summaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-atmel.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/spi/spi-atmel.c')
-rw-r--r--drivers/spi/spi-atmel.c1798
1 files changed, 1798 insertions, 0 deletions
diff --git a/drivers/spi/spi-atmel.c b/drivers/spi/spi-atmel.c
new file mode 100644
index 0000000000..e073d54873
--- /dev/null
+++ b/drivers/spi/spi-atmel.c
@@ -0,0 +1,1798 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for Atmel AT32 and AT91 SPI Controllers
+ *
+ * Copyright (C) 2006 Atmel Corporation
+ */
+
+#include <linux/kernel.h>
+#include <linux/clk.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/err.h>
+#include <linux/interrupt.h>
+#include <linux/spi/spi.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+
+#include <linux/io.h>
+#include <linux/gpio/consumer.h>
+#include <linux/pinctrl/consumer.h>
+#include <linux/pm_runtime.h>
+#include <linux/iopoll.h>
+#include <trace/events/spi.h>
+
+/* SPI register offsets */
+#define SPI_CR 0x0000
+#define SPI_MR 0x0004
+#define SPI_RDR 0x0008
+#define SPI_TDR 0x000c
+#define SPI_SR 0x0010
+#define SPI_IER 0x0014
+#define SPI_IDR 0x0018
+#define SPI_IMR 0x001c
+#define SPI_CSR0 0x0030
+#define SPI_CSR1 0x0034
+#define SPI_CSR2 0x0038
+#define SPI_CSR3 0x003c
+#define SPI_FMR 0x0040
+#define SPI_FLR 0x0044
+#define SPI_VERSION 0x00fc
+#define SPI_RPR 0x0100
+#define SPI_RCR 0x0104
+#define SPI_TPR 0x0108
+#define SPI_TCR 0x010c
+#define SPI_RNPR 0x0110
+#define SPI_RNCR 0x0114
+#define SPI_TNPR 0x0118
+#define SPI_TNCR 0x011c
+#define SPI_PTCR 0x0120
+#define SPI_PTSR 0x0124
+
+/* Bitfields in CR */
+#define SPI_SPIEN_OFFSET 0
+#define SPI_SPIEN_SIZE 1
+#define SPI_SPIDIS_OFFSET 1
+#define SPI_SPIDIS_SIZE 1
+#define SPI_SWRST_OFFSET 7
+#define SPI_SWRST_SIZE 1
+#define SPI_LASTXFER_OFFSET 24
+#define SPI_LASTXFER_SIZE 1
+#define SPI_TXFCLR_OFFSET 16
+#define SPI_TXFCLR_SIZE 1
+#define SPI_RXFCLR_OFFSET 17
+#define SPI_RXFCLR_SIZE 1
+#define SPI_FIFOEN_OFFSET 30
+#define SPI_FIFOEN_SIZE 1
+#define SPI_FIFODIS_OFFSET 31
+#define SPI_FIFODIS_SIZE 1
+
+/* Bitfields in MR */
+#define SPI_MSTR_OFFSET 0
+#define SPI_MSTR_SIZE 1
+#define SPI_PS_OFFSET 1
+#define SPI_PS_SIZE 1
+#define SPI_PCSDEC_OFFSET 2
+#define SPI_PCSDEC_SIZE 1
+#define SPI_FDIV_OFFSET 3
+#define SPI_FDIV_SIZE 1
+#define SPI_MODFDIS_OFFSET 4
+#define SPI_MODFDIS_SIZE 1
+#define SPI_WDRBT_OFFSET 5
+#define SPI_WDRBT_SIZE 1
+#define SPI_LLB_OFFSET 7
+#define SPI_LLB_SIZE 1
+#define SPI_PCS_OFFSET 16
+#define SPI_PCS_SIZE 4
+#define SPI_DLYBCS_OFFSET 24
+#define SPI_DLYBCS_SIZE 8
+
+/* Bitfields in RDR */
+#define SPI_RD_OFFSET 0
+#define SPI_RD_SIZE 16
+
+/* Bitfields in TDR */
+#define SPI_TD_OFFSET 0
+#define SPI_TD_SIZE 16
+
+/* Bitfields in SR */
+#define SPI_RDRF_OFFSET 0
+#define SPI_RDRF_SIZE 1
+#define SPI_TDRE_OFFSET 1
+#define SPI_TDRE_SIZE 1
+#define SPI_MODF_OFFSET 2
+#define SPI_MODF_SIZE 1
+#define SPI_OVRES_OFFSET 3
+#define SPI_OVRES_SIZE 1
+#define SPI_ENDRX_OFFSET 4
+#define SPI_ENDRX_SIZE 1
+#define SPI_ENDTX_OFFSET 5
+#define SPI_ENDTX_SIZE 1
+#define SPI_RXBUFF_OFFSET 6
+#define SPI_RXBUFF_SIZE 1
+#define SPI_TXBUFE_OFFSET 7
