assumptions:
+ * None
+ *
+ * Side Effects:
+ * Internal adapter registers are cleared.
+ */
+
+static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
+ {
+ int timeout_cnt; /* used in for loops */
+
+ /* Set reset type bit and reset adapter */
+
+ dfx_hw_adap_reset(bp, type);
+
+ /* Now wait for adapter to enter DMA_UNAVAILABLE state */
+
+ for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
+ {
+ if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
+ break;
+ udelay(100); /* wait for 100 microseconds */
+ }
+ if (timeout_cnt == 0)
+ return DFX_K_HW_TIMEOUT;
+ return DFX_K_SUCCESS;
+ }
+
+/*
+ * Align an sk_buff to a boundary power of 2
+ *
+ */
+#ifdef DYNAMIC_BUFFERS
+static void my_skb_align(struct sk_buff *skb, int n)
+{
+ unsigned long x = (unsigned long)skb->data;
+ unsigned long v;
+
+ v = ALIGN(x, n); /* Where we want to be */
+
+ skb_reserve(skb, v - x);
+}
+#endif
+
+/*
+ * ================
+ * = dfx_rcv_init =
+ * ================
+ *
+ * Overview:
+ * Produces buffers to adapter LLC Host receive descriptor block
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ * get_buffers - non-zero if buffers to be allocated
+ *
+ * Functional Description:
+ * This routine can be called during dfx_adap_init() or during an adapter
+ * reset. It initializes the descriptor block and produces all allocated
+ * LLC Host queue receive buffers.
+ *
+ * Return Codes:
+ * Return 0 on success or -ENOMEM if buffer allocation failed (when using
+ * dynamic buffer allocation). If the buffer allocation failed, the
+ * already allocated buffers will not be released and the caller should do
+ * this.
+ *
+ * Assumptions:
+ * The PDQ has been reset and the adapter and driver maintained Type 2
+ * register indices are cleared.
+ *
+ * Side Effects:
+ * Receive buffers are posted to the adapter LLC queue and the adapter
+ * is notified.
+ */
+
+static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
+ {
+ int i, j; /* used in for loop */
+
+ /*
+ * Since each receive buffer is a single fragment of same length, initialize
+ * first longword in each receive descriptor for entire LLC Host descriptor
+ * block. Also initialize second longword in each receive descriptor with
+ * physical address of receive buffer. We'll always allocate receive
+ * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
+ * block and produce new receive buffers by simply updating the receive
+ * producer index.
+ *
+ * Assumptions:
+ * To support all shipping versions of PDQ, the receive buffer size
+ * must be mod 128 in length and the physical address must be 128 byte
+ * aligned. In other words, bits 0-6 of the length and address must
+ * be zero for the following descriptor field entries to be correct on
+ * all PDQ-based boards. We guaranteed both requirements during
+ * driver initialization when we allocated memory for the receive buffers.
+ */
+
+ if (get_buffers) {
+#ifdef DYNAMIC_BUFFERS
+ for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
+ for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
+ {
+ struct sk_buff *newskb;
+ dma_addr_t dma_addr;
+
+ newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
+ GFP_NOIO);
+ if (!newskb)
+ return -ENOMEM;
+ /*
+ * align to 128 bytes for compatibility with
+ * the old EISA boards.
+ */
+
+ my_skb_align(newskb, 128);
+ dma_addr = dma_map_single(bp->bus_dev,
+ newskb->data,
+ PI_RCV_DATA_K_SIZE_MAX,
+ DMA_FROM_DEVICE);
+ if (dma_mapping_error(bp->bus_dev, dma_addr)) {
+ dev_kfree_skb(newskb);
+ return -ENOMEM;
+ }
+ bp->descr_block_virt->rcv_data[i + j].long_0 =
+ (u32)(PI_RCV_DESCR_M_SOP |
+ ((PI_RCV_DATA_K_SIZE_MAX /
+ PI_ALIGN_K_RCV_DATA_BUFF) <<
+ PI_RCV_DESCR_V_SEG_LEN));
+ bp->descr_block_virt->rcv_data[i + j].long_1 =
+ (u32)dma_addr;
+
+ /*
+ * p_rcv_buff_va is only used inside the
+ * kernel so we put the skb pointer here.
