summaryrefslogtreecommitdiffstats
path: root/drivers/ras/amd/atl
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/ras/amd/atl')
-rw-r--r--drivers/ras/amd/atl/Kconfig21
-rw-r--r--drivers/ras/amd/atl/Makefile18
-rw-r--r--drivers/ras/amd/atl/access.c133
-rw-r--r--drivers/ras/amd/atl/core.c225
-rw-r--r--drivers/ras/amd/atl/dehash.c500
-rw-r--r--drivers/ras/amd/atl/denormalize.c718
-rw-r--r--drivers/ras/amd/atl/internal.h306
-rw-r--r--drivers/ras/amd/atl/map.c682
-rw-r--r--drivers/ras/amd/atl/reg_fields.h606
-rw-r--r--drivers/ras/amd/atl/system.c288
-rw-r--r--drivers/ras/amd/atl/umc.c409
11 files changed, 3906 insertions, 0 deletions
diff --git a/drivers/ras/amd/atl/Kconfig b/drivers/ras/amd/atl/Kconfig
new file mode 100644
index 0000000000..df49c23e7f
--- /dev/null
+++ b/drivers/ras/amd/atl/Kconfig
@@ -0,0 +1,21 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# AMD Address Translation Library Kconfig
+#
+# Copyright (c) 2023, Advanced Micro Devices, Inc.
+# All Rights Reserved.
+#
+# Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+
+config AMD_ATL
+ tristate "AMD Address Translation Library"
+ depends on AMD_NB && X86_64 && RAS
+ depends on MEMORY_FAILURE
+ default N
+ help
+ This library includes support for implementation-specific
+ address translation procedures needed for various error
+ handling cases.
+
+ Enable this option if using DRAM ECC on Zen-based systems
+ and OS-based error handling.
diff --git a/drivers/ras/amd/atl/Makefile b/drivers/ras/amd/atl/Makefile
new file mode 100644
index 0000000000..4acd5f05bd
--- /dev/null
+++ b/drivers/ras/amd/atl/Makefile
@@ -0,0 +1,18 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# AMD Address Translation Library Makefile
+#
+# Copyright (c) 2023, Advanced Micro Devices, Inc.
+# All Rights Reserved.
+#
+# Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+
+amd_atl-y := access.o
+amd_atl-y += core.o
+amd_atl-y += dehash.o
+amd_atl-y += denormalize.o
+amd_atl-y += map.o
+amd_atl-y += system.o
+amd_atl-y += umc.o
+
+obj-$(CONFIG_AMD_ATL) += amd_atl.o
diff --git a/drivers/ras/amd/atl/access.c b/drivers/ras/amd/atl/access.c
new file mode 100644
index 0000000000..ee4661ed28
--- /dev/null
+++ b/drivers/ras/amd/atl/access.c
@@ -0,0 +1,133 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * AMD Address Translation Library
+ *
+ * access.c : DF Indirect Access functions
+ *
+ * Copyright (c) 2023, Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+ */
+
+#include "internal.h"
+
+/* Protect the PCI config register pairs used for DF indirect access. */
+static DEFINE_MUTEX(df_indirect_mutex);
+
+/*
+ * Data Fabric Indirect Access uses FICAA/FICAD.
+ *
+ * Fabric Indirect Configuration Access Address (FICAA): constructed based
+ * on the device's Instance Id and the PCI function and register offset of
+ * the desired register.
+ *
+ * Fabric Indirect Configuration Access Data (FICAD): there are FICAD
+ * low and high registers but so far only the low register is needed.
+ *
+ * Use Instance Id 0xFF to indicate a broadcast read.
+ */
+#define DF_BROADCAST 0xFF
+
+#define DF_FICAA_INST_EN BIT(0)
+#define DF_FICAA_REG_NUM GENMASK(10, 1)
+#define DF_FICAA_FUNC_NUM GENMASK(13, 11)
+#define DF_FICAA_INST_ID GENMASK(23, 16)
+
+#define DF_FICAA_REG_NUM_LEGACY GENMASK(10, 2)
+
+static u16 get_accessible_node(u16 node)
+{
+ /*
+ * On heterogeneous systems, not all AMD Nodes are accessible
+ * through software-visible registers. The Node ID needs to be
+ * adjusted for register accesses. But its value should not be
+ * changed for the translation methods.
+ */
+ if (df_cfg.flags.heterogeneous) {
+ /* Only Node 0 is accessible on DF3.5 systems. */
+ if (df_cfg.rev == DF3p5)
+ node = 0;
+
+ /*
+ * Only the first Node in each Socket is accessible on
+ * DF4.5 systems, and this is visible to software as one
+ * Fabric per Socket. The Socket ID can be derived from
+ * the Node ID and global shift values.
+ */
+ if (df_cfg.rev == DF4p5)
+ node >>= df_cfg.socket_id_shift - df_cfg.node_id_shift;
+ }
+
+ return node;
+}
+
+static int __df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
+{
+ u32 ficaa_addr = 0x8C, ficad_addr = 0xB8;
+ struct pci_dev *F4;
+ int err = -ENODEV;
+ u32 ficaa = 0;
+
+ node = get_accessible_node(node);
+ if (node >= amd_nb_num())
+ goto out;
+
+ F4 = node_to_amd_nb(node)->link;
+ if (!F4)
+ goto out;
+
+ /* Enable instance-specific access. */
+ if (instance_id != DF_BROADCAST) {
+ ficaa |= FIELD_PREP(DF_FICAA_INST_EN, 1);
+ ficaa |= FIELD_PREP(DF_FICAA_INST_ID, instance_id);
+ }
+
+ /*
+ * The two least-significant bits are masked when inputing the
+ * register offset to FICAA.
+ */
+ reg >>= 2;
+
+ if (df_cfg.flags.legacy_ficaa) {
+ ficaa_addr = 0x5C;
+ ficad_addr = 0x98;
+
+ ficaa |= FIELD_PREP(DF_FICAA_REG_NUM_LEGACY, reg);
+ } else {
+ ficaa |= FIELD_PREP(DF_FICAA_REG_NUM, reg);
+ }
+
+ ficaa |= FIELD_PREP(DF_FICAA_FUNC_NUM, func);
+
+ mutex_lock(&df_indirect_mutex);
+
+ err = pci_write_config_dword(F4, ficaa_addr, ficaa);
+ if (err) {
+ pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa);
+ goto out_unlock;
+ }
+
+ err = pci_read_config_dword(F4, ficad_addr, lo);
+ if (err)
+ pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa);
+
+ pr_debug("node=%u inst=0x%x func=0x%x reg=0x%x val=0x%x",
+ node, instance_id, func, reg << 2, *lo);
+
+out_unlock:
+ mutex_unlock(&df_indirect_mutex);
+
+out:
+ return err;
+}
+
+int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
+{
+ return __df_indirect_read(node, func, reg, instance_id, lo);
+}
+
+int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo)
+{
+ return __df_indirect_read(node, func, reg, DF_BROADCAST, lo);
+}
diff --git a/drivers/ras/amd/atl/core.c b/drivers/ras/amd/atl/core.c
new file mode 100644
index 0000000000..6dc4e06305
--- /dev/null
+++ b/drivers/ras/amd/atl/core.c
@@ -0,0 +1,225 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * AMD Address Translation Library
+ *
+ * core.c : Module init and base translation functions
+ *
+ * Copyright (c) 2023, Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+ */
+
+#include <linux/module.h>
+#include <asm/cpu_device_id.h>
+
+#include "internal.h"
+
+struct df_config df_cfg __read_mostly;
+
+static int addr_over_limit(struct addr_ctx *ctx)
+{
+ u64 dram_limit_addr;
+
+ if (df_cfg.rev >= DF4)
+ dram_limit_addr = FIELD_GET(DF4_DRAM_LIMIT_ADDR, ctx->map.limit);
+ else
+ dram_limit_addr = FIELD_GET(DF2_DRAM_LIMIT_ADDR, ctx->map.limit);
+
+ dram_limit_addr <<= DF_DRAM_BASE_LIMIT_LSB;
+ dram_limit_addr |= GENMASK(DF_DRAM_BASE_LIMIT_LSB - 1, 0);
+
+ /* Is calculated system address above DRAM limit address? */
+ if (ctx->ret_addr > dram_limit_addr) {
+ atl_debug(ctx, "Calculated address (0x%016llx) > DRAM limit (0x%016llx)",
+ ctx->ret_addr, dram_limit_addr);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static bool legacy_hole_en(struct addr_ctx *ctx)
+{
+ u32 reg = ctx->map.base;
+
+ if (df_cfg.rev >= DF4)
+ reg = ctx->map.ctl;
+
+ return FIELD_GET(DF_LEGACY_MMIO_HOLE_EN, reg);
+}
+
+static int add_legacy_hole(struct addr_ctx *ctx)
+{
+ u32 dram_hole_base;
+ u8 func = 0;
+
+ if (!legacy_hole_en(ctx))
+ return 0;
+
+ if (df_cfg.rev >= DF4)
+ func = 7;
+
+ if (df_indirect_read_broadcast(ctx->node_id, func, 0x104, &dram_hole_base))
+ return -EINVAL;
+
+ dram_hole_base &= DF_DRAM_HOLE_BASE_MASK;
+
+ if (ctx->ret_addr >= dram_hole_base)
+ ctx->ret_addr += (BIT_ULL(32) - dram_hole_base);
+
+ return 0;
+}
+
+static u64 get_base_addr(struct addr_ctx *ctx)
+{
+ u64 base_addr;
+
+ if (df_cfg.rev >= DF4)
+ base_addr = FIELD_GET(DF4_BASE_ADDR, ctx->map.base);
+ else
+ base_addr = FIELD_GET(DF2_BASE_ADDR, ctx->map.base);
+
+ return base_addr << DF_DRAM_BASE_LIMIT_LSB;
+}
+
+static int add_base_and_hole(struct addr_ctx *ctx)
+{
+ ctx->ret_addr += get_base_addr(ctx);
+
+ if (add_legacy_hole(ctx))
+ return -EINVAL;
+
+ return 0;
+}
+
+static bool late_hole_remove(struct addr_ctx *ctx)
+{
+ if (df_cfg.rev == DF3p5)
+ return true;
+
+ if (df_cfg.rev == DF4)
+ return true;
+
+ if (ctx->map.intlv_mode == DF3_6CHAN)
+ return true;
+
+ return false;
+}
+
+unsigned long norm_to_sys_addr(u8 socket_id, u8 die_id, u8 coh_st_inst_id, unsigned long addr)
+{
+ struct addr_ctx ctx;
+
+ if (df_cfg.rev == UNKNOWN)
+ return -EINVAL;
+
+ memset(&ctx, 0, sizeof(ctx));
+
+ /* Start from the normalized address */
+ ctx.ret_addr = addr;
+ ctx.inst_id = coh_st_inst_id;
+
+ ctx.inputs.norm_addr = addr;
+ ctx.inputs.socket_id = socket_id;
+ ctx.inputs.die_id = die_id;
+ ctx.inputs.coh_st_inst_id = coh_st_inst_id;
+
+ if (determine_node_id(&ctx, socket_id, die_id))
+ return -EINVAL;
+
+ if (get_address_map(&ctx))
+ return -EINVAL;
+
+ if (denormalize_address(&ctx))
+ return -EINVAL;
+
+ if (!late_hole_remove(&ctx) && add_base_and_hole(&ctx))
+ return -EINVAL;
+
+ if (dehash_address(&ctx))
+ return -EINVAL;
+
+ if (late_hole_remove(&ctx) && add_base_and_hole(&ctx))
+ return -EINVAL;
+
+ if (addr_over_limit(&ctx))
+ return -EINVAL;
+
+ return ctx.ret_addr;
+}
+
+static void check_for_legacy_df_access(void)
+{
+ /*
+ * All Zen-based systems before Family 19h use the legacy
+ * DF Indirect Access (FICAA/FICAD) offsets.
+ */
+ if (boot_cpu_data.x86 < 0x19) {
+ df_cfg.flags.legacy_ficaa = true;
+ return;
+ }
+
+ /* All systems after Family 19h use the current offsets. */
+ if (boot_cpu_data.x86 > 0x19)
+ return;
+
+ /* Some Family 19h systems use the legacy offsets. */
+ switch (boot_cpu_data.x86_model) {
+ case 0x00 ... 0x0f:
+ case 0x20 ... 0x5f:
+ df_cfg.flags.legacy_ficaa = true;
+ }
+}
+
+/*
+ * This library provides functionality for AMD-based systems with a Data Fabric.
+ * The set of systems with a Data Fabric is equivalent to the set of Zen-based systems
+ * and the set of systems with the Scalable MCA feature at this time. However, these
+ * are technically independent things.
+ *
+ * It's possible to match on the PCI IDs of the Data Fabric devices, but this will be
+ * an ever expanding list. Instead, match on the SMCA and Zen features to cover all
+ * relevant systems.
+ */
+static const struct x86_cpu_id amd_atl_cpuids[] = {
+ X86_MATCH_FEATURE(X86_FEATURE_SMCA, NULL),
+ X86_MATCH_FEATURE(X86_FEATURE_ZEN, NULL),
+ { }
+};
+MODULE_DEVICE_TABLE(x86cpu, amd_atl_cpuids);
+
+static int __init amd_atl_init(void)
+{
+ if (!x86_match_cpu(amd_atl_cpuids))
+ return -ENODEV;
+
+ if (!amd_nb_num())
+ return -ENODEV;
+
+ check_for_legacy_df_access();
+
+ if (get_df_system_info())
+ return -ENODEV;
+
+ /* Increment this module's recount so that it can't be easily unloaded. */
+ __module_get(THIS_MODULE);
+ amd_atl_register_decoder(convert_umc_mca_addr_to_sys_addr);
+
+ pr_info("AMD Address Translation Library initialized");
+ return 0;
+}
+
+/*
+ * Exit function is only needed for testing and debug. Module unload must be
+ * forced to override refcount check.
+ */
+static void __exit amd_atl_exit(void)
+{
+ amd_atl_unregister_decoder();
+}
+
+module_init(amd_atl_init);
+module_exit(amd_atl_exit);
+
+MODULE_LICENSE("GPL");
diff --git a/drivers/ras/amd/atl/dehash.c b/drivers/ras/amd/atl/dehash.c
new file mode 100644
index 0000000000..4ea46262c4
--- /dev/null
+++ b/drivers/ras/amd/atl/dehash.c
@@ -0,0 +1,500 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * AMD Address Translation Library
+ *
+ * dehash.c : Functions to account for hashing bits
+ *
+ * Copyright (c) 2023, Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+ */
+
+#include "internal.h"
+
+/*
+ * Verify the interleave bits are correct in the different interleaving
+ * settings.
+ *
+ * If @num_intlv_dies and/or @num_intlv_sockets are 1, it means the
+ * respective interleaving is disabled.
+ */
+static inline bool map_bits_valid(struct addr_ctx *ctx, u8 bit1, u8 bit2,
+ u8 num_intlv_dies, u8 num_intlv_sockets)
+{
+ if (!(ctx->map.intlv_bit_pos == bit1 || ctx->map.intlv_bit_pos == bit2)) {
+ pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos);
+ return false;
+ }
+
+ if (ctx->map.num_intlv_dies > num_intlv_dies) {
+ pr_debug("Invalid number of interleave dies: %u", ctx->map.num_intlv_dies);
+ return false;
+ }
+
+ if (ctx->map.num_intlv_sockets > num_intlv_sockets) {
+ pr_debug("Invalid number of interleave sockets: %u", ctx->map.num_intlv_sockets);
+ return false;
+ }
+
+ return true;
+}
+
+static int df2_dehash_addr(struct addr_ctx *ctx)
+{
+ u8 hashed_bit, intlv_bit, intlv_bit_pos;
+
+ if (!map_bits_valid(ctx, 8, 9, 1, 1))
+ return -EINVAL;
+
+ intlv_bit_pos = ctx->map.intlv_bit_pos;
+ intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(12), ctx->ret_addr);
+ hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr);
+ hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr);
+ hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr);
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
+
+ return 0;
+}
+
+static int df3_dehash_addr(struct addr_ctx *ctx)
+{
+ bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
+ u8 hashed_bit, intlv_bit, intlv_bit_pos;
+
+ if (!map_bits_valid(ctx, 8, 9, 1, 1))
+ return -EINVAL;
+
+ hash_ctl_64k = FIELD_GET(DF3_HASH_CTL_64K, ctx->map.ctl);
+ hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl);
+ hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl);
+
+ intlv_bit_pos = ctx->map.intlv_bit_pos;
+ intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
+ hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
+
+ /* Calculation complete for 2 channels. Continue for 4 and 8 channels. */
+ if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH)
+ return 0;
+
+ intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(12);
+
+ /* Calculation complete for 4 channels. Continue for 8 channels. */
+ if (ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH)
+ return 0;
+
+ intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(13);
+
+ return 0;
+}
+
+static int df3_6chan_dehash_addr(struct addr_ctx *ctx)
+{
+ u8 intlv_bit_pos = ctx->map.intlv_bit_pos;
+ u8 hashed_bit, intlv_bit, num_intlv_bits;
+ bool hash_ctl_2M, hash_ctl_1G;
+
+ if (ctx->map.intlv_mode != DF3_6CHAN) {
+ atl_debug_on_bad_intlv_mode(ctx);
+ return -EINVAL;
+ }
+
+ num_intlv_bits = ilog2(ctx->map.num_intlv_chan) + 1;
+
+ hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl);
+ hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl);
+
+ intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= !!(BIT_ULL(intlv_bit_pos + num_intlv_bits) & ctx->ret_addr);
+ hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
+
+ intlv_bit_pos++;
+ intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
+
+ intlv_bit_pos++;
+ intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
+
+ return 0;
+}
+
+static int df4_dehash_addr(struct addr_ctx *ctx)
+{
+ bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
+ u8 hashed_bit, intlv_bit;
+
+ if (!map_bits_valid(ctx, 8, 8, 1, 2))
+ return -EINVAL;
+
+ hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
+ hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
+ hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
+
+ intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
+
+ if (ctx->map.num_intlv_sockets == 1)
+ hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(8);
+
+ /*
+ * Hashing is possible with socket interleaving, so check the total number
+ * of channels in the system rather than DRAM map interleaving mode.