+#define SPI_TXBUFE_SIZE 1
+#define SPI_NSSR_OFFSET 8
+#define SPI_NSSR_SIZE 1
+#define SPI_TXEMPTY_OFFSET 9
+#define SPI_TXEMPTY_SIZE 1
+#define SPI_SPIENS_OFFSET 16
+#define SPI_SPIENS_SIZE 1
+#define SPI_TXFEF_OFFSET 24
+#define SPI_TXFEF_SIZE 1
+#define SPI_TXFFF_OFFSET 25
+#define SPI_TXFFF_SIZE 1
+#define SPI_TXFTHF_OFFSET 26
+#define SPI_TXFTHF_SIZE 1
+#define SPI_RXFEF_OFFSET 27
+#define SPI_RXFEF_SIZE 1
+#define SPI_RXFFF_OFFSET 28
+#define SPI_RXFFF_SIZE 1
+#define SPI_RXFTHF_OFFSET 29
+#define SPI_RXFTHF_SIZE 1
+#define SPI_TXFPTEF_OFFSET 30
+#define SPI_TXFPTEF_SIZE 1
+#define SPI_RXFPTEF_OFFSET 31
+#define SPI_RXFPTEF_SIZE 1
+
+/* Bitfields in CSR0 */
+#define SPI_CPOL_OFFSET 0
+#define SPI_CPOL_SIZE 1
+#define SPI_NCPHA_OFFSET 1
+#define SPI_NCPHA_SIZE 1
+#define SPI_CSAAT_OFFSET 3
+#define SPI_CSAAT_SIZE 1
+#define SPI_BITS_OFFSET 4
+#define SPI_BITS_SIZE 4
+#define SPI_SCBR_OFFSET 8
+#define SPI_SCBR_SIZE 8
+#define SPI_DLYBS_OFFSET 16
+#define SPI_DLYBS_SIZE 8
+#define SPI_DLYBCT_OFFSET 24
+#define SPI_DLYBCT_SIZE 8
+
+/* Bitfields in RCR */
+#define SPI_RXCTR_OFFSET 0
+#define SPI_RXCTR_SIZE 16
+
+/* Bitfields in TCR */
+#define SPI_TXCTR_OFFSET 0
+#define SPI_TXCTR_SIZE 16
+
+/* Bitfields in RNCR */
+#define SPI_RXNCR_OFFSET 0
+#define SPI_RXNCR_SIZE 16
+
+/* Bitfields in TNCR */
+#define SPI_TXNCR_OFFSET 0
+#define SPI_TXNCR_SIZE 16
+
+/* Bitfields in PTCR */
+#define SPI_RXTEN_OFFSET 0
+#define SPI_RXTEN_SIZE 1
+#define SPI_RXTDIS_OFFSET 1
+#define SPI_RXTDIS_SIZE 1
+#define SPI_TXTEN_OFFSET 8
+#define SPI_TXTEN_SIZE 1
+#define SPI_TXTDIS_OFFSET 9
+#define SPI_TXTDIS_SIZE 1
+
+/* Bitfields in FMR */
+#define SPI_TXRDYM_OFFSET 0
+#define SPI_TXRDYM_SIZE 2
+#define SPI_RXRDYM_OFFSET 4
+#define SPI_RXRDYM_SIZE 2
+#define SPI_TXFTHRES_OFFSET 16
+#define SPI_TXFTHRES_SIZE 6
+#define SPI_RXFTHRES_OFFSET 24
+#define SPI_RXFTHRES_SIZE 6
+
+/* Bitfields in FLR */
+#define SPI_TXFL_OFFSET 0
+#define SPI_TXFL_SIZE 6
+#define SPI_RXFL_OFFSET 16
+#define SPI_RXFL_SIZE 6
+
+/* Constants for BITS */
+#define SPI_BITS_8_BPT 0
+#define SPI_BITS_9_BPT 1
+#define SPI_BITS_10_BPT 2
+#define SPI_BITS_11_BPT 3
+#define SPI_BITS_12_BPT 4
+#define SPI_BITS_13_BPT 5
+#define SPI_BITS_14_BPT 6
+#define SPI_BITS_15_BPT 7
+#define SPI_BITS_16_BPT 8
+#define SPI_ONE_DATA 0
+#define SPI_TWO_DATA 1
+#define SPI_FOUR_DATA 2
+
+/* Bit manipulation macros */
+#define SPI_BIT(name) \
+ (1 << SPI_##name##_OFFSET)
+#define SPI_BF(name, value) \
+ (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
+#define SPI_BFEXT(name, value) \
+ (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
+#define SPI_BFINS(name, value, old) \
+ (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
+ | SPI_BF(name, value))
+
+/* Register access macros */
+#define spi_readl(port, reg) \
+ readl_relaxed((port)->regs + SPI_##reg)
+#define spi_writel(port, reg, value) \
+ writel_relaxed((value), (port)->regs + SPI_##reg)
+#define spi_writew(port, reg, value) \
+ writew_relaxed((value), (port)->regs + SPI_##reg)
+
+/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
+ * cache operations; better heuristics consider wordsize and bitrate.