+ */
+ bp->p_rcv_buff_va[i+j] = (char *) newskb;
+ }
+#else
+ for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
+ for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
+ {
+ bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
+ ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
+ bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
+ bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
+ }
+#endif
+ }
+
+ /* Update receive producer and Type 2 register */
+
+ bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
+ dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
+ return 0;
+ }
+
+
+/*
+ * =========================
+ * = dfx_rcv_queue_process =
+ * =========================
+ *
+ * Overview:
+ * Process received LLC frames.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * Received LLC frames are processed until there are no more consumed frames.
+ * Once all frames are processed, the receive buffers are returned to the
+ * adapter. Note that this algorithm fixes the length of time that can be spent
+ * in this routine, because there are a fixed number of receive buffers to
+ * process and buffers are not produced until this routine exits and returns
+ * to the ISR.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * None
+ *
+ * Side Effects:
+ * None
+ */
+
+static void dfx_rcv_queue_process(
+ DFX_board_t *bp
+ )
+
+ {
+ PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
+ char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
+ u32 descr, pkt_len; /* FMC descriptor field and packet length */
+ struct sk_buff *skb = NULL; /* pointer to a sk_buff to hold incoming packet data */
+
+ /* Service all consumed LLC receive frames */
+
+ p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
+ while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
+ {
+ /* Process any errors */
+ dma_addr_t dma_addr;
+ int entry;
+
+ entry = bp->rcv_xmt_reg.index.rcv_comp;
+#ifdef DYNAMIC_BUFFERS
+ p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
+#else
+ p_buff = bp->p_rcv_buff_va[entry];
+#endif
+ dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
+ dma_sync_single_for_cpu(bp->bus_dev,
+ dma_addr + RCV_BUFF_K_DESCR,
+ sizeof(u32),
+ DMA_FROM_DEVICE);
+ memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
+
+ if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
+ {
+ if (descr & PI_FMC_DESCR_M_RCC_CRC)
+ bp->rcv_crc_errors++;
+ else
+ bp->rcv_frame_status_errors++;
+ }
+ else
+ {
+ int rx_in_place = 0;
+
+ /* The frame was received without errors - verify packet length */
+
+ pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
+ pkt_len -= 4; /* subtract 4 byte CRC */
+ if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
+ bp->rcv_length_errors++;
+ else{
+#ifdef DYNAMIC_BUFFERS
+ struct sk_buff *newskb = NULL;
+
+ if (pkt_len > SKBUFF_RX_COPYBREAK) {
+ dma_addr_t new_dma_addr;
+
+ newskb = netdev_alloc_skb(bp->dev,
+ NEW_SKB_SIZE);
+ if (newskb){
+ my_skb_align(newskb, 128);
+ new_dma_addr = dma_map_single(
+ bp->bus_dev,
+ newskb->data,
+ PI_RCV_DATA_K_SIZE_MAX,
+ DMA_FROM_DEVICE);
+ if (dma_mapping_error(
+ bp->bus_dev,
+ new_dma_addr)) {
+ dev_kfree_skb(newskb);
+ newskb = NULL;
+ }
+ }
+ if (newskb) {
+ rx_in_place = 1;
+
+ skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
+ dma_unmap_single(bp->bus_dev,
+ dma_addr,
+ PI_RCV_DATA_K_SIZE_MAX,
+ DMA_FROM_DEVICE);
+ skb_reserve(skb, RCV_BUFF_K_PADDING);
+ bp->p_rcv_buff_va[entry] = (char *)newskb;
+ bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
+ }
+ }
+ if (!newskb)
+#endif
+ /* Alloc new buffer to pass up,
+ * add room for PRH. */
+ skb = netdev_alloc_skb(bp->dev,
+ pkt_len + 3);
+ if (skb == NULL)
+ {
+ printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
+ bp->rcv_discards++;
+ break;
+ }
+ else {
+ if (!rx_in_place) {
+ /* Receive buffer allocated, pass receive packet up */
+ dma_sync_single_for_cpu(
+ bp->bus_dev,
+ dma_addr +
+ RCV_BUFF_K_PADDING,
+ pkt_len + 3,
+ DMA_FROM_DEVICE);
+
+ skb_copy_to_linear_data(skb,
+ p_buff + RCV_BUFF_K_PADDING,
+ pkt_len + 3);
+ }
+
+ skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
+ skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
+ skb->protocol = fddi_type_trans(skb, bp->dev);
+ bp->rcv_total_bytes += skb->len;
+ netif_rx(skb);
+
+ /* Update the rcv counters */
+ bp->rcv_total_frames++;
+ if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
+ bp->rcv_multicast_frames++;
+ }
+ }
+ }
+
+ /*
+ * Advance the producer (for recycling) and advance the completion
+ * (for servicing received frames). Note that it is okay to
+ * advance the producer without checking that it passes the
+ * completion index because they are both advanced at the same
+ * rate.