+ *
+ * Calculation complete for 2 channels. Continue for 4, 8, and 16 channels.
+ */
+ if (ctx->map.total_intlv_chan <= 2)
+ return 0;
+
+ intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(12);
+
+ /* Calculation complete for 4 channels. Continue for 8 and 16 channels. */
+ if (ctx->map.total_intlv_chan <= 4)
+ return 0;
+
+ intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(13);
+
+ /* Calculation complete for 8 channels. Continue for 16 channels. */
+ if (ctx->map.total_intlv_chan <= 8)
+ return 0;
+
+ intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(14);
+
+ return 0;
+}
+
+static int df4p5_dehash_addr(struct addr_ctx *ctx)
+{
+ bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T;
+ u8 hashed_bit, intlv_bit;
+ u64 rehash_vector;
+
+ if (!map_bits_valid(ctx, 8, 8, 1, 2))
+ return -EINVAL;
+
+ hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
+ hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
+ hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
+ hash_ctl_1T = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);
+
+ /*
+ * Generate a unique address to determine which bits
+ * need to be dehashed.
+ *
+ * Start with a contiguous bitmask for the total
+ * number of channels starting at bit 8.
+ *
+ * Then make a gap in the proper place based on
+ * interleave mode.
+ */
+ rehash_vector = ctx->map.total_intlv_chan - 1;
+ rehash_vector <<= 8;
+
+ if (ctx->map.intlv_mode == DF4p5_NPS2_4CHAN_1K_HASH ||
+ ctx->map.intlv_mode == DF4p5_NPS1_8CHAN_1K_HASH ||
+ ctx->map.intlv_mode == DF4p5_NPS1_16CHAN_1K_HASH)
+ rehash_vector = expand_bits(10, 2, rehash_vector);
+ else
+ rehash_vector = expand_bits(9, 3, rehash_vector);
+
+ if (rehash_vector & BIT_ULL(8)) {
+ intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
+ hashed_bit ^= FIELD_GET(BIT_ULL(40), ctx->ret_addr) & hash_ctl_1T;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(8);
+ }
+
+ if (rehash_vector & BIT_ULL(9)) {
+ intlv_bit = FIELD_GET(BIT_ULL(9), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
+ hashed_bit ^= FIELD_GET(BIT_ULL(41), ctx->ret_addr) & hash_ctl_1T;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(9);
+ }
+
+ if (rehash_vector & BIT_ULL(12)) {
+ intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
+ hashed_bit ^= FIELD_GET(BIT_ULL(42), ctx->ret_addr) & hash_ctl_1T;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(12);
+ }
+
+ if (rehash_vector & BIT_ULL(13)) {
+ intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G;
+ hashed_bit ^= FIELD_GET(BIT_ULL(43), ctx->ret_addr) & hash_ctl_1T;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(13);
+ }
+
+ if (rehash_vector & BIT_ULL(14)) {
+ intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr);
+
+ hashed_bit = intlv_bit;
+ hashed_bit ^= FIELD_GET(BIT_ULL(20), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(25), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(34), ctx->ret_addr) & hash_ctl_1G;
+ hashed_bit ^= FIELD_GET(BIT_ULL(44), ctx->ret_addr) & hash_ctl_1T;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(14);
+ }
+
+ return 0;
+}
+
+/*
+ * MI300 hash bits
+ * 4K 64K 2M 1G 1T 1T
+ * COH_ST_Select[0] = XOR of addr{8, 12, 15, 22, 29, 36, 43}
+ * COH_ST_Select[1] = XOR of addr{9, 13, 16, 23, 30, 37, 44}
+ * COH_ST_Select[2] = XOR of addr{10, 14, 17, 24, 31, 38, 45}
+ * COH_ST_Select[3] = XOR of addr{11, 18, 25, 32, 39, 46}
+ * COH_ST_Select[4] = XOR of addr{14, 19, 26, 33, 40, 47} aka Stack
+ * DieID[0] = XOR of addr{12, 20, 27, 34, 41 }
+ * DieID[1] = XOR of addr{13, 21, 28, 35, 42 }
+ */
+static int mi300_dehash_addr(struct addr_ctx *ctx)
+{
+ bool hash_ctl_4k, hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T;
+ bool hashed_bit, intlv_bit, test_bit;
+ u8 num_intlv_bits, base_bit, i;
+
+ if (!map_bits_valid(ctx, 8, 8, 4, 1))
+ return -EINVAL;
+
+ hash_ctl_4k = FIELD_GET(DF4p5_HASH_CTL_4K, ctx->map.ctl);
+ hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
+ hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
+ hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
+ hash_ctl_1T = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);
+
+ /* Channel bits */
+ num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
+
+ for (i = 0; i < num_intlv_bits; i++) {
+ base_bit = 8 + i;
+
+ /* COH_ST_Select[4] jumps to a base bit of 14. */
+ if (i == 4)
+ base_bit = 14;
+
+ intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr;
+
+ hashed_bit = intlv_bit;
+
+ /* 4k hash bit only applies to the first 3 bits. */
+ if (i <= 2) {
+ test_bit = BIT_ULL(12 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_4k;
+ }
+
+ /* Use temporary 'test_bit' value to avoid Sparse warnings. */
+ test_bit = BIT_ULL(15 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_64k;
+ test_bit = BIT_ULL(22 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_2M;
+ test_bit = BIT_ULL(29 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_1G;
+ test_bit = BIT_ULL(36 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_1T;
+ test_bit = BIT_ULL(43 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_1T;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(base_bit);
+ }
+
+ /* Die bits */
+ num_intlv_bits = ilog2(ctx->map.num_intlv_dies);
+
+ for (i = 0; i < num_intlv_bits; i++) {
+ base_bit = 12 + i;
+
+ intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr;
+
+ hashed_bit = intlv_bit;
+
+ test_bit = BIT_ULL(20 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_64k;
+ test_bit = BIT_ULL(27 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_2M;
+ test_bit = BIT_ULL(34 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_1G;
+ test_bit = BIT_ULL(41 + i) & ctx->ret_addr;
+ hashed_bit ^= test_bit & hash_ctl_1T;
+
+ if (hashed_bit != intlv_bit)
+ ctx->ret_addr ^= BIT_ULL(base_bit);
+ }
+
+ return 0;
+}
+
+int dehash_address(struct addr_ctx *ctx)
+{
+ switch (ctx->map.intlv_mode) {
+ /* No hashing cases. */
+ case NONE:
+ case NOHASH_2CHAN:
+ case NOHASH_4CHAN:
+ case NOHASH_8CHAN:
+ case NOHASH_16CHAN:
+ case NOHASH_32CHAN:
+ /* Hashing bits handled earlier during CS ID calculation. */
+ case DF4_NPS4_3CHAN_HASH:
+ case DF4_NPS2_5CHAN_HASH:
+ case DF4_NPS2_6CHAN_HASH:
+ case DF4_NPS1_10CHAN_HASH:
+ case DF4_NPS1_12CHAN_HASH:
+ case DF4p5_NPS2_6CHAN_1K_HASH:
+ case DF4p5_NPS2_6CHAN_2K_HASH:
+ case DF4p5_NPS1_10CHAN_1K_HASH:
+ case DF4p5_NPS1_10CHAN_2K_HASH:
+ case DF4p5_NPS1_12CHAN_1K_HASH:
+ case DF4p5_NPS1_12CHAN_2K_HASH:
+ case DF4p5_NPS0_24CHAN_1K_HASH:
+ case DF4p5_NPS0_24CHAN_2K_HASH:
+ /* No hash physical address bits, so nothing to do. */
+ case DF4p5_NPS4_3CHAN_1K_HASH:
+ case DF4p5_NPS4_3CHAN_2K_HASH:
+ case DF4p5_NPS2_5CHAN_1K_HASH:
+ case DF4p5_NPS2_5CHAN_2K_HASH:
+ return 0;
+
+ case DF2_2CHAN_HASH:
+ return df2_dehash_addr(ctx);
+
+ case DF3_COD4_2CHAN_HASH:
+ case DF3_COD2_4CHAN_HASH:
+ case DF3_COD1_8CHAN_HASH:
+ return df3_dehash_addr(ctx);
+
+ case DF3_6CHAN:
+ return df3_6chan_dehash_addr(ctx);
+
+ case DF4_NPS4_2CHAN_HASH:
+ case DF4_NPS2_4CHAN_HASH:
+ case DF4_NPS1_8CHAN_HASH:
+ return df4_dehash_addr(ctx);
+
+ case DF4p5_NPS4_2CHAN_1K_HASH:
+ case DF4p5_NPS4_2CHAN_2K_HASH:
+ case DF4p5_NPS2_4CHAN_2K_HASH:
+ case DF4p5_NPS2_4CHAN_1K_HASH:
+ case DF4p5_NPS1_8CHAN_1K_HASH:
+ case DF4p5_NPS1_8CHAN_2K_HASH:
+ case DF4p5_NPS1_16CHAN_1K_HASH:
+ case DF4p5_NPS1_16CHAN_2K_HASH:
+ return df4p5_dehash_addr(ctx);
+
+ case MI3_HASH_8CHAN:
+ case MI3_HASH_16CHAN:
+ case MI3_HASH_32CHAN:
+ return mi300_dehash_addr(ctx);
+
+ default:
+ atl_debug_on_bad_intlv_mode(ctx);
+ return -EINVAL;
+ }
+}
diff --git a/drivers/ras/amd/atl/denormalize.c b/drivers/ras/amd/atl/denormalize.c
new file mode 100644
index 0000000000..e279224288
--- /dev/null
+++ b/drivers/ras/amd/atl/denormalize.c
@@ -0,0 +1,718 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * AMD Address Translation Library
+ *
+ * denormalize.c : Functions to account for interleaving bits
+ *
+ * Copyright (c) 2023, Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+ */
+
+#include "internal.h"
+
+/*
+ * Returns the Destination Fabric ID. This is the first (lowest)
+ * COH_ST Fabric ID used within a DRAM Address map.
+ */
+static u16 get_dst_fabric_id(struct addr_ctx *ctx)
+{
+ switch (df_cfg.rev) {
+ case DF2: return FIELD_GET(DF2_DST_FABRIC_ID, ctx->map.limit);
+ case DF3: return FIELD_GET(DF3_DST_FABRIC_ID, ctx->map.limit);
+ case DF3p5: return FIELD_GET(DF3p5_DST_FABRIC_ID, ctx->map.limit);
+ case DF4: return FIELD_GET(DF4_DST_FABRIC_ID, ctx->map.ctl);
+ case DF4p5: return FIELD_GET(DF4p5_DST_FABRIC_ID, ctx->map.ctl);
+ default:
+ atl_debug_on_bad_df_rev();
+ return 0;
+ }
+}
+
+/*
+ * Make a contiguous gap in address for N bits starting at bit P.
+ *
+ * Example:
+ * address bits: [20:0]
+ * # of interleave bits (n): 3
+ * starting interleave bit (p): 8
+ *
+ * expanded address bits: [20+n : n+p][n+p-1 : p][p-1 : 0]
+ * [23 : 11][10 : 8][7 : 0]
+ */
+static u64 make_space_for_coh_st_id_at_intlv_bit(struct addr_ctx *ctx)
+{
+ return expand_bits(ctx->map.intlv_bit_pos,
+ ctx->map.total_intlv_bits,
+ ctx->ret_addr);
+}
+
+/*
+ * Make two gaps in address for N bits.
+ * First gap is a single bit at bit P.
+ * Second gap is the remaining N-1 bits at bit 12.
+ *
+ * Example:
+ * address bits: [20:0]
+ * # of interleave bits (n): 3
+ * starting interleave bit (p): 8
+ *
+ * First gap
+ * expanded address bits: [20+1 : p+1][p][p-1 : 0]
+ * [21 : 9][8][7 : 0]
+ *
+ * Second gap uses result from first.
+ * r = n - 1; remaining interleave bits
+ * expanded address bits: [21+r : 12+r][12+r-1: 12][11 : 0]
+ * [23 : 14][13 : 12][11 : 0]
+ */
+static u64 make_space_for_coh_st_id_split_2_1(struct addr_ctx *ctx)
+{
+ /* Make a single space at the interleave bit. */
+ u64 denorm_addr = expand_bits(ctx->map.intlv_bit_pos, 1, ctx->ret_addr);
+
+ /* Done if there's only a single interleave bit. */
+ if (ctx->map.total_intlv_bits <= 1)
+ return denorm_addr;
+
+ /* Make spaces for the remaining interleave bits starting at bit 12. */
+ return expand_bits(12, ctx->map.total_intlv_bits - 1, denorm_addr);
+}
+
+/*
+ * Make space for CS ID at bits [14:8] as follows:
+ *
+ * 8 channels -> bits [10:8]
+ * 16 channels -> bits [11:8]
+ * 32 channels -> bits [14,11:8]
+ *
+ * 1 die -> N/A
+ * 2 dies -> bit [12]
+ * 4 dies -> bits [13:12]
+ */
+static u64 make_space_for_coh_st_id_mi300(struct addr_ctx *ctx)
+{
+ u8 num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
+ u64 denorm_addr;
+
+ if (ctx->map.intlv_bit_pos != 8) {
+ pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos);
+ return ~0ULL;
+ }
+
+ /* Channel bits. Covers up to 4 bits at [11:8]. */
+ denorm_addr = expand_bits(8, min(num_intlv_bits, 4), ctx->ret_addr);
+
+ /* Die bits. Always starts at [12]. */
+ denorm_addr = expand_bits(12, ilog2(ctx->map.num_intlv_dies), denorm_addr);
+
+ /* Additional channel bit at [14]. */
+ if (num_intlv_bits > 4)
+ denorm_addr = expand_bits(14, 1, denorm_addr);
+
+ return denorm_addr;
+}
+
+/*
+ * Take the current calculated address and shift enough bits in the middle
+ * to make a gap where the interleave bits will be inserted.
+ */
+static u64 make_space_for_coh_st_id(struct addr_ctx *ctx)
+{
+ switch (ctx->map.intlv_mode) {
+ case NOHASH_2CHAN:
+ case NOHASH_4CHAN:
+ case NOHASH_8CHAN:
+ case NOHASH_16CHAN:
+ case NOHASH_32CHAN:
+ case DF2_2CHAN_HASH:
+ return make_space_for_coh_st_id_at_intlv_bit(ctx);
+
+ case DF3_COD4_2CHAN_HASH:
+ case DF3_COD2_4CHAN_HASH:
+ case DF3_COD1_8CHAN_HASH:
+ case DF4_NPS4_2CHAN_HASH:
+ case DF4_NPS2_4CHAN_HASH:
+ case DF4_NPS1_8CHAN_HASH:
+ case DF4p5_NPS4_2CHAN_1K_HASH:
+ case DF4p5_NPS4_2CHAN_2K_HASH:
+ case DF4p5_NPS2_4CHAN_2K_HASH:
+ case DF4p5_NPS1_8CHAN_2K_HASH:
+ case DF4p5_NPS1_16CHAN_2K_HASH:
+ return make_space_for_coh_st_id_split_2_1(ctx);
+
+ case MI3_HASH_8CHAN:
+ case MI3_HASH_16CHAN:
+ case MI3_HASH_32CHAN:
+ return make_space_for_coh_st_id_mi300(ctx);
+
+ default:
+ atl_debug_on_bad_intlv_mode(ctx);
+ return ~0ULL;
+ }
+}
+
+static u16 get_coh_st_id_df2(struct addr_ctx *ctx)
+{
+ u8 num_socket_intlv_bits = ilog2(ctx->map.num_intlv_sockets);
+ u8 num_die_intlv_bits = ilog2(ctx->map.num_intlv_dies);
+ u8 num_intlv_bits;
+ u16 coh_st_id, mask;
+
+ coh_st_id = ctx->coh_st_fabric_id - get_dst_fabric_id(ctx);
+
+ /* Channel interleave bits */
+ num_intlv_bits = order_base_2(ctx->map.num_intlv_chan);
+ mask = GENMASK(num_intlv_bits - 1, 0);
+ coh_st_id &= mask;
+
+ /* Die interleave bits */
+ if (num_die_intlv_bits) {
+ u16 die_bits;
+
+ mask = GENMASK(num_die_intlv_bits - 1, 0);
+ die_bits = ctx->coh_st_fabric_id & df_cfg.die_id_mask;
+ die_bits >>= df_cfg.die_id_shift;
+
+ coh_st_id |= (die_bits & mask) << num_intlv_bits;
+ num_intlv_bits += num_die_intlv_bits;
+ }
+
+ /* Socket interleave bits */
+ if (num_socket_intlv_bits) {
+ u16 socket_bits;
+
+ mask = GENMASK(num_socket_intlv_bits - 1, 0);
+ socket_bits = ctx->coh_st_fabric_id & df_cfg.socket_id_mask;
+ socket_bits >>= df_cfg.socket_id_shift;
+
+ coh_st_id |= (socket_bits & mask) << num_intlv_bits;
+ }
+
+ return coh_st_id;
+}
+
+static u16 get_coh_st_id_df4(struct addr_ctx *ctx)
+{
+ /*
+ * Start with the original component mask and the number of interleave
+ * bits for the channels in this map.