+ */
+#define DMA_MIN_BYTES 16
+
+#define SPI_DMA_MIN_TIMEOUT (msecs_to_jiffies(1000))
+#define SPI_DMA_TIMEOUT_PER_10K (msecs_to_jiffies(4))
+
+#define AUTOSUSPEND_TIMEOUT 2000
+
+struct atmel_spi_caps {
+ bool is_spi2;
+ bool has_wdrbt;
+ bool has_dma_support;
+ bool has_pdc_support;
+};
+
+/*
+ * The core SPI transfer engine just talks to a register bank to set up
+ * DMA transfers; transfer queue progress is driven by IRQs. The clock
+ * framework provides the base clock, subdivided for each spi_device.
+ */
+struct atmel_spi {
+ spinlock_t lock;
+ unsigned long flags;
+
+ phys_addr_t phybase;
+ void __iomem *regs;
+ int irq;
+ struct clk *clk;
+ struct platform_device *pdev;
+ unsigned long spi_clk;
+
+ struct spi_transfer *current_transfer;
+ int current_remaining_bytes;
+ int done_status;
+ dma_addr_t dma_addr_rx_bbuf;
+ dma_addr_t dma_addr_tx_bbuf;
+ void *addr_rx_bbuf;
+ void *addr_tx_bbuf;
+
+ struct completion xfer_completion;
+
+ struct atmel_spi_caps caps;
+
+ bool use_dma;
+ bool use_pdc;
+
+ bool keep_cs;
+
+ u32 fifo_size;
+ bool last_polarity;
+ u8 native_cs_free;
+ u8 native_cs_for_gpio;
+};
+
+/* Controller-specific per-slave state */
+struct atmel_spi_device {
+ u32 csr;
+};
+
+#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
+#define INVALID_DMA_ADDRESS 0xffffffff
+
+/*
+ * This frequency can be anything supported by the controller, but to avoid
+ * unnecessary delay, the highest possible frequency is chosen.
+ *
+ * This frequency is the highest possible which is not interfering with other
+ * chip select registers (see Note for Serial Clock Bit Rate configuration in
+ * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
+ */
+#define DUMMY_MSG_FREQUENCY 0x02
+/*
+ * 8 bits is the minimum data the controller is capable of sending.
+ *
+ * This message can be anything as it should not be treated by any SPI device.
+ */
+#define DUMMY_MSG 0xAA
+
+/*
+ * Version 2 of the SPI controller has
+ * - CR.LASTXFER
+ * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
+ * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
+ * - SPI_CSRx.CSAAT
+ * - SPI_CSRx.SBCR allows faster clocking
+ */
+static bool atmel_spi_is_v2(struct atmel_spi *as)
+{
+ return as->caps.is_spi2;
+}
+
+/*
+ * Send a dummy message.
+ *
+ * This is sometimes needed when using a CS GPIO to force clock transition when
+ * switching between devices with different polarities.
+ */
+static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
+{
+ u32 status;
+ u32 csr;
+
+ /*
+ * Set a clock frequency to allow sending message on SPI bus.
+ * The frequency here can be anything, but is needed for
+ * the controller to send the data.