+ */
+
+ bp->rcv_xmt_reg.index.rcv_prod += 1;
+ bp->rcv_xmt_reg.index.rcv_comp += 1;
+ }
+ }
+
+
+/*
+ * =====================
+ * = dfx_xmt_queue_pkt =
+ * =====================
+ *
+ * Overview:
+ * Queues packets for transmission
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * skb - pointer to sk_buff to queue for transmission
+ * dev - pointer to device information
+ *
+ * Functional Description:
+ * Here we assume that an incoming skb transmit request
+ * is contained in a single physically contiguous buffer
+ * in which the virtual address of the start of packet
+ * (skb->data) can be converted to a physical address
+ * by using dma_map_single().
+ *
+ * Since the adapter architecture requires a three byte
+ * packet request header to prepend the start of packet,
+ * we'll write the three byte field immediately prior to
+ * the FC byte. This assumption is valid because we've
+ * ensured that dev->hard_header_len includes three pad
+ * bytes. By posting a single fragment to the adapter,
+ * we'll reduce the number of descriptor fetches and
+ * bus traffic needed to send the request.
+ *
+ * Also, we can't free the skb until after it's been DMA'd
+ * out by the adapter, so we'll queue it in the driver and
+ * return it in dfx_xmt_done.
+ *
+ * Return Codes:
+ * 0 - driver queued packet, link is unavailable, or skbuff was bad
+ * 1 - caller should requeue the sk_buff for later transmission
+ *
+ * Assumptions:
+ * First and foremost, we assume the incoming skb pointer
+ * is NOT NULL and is pointing to a valid sk_buff structure.
+ *
+ * The outgoing packet is complete, starting with the
+ * frame control byte including the last byte of data,
+ * but NOT including the 4 byte CRC. We'll let the
+ * adapter hardware generate and append the CRC.
+ *
+ * The entire packet is stored in one physically
+ * contiguous buffer which is not cached and whose
+ * 32-bit physical address can be determined.
+ *
+ * It's vital that this routine is NOT reentered for the
+ * same board and that the OS is not in another section of
+ * code (eg. dfx_int_common) for the same board on a
+ * different thread.
+ *
+ * Side Effects:
+ * None
+ */
+
+static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
+ struct net_device *dev)
+ {
+ DFX_board_t *bp = netdev_priv(dev);
+ u8 prod; /* local transmit producer index */
+ PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
+ XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
+ dma_addr_t dma_addr;
+ unsigned long flags;
+
+ netif_stop_queue(dev);
+
+ /*
+ * Verify that incoming transmit request is OK
+ *
+ * Note: The packet size check is consistent with other
+ * Linux device drivers, although the correct packet
+ * size should be verified before calling the
+ * transmit routine.