+ */
+ u8 num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
+ u16 mask = df_cfg.component_id_mask;
+
+ u16 socket_bits;
+
+ /* Set the derived Coherent Station ID to the input Coherent Station Fabric ID. */
+ u16 coh_st_id = ctx->coh_st_fabric_id & mask;
+
+ /*
+ * Subtract the "base" Destination Fabric ID.
+ * This accounts for systems with disabled Coherent Stations.
+ */
+ coh_st_id -= get_dst_fabric_id(ctx) & mask;
+
+ /*
+ * Generate and use a new mask based on the number of bits
+ * needed for channel interleaving in this map.
+ */
+ mask = GENMASK(num_intlv_bits - 1, 0);
+ coh_st_id &= mask;
+
+ /* Done if socket interleaving is not enabled. */
+ if (ctx->map.num_intlv_sockets <= 1)
+ return coh_st_id;
+
+ /*
+ * Figure out how many bits are needed for the number of
+ * interleaved sockets. And shift the derived Coherent Station ID to account
+ * for these.
+ */
+ num_intlv_bits = ilog2(ctx->map.num_intlv_sockets);
+ coh_st_id <<= num_intlv_bits;
+
+ /* Generate a new mask for the socket interleaving bits. */
+ mask = GENMASK(num_intlv_bits - 1, 0);
+
+ /* Get the socket interleave bits from the original Coherent Station Fabric ID. */
+ socket_bits = (ctx->coh_st_fabric_id & df_cfg.socket_id_mask) >> df_cfg.socket_id_shift;
+
+ /* Apply the appropriate socket bits to the derived Coherent Station ID. */
+ coh_st_id |= socket_bits & mask;
+
+ return coh_st_id;
+}
+
+/*
+ * MI300 hash has:
+ * (C)hannel[3:0] = coh_st_id[3:0]
+ * (S)tack[0] = coh_st_id[4]
+ * (D)ie[1:0] = coh_st_id[6:5]
+ *
+ * Hashed coh_st_id is swizzled so that Stack bit is at the end.
+ * coh_st_id = SDDCCCC
+ */
+static u16 get_coh_st_id_mi300(struct addr_ctx *ctx)
+{
+ u8 channel_bits, die_bits, stack_bit;
+ u16 die_id;
+
+ /* Subtract the "base" Destination Fabric ID. */
+ ctx->coh_st_fabric_id -= get_dst_fabric_id(ctx);
+
+ die_id = (ctx->coh_st_fabric_id & df_cfg.die_id_mask) >> df_cfg.die_id_shift;
+
+ channel_bits = FIELD_GET(GENMASK(3, 0), ctx->coh_st_fabric_id);
+ stack_bit = FIELD_GET(BIT(4), ctx->coh_st_fabric_id) << 6;
+ die_bits = die_id << 4;
+
+ return stack_bit | die_bits | channel_bits;
+}
+
+/*
+ * Derive the correct Coherent Station ID that represents the interleave bits
+ * used within the system physical address. This accounts for the
+ * interleave mode, number of interleaved channels/dies/sockets, and
+ * other system/mode-specific bit swizzling.
+ *
+ * Returns: Coherent Station ID on success.
+ * All bits set on error.
+ */
+static u16 calculate_coh_st_id(struct addr_ctx *ctx)
+{
+ switch (ctx->map.intlv_mode) {
+ case NOHASH_2CHAN:
+ case NOHASH_4CHAN:
+ case NOHASH_8CHAN:
+ case NOHASH_16CHAN:
+ case NOHASH_32CHAN:
+ case DF3_COD4_2CHAN_HASH:
+ case DF3_COD2_4CHAN_HASH:
+ case DF3_COD1_8CHAN_HASH:
+ case DF2_2CHAN_HASH:
+ return get_coh_st_id_df2(ctx);
+
+ case DF4_NPS4_2CHAN_HASH:
+ case DF4_NPS2_4CHAN_HASH:
+ case DF4_NPS1_8CHAN_HASH:
+ case DF4p5_NPS4_2CHAN_1K_HASH:
+ case DF4p5_NPS4_2CHAN_2K_HASH:
+ case DF4p5_NPS2_4CHAN_2K_HASH:
+ case DF4p5_NPS1_8CHAN_2K_HASH:
+ case DF4p5_NPS1_16CHAN_2K_HASH:
+ return get_coh_st_id_df4(ctx);
+
+ case MI3_HASH_8CHAN:
+ case MI3_HASH_16CHAN:
+ case MI3_HASH_32CHAN:
+ return get_coh_st_id_mi300(ctx);
+
+ /* COH_ST ID is simply the COH_ST Fabric ID adjusted by the Destination Fabric ID. */
+ case DF4p5_NPS2_4CHAN_1K_HASH:
+ case DF4p5_NPS1_8CHAN_1K_HASH:
+ case DF4p5_NPS1_16CHAN_1K_HASH:
+ return ctx->coh_st_fabric_id - get_dst_fabric_id(ctx);
+
+ default:
+ atl_debug_on_bad_intlv_mode(ctx);
+ return ~0;
+ }
+}
+
+static u64 insert_coh_st_id_at_intlv_bit(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
+{
+ return denorm_addr | (coh_st_id << ctx->map.intlv_bit_pos);
+}
+
+static u64 insert_coh_st_id_split_2_1(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
+{
+ /* Insert coh_st_id[0] at the interleave bit. */
+ denorm_addr |= (coh_st_id & BIT(0)) << ctx->map.intlv_bit_pos;
+
+ /* Insert coh_st_id[2:1] at bit 12. */
+ denorm_addr |= (coh_st_id & GENMASK(2, 1)) << 11;
+
+ return denorm_addr;
+}
+
+static u64 insert_coh_st_id_split_2_2(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
+{
+ /* Insert coh_st_id[1:0] at bit 8. */
+ denorm_addr |= (coh_st_id & GENMASK(1, 0)) << 8;
+
+ /*
+ * Insert coh_st_id[n:2] at bit 12. 'n' could be 2 or 3.
+ * Grab both because bit 3 will be clear if unused.
+ */
+ denorm_addr |= (coh_st_id & GENMASK(3, 2)) << 10;
+
+ return denorm_addr;
+}
+
+static u64 insert_coh_st_id(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
+{
+ switch (ctx->map.intlv_mode) {
+ case NOHASH_2CHAN:
+ case NOHASH_4CHAN:
+ case NOHASH_8CHAN:
+ case NOHASH_16CHAN:
+ case NOHASH_32CHAN:
+ case MI3_HASH_8CHAN:
+ case MI3_HASH_16CHAN:
+ case MI3_HASH_32CHAN:
+ case DF2_2CHAN_HASH:
+ return insert_coh_st_id_at_intlv_bit(ctx, denorm_addr, coh_st_id);
+
+ case DF3_COD4_2CHAN_HASH:
+ case DF3_COD2_4CHAN_HASH:
+ case DF3_COD1_8CHAN_HASH:
+ case DF4_NPS4_2CHAN_HASH:
+ case DF4_NPS2_4CHAN_HASH:
+ case DF4_NPS1_8CHAN_HASH:
+ case DF4p5_NPS4_2CHAN_1K_HASH:
+ case DF4p5_NPS4_2CHAN_2K_HASH:
+ case DF4p5_NPS2_4CHAN_2K_HASH:
+ case DF4p5_NPS1_8CHAN_2K_HASH:
+ case DF4p5_NPS1_16CHAN_2K_HASH:
+ return insert_coh_st_id_split_2_1(ctx, denorm_addr, coh_st_id);
+
+ case DF4p5_NPS2_4CHAN_1K_HASH:
+ case DF4p5_NPS1_8CHAN_1K_HASH:
+ case DF4p5_NPS1_16CHAN_1K_HASH:
+ return insert_coh_st_id_split_2_2(ctx, denorm_addr, coh_st_id);
+
+ default:
+ atl_debug_on_bad_intlv_mode(ctx);
+ return ~0ULL;
+ }
+}
+
+/*
+ * MI300 systems have a fixed, hardware-defined physical-to-logical
+ * Coherent Station mapping. The Remap registers are not used.
+ */
+static const u16 phy_to_log_coh_st_map_mi300[] = {
+ 12, 13, 14, 15,
+ 8, 9, 10, 11,
+ 4, 5, 6, 7,
+ 0, 1, 2, 3,
+ 28, 29, 30, 31,
+ 24, 25, 26, 27,
+ 20, 21, 22, 23,
+ 16, 17, 18, 19,
+};
+
+static u16 get_logical_coh_st_fabric_id_mi300(struct addr_ctx *ctx)
+{
+ if (ctx->inst_id >= ARRAY_SIZE(phy_to_log_coh_st_map_mi300)) {
+ atl_debug(ctx, "Instance ID out of range");
+ return ~0;
+ }
+
+ return phy_to_log_coh_st_map_mi300[ctx->inst_id] | (ctx->node_id << df_cfg.node_id_shift);
+}
+
+static u16 get_logical_coh_st_fabric_id(struct addr_ctx *ctx)
+{
+ u16 component_id, log_fabric_id;
+
+ /* Start with the physical COH_ST Fabric ID. */
+ u16 phys_fabric_id = ctx->coh_st_fabric_id;
+
+ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
+ return get_logical_coh_st_fabric_id_mi300(ctx);
+
+ /* Skip logical ID lookup if remapping is disabled. */
+ if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl) &&
+ ctx->map.intlv_mode != DF3_6CHAN)
+ return phys_fabric_id;
+
+ /* Mask off the Node ID bits to get the "local" Component ID. */
+ component_id = phys_fabric_id & df_cfg.component_id_mask;
+
+ /*
+ * Search the list of logical Component IDs for the one that
+ * matches this physical Component ID.
+ */
+ for (log_fabric_id = 0; log_fabric_id < MAX_COH_ST_CHANNELS; log_fabric_id++) {
+ if (ctx->map.remap_array[log_fabric_id] == component_id)
+ break;
+ }
+
+ if (log_fabric_id == MAX_COH_ST_CHANNELS)
+ atl_debug(ctx, "COH_ST remap entry not found for 0x%x",
+ log_fabric_id);
+
+ /* Get the Node ID bits from the physical and apply to the logical. */
+ return (phys_fabric_id & df_cfg.node_id_mask) | log_fabric_id;
+}
+
+static int denorm_addr_common(struct addr_ctx *ctx)
+{
+ u64 denorm_addr;
+ u16 coh_st_id;
+
+ /*
+ * Convert the original physical COH_ST Fabric ID to a logical value.
+ * This is required for non-power-of-two and other interleaving modes.
+ */
+ ctx->coh_st_fabric_id = get_logical_coh_st_fabric_id(ctx);
+
+ denorm_addr = make_space_for_coh_st_id(ctx);
+ coh_st_id = calculate_coh_st_id(ctx);
+ ctx->ret_addr = insert_coh_st_id(ctx, denorm_addr, coh_st_id);
+ return 0;
+}
+
+static int denorm_addr_df3_6chan(struct addr_ctx *ctx)
+{
+ u16 coh_st_id = ctx->coh_st_fabric_id & df_cfg.component_id_mask;
+ u8 total_intlv_bits = ctx->map.total_intlv_bits;
+ u8 low_bit, intlv_bit = ctx->map.intlv_bit_pos;
+ u64 msb_intlv_bits, temp_addr_a, temp_addr_b;
+ u8 np2_bits = ctx->map.np2_bits;
+
+ if (ctx->map.intlv_mode != DF3_6CHAN)
+ return -EINVAL;
+
+ /*
+ * 'np2_bits' holds the number of bits needed to cover the
+ * amount of memory (rounded up) in this map using 64K chunks.
+ *
+ * Example:
+ * Total memory in map: 6GB
+ * Rounded up to next power-of-2: 8GB
+ * Number of 64K chunks: 0x20000
+ * np2_bits = log2(# of chunks): 17
+ *
+ * Get the two most-significant interleave bits from the
+ * input address based on the following:
+ *
+ * [15 + np2_bits - total_intlv_bits : 14 + np2_bits - total_intlv_bits]
+ */
+ low_bit = 14 + np2_bits - total_intlv_bits;
+ msb_intlv_bits = ctx->ret_addr >> low_bit;
+ msb_intlv_bits &= 0x3;
+
+ /*
+ * If MSB are 11b, then logical COH_ST ID is 6 or 7.
+ * Need to adjust based on the mod3 result.
+ */
+ if (msb_intlv_bits == 3) {
+ u8 addr_mod, phys_addr_msb, msb_coh_st_id;
+
+ /* Get the remaining interleave bits from the input address. */
+ temp_addr_b = GENMASK_ULL(low_bit - 1, intlv_bit) & ctx->ret_addr;
+ temp_addr_b >>= intlv_bit;
+
+ /* Calculate the logical COH_ST offset based on mod3. */
+ addr_mod = temp_addr_b % 3;
+
+ /* Get COH_ST ID bits [2:1]. */
+ msb_coh_st_id = (coh_st_id >> 1) & 0x3;
+
+ /* Get the bit that starts the physical address bits. */
+ phys_addr_msb = (intlv_bit + np2_bits + 1);
+ phys_addr_msb &= BIT(0);
+ phys_addr_msb++;
+ phys_addr_msb *= 3 - addr_mod + msb_coh_st_id;
+ phys_addr_msb %= 3;
+
+ /* Move the physical address MSB to the correct place. */
+ temp_addr_b |= phys_addr_msb << (low_bit - total_intlv_bits - intlv_bit);
+
+ /* Generate a new COH_ST ID as follows: coh_st_id = [1, 1, coh_st_id[0]] */
+ coh_st_id &= BIT(0);
+ coh_st_id |= GENMASK(2, 1);
+ } else {
+ temp_addr_b = GENMASK_ULL(63, intlv_bit) & ctx->ret_addr;
+ temp_addr_b >>= intlv_bit;
+ }
+
+ temp_addr_a = GENMASK_ULL(intlv_bit - 1, 0) & ctx->ret_addr;
+ temp_addr_b <<= intlv_bit + total_intlv_bits;
+
+ ctx->ret_addr = temp_addr_a | temp_addr_b;
+ ctx->ret_addr |= coh_st_id << intlv_bit;
+ return 0;
+}
+
+static int denorm_addr_df4_np2(struct addr_ctx *ctx)
+{
+ bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
+ u16 group, group_offset, log_coh_st_offset;
+ unsigned int mod_value, shift_value;
+ u16 mask = df_cfg.component_id_mask;
+ u64 temp_addr_a, temp_addr_b;
+ bool hash_pa8, hashed_bit;
+
+ switch (ctx->map.intlv_mode) {
+ case DF4_NPS4_3CHAN_HASH:
+ mod_value = 3;
+ shift_value = 13;
+ break;
+ case DF4_NPS2_6CHAN_HASH:
+ mod_value = 3;
+ shift_value = 12;
+ break;
+ case DF4_NPS1_12CHAN_HASH:
+ mod_value = 3;
+ shift_value = 11;
+ break;
+ case DF4_NPS2_5CHAN_HASH:
+ mod_value = 5;
+ shift_value = 13;
+ break;
+ case DF4_NPS1_10CHAN_HASH:
+ mod_value = 5;
+ shift_value = 12;
+ break;
+ default:
+ atl_debug_on_bad_intlv_mode(ctx);
+ return -EINVAL;
+ };
+
+ if (ctx->map.num_intlv_sockets == 1) {
+ hash_pa8 = BIT_ULL(shift_value) & ctx->ret_addr;
+ temp_addr_a = remove_bits(shift_value, shift_value, ctx->ret_addr);
+ } else {
+ hash_pa8 = ctx->coh_st_fabric_id & df_cfg.socket_id_mask;
+ temp_addr_a = ctx->ret_addr;
+ }
+
+ /* Make a gap for the real bit [8]. */
+ temp_addr_a = expand_bits(8, 1, temp_addr_a);
+
+ /* Make an additional gap for bits [13:12], as appropriate.*/
+ if (ctx->map.intlv_mode == DF4_NPS2_6CHAN_HASH ||
+ ctx->map.intlv_mode == DF4_NPS1_10CHAN_HASH) {
+ temp_addr_a = expand_bits(13, 1, temp_addr_a);
+ } else if (ctx->map.intlv_mode == DF4_NPS1_12CHAN_HASH) {
+ temp_addr_a = expand_bits(12, 2, temp_addr_a);
+ }
+
+ /* Keep bits [13:0]. */
+ temp_addr_a &= GENMASK_ULL(13, 0);
+
+ /* Get the appropriate high bits. */
+ shift_value += 1 - ilog2(ctx->map.num_intlv_sockets);
+ temp_addr_b = GENMASK_ULL(63, shift_value) & ctx->ret_addr;
+ temp_addr_b >>= shift_value;
+ temp_addr_b *= mod_value;
+
+ /*
+ * Coherent Stations are divided into groups.