+ */
+ csr = spi_readl(as, CSR0 + 4 * chip_select);
+ csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
+ spi_writel(as, CSR0 + 4 * chip_select, csr);
+
+ /*
+ * Read all data coming from SPI bus, needed to be able to send
+ * the message.
+ */
+ spi_readl(as, RDR);
+ while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
+ spi_readl(as, RDR);
+ cpu_relax();
+ }
+
+ spi_writel(as, TDR, DUMMY_MSG);
+
+ readl_poll_timeout_atomic(as->regs + SPI_SR, status,
+ (status & SPI_BIT(TXEMPTY)), 1, 1000);
+}
+
+
+/*
+ * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
+ * they assume that spi slave device state will not change on deselect, so
+ * that automagic deselection is OK. ("NPCSx rises if no data is to be
+ * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
+ * controllers have CSAAT and friends.
+ *
+ * Even controller newer than ar91rm9200, using GPIOs can make sens as
+ * it lets us support active-high chipselects despite the controller's
+ * belief that only active-low devices/systems exists.
+ *
+ * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
+ * right when driven with GPIO. ("Mode Fault does not allow more than one
+ * Master on Chip Select 0.") No workaround exists for that ... so for
+ * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
+ * and (c) will trigger that first erratum in some cases.
+ *
+ * When changing the clock polarity, the SPI controller waits for the next
+ * transmission to enforce the default clock state. This may be an issue when
+ * using a GPIO as Chip Select: the clock level is applied only when the first
+ * packet is sent, once the CS has already been asserted. The workaround is to
+ * avoid this by sending a first (dummy) message before toggling the CS state.
+ */
+static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
+{
+ struct atmel_spi_device *asd = spi->controller_state;
+ bool new_polarity;
+ int chip_select;
+ u32 mr;
+
+ if (spi_get_csgpiod(spi, 0))
+ chip_select = as->native_cs_for_gpio;
+ else
+ chip_select = spi_get_chipselect(spi, 0);
+
+ if (atmel_spi_is_v2(as)) {
+ spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
+ /* For the low SPI version, there is a issue that PDC transfer
+ * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
+ */
+ spi_writel(as, CSR0, asd->csr);
+ if (as->caps.has_wdrbt) {
+ spi_writel(as, MR,
+ SPI_BF(PCS, ~(0x01 << chip_select))
+ | SPI_BIT(WDRBT)
+ | SPI_BIT(MODFDIS)
+ | SPI_BIT(MSTR));
+ } else {
+ spi_writel(as, MR,
+ SPI_BF(PCS, ~(0x01 << chip_select))
+ | SPI_BIT(MODFDIS)
+ | SPI_BIT(MSTR));
+ }
+
+ mr = spi_readl(as, MR);
+
+ /*
+ * Ensures the clock polarity is valid before we actually
+ * assert the CS to avoid spurious clock edges to be
+ * processed by the spi devices.
+ */
+ if (spi_get_csgpiod(spi, 0)) {
+ new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
+ if (new_polarity != as->last_polarity) {
+ /*
+ * Need to disable the GPIO before sending the dummy
+ * message because it is already set by the spi core.
+ */
+ gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
+ atmel_spi_send_dummy(as, spi, chip_select);
+ as->last_polarity = new_polarity;
+ gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
+ }
+ }
+ } else {
+ u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
+ int i;
+ u32 csr;
+
+ /* Make sure clock polarity is correct */
+ for (i = 0; i < spi->controller->num_chipselect; i++) {
+ csr = spi_readl(as, CSR0 + 4 * i);
+ if ((csr ^ cpol) & SPI_BIT(CPOL))
+ spi_writel(as, CSR0 + 4 * i,
+ csr ^ SPI_BIT(CPOL));
+ }
+
+ mr = spi_readl(as, MR);
+ mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
+ spi_writel(as, MR, mr);
+ }
+
+ dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
+}
+
+static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
+{
+ int chip_select;
+ u32 mr;
+
+ if (spi_get_csgpiod(spi, 0))
+ chip_select = as->native_cs_for_gpio;
+ else
+ chip_select = spi_get_chipselect(spi, 0);
+
+ /* only deactivate *this* device; sometimes transfers to
+ * another device may be active when this routine is called.