+ */
+
+ if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
+ {
+ printk("%s: Invalid packet length - %u bytes\n",
+ dev->name, skb->len);
+ bp->xmt_length_errors++; /* bump error counter */
+ netif_wake_queue(dev);
+ dev_kfree_skb(skb);
+ return NETDEV_TX_OK; /* return "success" */
+ }
+ /*
+ * See if adapter link is available, if not, free buffer
+ *
+ * Note: If the link isn't available, free buffer and return 0
+ * rather than tell the upper layer to requeue the packet.
+ * The methodology here is that by the time the link
+ * becomes available, the packet to be sent will be
+ * fairly stale. By simply dropping the packet, the
+ * higher layer protocols will eventually time out
+ * waiting for response packets which it won't receive.
+ */
+
+ if (bp->link_available == PI_K_FALSE)
+ {
+ if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
+ bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
+ else
+ {
+ bp->xmt_discards++; /* bump error counter */
+ dev_kfree_skb(skb); /* free sk_buff now */
+ netif_wake_queue(dev);
+ return NETDEV_TX_OK; /* return "success" */
+ }
+ }
+
+ /* Write the three PRH bytes immediately before the FC byte */
+
+ skb_push(skb, 3);
+ skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
+ skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
+ skb->data[2] = DFX_PRH2_BYTE; /* specification */
+
+ dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
+ DMA_TO_DEVICE);
+ if (dma_mapping_error(bp->bus_dev, dma_addr)) {
+ skb_pull(skb, 3);
+ return NETDEV_TX_BUSY;
+ }
+
+ spin_lock_irqsave(&bp->lock, flags);
+
+ /* Get the current producer and the next free xmt data descriptor */
+
+ prod = bp->rcv_xmt_reg.index.xmt_prod;
+ p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
+
+ /*
+ * Get pointer to auxiliary queue entry to contain information
+ * for this packet.
+ *
+ * Note: The current xmt producer index will become the
+ * current xmt completion index when we complete this
+ * packet later on. So, we'll get the pointer to the
+ * next auxiliary queue entry now before we bump the
+ * producer index.
+ */
+
+ p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
+
+ /*
+ * Write the descriptor with buffer info and bump producer
+ *
+ * Note: Since we need to start DMA from the packet request
+ * header, we'll add 3 bytes to the DMA buffer length,
+ * and we'll determine the physical address of the
+ * buffer from the PRH, not skb->data.
+ *
+ * Assumptions:
+ * 1. Packet starts with the frame control (FC) byte
+ * at skb->data.
+ * 2. The 4-byte CRC is not appended to the buffer or
+ * included in the length.
+ * 3. Packet length (skb->len) is from FC to end of
+ * data, inclusive.
+ * 4. The packet length does not exceed the maximum
+ * FDDI LLC frame length of 4491 bytes.
+ * 5. The entire packet is contained in a physically
+ * contiguous, non-cached, locked memory space
+ * comprised of a single buffer pointed to by
+ * skb->data.
+ * 6. The physical address of the start of packet
+ * can be determined from the virtual address
+ * by using dma_map_single() and is only 32-bits
+ * wide.
+ */
+
+ p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
+ p_xmt_descr->long_1 = (u32)dma_addr;
+
+ /*
+ * Verify that descriptor is actually available
+ *
+ * Note: If descriptor isn't available, return 1 which tells
+ * the upper layer to requeue the packet for later
+ * transmission.
+ *
+ * We need to ensure that the producer never reaches the
+ * completion, except to indicate that the queue is empty.
+ */
+
+ if (prod == bp->rcv_xmt_reg.index.xmt_comp)
+ {
+ skb_pull(skb,3);
+ spin_unlock_irqrestore(&bp->lock, flags);
+ return NETDEV_TX_BUSY; /* requeue packet for later */
+ }
+
+ /*
+ * Save info for this packet for xmt done indication routine
+ *
+ * Normally, we'd save the producer index in the p_xmt_drv_descr
+ * structure so that we'd have it handy when we complete this
+ * packet later (in dfx_xmt_done). However, since the current
+ * transmit architecture guarantees a single fragment for the
+ * entire packet, we can simply bump the completion index by
+ * one (1) for each completed packet.