+ *
+ * Multiples of 3 (mod3) are divided into quadrants.
+ * e.g. NP4_3CHAN -> [0, 1, 2] [6, 7, 8]
+ * [3, 4, 5] [9, 10, 11]
+ *
+ * Multiples of 5 (mod5) are divided into sides.
+ * e.g. NP2_5CHAN -> [0, 1, 2, 3, 4] [5, 6, 7, 8, 9]
+ */
+
+ /*
+ * Calculate the logical offset for the COH_ST within its DRAM Address map.
+ * e.g. if map includes [5, 6, 7, 8, 9] and target instance is '8', then
+ * log_coh_st_offset = 8 - 5 = 3
+ */
+ log_coh_st_offset = (ctx->coh_st_fabric_id & mask) - (get_dst_fabric_id(ctx) & mask);
+
+ /*
+ * Figure out the group number.
+ *
+ * Following above example,
+ * log_coh_st_offset = 3
+ * mod_value = 5
+ * group = 3 / 5 = 0
+ */
+ group = log_coh_st_offset / mod_value;
+
+ /*
+ * Figure out the offset within the group.
+ *
+ * Following above example,
+ * log_coh_st_offset = 3
+ * mod_value = 5
+ * group_offset = 3 % 5 = 3
+ */
+ group_offset = log_coh_st_offset % mod_value;
+
+ /* Adjust group_offset if the hashed bit [8] is set. */
+ if (hash_pa8) {
+ if (!group_offset)
+ group_offset = mod_value - 1;
+ else
+ group_offset--;
+ }
+
+ /* Add in the group offset to the high bits. */
+ temp_addr_b += group_offset;
+
+ /* Shift the high bits to the proper starting position. */
+ temp_addr_b <<= 14;
+
+ /* Combine the high and low bits together. */
+ ctx->ret_addr = temp_addr_a | temp_addr_b;
+
+ /* Account for hashing here instead of in dehash_address(). */
+ hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
+ hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
+ hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
+
+ hashed_bit = !!hash_pa8;
+ hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
+ hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
+
+ ctx->ret_addr |= hashed_bit << 8;
+
+ /* Done for 3 and 5 channel. */
+ if (ctx->map.intlv_mode == DF4_NPS4_3CHAN_HASH ||
+ ctx->map.intlv_mode == DF4_NPS2_5CHAN_HASH)
+ return 0;
+
+ /* Select the proper 'group' bit to use for Bit 13. */
+ if (ctx->map.intlv_mode == DF4_NPS1_12CHAN_HASH)
+ hashed_bit = !!(group & BIT(1));
+ else
+ hashed_bit = group & BIT(0);
+
+ hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
+
+ ctx->ret_addr |= hashed_bit << 13;
+
+ /* Done for 6 and 10 channel. */
+ if (ctx->map.intlv_mode != DF4_NPS1_12CHAN_HASH)
+ return 0;
+
+ hashed_bit = group & BIT(0);
+ hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
+ hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
+ hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
+
+ ctx->ret_addr |= hashed_bit << 12;
+ return 0;
+}
+
+int denormalize_address(struct addr_ctx *ctx)
+{
+ switch (ctx->map.intlv_mode) {
+ case NONE:
+ return 0;
+ case DF4_NPS4_3CHAN_HASH:
+ case DF4_NPS2_6CHAN_HASH:
+ case DF4_NPS1_12CHAN_HASH:
+ case DF4_NPS2_5CHAN_HASH:
+ case DF4_NPS1_10CHAN_HASH:
+ return denorm_addr_df4_np2(ctx);
+ case DF3_6CHAN:
+ return denorm_addr_df3_6chan(ctx);
+ default:
+ return denorm_addr_common(ctx);
+ }
+}
diff --git a/drivers/ras/amd/atl/internal.h b/drivers/ras/amd/atl/internal.h
new file mode 100644
index 0000000000..196c1c8b57
--- /dev/null
+++ b/drivers/ras/amd/atl/internal.h
@@ -0,0 +1,306 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * AMD Address Translation Library
+ *
+ * internal.h : Helper functions and common defines
+ *
+ * Copyright (c) 2023, Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+ */
+
+#ifndef __AMD_ATL_INTERNAL_H__
+#define __AMD_ATL_INTERNAL_H__
+
+#include <linux/bitfield.h>
+#include <linux/bitops.h>
+#include <linux/ras.h>
+
+#include <asm/amd_nb.h>
+
+#include "reg_fields.h"
+
+/* Maximum possible number of Coherent Stations within a single Data Fabric. */
+#define MAX_COH_ST_CHANNELS 32
+
+/* PCI ID for Zen4 Server DF Function 0. */
+#define DF_FUNC0_ID_ZEN4_SERVER 0x14AD1022
+
+/* PCI IDs for MI300 DF Function 0. */
+#define DF_FUNC0_ID_MI300 0x15281022
+
+/* Shift needed for adjusting register values to true values. */
+#define DF_DRAM_BASE_LIMIT_LSB 28
+#define MI300_DRAM_LIMIT_LSB 20
+
+enum df_revisions {
+ UNKNOWN,
+ DF2,
+ DF3,
+ DF3p5,
+ DF4,
+ DF4p5,
+};
+
+/* These are mapped 1:1 to the hardware values. Special cases are set at > 0x20. */
+enum intlv_modes {
+ NONE = 0x00,
+ NOHASH_2CHAN = 0x01,
+ NOHASH_4CHAN = 0x03,
+ NOHASH_8CHAN = 0x05,
+ DF3_6CHAN = 0x06,
+ NOHASH_16CHAN = 0x07,
+ NOHASH_32CHAN = 0x08,
+ DF3_COD4_2CHAN_HASH = 0x0C,
+ DF3_COD2_4CHAN_HASH = 0x0D,
+ DF3_COD1_8CHAN_HASH = 0x0E,
+ DF4_NPS4_2CHAN_HASH = 0x10,
+ DF4_NPS2_4CHAN_HASH = 0x11,
+ DF4_NPS1_8CHAN_HASH = 0x12,
+ DF4_NPS4_3CHAN_HASH = 0x13,
+ DF4_NPS2_6CHAN_HASH = 0x14,
+ DF4_NPS1_12CHAN_HASH = 0x15,
+ DF4_NPS2_5CHAN_HASH = 0x16,
+ DF4_NPS1_10CHAN_HASH = 0x17,
+ MI3_HASH_8CHAN = 0x18,
+ MI3_HASH_16CHAN = 0x19,
+ MI3_HASH_32CHAN = 0x1A,
+ DF2_2CHAN_HASH = 0x21,
+ /* DF4.5 modes are all IntLvNumChan + 0x20 */
+ DF4p5_NPS1_16CHAN_1K_HASH = 0x2C,
+ DF4p5_NPS0_24CHAN_1K_HASH = 0x2E,
+ DF4p5_NPS4_2CHAN_1K_HASH = 0x30,
+ DF4p5_NPS2_4CHAN_1K_HASH = 0x31,
+ DF4p5_NPS1_8CHAN_1K_HASH = 0x32,
+ DF4p5_NPS4_3CHAN_1K_HASH = 0x33,
+ DF4p5_NPS2_6CHAN_1K_HASH = 0x34,
+ DF4p5_NPS1_12CHAN_1K_HASH = 0x35,
+ DF4p5_NPS2_5CHAN_1K_HASH = 0x36,
+ DF4p5_NPS1_10CHAN_1K_HASH = 0x37,
+ DF4p5_NPS4_2CHAN_2K_HASH = 0x40,
+ DF4p5_NPS2_4CHAN_2K_HASH = 0x41,
+ DF4p5_NPS1_8CHAN_2K_HASH = 0x42,
+ DF4p5_NPS1_16CHAN_2K_HASH = 0x43,
+ DF4p5_NPS4_3CHAN_2K_HASH = 0x44,
+ DF4p5_NPS2_6CHAN_2K_HASH = 0x45,
+ DF4p5_NPS1_12CHAN_2K_HASH = 0x46,
+ DF4p5_NPS0_24CHAN_2K_HASH = 0x47,
+ DF4p5_NPS2_5CHAN_2K_HASH = 0x48,
+ DF4p5_NPS1_10CHAN_2K_HASH = 0x49,
+};
+
+struct df_flags {
+ __u8 legacy_ficaa : 1,
+ socket_id_shift_quirk : 1,
+ heterogeneous : 1,
+ __reserved_0 : 5;
+};
+
+struct df_config {
+ enum df_revisions rev;
+
+ /*
+ * These masks operate on the 16-bit Coherent Station IDs,
+ * e.g. Instance, Fabric, Destination, etc.
+ */
+ u16 component_id_mask;
+ u16 die_id_mask;
+ u16 node_id_mask;
+ u16 socket_id_mask;
+
+ /*
+ * Least-significant bit of Node ID portion of the
+ * system-wide Coherent Station Fabric ID.
+ */
+ u8 node_id_shift;
+
+ /*
+ * Least-significant bit of Die portion of the Node ID.
+ * Adjusted to include the Node ID shift in order to apply
+ * to the Coherent Station Fabric ID.
+ */
+ u8 die_id_shift;
+
+ /*
+ * Least-significant bit of Socket portion of the Node ID.
+ * Adjusted to include the Node ID shift in order to apply
+ * to the Coherent Station Fabric ID.
+ */
+ u8 socket_id_shift;
+
+ /* Number of DRAM Address maps visible in a Coherent Station. */
+ u8 num_coh_st_maps;
+
+ /* Global flags to handle special cases. */
+ struct df_flags flags;
+};
+
+extern struct df_config df_cfg;
+
+struct dram_addr_map {
+ /*
+ * Each DRAM Address Map can operate independently
+ * in different interleaving modes.
+ */
+ enum intlv_modes intlv_mode;
+
+ /* System-wide number for this address map. */
+ u8 num;
+
+ /* Raw register values */
+ u32 base;
+ u32 limit;
+ u32 ctl;
+ u32 intlv;
+
+ /*
+ * Logical to Physical Coherent Station Remapping array
+ *
+ * Index: Logical Coherent Station Instance ID
+ * Value: Physical Coherent Station Instance ID
+ *
+ * phys_coh_st_inst_id = remap_array[log_coh_st_inst_id]
+ */
+ u8 remap_array[MAX_COH_ST_CHANNELS];
+
+ /*
+ * Number of bits covering DRAM Address map 0
+ * when interleaving is non-power-of-2.
+ *
+ * Used only for DF3_6CHAN.
+ */
+ u8 np2_bits;
+
+ /* Position of the 'interleave bit'. */
+ u8 intlv_bit_pos;
+ /* Number of channels interleaved in this map. */
+ u8 num_intlv_chan;
+ /* Number of dies interleaved in this map. */
+ u8 num_intlv_dies;
+ /* Number of sockets interleaved in this map. */
+ u8 num_intlv_sockets;
+ /*
+ * Total number of channels interleaved accounting
+ * for die and socket interleaving.
+ */
+ u8 total_intlv_chan;
+ /* Total bits needed to cover 'total_intlv_chan'. */
+ u8 total_intlv_bits;
+};
+
+/* Original input values cached for debug printing. */
+struct addr_ctx_inputs {
+ u64 norm_addr;
+ u8 socket_id;
+ u8 die_id;
+ u8 coh_st_inst_id;
+};
+
+struct addr_ctx {
+ u64 ret_addr;
+
+ struct addr_ctx_inputs inputs;
+ struct dram_addr_map map;
+
+ /* AMD Node ID calculated from Socket and Die IDs. */
+ u8 node_id;
+
+ /*
+ * Coherent Station Instance ID
+ * Local ID used within a 'node'.
+ */
+ u16 inst_id;
+
+ /*
+ * Coherent Station Fabric ID
+ * System-wide ID that includes 'node' bits.
+ */
+ u16 coh_st_fabric_id;
+};
+
+int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo);
+int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo);
+
+int get_df_system_info(void);
+int determine_node_id(struct addr_ctx *ctx, u8 socket_num, u8 die_num);
+int get_umc_info_mi300(void);
+
+int get_address_map(struct addr_ctx *ctx);
+
+int denormalize_address(struct addr_ctx *ctx);
+int dehash_address(struct addr_ctx *ctx);
+
+unsigned long norm_to_sys_addr(u8 socket_id, u8 die_id, u8 coh_st_inst_id, unsigned long addr);
+unsigned long convert_umc_mca_addr_to_sys_addr(struct atl_err *err);
+
+/*
+ * Make a gap in @data that is @num_bits long starting at @bit_num.
+ * e.g. data = 11111111'b
+ * bit_num = 3
+ * num_bits = 2
+ * result = 1111100111'b
+ */
+static inline u64 expand_bits(u8 bit_num, u8 num_bits, u64 data)
+{
+ u64 temp1, temp2;
+
+ if (!num_bits)
+ return data;
+
+ if (!bit_num) {
+ WARN_ON_ONCE(num_bits >= BITS_PER_LONG);
+ return data << num_bits;
+ }
+
+ WARN_ON_ONCE(bit_num >= BITS_PER_LONG);
+
+ temp1 = data & GENMASK_ULL(bit_num - 1, 0);
+
+ temp2 = data & GENMASK_ULL(63, bit_num);
+ temp2 <<= num_bits;
+
+ return temp1 | temp2;
+}
+
+/*
+ * Remove bits in @data between @low_bit and @high_bit inclusive.
+ * e.g. data = XXXYYZZZ'b
+ * low_bit = 3
+ * high_bit = 4
+ * result = XXXZZZ'b
+ */
+static inline u64 remove_bits(u8 low_bit, u8 high_bit, u64 data)
+{
+ u64 temp1, temp2;
+
+ WARN_ON_ONCE(high_bit >= BITS_PER_LONG);
+ WARN_ON_ONCE(low_bit >= BITS_PER_LONG);
+ WARN_ON_ONCE(low_bit > high_bit);
+
+ if (!low_bit)
+ return data >> (high_bit++);
+
+ temp1 = GENMASK_ULL(low_bit - 1, 0) & data;
+ temp2 = GENMASK_ULL(63, high_bit + 1) & data;
+ temp2 >>= high_bit - low_bit + 1;
+
+ return temp1 | temp2;
+}
+
+#define atl_debug(ctx, fmt, arg...) \
+ pr_debug("socket_id=%u die_id=%u coh_st_inst_id=%u norm_addr=0x%016llx: " fmt,\
+ (ctx)->inputs.socket_id, (ctx)->inputs.die_id,\
+ (ctx)->inputs.coh_st_inst_id, (ctx)->inputs.norm_addr, ##arg)
+
+static inline void atl_debug_on_bad_df_rev(void)
+{
+ pr_debug("Unrecognized DF rev: %u", df_cfg.rev);
+}
+
+static inline void atl_debug_on_bad_intlv_mode(struct addr_ctx *ctx)
+{
+ atl_debug(ctx, "Unrecognized interleave mode: %u", ctx->map.intlv_mode);
+}
+
+#endif /* __AMD_ATL_INTERNAL_H__ */
diff --git a/drivers/ras/amd/atl/map.c b/drivers/ras/amd/atl/map.c
new file mode 100644
index 0000000000..8b908e8d74
--- /dev/null
+++ b/drivers/ras/amd/atl/map.c
@@ -0,0 +1,682 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * AMD Address Translation Library
+ *
+ * map.c : Functions to read and decode DRAM address maps
+ *
+ * Copyright (c) 2023, Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+ */
+
+#include "internal.h"
+
+static int df2_get_intlv_mode(struct addr_ctx *ctx)
+{
+ ctx->map.intlv_mode = FIELD_GET(DF2_INTLV_NUM_CHAN, ctx->map.base);
+
+ if (ctx->map.intlv_mode == 8)
+ ctx->map.intlv_mode = DF2_2CHAN_HASH;
+
+ if (ctx->map.intlv_mode != NONE &&
+ ctx->map.intlv_mode != NOHASH_2CHAN &&
+ ctx->map.intlv_mode != DF2_2CHAN_HASH)
+ return -EINVAL;
+
+ return 0;
+}
+
+static int df3_get_intlv_mode(struct addr_ctx *ctx)
+{
+ ctx->map.intlv_mode = FIELD_GET(DF3_INTLV_NUM_CHAN, ctx->map.base);
+ return 0;
+}
+
+static int df3p5_get_intlv_mode(struct addr_ctx *ctx)
+{
+ ctx->map.intlv_mode = FIELD_GET(DF3p5_INTLV_NUM_CHAN, ctx->map.base);
+
+ if (ctx->map.intlv_mode == DF3_6CHAN)
+ return -EINVAL;
+
+ return 0;
+}
+
+static int df4_get_intlv_mode(struct addr_ctx *ctx)
+{
+ ctx->map.intlv_mode = FIELD_GET(DF4_INTLV_NUM_CHAN, ctx->map.intlv);
+
+ if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH ||
+ ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH ||
+ ctx->map.intlv_mode == DF3_COD1_8CHAN_HASH ||
+ ctx->map.intlv_mode == DF3_6CHAN)
+ return -EINVAL;
+
+ return 0;
+}
+
+static int df4p5_get_intlv_mode(struct addr_ctx *ctx)
+{
+ ctx->map.intlv_mode = FIELD_GET(DF4p5_INTLV_NUM_CHAN, ctx->map.intlv);
+
+ if (ctx->map.intlv_mode <= NOHASH_32CHAN)
+ return 0;
+
+ if (ctx->map.intlv_mode >= MI3_HASH_8CHAN &&
+ ctx->map.intlv_mode <= MI3_HASH_32CHAN)
+ return 0;
+
+ /*
+ * Modes matching the ranges above are returned as-is.