+ */
+ mr = spi_readl(as, MR);
+ if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
+ mr = SPI_BFINS(PCS, 0xf, mr);
+ spi_writel(as, MR, mr);
+ }
+
+ dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
+
+ if (!spi_get_csgpiod(spi, 0))
+ spi_writel(as, CR, SPI_BIT(LASTXFER));
+}
+
+static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
+{
+ spin_lock_irqsave(&as->lock, as->flags);
+}
+
+static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
+{
+ spin_unlock_irqrestore(&as->lock, as->flags);
+}
+
+static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
+{
+ return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
+}
+
+static inline bool atmel_spi_use_dma(struct atmel_spi *as,
+ struct spi_transfer *xfer)
+{
+ return as->use_dma && xfer->len >= DMA_MIN_BYTES;
+}
+
+static bool atmel_spi_can_dma(struct spi_controller *host,
+ struct spi_device *spi,
+ struct spi_transfer *xfer)
+{
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+
+ if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
+ return atmel_spi_use_dma(as, xfer) &&
+ !atmel_spi_is_vmalloc_xfer(xfer);
+ else
+ return atmel_spi_use_dma(as, xfer);
+
+}
+
+static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
+{
+ struct spi_controller *host = platform_get_drvdata(as->pdev);
+ struct dma_slave_config slave_config;
+ int err = 0;
+
+ if (bits_per_word > 8) {
+ slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
+ slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
+ } else {
+ slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
+ slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
+ }
+
+ slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
+ slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
+ slave_config.src_maxburst = 1;
+ slave_config.dst_maxburst = 1;
+ slave_config.device_fc = false;
+
+ /*
+ * This driver uses fixed peripheral select mode (PS bit set to '0' in
+ * the Mode Register).
+ * So according to the datasheet, when FIFOs are available (and
+ * enabled), the Transmit FIFO operates in Multiple Data Mode.
+ * In this mode, up to 2 data, not 4, can be written into the Transmit
+ * Data Register in a single access.
+ * However, the first data has to be written into the lowest 16 bits and
+ * the second data into the highest 16 bits of the Transmit
+ * Data Register. For 8bit data (the most frequent case), it would
+ * require to rework tx_buf so each data would actually fit 16 bits.
+ * So we'd rather write only one data at the time. Hence the transmit
+ * path works the same whether FIFOs are available (and enabled) or not.
+ */
+ if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
+ dev_err(&as->pdev->dev,
+ "failed to configure tx dma channel\n");
+ err = -EINVAL;
+ }
+
+ /*
+ * This driver configures the spi controller for host mode (MSTR bit
+ * set to '1' in the Mode Register).
+ * So according to the datasheet, when FIFOs are available (and
+ * enabled), the Receive FIFO operates in Single Data Mode.
+ * So the receive path works the same whether FIFOs are available (and
+ * enabled) or not.
+ */
+ if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
+ dev_err(&as->pdev->dev,
+ "failed to configure rx dma channel\n");
+ err = -EINVAL;
+ }
+
+ return err;
+}
+
+static int atmel_spi_configure_dma(struct spi_controller *host,
+ struct atmel_spi *as)
+{
+ struct device *dev = &as->pdev->dev;
+ int err;
+
+ host->dma_tx = dma_request_chan(dev, "tx");
+ if (IS_ERR(host->dma_tx)) {
+ err = PTR_ERR(host->dma_tx);
+ dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
+ goto error_clear;
+ }
+
+ host->dma_rx = dma_request_chan(dev, "rx");
+ if (IS_ERR(host->dma_rx)) {
+ err = PTR_ERR(host->dma_rx);
+ /*
+ * No reason to check EPROBE_DEFER here since we have already
+ * requested tx channel.
+ */
+ dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
+ goto error;
+ }
+
+ err = atmel_spi_dma_slave_config(as, 8);
+ if (err)
+ goto error;
+
+ dev_info(&as->pdev->dev,
+ "Using %s (tx) and %s (rx) for DMA transfers\n",
+ dma_chan_name(host->dma_tx),
+ dma_chan_name(host->dma_rx));
+
+ return 0;
+error:
+ if (!IS_ERR(host->dma_rx))
+ dma_release_channel(host->dma_rx);
+ if (!IS_ERR(host->dma_tx))
+ dma_release_channel(host->dma_tx);
+error_clear:
+ host->dma_tx = host->dma_rx = NULL;
+ return err;
+}
+
+static void atmel_spi_stop_dma(struct spi_controller *host)
+{
+ if (host->dma_rx)
+ dmaengine_terminate_all(host->dma_rx);
+ if (host->dma_tx)
+ dmaengine_terminate_all(host->dma_tx);
+}
+
+static void atmel_spi_release_dma(struct spi_controller *host)
+{
+ if (host->dma_rx) {
+ dma_release_channel(host->dma_rx);
+ host->dma_rx = NULL;
+ }
+ if (host->dma_tx) {
+ dma_release_channel(host->dma_tx);
+ host->dma_tx = NULL;
+ }
+}
+
+/* This function is called by the DMA driver from tasklet context */
+static void dma_callback(void *data)
+{
+ struct spi_controller *host = data;
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+
+ if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
+ IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
+ memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
+ as->current_transfer->len);
+ }
+ complete(&as->xfer_completion);
+}
+
+/*
+ * Next transfer using PIO without FIFO.