+ *
+ * Note: If this assumption changes and we're presented with
+ * an inconsistent number of transmit fragments for packet
+ * data, we'll need to modify this code to save the current
+ * transmit producer index.
+ */
+
+ p_xmt_drv_descr->p_skb = skb;
+
+ /* Update Type 2 register */
+
+ bp->rcv_xmt_reg.index.xmt_prod = prod;
+ dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
+ spin_unlock_irqrestore(&bp->lock, flags);
+ netif_wake_queue(dev);
+ return NETDEV_TX_OK; /* packet queued to adapter */
+ }
+
+
+/*
+ * ================
+ * = dfx_xmt_done =
+ * ================
+ *
+ * Overview:
+ * Processes all frames that have been transmitted.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * For all consumed transmit descriptors that have not
+ * yet been completed, we'll free the skb we were holding
+ * onto using dev_kfree_skb and bump the appropriate
+ * counters.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * The Type 2 register is not updated in this routine. It is
+ * assumed that it will be updated in the ISR when dfx_xmt_done
+ * returns.
+ *
+ * Side Effects:
+ * None
+ */
+
+static int dfx_xmt_done(DFX_board_t *bp)
+ {
+ XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
+ PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
+ u8 comp; /* local transmit completion index */
+ int freed = 0; /* buffers freed */
+
+ /* Service all consumed transmit frames */
+
+ p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
+ while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
+ {
+ /* Get pointer to the transmit driver descriptor block information */
+
+ p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
+
+ /* Increment transmit counters */
+
+ bp->xmt_total_frames++;
+ bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
+
+ /* Return skb to operating system */
+ comp = bp->rcv_xmt_reg.index.xmt_comp;
+ dma_unmap_single(bp->bus_dev,
+ bp->descr_block_virt->xmt_data[comp].long_1,
+ p_xmt_drv_descr->p_skb->len,
+ DMA_TO_DEVICE);
+ dev_consume_skb_irq(p_xmt_drv_descr->p_skb);
+
+ /*
+ * Move to start of next packet by updating completion index
+ *
+ * Here we assume that a transmit packet request is always
+ * serviced by posting one fragment. We can therefore
+ * simplify the completion code by incrementing the
+ * completion index by one. This code will need to be
+ * modified if this assumption changes. See comments
+ * in dfx_xmt_queue_pkt for more details.
+ */
+
+ bp->rcv_xmt_reg.index.xmt_comp += 1;
+ freed++;
+ }
+ return freed;
+ }
+
+
+/*
+ * =================
+ * = dfx_rcv_flush =
+ * =================
+ *
+ * Overview:
+ * Remove all skb's in the receive ring.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * Free's all the dynamically allocated skb's that are
+ * currently attached to the device receive ring. This
+ * function is typically only used when the device is
+ * initialized or reinitialized.
+ *
+ * Return Codes:
+ * None
+ *
+ * Side Effects:
+ * None
+ */
+#ifdef DYNAMIC_BUFFERS
+static void dfx_rcv_flush( DFX_board_t *bp )
+ {
+ int i, j;
+
+ for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
+ for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
+ {
+ struct sk_buff *skb;
+ skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
+ if (skb) {
+ dma_unmap_single(bp->bus_dev,
+ bp->descr_block_virt->rcv_data[i+j].long_1,
+ PI_RCV_DATA_K_SIZE_MAX,
+ DMA_FROM_DEVICE);
+ dev_kfree_skb(skb);
+ }
+ bp->p_rcv_buff_va[i+j] = NULL;
+ }
+
+ }
+#endif /* DYNAMIC_BUFFERS */
+
+/*
+ * =================
+ * = dfx_xmt_flush =
+ * =================
+ *
+ * Overview:
+ * Processes all frames whether they've been transmitted
+ * or not.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * For all produced transmit descriptors that have not
+ * yet been completed, we'll free the skb we were holding
+ * onto using dev_kfree_skb and bump the appropriate
+ * counters. Of course, it's possible that some of
+ * these transmit requests actually did go out, but we
+ * won't make that distinction here. Finally, we'll
+ * update the consumer index to match the producer.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * This routine does NOT update the Type 2 register. It
+ * is assumed that this routine is being called during a
+ * transmit flush interrupt, or a shutdown or close routine.