+ *
+ * All other modes are "fixed up" by adding 20h to make a unique value.
+ */
+ ctx->map.intlv_mode += 0x20;
+
+ return 0;
+}
+
+static int get_intlv_mode(struct addr_ctx *ctx)
+{
+ int ret;
+
+ switch (df_cfg.rev) {
+ case DF2:
+ ret = df2_get_intlv_mode(ctx);
+ break;
+ case DF3:
+ ret = df3_get_intlv_mode(ctx);
+ break;
+ case DF3p5:
+ ret = df3p5_get_intlv_mode(ctx);
+ break;
+ case DF4:
+ ret = df4_get_intlv_mode(ctx);
+ break;
+ case DF4p5:
+ ret = df4p5_get_intlv_mode(ctx);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ if (ret)
+ atl_debug_on_bad_df_rev();
+
+ return ret;
+}
+
+static u64 get_hi_addr_offset(u32 reg_dram_offset)
+{
+ u8 shift = DF_DRAM_BASE_LIMIT_LSB;
+ u64 hi_addr_offset;
+
+ switch (df_cfg.rev) {
+ case DF2:
+ hi_addr_offset = FIELD_GET(DF2_HI_ADDR_OFFSET, reg_dram_offset);
+ break;
+ case DF3:
+ case DF3p5:
+ hi_addr_offset = FIELD_GET(DF3_HI_ADDR_OFFSET, reg_dram_offset);
+ break;
+ case DF4:
+ case DF4p5:
+ hi_addr_offset = FIELD_GET(DF4_HI_ADDR_OFFSET, reg_dram_offset);
+ break;
+ default:
+ hi_addr_offset = 0;
+ atl_debug_on_bad_df_rev();
+ }
+
+ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
+ shift = MI300_DRAM_LIMIT_LSB;
+
+ return hi_addr_offset << shift;
+}
+
+/*
+ * Returns: 0 if offset is disabled.
+ * 1 if offset is enabled.
+ * -EINVAL on error.
+ */
+static int get_dram_offset(struct addr_ctx *ctx, u64 *norm_offset)
+{
+ u32 reg_dram_offset;
+ u8 map_num;
+
+ /* Should not be called for map 0. */
+ if (!ctx->map.num) {
+ atl_debug(ctx, "Trying to find DRAM offset for map 0");
+ return -EINVAL;
+ }
+
+ /*
+ * DramOffset registers don't exist for map 0, so the base register
+ * actually refers to map 1.
+ * Adjust the map_num for the register offsets.
+ */
+ map_num = ctx->map.num - 1;
+
+ if (df_cfg.rev >= DF4) {
+ /* Read D18F7x140 (DramOffset) */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x140 + (4 * map_num),
+ ctx->inst_id, &reg_dram_offset))
+ return -EINVAL;
+
+ } else {
+ /* Read D18F0x1B4 (DramOffset) */
+ if (df_indirect_read_instance(ctx->node_id, 0, 0x1B4 + (4 * map_num),
+ ctx->inst_id, &reg_dram_offset))
+ return -EINVAL;
+ }
+
+ if (!FIELD_GET(DF_HI_ADDR_OFFSET_EN, reg_dram_offset))
+ return 0;
+
+ *norm_offset = get_hi_addr_offset(reg_dram_offset);
+
+ return 1;
+}
+
+static int df3_6ch_get_dram_addr_map(struct addr_ctx *ctx)
+{
+ u16 dst_fabric_id = FIELD_GET(DF3_DST_FABRIC_ID, ctx->map.limit);
+ u8 i, j, shift = 4, mask = 0xF;
+ u32 reg, offset = 0x60;
+ u16 dst_node_id;
+
+ /* Get Socket 1 register. */
+ if (dst_fabric_id & df_cfg.socket_id_mask)
+ offset = 0x68;
+
+ /* Read D18F0x06{0,8} (DF::Skt0CsTargetRemap0)/(DF::Skt0CsTargetRemap1) */
+ if (df_indirect_read_broadcast(ctx->node_id, 0, offset, &reg))
+ return -EINVAL;
+
+ /* Save 8 remap entries. */
+ for (i = 0, j = 0; i < 8; i++, j++)
+ ctx->map.remap_array[i] = (reg >> (j * shift)) & mask;
+
+ dst_node_id = dst_fabric_id & df_cfg.node_id_mask;
+ dst_node_id >>= df_cfg.node_id_shift;
+
+ /* Read D18F2x090 (DF::Np2ChannelConfig) */
+ if (df_indirect_read_broadcast(dst_node_id, 2, 0x90, &reg))
+ return -EINVAL;
+
+ ctx->map.np2_bits = FIELD_GET(DF_LOG2_ADDR_64K_SPACE0, reg);
+ return 0;
+}
+
+static int df2_get_dram_addr_map(struct addr_ctx *ctx)
+{
+ /* Read D18F0x110 (DramBaseAddress). */
+ if (df_indirect_read_instance(ctx->node_id, 0, 0x110 + (8 * ctx->map.num),
+ ctx->inst_id, &ctx->map.base))
+ return -EINVAL;
+
+ /* Read D18F0x114 (DramLimitAddress). */
+ if (df_indirect_read_instance(ctx->node_id, 0, 0x114 + (8 * ctx->map.num),
+ ctx->inst_id, &ctx->map.limit))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int df3_get_dram_addr_map(struct addr_ctx *ctx)
+{
+ if (df2_get_dram_addr_map(ctx))
+ return -EINVAL;
+
+ /* Read D18F0x3F8 (DfGlobalCtl). */
+ if (df_indirect_read_instance(ctx->node_id, 0, 0x3F8,
+ ctx->inst_id, &ctx->map.ctl))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int df4_get_dram_addr_map(struct addr_ctx *ctx)
+{
+ u8 remap_sel, i, j, shift = 4, mask = 0xF;
+ u32 remap_reg;
+
+ /* Read D18F7xE00 (DramBaseAddress). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0xE00 + (16 * ctx->map.num),
+ ctx->inst_id, &ctx->map.base))
+ return -EINVAL;
+
+ /* Read D18F7xE04 (DramLimitAddress). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0xE04 + (16 * ctx->map.num),
+ ctx->inst_id, &ctx->map.limit))
+ return -EINVAL;
+
+ /* Read D18F7xE08 (DramAddressCtl). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0xE08 + (16 * ctx->map.num),
+ ctx->inst_id, &ctx->map.ctl))
+ return -EINVAL;
+
+ /* Read D18F7xE0C (DramAddressIntlv). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0xE0C + (16 * ctx->map.num),
+ ctx->inst_id, &ctx->map.intlv))
+ return -EINVAL;
+
+ /* Check if Remap Enable bit is valid. */
+ if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl))
+ return 0;
+
+ /* Fill with bogus values, because '0' is a valid value. */
+ memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array));
+
+ /* Get Remap registers. */
+ remap_sel = FIELD_GET(DF4_REMAP_SEL, ctx->map.ctl);
+
+ /* Read D18F7x180 (CsTargetRemap0A). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (8 * remap_sel),
+ ctx->inst_id, &remap_reg))
+ return -EINVAL;
+
+ /* Save first 8 remap entries. */
+ for (i = 0, j = 0; i < 8; i++, j++)
+ ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
+
+ /* Read D18F7x184 (CsTargetRemap0B). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (8 * remap_sel),
+ ctx->inst_id, &remap_reg))
+ return -EINVAL;
+
+ /* Save next 8 remap entries. */
+ for (i = 8, j = 0; i < 16; i++, j++)
+ ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
+
+ return 0;
+}
+
+static int df4p5_get_dram_addr_map(struct addr_ctx *ctx)
+{
+ u8 remap_sel, i, j, shift = 5, mask = 0x1F;
+ u32 remap_reg;
+
+ /* Read D18F7x200 (DramBaseAddress). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x200 + (16 * ctx->map.num),
+ ctx->inst_id, &ctx->map.base))
+ return -EINVAL;
+
+ /* Read D18F7x204 (DramLimitAddress). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x204 + (16 * ctx->map.num),
+ ctx->inst_id, &ctx->map.limit))
+ return -EINVAL;
+
+ /* Read D18F7x208 (DramAddressCtl). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x208 + (16 * ctx->map.num),
+ ctx->inst_id, &ctx->map.ctl))
+ return -EINVAL;
+
+ /* Read D18F7x20C (DramAddressIntlv). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x20C + (16 * ctx->map.num),
+ ctx->inst_id, &ctx->map.intlv))
+ return -EINVAL;
+
+ /* Check if Remap Enable bit is valid. */
+ if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl))
+ return 0;
+
+ /* Fill with bogus values, because '0' is a valid value. */
+ memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array));
+
+ /* Get Remap registers. */
+ remap_sel = FIELD_GET(DF4p5_REMAP_SEL, ctx->map.ctl);
+
+ /* Read D18F7x180 (CsTargetRemap0A). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (24 * remap_sel),
+ ctx->inst_id, &remap_reg))
+ return -EINVAL;
+
+ /* Save first 6 remap entries. */
+ for (i = 0, j = 0; i < 6; i++, j++)
+ ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
+
+ /* Read D18F7x184 (CsTargetRemap0B). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (24 * remap_sel),
+ ctx->inst_id, &remap_reg))
+ return -EINVAL;
+
+ /* Save next 6 remap entries. */
+ for (i = 6, j = 0; i < 12; i++, j++)
+ ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
+
+ /* Read D18F7x188 (CsTargetRemap0C). */
+ if (df_indirect_read_instance(ctx->node_id, 7, 0x188 + (24 * remap_sel),
+ ctx->inst_id, &remap_reg))
+ return -EINVAL;
+
+ /* Save next 6 remap entries. */
+ for (i = 12, j = 0; i < 18; i++, j++)
+ ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
+
+ return 0;
+}
+
+static int get_dram_addr_map(struct addr_ctx *ctx)
+{
+ switch (df_cfg.rev) {
+ case DF2: return df2_get_dram_addr_map(ctx);
+ case DF3:
+ case DF3p5: return df3_get_dram_addr_map(ctx);
+ case DF4: return df4_get_dram_addr_map(ctx);
+ case DF4p5: return df4p5_get_dram_addr_map(ctx);
+ default:
+ atl_debug_on_bad_df_rev();
+ return -EINVAL;
+ }
+}
+
+static int get_coh_st_fabric_id(struct addr_ctx *ctx)
+{
+ u32 reg;
+
+ /*
+ * On MI300 systems, the Coherent Station Fabric ID is derived
+ * later. And it does not depend on the register value.
+ */
+ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
+ return 0;
+
+ /* Read D18F0x50 (FabricBlockInstanceInformation3). */
+ if (df_indirect_read_instance(ctx->node_id, 0, 0x50, ctx->inst_id, &reg))
+ return -EINVAL;
+
+ if (df_cfg.rev < DF4p5)
+ ctx->coh_st_fabric_id = FIELD_GET(DF2_COH_ST_FABRIC_ID, reg);
+ else
+ ctx->coh_st_fabric_id = FIELD_GET(DF4p5_COH_ST_FABRIC_ID, reg);
+
+ return 0;
+}
+
+static int find_normalized_offset(struct addr_ctx *ctx, u64 *norm_offset)
+{
+ u64 last_offset = 0;
+ int ret;
+
+ for (ctx->map.num = 1; ctx->map.num < df_cfg.num_coh_st_maps; ctx->map.num++) {
+ ret = get_dram_offset(ctx, norm_offset);
+ if (ret < 0)
+ return ret;
+
+ /* Continue search if this map's offset is not enabled. */
+ if (!ret)
+ continue;
+
+ /* Enabled offsets should never be 0. */
+ if (*norm_offset == 0) {
+ atl_debug(ctx, "Enabled map %u offset is 0", ctx->map.num);
+ return -EINVAL;
+ }
+
+ /* Offsets should always increase from one map to the next. */
+ if (*norm_offset <= last_offset) {
+ atl_debug(ctx, "Map %u offset (0x%016llx) <= previous (0x%016llx)",
+ ctx->map.num, *norm_offset, last_offset);
+ return -EINVAL;
+ }
+
+ /* Match if this map's offset is less than the current calculated address. */
+ if (ctx->ret_addr >= *norm_offset)
+ break;
+
+ last_offset = *norm_offset;
+ }
+
+ /*
+ * Finished search without finding a match.
+ * Reset to map 0 and no offset.
+ */
+ if (ctx->map.num >= df_cfg.num_coh_st_maps) {
+ ctx->map.num = 0;
+ *norm_offset = 0;
+ }
+
+ return 0;
+}
+
+static bool valid_map(struct addr_ctx *ctx)
+{
+ if (df_cfg.rev >= DF4)
+ return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.ctl);
+ else
+ return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.base);
+}
+
+static int get_address_map_common(struct addr_ctx *ctx)
+{
+ u64 norm_offset = 0;
+
+ if (get_coh_st_fabric_id(ctx))
+ return -EINVAL;
+
+ if (find_normalized_offset(ctx, &norm_offset))
+ return -EINVAL;
+
+ if (get_dram_addr_map(ctx))
+ return -EINVAL;
+
+ if (!valid_map(ctx))
+ return -EINVAL;
+
+ ctx->ret_addr -= norm_offset;
+
+ return 0;
+}
+
+static u8 get_num_intlv_chan(struct addr_ctx *ctx)
+{
+ switch (ctx->map.intlv_mode) {
+ case NONE:
+ return 1;
+ case NOHASH_2CHAN:
+ case DF2_2CHAN_HASH:
+ case DF3_COD4_2CHAN_HASH:
+ case DF4_NPS4_2CHAN_HASH:
+ case DF4p5_NPS4_2CHAN_1K_HASH:
+ case DF4p5_NPS4_2CHAN_2K_HASH:
+ return 2;
+ case DF4_NPS4_3CHAN_HASH:
+ case DF4p5_NPS4_3CHAN_1K_HASH:
+ case DF4p5_NPS4_3CHAN_2K_HASH:
+ return 3;
+ case NOHASH_4CHAN:
+ case DF3_COD2_4CHAN_HASH:
+ case DF4_NPS2_4CHAN_HASH:
+ case DF4p5_NPS2_4CHAN_1K_HASH:
+ case DF4p5_NPS2_4CHAN_2K_HASH:
+ return 4;
+ case DF4_NPS2_5CHAN_HASH:
+ case DF4p5_NPS2_5CHAN_1K_HASH:
+ case DF4p5_NPS2_5CHAN_2K_HASH:
+ return 5;
+ case DF3_6CHAN:
+ case DF4_NPS2_6CHAN_HASH:
+ case DF4p5_NPS2_6CHAN_1K_HASH:
+ case DF4p5_NPS2_6CHAN_2K_HASH:
+ return 6;
+ case NOHASH_8CHAN:
+ case DF3_COD1_8CHAN_HASH:
+ case DF4_NPS1_8CHAN_HASH:
+ case MI3_HASH_8CHAN:
+ case DF4p5_NPS1_8CHAN_1K_HASH:
+ case DF4p5_NPS1_8CHAN_2K_HASH:
+ return 8;
+ case DF4_NPS1_10CHAN_HASH:
+ case DF4p5_NPS1_10CHAN_1K_HASH:
+ case DF4p5_NPS1_10CHAN_2K_HASH:
+ return 10;
+ case DF4_NPS1_12CHAN_HASH:
+ case DF4p5_NPS1_12CHAN_1K_HASH:
+ case DF4p5_NPS1_12CHAN_2K_HASH:
+ return 12;
+ case NOHASH_16CHAN:
+ case MI3_HASH_16CHAN:
+ case DF4p5_NPS1_16CHAN_1K_HASH:
+ case DF4p5_NPS1_16CHAN_2K_HASH:
+ return 16;
+ case DF4p5_NPS0_24CHAN_1K_HASH:
+ case DF4p5_NPS0_24CHAN_2K_HASH:
+ return 24;
+ case NOHASH_32CHAN:
+ case MI3_HASH_32CHAN:
+ return 32;
+ default:
+ atl_debug_on_bad_intlv_mode(ctx);
+ return 0;
+ }
+}
+
+static void calculate_intlv_bits(struct addr_ctx *ctx)
+{
+ ctx->map.num_intlv_chan = get_num_intlv_chan(ctx);
+
+ ctx->map.total_intlv_chan = ctx->map.num_intlv_chan;
+ ctx->map.total_intlv_chan *= ctx->map.num_intlv_dies;
+ ctx->map.total_intlv_chan *= ctx->map.num_intlv_sockets;
+
+ /*
+ * Get the number of bits needed to cover this many channels.