+ */
+static void atmel_spi_next_xfer_single(struct spi_controller *host,
+ struct spi_transfer *xfer)
+{
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+ unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
+
+ dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
+
+ /* Make sure data is not remaining in RDR */
+ spi_readl(as, RDR);
+ while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
+ spi_readl(as, RDR);
+ cpu_relax();
+ }
+
+ if (xfer->bits_per_word > 8)
+ spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
+ else
+ spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
+
+ dev_dbg(host->dev.parent,
+ " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
+ xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
+ xfer->bits_per_word);
+
+ /* Enable relevant interrupts */
+ spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
+}
+
+/*
+ * Next transfer using PIO with FIFO.
+ */
+static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
+ struct spi_transfer *xfer)
+{
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+ u32 current_remaining_data, num_data;
+ u32 offset = xfer->len - as->current_remaining_bytes;
+ const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
+ const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
+ u16 td0, td1;
+ u32 fifomr;
+
+ dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
+
+ /* Compute the number of data to transfer in the current iteration */
+ current_remaining_data = ((xfer->bits_per_word > 8) ?
+ ((u32)as->current_remaining_bytes >> 1) :
+ (u32)as->current_remaining_bytes);
+ num_data = min(current_remaining_data, as->fifo_size);
+
+ /* Flush RX and TX FIFOs */
+ spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
+ while (spi_readl(as, FLR))
+ cpu_relax();
+
+ /* Set RX FIFO Threshold to the number of data to transfer */
+ fifomr = spi_readl(as, FMR);
+ spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
+
+ /* Clear FIFO flags in the Status Register, especially RXFTHF */
+ (void)spi_readl(as, SR);
+
+ /* Fill TX FIFO */
+ while (num_data >= 2) {
+ if (xfer->bits_per_word > 8) {
+ td0 = *words++;
+ td1 = *words++;
+ } else {
+ td0 = *bytes++;
+ td1 = *bytes++;
+ }
+
+ spi_writel(as, TDR, (td1 << 16) | td0);
+ num_data -= 2;
+ }
+
+ if (num_data) {
+ if (xfer->bits_per_word > 8)
+ td0 = *words++;
+ else
+ td0 = *bytes++;
+
+ spi_writew(as, TDR, td0);
+ num_data--;
+ }
+
+ dev_dbg(host->dev.parent,
+ " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
+ xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
+ xfer->bits_per_word);
+
+ /*
+ * Enable RX FIFO Threshold Flag interrupt to be notified about
+ * transfer completion.
+ */
+ spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
+}
+
+/*
+ * Next transfer using PIO.
+ */
+static void atmel_spi_next_xfer_pio(struct spi_controller *host,
+ struct spi_transfer *xfer)
+{
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+
+ if (as->fifo_size)
+ atmel_spi_next_xfer_fifo(host, xfer);
+ else
+ atmel_spi_next_xfer_single(host, xfer);
+}
+
+/*
+ * Submit next transfer for DMA.