+ *
+ * Side Effects:
+ * None
+ */
+
+static void dfx_xmt_flush( DFX_board_t *bp )
+ {
+ u32 prod_cons; /* rcv/xmt consumer block longword */
+ XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
+ u8 comp; /* local transmit completion index */
+
+ /* Flush all outstanding transmit frames */
+
+ while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
+ {
+ /* Get pointer to the transmit driver descriptor block information */
+
+ p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
+
+ /* Return skb to operating system */
+ comp = bp->rcv_xmt_reg.index.xmt_comp;
+ dma_unmap_single(bp->bus_dev,
+ bp->descr_block_virt->xmt_data[comp].long_1,
+ p_xmt_drv_descr->p_skb->len,
+ DMA_TO_DEVICE);
+ dev_kfree_skb(p_xmt_drv_descr->p_skb);
+
+ /* Increment transmit error counter */
+
+ bp->xmt_discards++;
+
+ /*
+ * Move to start of next packet by updating completion index
+ *
+ * Here we assume that a transmit packet request is always
+ * serviced by posting one fragment. We can therefore
+ * simplify the completion code by incrementing the
+ * completion index by one. This code will need to be
+ * modified if this assumption changes. See comments
+ * in dfx_xmt_queue_pkt for more details.
+ */
+
+ bp->rcv_xmt_reg.index.xmt_comp += 1;
+ }
+
+ /* Update the transmit consumer index in the consumer block */
+
+ prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
+ prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
+ bp->cons_block_virt->xmt_rcv_data = prod_cons;
+ }
+
+/*
+ * ==================
+ * = dfx_unregister =
+ * ==================
+ *
+ * Overview:
+ * Shuts down an FDDI controller
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * bdev - pointer to device information
+ *
+ * Functional Description:
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * It compiles so it should work :-( (PCI cards do :-)
+ *
+ * Side Effects:
+ * Device structures for FDDI adapters (fddi0, fddi1, etc) are
+ * freed.
+ */
+static void dfx_unregister(struct device *bdev)
+{
+ struct net_device *dev = dev_get_drvdata(bdev);
+ DFX_board_t *bp = netdev_priv(dev);
+ int dfx_bus_pci = dev_is_pci(bdev);
+ resource_size_t bar_start[3] = {0}; /* pointers to ports */
+ resource_size_t bar_len[3] = {0}; /* resource lengths */
+ int alloc_size; /* total buffer size used */
+
+ unregister_netdev(dev);
+
+ alloc_size = sizeof(PI_DESCR_BLOCK) +
+ PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
+#ifndef DYNAMIC_BUFFERS
+ (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
+#endif
+ sizeof(PI_CONSUMER_BLOCK) +
+ (PI_ALIGN_K_DESC_BLK - 1);
+ if (bp->kmalloced)
+ dma_free_coherent(bdev, alloc_size,
+ bp->kmalloced, bp->kmalloced_dma);
+
+ dfx_bus_uninit(dev);
+
+ dfx_get_bars(bp, bar_start, bar_len);
+ if (bar_start[2] != 0)
+ release_region(bar_start[2], bar_len[2]);
+ if (bar_start[1] != 0)
+ release_region(bar_start[1], bar_len[1]);
+ if (dfx_use_mmio) {
+ iounmap(bp->base.mem);
+ release_mem_region(bar_start[0], bar_len[0]);
+ } else
+ release_region(bar_start[0], bar_len[0]);
+
+ if (dfx_bus_pci)