+ * order_base_2() rounds up automatically.
+ */
+ ctx->map.total_intlv_bits = order_base_2(ctx->map.total_intlv_chan);
+}
+
+static u8 get_intlv_bit_pos(struct addr_ctx *ctx)
+{
+ u8 addr_sel = 0;
+
+ switch (df_cfg.rev) {
+ case DF2:
+ addr_sel = FIELD_GET(DF2_INTLV_ADDR_SEL, ctx->map.base);
+ break;
+ case DF3:
+ case DF3p5:
+ addr_sel = FIELD_GET(DF3_INTLV_ADDR_SEL, ctx->map.base);
+ break;
+ case DF4:
+ case DF4p5:
+ addr_sel = FIELD_GET(DF4_INTLV_ADDR_SEL, ctx->map.intlv);
+ break;
+ default:
+ atl_debug_on_bad_df_rev();
+ break;
+ }
+
+ /* Add '8' to get the 'interleave bit position'. */
+ return addr_sel + 8;
+}
+
+static u8 get_num_intlv_dies(struct addr_ctx *ctx)
+{
+ u8 dies = 0;
+
+ switch (df_cfg.rev) {
+ case DF2:
+ dies = FIELD_GET(DF2_INTLV_NUM_DIES, ctx->map.limit);
+ break;
+ case DF3:
+ dies = FIELD_GET(DF3_INTLV_NUM_DIES, ctx->map.base);
+ break;
+ case DF3p5:
+ dies = FIELD_GET(DF3p5_INTLV_NUM_DIES, ctx->map.base);
+ break;
+ case DF4:
+ case DF4p5:
+ dies = FIELD_GET(DF4_INTLV_NUM_DIES, ctx->map.intlv);
+ break;
+ default:
+ atl_debug_on_bad_df_rev();
+ break;
+ }
+
+ /* Register value is log2, e.g. 0 -> 1 die, 1 -> 2 dies, etc. */
+ return 1 << dies;
+}
+
+static u8 get_num_intlv_sockets(struct addr_ctx *ctx)
+{
+ u8 sockets = 0;
+
+ switch (df_cfg.rev) {
+ case DF2:
+ sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.limit);
+ break;
+ case DF3:
+ case DF3p5:
+ sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.base);
+ break;
+ case DF4:
+ case DF4p5:
+ sockets = FIELD_GET(DF4_INTLV_NUM_SOCKETS, ctx->map.intlv);
+ break;
+ default:
+ atl_debug_on_bad_df_rev();
+ break;
+ }
+
+ /* Register value is log2, e.g. 0 -> 1 sockets, 1 -> 2 sockets, etc. */
+ return 1 << sockets;
+}
+
+static int get_global_map_data(struct addr_ctx *ctx)
+{
+ if (get_intlv_mode(ctx))
+ return -EINVAL;
+
+ if (ctx->map.intlv_mode == DF3_6CHAN &&
+ df3_6ch_get_dram_addr_map(ctx))
+ return -EINVAL;
+
+ ctx->map.intlv_bit_pos = get_intlv_bit_pos(ctx);
+ ctx->map.num_intlv_dies = get_num_intlv_dies(ctx);
+ ctx->map.num_intlv_sockets = get_num_intlv_sockets(ctx);
+ calculate_intlv_bits(ctx);
+
+ return 0;
+}
+
+static void dump_address_map(struct dram_addr_map *map)
+{
+ u8 i;
+
+ pr_debug("intlv_mode=0x%x", map->intlv_mode);
+ pr_debug("num=0x%x", map->num);
+ pr_debug("base=0x%x", map->base);
+ pr_debug("limit=0x%x", map->limit);
+ pr_debug("ctl=0x%x", map->ctl);
+ pr_debug("intlv=0x%x", map->intlv);
+
+ for (i = 0; i < MAX_COH_ST_CHANNELS; i++)
+ pr_debug("remap_array[%u]=0x%x", i, map->remap_array[i]);
+
+ pr_debug("intlv_bit_pos=%u", map->intlv_bit_pos);
+ pr_debug("num_intlv_chan=%u", map->num_intlv_chan);
+ pr_debug("num_intlv_dies=%u", map->num_intlv_dies);
+ pr_debug("num_intlv_sockets=%u", map->num_intlv_sockets);
+ pr_debug("total_intlv_chan=%u", map->total_intlv_chan);
+ pr_debug("total_intlv_bits=%u", map->total_intlv_bits);
+}
+
+int get_address_map(struct addr_ctx *ctx)
+{
+ int ret;
+
+ ret = get_address_map_common(ctx);
+ if (ret)
+ return ret;
+
+ ret = get_global_map_data(ctx);
+ if (ret)
+ return ret;
+
+ dump_address_map(&ctx->map);
+
+ return ret;
+}
diff --git a/drivers/ras/amd/atl/reg_fields.h b/drivers/ras/amd/atl/reg_fields.h
new file mode 100644
index 0000000000..9dcdf6e4a8
--- /dev/null
+++ b/drivers/ras/amd/atl/reg_fields.h
@@ -0,0 +1,606 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * AMD Address Translation Library
+ *
+ * reg_fields.h : Register field definitions
+ *
+ * Copyright (c) 2023, Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+ */
+
+/*
+ * Notes on naming:
+ * 1) Use "DF_" prefix for fields that are the same for all revisions.
+ * 2) Use "DFx_" prefix for fields that differ between revisions.
+ * a) "x" is the first major revision where the new field appears.
+ * b) E.g., if DF2 and DF3 have the same field, then call it DF2.
+ * c) E.g., if DF3p5 and DF4 have the same field, then call it DF4.
+ */
+
+/*
+ * Coherent Station Fabric ID
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x50 [Fabric Block Instance Information 3]
+ * DF2 BlockFabricId [19:8]
+ * DF3 BlockFabricId [19:8]
+ * DF3p5 BlockFabricId [19:8]
+ * DF4 BlockFabricId [19:8]
+ * DF4p5 BlockFabricId [15:8]
+ */
+#define DF2_COH_ST_FABRIC_ID GENMASK(19, 8)
+#define DF4p5_COH_ST_FABRIC_ID GENMASK(15, 8)
+
+/*
+ * Component ID Mask
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * DF2 N/A
+ *
+ * D18F1x208 [System Fabric ID Mask 0]
+ * DF3 ComponentIdMask [9:0]
+ *
+ * D18F1x150 [System Fabric ID Mask 0]
+ * DF3p5 ComponentIdMask [15:0]
+ *
+ * D18F4x1B0 [System Fabric ID Mask 0]
+ * DF4 ComponentIdMask [15:0]
+ * DF4p5 ComponentIdMask [15:0]
+ */
+#define DF3_COMPONENT_ID_MASK GENMASK(9, 0)
+#define DF4_COMPONENT_ID_MASK GENMASK(15, 0)
+
+/*
+ * Destination Fabric ID
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x114 [DRAM Limit Address]
+ * DF2 DstFabricID [7:0]
+ * DF3 DstFabricID [9:0]
+ * DF3 DstFabricID [11:0]
+ *
+ * D18F7xE08 [DRAM Address Control]
+ * DF4 DstFabricID [27:16]
+ *
+ * D18F7x208 [DRAM Address Control]
+ * DF4p5 DstFabricID [23:16]
+ */
+#define DF2_DST_FABRIC_ID GENMASK(7, 0)
+#define DF3_DST_FABRIC_ID GENMASK(9, 0)
+#define DF3p5_DST_FABRIC_ID GENMASK(11, 0)
+#define DF4_DST_FABRIC_ID GENMASK(27, 16)
+#define DF4p5_DST_FABRIC_ID GENMASK(23, 16)
+
+/*
+ * Die ID Mask
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F1x208 [System Fabric ID Mask]
+ * DF2 DieIdMask [15:8]
+ *
+ * D18F1x20C [System Fabric ID Mask 1]
+ * DF3 DieIdMask [18:16]
+ *
+ * D18F1x158 [System Fabric ID Mask 2]
+ * DF3p5 DieIdMask [15:0]
+ *
+ * D18F4x1B8 [System Fabric ID Mask 2]
+ * DF4 DieIdMask [15:0]
+ * DF4p5 DieIdMask [15:0]
+ */
+#define DF2_DIE_ID_MASK GENMASK(15, 8)
+#define DF3_DIE_ID_MASK GENMASK(18, 16)
+#define DF4_DIE_ID_MASK GENMASK(15, 0)
+
+/*
+ * Die ID Shift
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F1x208 [System Fabric ID Mask]
+ * DF2 DieIdShift [27:24]
+ *
+ * DF3 N/A
+ * DF3p5 N/A
+ * DF4 N/A
+ * DF4p5 N/A
+ */
+#define DF2_DIE_ID_SHIFT GENMASK(27, 24)
+
+/*
+ * DRAM Address Range Valid
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x110 [DRAM Base Address]
+ * DF2 AddrRngVal [0]
+ * DF3 AddrRngVal [0]
+ * DF3p5 AddrRngVal [0]
+ *
+ * D18F7xE08 [DRAM Address Control]
+ * DF4 AddrRngVal [0]
+ *
+ * D18F7x208 [DRAM Address Control]
+ * DF4p5 AddrRngVal [0]
+ */
+#define DF_ADDR_RANGE_VAL BIT(0)
+
+/*
+ * DRAM Base Address
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x110 [DRAM Base Address]
+ * DF2 DramBaseAddr [31:12]
+ * DF3 DramBaseAddr [31:12]
+ * DF3p5 DramBaseAddr [31:12]
+ *
+ * D18F7xE00 [DRAM Base Address]
+ * DF4 DramBaseAddr [27:0]
+ *
+ * D18F7x200 [DRAM Base Address]
+ * DF4p5 DramBaseAddr [27:0]
+ */
+#define DF2_BASE_ADDR GENMASK(31, 12)
+#define DF4_BASE_ADDR GENMASK(27, 0)
+
+/*
+ * DRAM Hole Base
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x104 [DRAM Hole Control]
+ * DF2 DramHoleBase [31:24]
+ * DF3 DramHoleBase [31:24]
+ * DF3p5 DramHoleBase [31:24]
+ *
+ * D18F7x104 [DRAM Hole Control]
+ * DF4 DramHoleBase [31:24]
+ * DF4p5 DramHoleBase [31:24]
+ */
+#define DF_DRAM_HOLE_BASE_MASK GENMASK(31, 24)
+
+/*
+ * DRAM Limit Address
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x114 [DRAM Limit Address]
+ * DF2 DramLimitAddr [31:12]
+ * DF3 DramLimitAddr [31:12]
+ * DF3p5 DramLimitAddr [31:12]
+ *
+ * D18F7xE04 [DRAM Limit Address]
+ * DF4 DramLimitAddr [27:0]
+ *
+ * D18F7x204 [DRAM Limit Address]
+ * DF4p5 DramLimitAddr [27:0]
+ */
+#define DF2_DRAM_LIMIT_ADDR GENMASK(31, 12)
+#define DF4_DRAM_LIMIT_ADDR GENMASK(27, 0)
+
+/*
+ * Hash Interleave Controls
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * DF2 N/A
+ *
+ * D18F0x3F8 [DF Global Control]
+ * DF3 GlbHashIntlvCtl64K [20]
+ * GlbHashIntlvCtl2M [21]
+ * GlbHashIntlvCtl1G [22]
+ *
+ * DF3p5 GlbHashIntlvCtl64K [20]
+ * GlbHashIntlvCtl2M [21]
+ * GlbHashIntlvCtl1G [22]
+ *
+ * D18F7xE08 [DRAM Address Control]
+ * DF4 HashIntlvCtl64K [8]
+ * HashIntlvCtl2M [9]
+ * HashIntlvCtl1G [10]
+ *
+ * D18F7x208 [DRAM Address Control]
+ * DF4p5 HashIntlvCtl4K [7]
+ * HashIntlvCtl64K [8]
+ * HashIntlvCtl2M [9]
+ * HashIntlvCtl1G [10]
+ * HashIntlvCtl1T [15]
+ */
+#define DF3_HASH_CTL_64K BIT(20)
+#define DF3_HASH_CTL_2M BIT(21)
+#define DF3_HASH_CTL_1G BIT(22)
+#define DF4_HASH_CTL_64K BIT(8)
+#define DF4_HASH_CTL_2M BIT(9)
+#define DF4_HASH_CTL_1G BIT(10)
+#define DF4p5_HASH_CTL_4K BIT(7)
+#define DF4p5_HASH_CTL_1T BIT(15)
+
+/*
+ * High Address Offset
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x1B4 [DRAM Offset]
+ * DF2 HiAddrOffset [31:20]
+ * DF3 HiAddrOffset [31:12]
+ * DF3p5 HiAddrOffset [31:12]
+ *
+ * D18F7x140 [DRAM Offset]
+ * DF4 HiAddrOffset [24:1]
+ * DF4p5 HiAddrOffset [24:1]
+ * MI300 HiAddrOffset [31:1]
+ */
+#define DF2_HI_ADDR_OFFSET GENMASK(31, 20)
+#define DF3_HI_ADDR_OFFSET GENMASK(31, 12)
+
+/* Follow reference code by including reserved bits for simplicity. */
+#define DF4_HI_ADDR_OFFSET GENMASK(31, 1)
+
+/*
+ * High Address Offset Enable
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x1B4 [DRAM Offset]
+ * DF2 HiAddrOffsetEn [0]
+ * DF3 HiAddrOffsetEn [0]
+ * DF3p5 HiAddrOffsetEn [0]
+ *
+ * D18F7x140 [DRAM Offset]
+ * DF4 HiAddrOffsetEn [0]
+ * DF4p5 HiAddrOffsetEn [0]
+ */
+#define DF_HI_ADDR_OFFSET_EN BIT(0)
+
+/*
+ * Interleave Address Select
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x110 [DRAM Base Address]
+ * DF2 IntLvAddrSel [10:8]
+ * DF3 IntLvAddrSel [11:9]
+ * DF3p5 IntLvAddrSel [11:9]
+ *
+ * D18F7xE0C [DRAM Address Interleave]
+ * DF4 IntLvAddrSel [2:0]
+ *
+ * D18F7x20C [DRAM Address Interleave]
+ * DF4p5 IntLvAddrSel [2:0]
+ */
+#define DF2_INTLV_ADDR_SEL GENMASK(10, 8)
+#define DF3_INTLV_ADDR_SEL GENMASK(11, 9)
+#define DF4_INTLV_ADDR_SEL GENMASK(2, 0)
+
+/*
+ * Interleave Number of Channels
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x110 [DRAM Base Address]
+ * DF2 IntLvNumChan [7:4]
+ * DF3 IntLvNumChan [5:2]
+ * DF3p5 IntLvNumChan [6:2]
+ *
+ * D18F7xE0C [DRAM Address Interleave]
+ * DF4 IntLvNumChan [8:4]
+ *
+ * D18F7x20C [DRAM Address Interleave]
+ * DF4p5 IntLvNumChan [9:4]
+ */
+#define DF2_INTLV_NUM_CHAN GENMASK(7, 4)
+#define DF3_INTLV_NUM_CHAN GENMASK(5, 2)
+#define DF3p5_INTLV_NUM_CHAN GENMASK(6, 2)
+#define DF4_INTLV_NUM_CHAN GENMASK(8, 4)
+#define DF4p5_INTLV_NUM_CHAN GENMASK(9, 4)
+
+/*
+ * Interleave Number of Dies
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x114 [DRAM Limit Address]
+ * DF2 IntLvNumDies [11:10]
+ *
+ * D18F0x110 [DRAM Base Address]
+ * DF3 IntLvNumDies [7:6]
+ * DF3p5 IntLvNumDies [7]
+ *
+ * D18F7xE0C [DRAM Address Interleave]
+ * DF4 IntLvNumDies [13:12]
+ *
+ * D18F7x20C [DRAM Address Interleave]
+ * DF4p5 IntLvNumDies [13:12]
+ */
+#define DF2_INTLV_NUM_DIES GENMASK(11, 10)
+#define DF3_INTLV_NUM_DIES GENMASK(7, 6)
+#define DF3p5_INTLV_NUM_DIES BIT(7)
+#define DF4_INTLV_NUM_DIES GENMASK(13, 12)
+
+/*
+ * Interleave Number of Sockets
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x114 [DRAM Limit Address]
+ * DF2 IntLvNumSockets [8]
+ *
+ * D18F0x110 [DRAM Base Address]
+ * DF3 IntLvNumSockets [8]
+ * DF3p5 IntLvNumSockets [8]
+ *
+ * D18F7xE0C [DRAM Address Interleave]
+ * DF4 IntLvNumSockets [18]
+ *
+ * D18F7x20C [DRAM Address Interleave]
+ * DF4p5 IntLvNumSockets [18]
+ */
+#define DF2_INTLV_NUM_SOCKETS BIT(8)
+#define DF4_INTLV_NUM_SOCKETS BIT(18)
+
+/*
+ * Legacy MMIO Hole Enable
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F0x110 [DRAM Base Address]
+ * DF2 LgcyMmioHoleEn [1]
+ * DF3 LgcyMmioHoleEn [1]
+ * DF3p5 LgcyMmioHoleEn [1]
+ *
+ * D18F7xE08 [DRAM Address Control]
+ * DF4 LgcyMmioHoleEn [1]
+ *
+ * D18F7x208 [DRAM Address Control]
+ * DF4p5 LgcyMmioHoleEn [1]
+ */