+ */
+static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
+ struct spi_transfer *xfer,
+ u32 *plen)
+{
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+ struct dma_chan *rxchan = host->dma_rx;
+ struct dma_chan *txchan = host->dma_tx;
+ struct dma_async_tx_descriptor *rxdesc;
+ struct dma_async_tx_descriptor *txdesc;
+ dma_cookie_t cookie;
+
+ dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
+
+ /* Check that the channels are available */
+ if (!rxchan || !txchan)
+ return -ENODEV;
+
+
+ *plen = xfer->len;
+
+ if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
+ goto err_exit;
+
+ /* Send both scatterlists */
+ if (atmel_spi_is_vmalloc_xfer(xfer) &&
+ IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
+ rxdesc = dmaengine_prep_slave_single(rxchan,
+ as->dma_addr_rx_bbuf,
+ xfer->len,
+ DMA_DEV_TO_MEM,
+ DMA_PREP_INTERRUPT |
+ DMA_CTRL_ACK);
+ } else {
+ rxdesc = dmaengine_prep_slave_sg(rxchan,
+ xfer->rx_sg.sgl,
+ xfer->rx_sg.nents,
+ DMA_DEV_TO_MEM,
+ DMA_PREP_INTERRUPT |
+ DMA_CTRL_ACK);
+ }
+ if (!rxdesc)
+ goto err_dma;
+
+ if (atmel_spi_is_vmalloc_xfer(xfer) &&
+ IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
+ memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
+ txdesc = dmaengine_prep_slave_single(txchan,
+ as->dma_addr_tx_bbuf,
+ xfer->len, DMA_MEM_TO_DEV,
+ DMA_PREP_INTERRUPT |
+ DMA_CTRL_ACK);
+ } else {
+ txdesc = dmaengine_prep_slave_sg(txchan,
+ xfer->tx_sg.sgl,
+ xfer->tx_sg.nents,
+ DMA_MEM_TO_DEV,
+ DMA_PREP_INTERRUPT |
+ DMA_CTRL_ACK);
+ }
+ if (!txdesc)
+ goto err_dma;
+
+ dev_dbg(host->dev.parent,
+ " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
+ xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
+ xfer->rx_buf, (unsigned long long)xfer->rx_dma);
+
+ /* Enable relevant interrupts */
+ spi_writel(as, IER, SPI_BIT(OVRES));
+
+ /* Put the callback on the RX transfer only, that should finish last */
+ rxdesc->callback = dma_callback;
+ rxdesc->callback_param = host;
+
+ /* Submit and fire RX and TX with TX last so we're ready to read! */
+ cookie = rxdesc->tx_submit(rxdesc);
+ if (dma_submit_error(cookie))
+ goto err_dma;
+ cookie = txdesc->tx_submit(txdesc);
+ if (dma_submit_error(cookie))
+ goto err_dma;
+ rxchan->device->device_issue_pending(rxchan);
+ txchan->device->device_issue_pending(txchan);
+
+ return 0;
+
+err_dma:
+ spi_writel(as, IDR, SPI_BIT(OVRES));
+ atmel_spi_stop_dma(host);
+err_exit:
+ return -ENOMEM;
+}
+
+static void atmel_spi_next_xfer_data(struct spi_controller *host,
+ struct spi_transfer *xfer,
+ dma_addr_t *tx_dma,
+ dma_addr_t *rx_dma,
+ u32 *plen)
+{
+ *rx_dma = xfer->rx_dma + xfer->len - *plen;
+ *tx_dma = xfer->tx_dma + xfer->len - *plen;
+ if (*plen > host->max_dma_len)
+ *plen = host->max_dma_len;
+}
+
+static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
+ struct spi_device *spi,
+ struct spi_transfer *xfer)
+{
+ u32 scbr, csr;
+ unsigned long bus_hz;
+ int chip_select;
+
+ if (spi_get_csgpiod(spi, 0))
+ chip_select = as->native_cs_for_gpio;
+ else
+ chip_select = spi_get_chipselect(spi, 0);
+
+ /* v1 chips start out at half the peripheral bus speed. */
+ bus_hz = as->spi_clk;
+ if (!atmel_spi_is_v2(as))
+ bus_hz /= 2;
+
+ /*
+ * Calculate the lowest divider that satisfies the
+ * constraint, assuming div32/fdiv/mbz == 0.
+ */
+ scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
+
+ /*
+ * If the resulting divider doesn't fit into the
+ * register bitfield, we can't satisfy the constraint.
+ */
+ if (scbr >= (1 << SPI_SCBR_SIZE)) {
+ dev_err(&spi->dev,
+ "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
+ xfer->speed_hz, scbr, bus_hz/255);
+ return -EINVAL;
+ }
+ if (scbr == 0) {
+ dev_err(&spi->dev,
+ "setup: %d Hz too high, scbr %u; max %ld Hz\n",
+ xfer->speed_hz, scbr, bus_hz);
+ return -EINVAL;
+ }
+ csr = spi_readl(as, CSR0 + 4 * chip_select);
+ csr = SPI_BFINS(SCBR, scbr, csr);
+ spi_writel(as, CSR0 + 4 * chip_select, csr);
+ xfer->effective_speed_hz = bus_hz / scbr;
+
+ return 0;
+}
+
+/*
+ * Submit next transfer for PDC.