+ pci_disable_device(to_pci_dev(bdev));
+
+ free_netdev(dev);
+}
+
+
+static int __maybe_unused dfx_dev_register(struct device *);
+static int __maybe_unused dfx_dev_unregister(struct device *);
+
+#ifdef CONFIG_PCI
+static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
+static void dfx_pci_unregister(struct pci_dev *);
+
+static const struct pci_device_id dfx_pci_table[] = {
+ { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
+ { }
+};
+MODULE_DEVICE_TABLE(pci, dfx_pci_table);
+
+static struct pci_driver dfx_pci_driver = {
+ .name = DRV_NAME,
+ .id_table = dfx_pci_table,
+ .probe = dfx_pci_register,
+ .remove = dfx_pci_unregister,
+};
+
+static int dfx_pci_register(struct pci_dev *pdev,
+ const struct pci_device_id *ent)
+{
+ return dfx_register(&pdev->dev);
+}
+
+static void dfx_pci_unregister(struct pci_dev *pdev)
+{
+ dfx_unregister(&pdev->dev);
+}
+#endif /* CONFIG_PCI */
+
+#ifdef CONFIG_EISA
+static const struct eisa_device_id dfx_eisa_table[] = {
+ { "DEC3001", DEFEA_PROD_ID_1 },
+ { "DEC3002", DEFEA_PROD_ID_2 },
+ { "DEC3003", DEFEA_PROD_ID_3 },
+ { "DEC3004", DEFEA_PROD_ID_4 },
+ { }
+};
+MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
+
+static struct eisa_driver dfx_eisa_driver = {
+ .id_table = dfx_eisa_table,
+ .driver = {
+ .name = DRV_NAME,
+ .bus = &eisa_bus_type,
+ .probe = dfx_dev_register,
+ .remove = dfx_dev_unregister,
+ },
+};
+#endif /* CONFIG_EISA */
+
+#ifdef CONFIG_TC
+static struct tc_device_id const dfx_tc_table[] = {
+ { "DEC ", "PMAF-FA " },
+ { "DEC ", "PMAF-FD " },
+ { "DEC ", "PMAF-FS " },
+ { "DEC ", "PMAF-FU " },
+ { }
+};
+MODULE_DEVICE_TABLE(tc, dfx_tc_table);
+
+static struct tc_driver dfx_tc_driver = {
+ .id_table = dfx_tc_table,
+ .driver = {
+ .name = DRV_NAME,
+ .bus = &tc_bus_type,
+ .probe = dfx_dev_register,
+ .remove = dfx_dev_unregister,
+ },
+};
+#endif /* CONFIG_TC */
+
+static int __maybe_unused dfx_dev_register(struct device *dev)
+{
+ int status;
+
+ status = dfx_register(dev);
+ if (!status)
+ get_device(dev);
+ return status;
+}
+
+static int __maybe_unused dfx_dev_unregister(struct device *dev)
+{
+ put_device(dev);
+ dfx_unregister(dev);
+ return 0;
+}
+
+
+static int dfx_init(void)
+{
+ int status;
+
+ status = pci_register_driver(&dfx_pci_driver);
+ if (status)
+ goto err_pci_register;
+
+ status = eisa_driver_register(&dfx_eisa_driver);
+ if (status)
+ goto err_eisa_register;
+
+ status = tc_register_driver(&dfx_tc_driver);
+ if (status)
+ goto err_tc_register;
+
+ return 0;
+
+err_tc_register:
+ eisa_driver_unregister(&dfx_eisa_driver);
+err_eisa_register:
+ pci_unregister_driver(&dfx_pci_driver);
+err_pci_register:
+ return status;
+}
+
+static void dfx_cleanup(void)
+{
+ tc_unregister_driver(&dfx_tc_driver);
+ eisa_driver_unregister(&dfx_eisa_driver);
+ pci_unregister_driver(&dfx_pci_driver);
+}
+
+module_init(dfx_init);
+module_exit(dfx_cleanup);
+MODULE_AUTHOR("Lawrence V. Stefani");
+MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
+ DRV_VERSION " " DRV_RELDATE);
+MODULE_LICENSE("GPL");