+#define DF_LEGACY_MMIO_HOLE_EN BIT(1)
+
+/*
+ * Log2 Address 64K Space 0
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * DF2 N/A
+ *
+ * D18F2x90 [Non-power-of-2 channel Configuration Register for COH_ST DRAM Address Maps]
+ * DF3 Log2Addr64KSpace0 [5:0]
+ *
+ * DF3p5 N/A
+ * DF4 N/A
+ * DF4p5 N/A
+ */
+#define DF_LOG2_ADDR_64K_SPACE0 GENMASK(5, 0)
+
+/*
+ * Major Revision
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * DF2 N/A
+ * DF3 N/A
+ * DF3p5 N/A
+ *
+ * D18F0x040 [Fabric Block Instance Count]
+ * DF4 MajorRevision [27:24]
+ * DF4p5 MajorRevision [27:24]
+ */
+#define DF_MAJOR_REVISION GENMASK(27, 24)
+
+/*
+ * Minor Revision
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * DF2 N/A
+ * DF3 N/A
+ * DF3p5 N/A
+ *
+ * D18F0x040 [Fabric Block Instance Count]
+ * DF4 MinorRevision [23:16]
+ * DF4p5 MinorRevision [23:16]
+ */
+#define DF_MINOR_REVISION GENMASK(23, 16)
+
+/*
+ * Node ID Mask
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * DF2 N/A
+ *
+ * D18F1x208 [System Fabric ID Mask 0]
+ * DF3 NodeIdMask [25:16]
+ *
+ * D18F1x150 [System Fabric ID Mask 0]
+ * DF3p5 NodeIdMask [31:16]
+ *
+ * D18F4x1B0 [System Fabric ID Mask 0]
+ * DF4 NodeIdMask [31:16]
+ * DF4p5 NodeIdMask [31:16]
+ */
+#define DF3_NODE_ID_MASK GENMASK(25, 16)
+#define DF4_NODE_ID_MASK GENMASK(31, 16)
+
+/*
+ * Node ID Shift
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * DF2 N/A
+ *
+ * D18F1x20C [System Fabric ID Mask 1]
+ * DF3 NodeIdShift [3:0]
+ *
+ * D18F1x154 [System Fabric ID Mask 1]
+ * DF3p5 NodeIdShift [3:0]
+ *
+ * D18F4x1B4 [System Fabric ID Mask 1]
+ * DF4 NodeIdShift [3:0]
+ * DF4p5 NodeIdShift [3:0]
+ */
+#define DF3_NODE_ID_SHIFT GENMASK(3, 0)
+
+/*
+ * Remap Enable
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * DF2 N/A
+ * DF3 N/A
+ * DF3p5 N/A
+ *
+ * D18F7xE08 [DRAM Address Control]
+ * DF4 RemapEn [4]
+ *
+ * D18F7x208 [DRAM Address Control]
+ * DF4p5 RemapEn [4]
+ */
+#define DF4_REMAP_EN BIT(4)
+
+/*
+ * Remap Select
+ *
+ * Access type: Instance
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * DF2 N/A
+ * DF3 N/A
+ * DF3p5 N/A
+ *
+ * D18F7xE08 [DRAM Address Control]
+ * DF4 RemapSel [7:5]
+ *
+ * D18F7x208 [DRAM Address Control]
+ * DF4p5 RemapSel [6:5]
+ */
+#define DF4_REMAP_SEL GENMASK(7, 5)
+#define DF4p5_REMAP_SEL GENMASK(6, 5)
+
+/*
+ * Socket ID Mask
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F1x208 [System Fabric ID Mask]
+ * DF2 SocketIdMask [23:16]
+ *
+ * D18F1x20C [System Fabric ID Mask 1]
+ * DF3 SocketIdMask [26:24]
+ *
+ * D18F1x158 [System Fabric ID Mask 2]
+ * DF3p5 SocketIdMask [31:16]
+ *
+ * D18F4x1B8 [System Fabric ID Mask 2]
+ * DF4 SocketIdMask [31:16]
+ * DF4p5 SocketIdMask [31:16]
+ */
+#define DF2_SOCKET_ID_MASK GENMASK(23, 16)
+#define DF3_SOCKET_ID_MASK GENMASK(26, 24)
+#define DF4_SOCKET_ID_MASK GENMASK(31, 16)
+
+/*
+ * Socket ID Shift
+ *
+ * Access type: Broadcast
+ *
+ * Register
+ * Rev Fieldname Bits
+ *
+ * D18F1x208 [System Fabric ID Mask]
+ * DF2 SocketIdShift [31:28]
+ *
+ * D18F1x20C [System Fabric ID Mask 1]
+ * DF3 SocketIdShift [9:8]
+ *
+ * D18F1x158 [System Fabric ID Mask 2]
+ * DF3p5 SocketIdShift [11:8]
+ *
+ * D18F4x1B4 [System Fabric ID Mask 1]
+ * DF4 SocketIdShift [11:8]
+ * DF4p5 SocketIdShift [11:8]
+ */
+#define DF2_SOCKET_ID_SHIFT GENMASK(31, 28)
+#define DF3_SOCKET_ID_SHIFT GENMASK(9, 8)
+#define DF4_SOCKET_ID_SHIFT GENMASK(11, 8)
diff --git a/drivers/ras/amd/atl/system.c b/drivers/ras/amd/atl/system.c
new file mode 100644
index 0000000000..6979fa3d4f
--- /dev/null
+++ b/drivers/ras/amd/atl/system.c
@@ -0,0 +1,288 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * AMD Address Translation Library
+ *
+ * system.c : Functions to read and save system-wide data
+ *
+ * Copyright (c) 2023, Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+ */
+
+#include "internal.h"
+
+int determine_node_id(struct addr_ctx *ctx, u8 socket_id, u8 die_id)
+{
+ u16 socket_id_bits, die_id_bits;
+
+ if (socket_id > 0 && df_cfg.socket_id_mask == 0) {
+ atl_debug(ctx, "Invalid socket inputs: socket_id=%u socket_id_mask=0x%x",
+ socket_id, df_cfg.socket_id_mask);
+ return -EINVAL;
+ }
+
+ /* Do each step independently to avoid shift out-of-bounds issues. */
+ socket_id_bits = socket_id;
+ socket_id_bits <<= df_cfg.socket_id_shift;
+ socket_id_bits &= df_cfg.socket_id_mask;
+
+ if (die_id > 0 && df_cfg.die_id_mask == 0) {
+ atl_debug(ctx, "Invalid die inputs: die_id=%u die_id_mask=0x%x",
+ die_id, df_cfg.die_id_mask);
+ return -EINVAL;
+ }
+
+ /* Do each step independently to avoid shift out-of-bounds issues. */
+ die_id_bits = die_id;
+ die_id_bits <<= df_cfg.die_id_shift;
+ die_id_bits &= df_cfg.die_id_mask;
+
+ ctx->node_id = (socket_id_bits | die_id_bits) >> df_cfg.node_id_shift;
+ return 0;
+}
+
+static void df2_get_masks_shifts(u32 mask0)
+{
+ df_cfg.socket_id_shift = FIELD_GET(DF2_SOCKET_ID_SHIFT, mask0);
+ df_cfg.socket_id_mask = FIELD_GET(DF2_SOCKET_ID_MASK, mask0);
+ df_cfg.die_id_shift = FIELD_GET(DF2_DIE_ID_SHIFT, mask0);
+ df_cfg.die_id_mask = FIELD_GET(DF2_DIE_ID_MASK, mask0);
+ df_cfg.node_id_shift = df_cfg.die_id_shift;
+ df_cfg.node_id_mask = df_cfg.socket_id_mask | df_cfg.die_id_mask;
+ df_cfg.component_id_mask = ~df_cfg.node_id_mask;
+}
+
+static void df3_get_masks_shifts(u32 mask0, u32 mask1)
+{
+ df_cfg.component_id_mask = FIELD_GET(DF3_COMPONENT_ID_MASK, mask0);
+ df_cfg.node_id_mask = FIELD_GET(DF3_NODE_ID_MASK, mask0);
+
+ df_cfg.node_id_shift = FIELD_GET(DF3_NODE_ID_SHIFT, mask1);
+ df_cfg.socket_id_shift = FIELD_GET(DF3_SOCKET_ID_SHIFT, mask1);
+ df_cfg.socket_id_mask = FIELD_GET(DF3_SOCKET_ID_MASK, mask1);
+ df_cfg.die_id_mask = FIELD_GET(DF3_DIE_ID_MASK, mask1);
+}
+
+static void df3p5_get_masks_shifts(u32 mask0, u32 mask1, u32 mask2)
+{
+ df_cfg.component_id_mask = FIELD_GET(DF4_COMPONENT_ID_MASK, mask0);
+ df_cfg.node_id_mask = FIELD_GET(DF4_NODE_ID_MASK, mask0);
+
+ df_cfg.node_id_shift = FIELD_GET(DF3_NODE_ID_SHIFT, mask1);
+ df_cfg.socket_id_shift = FIELD_GET(DF4_SOCKET_ID_SHIFT, mask1);
+
+ df_cfg.socket_id_mask = FIELD_GET(DF4_SOCKET_ID_MASK, mask2);
+ df_cfg.die_id_mask = FIELD_GET(DF4_DIE_ID_MASK, mask2);
+}
+
+static void df4_get_masks_shifts(u32 mask0, u32 mask1, u32 mask2)
+{
+ df3p5_get_masks_shifts(mask0, mask1, mask2);
+
+ if (!(df_cfg.flags.socket_id_shift_quirk && df_cfg.socket_id_shift == 1))
+ return;
+
+ df_cfg.socket_id_shift = 0;
+ df_cfg.socket_id_mask = 1;
+ df_cfg.die_id_shift = 0;
+ df_cfg.die_id_mask = 0;
+ df_cfg.node_id_shift = 8;
+ df_cfg.node_id_mask = 0x100;
+}
+
+static int df4_get_fabric_id_mask_registers(void)
+{
+ u32 mask0, mask1, mask2;
+
+ /* Read D18F4x1B0 (SystemFabricIdMask0) */
+ if (df_indirect_read_broadcast(0, 4, 0x1B0, &mask0))
+ return -EINVAL;
+
+ /* Read D18F4x1B4 (SystemFabricIdMask1) */
+ if (df_indirect_read_broadcast(0, 4, 0x1B4, &mask1))
+ return -EINVAL;
+
+ /* Read D18F4x1B8 (SystemFabricIdMask2) */
+ if (df_indirect_read_broadcast(0, 4, 0x1B8, &mask2))
+ return -EINVAL;
+
+ df4_get_masks_shifts(mask0, mask1, mask2);
+ return 0;
+}
+
+static int df4_determine_df_rev(u32 reg)
+{
+ df_cfg.rev = FIELD_GET(DF_MINOR_REVISION, reg) < 5 ? DF4 : DF4p5;
+
+ /* Check for special cases or quirks based on Device/Vendor IDs.*/
+
+ /* Read D18F0x000 (DeviceVendorId0) */
+ if (df_indirect_read_broadcast(0, 0, 0, &reg))
+ return -EINVAL;
+
+ if (reg == DF_FUNC0_ID_ZEN4_SERVER)
+ df_cfg.flags.socket_id_shift_quirk = 1;
+
+ if (reg == DF_FUNC0_ID_MI300) {
+ df_cfg.flags.heterogeneous = 1;
+
+ if (get_umc_info_mi300())
+ return -EINVAL;
+ }
+
+ return df4_get_fabric_id_mask_registers();
+}
+
+static int determine_df_rev_legacy(void)
+{
+ u32 fabric_id_mask0, fabric_id_mask1, fabric_id_mask2;
+
+ /*
+ * Check for DF3.5.
+ *
+ * Component ID Mask must be non-zero. Register D18F1x150 is
+ * reserved pre-DF3.5, so value will be Read-as-Zero.
+ */
+
+ /* Read D18F1x150 (SystemFabricIdMask0). */
+ if (df_indirect_read_broadcast(0, 1, 0x150, &fabric_id_mask0))
+ return -EINVAL;
+
+ if (FIELD_GET(DF4_COMPONENT_ID_MASK, fabric_id_mask0)) {
+ df_cfg.rev = DF3p5;
+
+ /* Read D18F1x154 (SystemFabricIdMask1) */
+ if (df_indirect_read_broadcast(0, 1, 0x154, &fabric_id_mask1))
+ return -EINVAL;
+
+ /* Read D18F1x158 (SystemFabricIdMask2) */
+ if (df_indirect_read_broadcast(0, 1, 0x158, &fabric_id_mask2))
+ return -EINVAL;
+
+ df3p5_get_masks_shifts(fabric_id_mask0, fabric_id_mask1, fabric_id_mask2);
+ return 0;
+ }
+
+ /*
+ * Check for DF3.
+ *
+ * Component ID Mask must be non-zero. Field is Read-as-Zero on DF2.
+ */
+
+ /* Read D18F1x208 (SystemFabricIdMask). */
+ if (df_indirect_read_broadcast(0, 1, 0x208, &fabric_id_mask0))
+ return -EINVAL;
+
+ if (FIELD_GET(DF3_COMPONENT_ID_MASK, fabric_id_mask0)) {
+ df_cfg.rev = DF3;
+
+ /* Read D18F1x20C (SystemFabricIdMask1) */
+ if (df_indirect_read_broadcast(0, 1, 0x20C, &fabric_id_mask1))
+ return -EINVAL;
+
+ df3_get_masks_shifts(fabric_id_mask0, fabric_id_mask1);
+ return 0;
+ }
+
+ /* Default to DF2. */
+ df_cfg.rev = DF2;
+ df2_get_masks_shifts(fabric_id_mask0);
+ return 0;
+}
+
+static int determine_df_rev(void)
+{
+ u32 reg;
+ u8 rev;
+
+ if (df_cfg.rev != UNKNOWN)
+ return 0;
+
+ /* Read D18F0x40 (FabricBlockInstanceCount). */
+ if (df_indirect_read_broadcast(0, 0, 0x40, &reg))
+ return -EINVAL;
+
+ /*
+ * Revision fields added for DF4 and later.
+ *
+ * Major revision of '0' is found pre-DF4. Field is Read-as-Zero.
+ */
+ rev = FIELD_GET(DF_MAJOR_REVISION, reg);
+ if (!rev)
+ return determine_df_rev_legacy();
+
+ /*
+ * Fail out for major revisions other than '4'.
+ *
+ * Explicit support should be added for newer systems to avoid issues.
+ */
+ if (rev == 4)
+ return df4_determine_df_rev(reg);
+
+ return -EINVAL;
+}
+
+static void get_num_maps(void)
+{
+ switch (df_cfg.rev) {
+ case DF2:
+ case DF3:
+ case DF3p5:
+ df_cfg.num_coh_st_maps = 2;
+ break;
+ case DF4:
+ case DF4p5:
+ df_cfg.num_coh_st_maps = 4;
+ break;
+ default:
+ atl_debug_on_bad_df_rev();
+ }
+}
+
+static void apply_node_id_shift(void)
+{
+ if (df_cfg.rev == DF2)
+ return;
+
+ df_cfg.die_id_shift = df_cfg.node_id_shift;
+ df_cfg.die_id_mask <<= df_cfg.node_id_shift;
+ df_cfg.socket_id_mask <<= df_cfg.node_id_shift;
+ df_cfg.socket_id_shift += df_cfg.node_id_shift;
+}
+
+static void dump_df_cfg(void)
+{
+ pr_debug("rev=0x%x", df_cfg.rev);
+
+ pr_debug("component_id_mask=0x%x", df_cfg.component_id_mask);
+ pr_debug("die_id_mask=0x%x", df_cfg.die_id_mask);
+ pr_debug("node_id_mask=0x%x", df_cfg.node_id_mask);
+ pr_debug("socket_id_mask=0x%x", df_cfg.socket_id_mask);
+
+ pr_debug("die_id_shift=0x%x", df_cfg.die_id_shift);
+ pr_debug("node_id_shift=0x%x", df_cfg.node_id_shift);
+ pr_debug("socket_id_shift=0x%x", df_cfg.socket_id_shift);
+
+ pr_debug("num_coh_st_maps=%u", df_cfg.num_coh_st_maps);
+
+ pr_debug("flags.legacy_ficaa=%u", df_cfg.flags.legacy_ficaa);
+ pr_debug("flags.socket_id_shift_quirk=%u", df_cfg.flags.socket_id_shift_quirk);
+}
+
+int get_df_system_info(void)
+{
+ if (determine_df_rev()) {
+ pr_warn("amd_atl: Failed to determine DF Revision");
+ df_cfg.rev = UNKNOWN;
+ return -EINVAL;
+ }
+
+ apply_node_id_shift();
+
+ get_num_maps();
+
+ dump_df_cfg();
+
+ return 0;
+}
diff --git a/drivers/ras/amd/atl/umc.c b/drivers/ras/amd/atl/umc.c
new file mode 100644
index 0000000000..a1b4accf7b
--- /dev/null
+++ b/drivers/ras/amd/atl/umc.c
@@ -0,0 +1,409 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * AMD Address Translation Library
+ *
+ * umc.c : Unified Memory Controller (UMC) topology helpers
+ *
+ * Copyright (c) 2023, Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
+ */
+
+#include "internal.h"
+
+/*
+ * MI300 has a fixed, model-specific mapping between a UMC instance and
+ * its related Data Fabric Coherent Station instance.
+ *
+ * The MCA_IPID_UMC[InstanceId] field holds a unique identifier for the
+ * UMC instance within a Node. Use this to find the appropriate Coherent
+ * Station ID.
+ *
+ * Redundant bits were removed from the map below.
+ */
+static const u16 umc_coh_st_map[32] = {
+ 0x393, 0x293, 0x193, 0x093,
+ 0x392, 0x292, 0x192, 0x092,
+ 0x391, 0x291, 0x191, 0x091,
+ 0x390, 0x290, 0x190, 0x090,
+ 0x793, 0x693, 0x593, 0x493,
+ 0x792, 0x692, 0x592, 0x492,
+ 0x791, 0x691, 0x591, 0x491,
+ 0x790, 0x690, 0x590, 0x490,
+};
+
+#define UMC_ID_MI300 GENMASK(23, 12)
+static u8 get_coh_st_inst_id_mi300(struct atl_err *err)
+{
+ u16 umc_id = FIELD_GET(UMC_ID_MI300, err->ipid);
+ u8 i;
+
+ for (i = 0; i < ARRAY_SIZE(umc_coh_st_map); i++) {
+ if (umc_id == umc_coh_st_map[i])
+ break;
+ }
+
+ WARN_ON_ONCE(i >= ARRAY_SIZE(umc_coh_st_map));
+
+ return i;
+}
+
+/* XOR the bits in @val. */
+static u16 bitwise_xor_bits(u16 val)
+{
+ u16 tmp = 0;
+ u8 i;
+
+ for (i = 0; i < 16; i++)
+ tmp ^= (val >> i) & 0x1;
+
+ return tmp;
+}
+
+struct xor_bits {
+ bool xor_enable;
+ u16 col_xor;
+ u32 row_xor;
+};
+
+#define NUM_BANK_BITS 4
+#define NUM_COL_BITS 5
+#define NUM_SID_BITS 2
+
+static struct {
+ /* UMC::CH::AddrHashBank */
+ struct xor_bits bank[NUM_BANK_BITS];
+
+ /* UMC::CH::AddrHashPC */
+ struct xor_bits pc;
+
+ /* UMC::CH::AddrHashPC2 */
+ u8 bank_xor;
+} addr_hash;
+
+static struct {
+ u8 bank[NUM_BANK_BITS];
+ u8 col[NUM_COL_BITS];
+ u8 sid[NUM_SID_BITS];
+ u8 num_row_lo;
+ u8 num_row_hi;
+ u8 row_lo;
+ u8 row_hi;
+ u8 pc;
+} bit_shifts;
+
+#define MI300_UMC_CH_BASE 0x90000
+#define MI300_ADDR_CFG (MI300_UMC_CH_BASE + 0x30)
+#define MI300_ADDR_SEL (MI300_UMC_CH_BASE + 0x40)
+#define MI300_COL_SEL_LO (MI300_UMC_CH_BASE + 0x50)
+#define MI300_ADDR_SEL_2 (MI300_UMC_CH_BASE + 0xA4)
+#define MI300_ADDR_HASH_BANK0 (MI300_UMC_CH_BASE + 0xC8)
+#define MI300_ADDR_HASH_PC (MI300_UMC_CH_BASE + 0xE0)
+#define MI300_ADDR_HASH_PC2 (MI300_UMC_CH_BASE + 0xE4)
+
+#define ADDR_HASH_XOR_EN BIT(0)
+#define ADDR_HASH_COL_XOR GENMASK(13, 1)
+#define ADDR_HASH_ROW_XOR GENMASK(31, 14)
+#define ADDR_HASH_BANK_XOR GENMASK(5, 0)
+
+#define ADDR_CFG_NUM_ROW_LO GENMASK(11, 8)
+#define ADDR_CFG_NUM_ROW_HI GENMASK(15, 12)
+
+#define ADDR_SEL_BANK0 GENMASK(3, 0)
+#define ADDR_SEL_BANK1 GENMASK(7, 4)
+#define ADDR_SEL_BANK2 GENMASK(11, 8)
+#define ADDR_SEL_BANK3 GENMASK(15, 12)
+#define ADDR_SEL_BANK4 GENMASK(20, 16)
+#define ADDR_SEL_ROW_LO GENMASK(27, 24)
+#define ADDR_SEL_ROW_HI GENMASK(31, 28)
+
+#define COL_SEL_LO_COL0 GENMASK(3, 0)
+#define COL_SEL_LO_COL1 GENMASK(7, 4)
+#define COL_SEL_LO_COL2 GENMASK(11, 8)
+#define COL_SEL_LO_COL3 GENMASK(15, 12)
+#define COL_SEL_LO_COL4 GENMASK(19, 16)
+
+#define ADDR_SEL_2_BANK5 GENMASK(4, 0)
+#define ADDR_SEL_2_CHAN GENMASK(15, 12)
+
+/*
+ * Read UMC::CH::AddrHash{Bank,PC,PC2} registers to get XOR bits used
+ * for hashing.
+ *
+ * Also, read UMC::CH::Addr{Cfg,Sel,Sel2} and UMC::CH:ColSelLo registers to
+ * get the values needed to reconstruct the normalized address. Apply additional
+ * offsets to the raw register values, as needed.
+ *
+ * Do this during module init, since the values will not change during run time.
+ *
+ * These registers are instantiated for each UMC across each AMD Node.
+ * However, they should be identically programmed due to the fixed hardware
+ * design of MI300 systems. So read the values from Node 0 UMC 0 and keep a
+ * single global structure for simplicity.
+ */
+int get_umc_info_mi300(void)
+{
+ u32 temp;
+ int ret;
+ u8 i;
+
+ for (i = 0; i < NUM_BANK_BITS; i++) {
+ ret = amd_smn_read(0, MI300_ADDR_HASH_BANK0 + (i * 4), &temp);
+ if (ret)
+ return ret;
+
+ addr_hash.bank[i].xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp);
+ addr_hash.bank[i].col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp);
+ addr_hash.bank[i].row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp);
+ }
+
+ ret = amd_smn_read(0, MI300_ADDR_HASH_PC, &temp);
+ if (ret)
+ return ret;
+
+ addr_hash.pc.xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp);
+ addr_hash.pc.col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp);
+ addr_hash.pc.row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp);
+
+ ret = amd_smn_read(0, MI300_ADDR_HASH_PC2, &temp);
+ if (ret)
+ return ret;
+
+ addr_hash.bank_xor = FIELD_GET(ADDR_HASH_BANK_XOR, temp);
+
+ ret = amd_smn_read(0, MI300_ADDR_CFG, &temp);
+ if (ret)
+ return ret;
+
+ bit_shifts.num_row_hi = FIELD_GET(ADDR_CFG_NUM_ROW_HI, temp);
+ bit_shifts.num_row_lo = 10 + FIELD_GET(ADDR_CFG_NUM_ROW_LO, temp);
+
+ ret = amd_smn_read(0, MI300_ADDR_SEL, &temp);
+ if (ret)
+ return ret;
+
+ bit_shifts.bank[0] = 5 + FIELD_GET(ADDR_SEL_BANK0, temp);
+ bit_shifts.bank[1] = 5 + FIELD_GET(ADDR_SEL_BANK1, temp);
+ bit_shifts.bank[2] = 5 + FIELD_GET(ADDR_SEL_BANK2, temp);
+ bit_shifts.bank[3] = 5 + FIELD_GET(ADDR_SEL_BANK3, temp);
+ /* Use BankBit4 for the SID0 position. */
+ bit_shifts.sid[0] = 5 + FIELD_GET(ADDR_SEL_BANK4, temp);
+ bit_shifts.row_lo = 12 + FIELD_GET(ADDR_SEL_ROW_LO, temp);
+ bit_shifts.row_hi = 24 + FIELD_GET(ADDR_SEL_ROW_HI, temp);
+
+ ret = amd_smn_read(0, MI300_COL_SEL_LO, &temp);
+ if (ret)
+ return ret;
+
+ bit_shifts.col[0] = 2 + FIELD_GET(COL_SEL_LO_COL0, temp);
+ bit_shifts.col[1] = 2 + FIELD_GET(COL_SEL_LO_COL1, temp);
+ bit_shifts.col[2] = 2 + FIELD_GET(COL_SEL_LO_COL2, temp);
+ bit_shifts.col[3] = 2 + FIELD_GET(COL_SEL_LO_COL3, temp);
+ bit_shifts.col[4] = 2 + FIELD_GET(COL_SEL_LO_COL4, temp);
+
+ ret = amd_smn_read(0, MI300_ADDR_SEL_2, &temp);
+ if (ret)
+ return ret;
+
+ /* Use BankBit5 for the SID1 position. */
+ bit_shifts.sid[1] = 5 + FIELD_GET(ADDR_SEL_2_BANK5, temp);
+ bit_shifts.pc = 5 + FIELD_GET(ADDR_SEL_2_CHAN, temp);
+
+ return 0;
+}
+
+/*
+ * MI300 systems report a DRAM address in MCA_ADDR for DRAM ECC errors. This must
+ * be converted to the intermediate normalized address (NA) before translating to a
+ * system physical address.
+ *
+ * The DRAM address includes bank, row, and column. Also included are bits for
+ * pseudochannel (PC) and stack ID (SID).
+ *
+ * Abbreviations: (S)tack ID, (P)seudochannel, (R)ow, (B)ank, (C)olumn, (Z)ero
+ *
+ * The MCA address format is as follows:
+ * MCA_ADDR[27:0] = {S[1:0], P[0], R[14:0], B[3:0], C[4:0], Z[0]}
+ *
+ * Additionally, the PC and Bank bits may be hashed. This must be accounted for before
+ * reconstructing the normalized address.
+ */
+#define MI300_UMC_MCA_COL GENMASK(5, 1)
+#define MI300_UMC_MCA_BANK GENMASK(9, 6)
+#define MI300_UMC_MCA_ROW GENMASK(24, 10)
+#define MI300_UMC_MCA_PC BIT(25)
+#define MI300_UMC_MCA_SID GENMASK(27, 26)
+
+static unsigned long convert_dram_to_norm_addr_mi300(unsigned long addr)
+{
+ u16 i, col, row, bank, pc, sid;
+ u32 temp;
+
+ col = FIELD_GET(MI300_UMC_MCA_COL, addr);
+ bank = FIELD_GET(MI300_UMC_MCA_BANK, addr);
+ row = FIELD_GET(MI300_UMC_MCA_ROW, addr);
+ pc = FIELD_GET(MI300_UMC_MCA_PC, addr);
+ sid = FIELD_GET(MI300_UMC_MCA_SID, addr);
+
+ /* Calculate hash for each Bank bit. */
+ for (i = 0; i < NUM_BANK_BITS; i++) {
+ if (!addr_hash.bank[i].xor_enable)
+ continue;
+
+ temp = bitwise_xor_bits(col & addr_hash.bank[i].col_xor);
+ temp ^= bitwise_xor_bits(row & addr_hash.bank[i].row_xor);
+ bank ^= temp << i;
+ }
+
+ /* Calculate hash for PC bit. */
+ if (addr_hash.pc.xor_enable) {
+ temp = bitwise_xor_bits(col & addr_hash.pc.col_xor);
+ temp ^= bitwise_xor_bits(row & addr_hash.pc.row_xor);
+ /* Bits SID[1:0] act as Bank[5:4] for PC hash, so apply them here. */
+ temp ^= bitwise_xor_bits((bank | sid << NUM_BANK_BITS) & addr_hash.bank_xor);
+ pc ^= temp;
+ }
+
+ /* Reconstruct the normalized address starting with NA[4:0] = 0 */
+ addr = 0;
+
+ /* Column bits */
+ for (i = 0; i < NUM_COL_BITS; i++) {
+ temp = (col >> i) & 0x1;
+ addr |= temp << bit_shifts.col[i];
+ }
+
+ /* Bank bits */
+ for (i = 0; i < NUM_BANK_BITS; i++) {
+ temp = (bank >> i) & 0x1;
+ addr |= temp << bit_shifts.bank[i];
+ }
+
+ /* Row lo bits */
+ for (i = 0; i < bit_shifts.num_row_lo; i++) {
+ temp = (row >> i) & 0x1;
+ addr |= temp << (i + bit_shifts.row_lo);
+ }
+
+ /* Row hi bits */
+ for (i = 0; i < bit_shifts.num_row_hi; i++) {
+ temp = (row >> (i + bit_shifts.num_row_lo)) & 0x1;
+ addr |= temp << (i + bit_shifts.row_hi);
+ }
+
+ /* PC bit */
+ addr |= pc << bit_shifts.pc;
+
+ /* SID bits */
+ for (i = 0; i < NUM_SID_BITS; i++) {
+ temp = (sid >> i) & 0x1;
+ addr |= temp << bit_shifts.sid[i];
+ }
+
+ pr_debug("Addr=0x%016lx", addr);
+ pr_debug("Bank=%u Row=%u Column=%u PC=%u SID=%u", bank, row, col, pc, sid);
+
+ return addr;
+}
+
+/*
+ * When a DRAM ECC error occurs on MI300 systems, it is recommended to retire
+ * all memory within that DRAM row. This applies to the memory with a DRAM
+ * bank.
+ *
+ * To find the memory addresses, loop through permutations of the DRAM column
+ * bits and find the System Physical address of each. The column bits are used
+ * to calculate the intermediate Normalized address, so all permutations should
+ * be checked.
+ *
+ * See amd_atl::convert_dram_to_norm_addr_mi300() for MI300 address formats.
+ */
+#define MI300_NUM_COL BIT(HWEIGHT(MI300_UMC_MCA_COL))
+static void retire_row_mi300(struct atl_err *a_err)
+{
+ unsigned long addr;
+ struct page *p;
+ u8 col;
+
+ for (col = 0; col < MI300_NUM_COL; col++) {
+ a_err->addr &= ~MI300_UMC_MCA_COL;
+ a_err->addr |= FIELD_PREP(MI300_UMC_MCA_COL, col);
+
+ addr = amd_convert_umc_mca_addr_to_sys_addr(a_err);
+ if (IS_ERR_VALUE(addr))
+ continue;
+
+ addr = PHYS_PFN(addr);
+
+ /*
+ * Skip invalid or already poisoned pages to avoid unnecessary
+ * error messages from memory_failure().
+ */
+ p = pfn_to_online_page(addr);
+ if (!p)
+ continue;
+
+ if (PageHWPoison(p))
+ continue;
+
+ memory_failure(addr, 0);
+ }
+}
+
+void amd_retire_dram_row(struct atl_err *a_err)
+{
+ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
+ return retire_row_mi300(a_err);
+}
+EXPORT_SYMBOL_GPL(amd_retire_dram_row);
+
+static unsigned long get_addr(unsigned long addr)
+{
+ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
+ return convert_dram_to_norm_addr_mi300(addr);
+
+ return addr;
+}
+
+#define MCA_IPID_INST_ID_HI GENMASK_ULL(47, 44)
+static u8 get_die_id(struct atl_err *err)
+{
+ /*
+ * AMD Node ID is provided in MCA_IPID[InstanceIdHi], and this
+ * needs to be divided by 4 to get the internal Die ID.
+ */
+ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) {
+ u8 node_id = FIELD_GET(MCA_IPID_INST_ID_HI, err->ipid);
+
+ return node_id >> 2;
+ }
+
+ /*
+ * For CPUs, this is the AMD Node ID modulo the number
+ * of AMD Nodes per socket.
+ */
+ return topology_amd_node_id(err->cpu) % topology_amd_nodes_per_pkg();
+}
+
+#define UMC_CHANNEL_NUM GENMASK(31, 20)
+static u8 get_coh_st_inst_id(struct atl_err *err)
+{
+ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
+ return get_coh_st_inst_id_mi300(err);
+
+ return FIELD_GET(UMC_CHANNEL_NUM, err->ipid);
+}
+
+unsigned long convert_umc_mca_addr_to_sys_addr(struct atl_err *err)
+{
+ u8 socket_id = topology_physical_package_id(err->cpu);
+ u8 coh_st_inst_id = get_coh_st_inst_id(err);
+ unsigned long addr = get_addr(err->addr);
+ u8 die_id = get_die_id(err);
+
+ pr_debug("socket_id=0x%x die_id=0x%x coh_st_inst_id=0x%x addr=0x%016lx",
+ socket_id, die_id, coh_st_inst_id, addr);
+
+ return norm_to_sys_addr(socket_id, die_id, coh_st_inst_id, addr);
+}