+ * lock is held, spi irq is blocked
+ */
+static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
+ struct spi_transfer *xfer)
+{
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+ u32 len;
+ dma_addr_t tx_dma, rx_dma;
+
+ spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
+
+ len = as->current_remaining_bytes;
+ atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
+ as->current_remaining_bytes -= len;
+
+ spi_writel(as, RPR, rx_dma);
+ spi_writel(as, TPR, tx_dma);
+
+ if (xfer->bits_per_word > 8)
+ len >>= 1;
+ spi_writel(as, RCR, len);
+ spi_writel(as, TCR, len);
+
+ dev_dbg(&host->dev,
+ " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
+ xfer, xfer->len, xfer->tx_buf,
+ (unsigned long long)xfer->tx_dma, xfer->rx_buf,
+ (unsigned long long)xfer->rx_dma);
+
+ if (as->current_remaining_bytes) {
+ len = as->current_remaining_bytes;
+ atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
+ as->current_remaining_bytes -= len;
+
+ spi_writel(as, RNPR, rx_dma);
+ spi_writel(as, TNPR, tx_dma);
+
+ if (xfer->bits_per_word > 8)
+ len >>= 1;
+ spi_writel(as, RNCR, len);
+ spi_writel(as, TNCR, len);
+
+ dev_dbg(&host->dev,
+ " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
+ xfer, xfer->len, xfer->tx_buf,
+ (unsigned long long)xfer->tx_dma, xfer->rx_buf,
+ (unsigned long long)xfer->rx_dma);
+ }
+
+ /* REVISIT: We're waiting for RXBUFF before we start the next
+ * transfer because we need to handle some difficult timing
+ * issues otherwise. If we wait for TXBUFE in one transfer and
+ * then starts waiting for RXBUFF in the next, it's difficult
+ * to tell the difference between the RXBUFF interrupt we're
+ * actually waiting for and the RXBUFF interrupt of the
+ * previous transfer.
+ *
+ * It should be doable, though. Just not now...
+ */
+ spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
+ spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
+}
+
+/*
+ * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
+ * - The buffer is either valid for CPU access, else NULL
+ * - If the buffer is valid, so is its DMA address
+ *
+ * This driver manages the dma address unless message->is_dma_mapped.
+ */
+static int
+atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
+{
+ struct device *dev = &as->pdev->dev;
+
+ xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
+ if (xfer->tx_buf) {
+ /* tx_buf is a const void* where we need a void * for the dma
+ * mapping */
+ void *nonconst_tx = (void *)xfer->tx_buf;
+
+ xfer->tx_dma = dma_map_single(dev,
+ nonconst_tx, xfer->len,
+ DMA_TO_DEVICE);
+ if (dma_mapping_error(dev, xfer->tx_dma))
+ return -ENOMEM;
+ }
+ if (xfer->rx_buf) {
+ xfer->rx_dma = dma_map_single(dev,
+ xfer->rx_buf, xfer->len,
+ DMA_FROM_DEVICE);
+ if (dma_mapping_error(dev, xfer->rx_dma)) {
+ if (xfer->tx_buf)
+ dma_unmap_single(dev,
+ xfer->tx_dma, xfer->len,
+ DMA_TO_DEVICE);
+ return -ENOMEM;
+ }
+ }
+ return 0;
+}
+
+static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
+ struct spi_transfer *xfer)
+{
+ if (xfer->tx_dma != INVALID_DMA_ADDRESS)
+ dma_unmap_single(host->dev.parent, xfer->tx_dma,
+ xfer->len, DMA_TO_DEVICE);
+ if (xfer->rx_dma != INVALID_DMA_ADDRESS)
+ dma_unmap_single(host->dev.parent, xfer->rx_dma,
+ xfer->len, DMA_FROM_DEVICE);
+}
+
+static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
+{
+ spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
+}
+
+static void
+atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
+{
+ u8 *rxp;
+ u16 *rxp16;
+ unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
+
+ if (xfer->bits_per_word > 8) {
+ rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
+ *rxp16 = spi_readl(as, RDR);
+ } else {
+ rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
+ *rxp = spi_readl(as, RDR);
+ }
+ if (xfer->bits_per_word > 8) {
+ if (as->current_remaining_bytes > 2)
+ as->current_remaining_bytes -= 2;
+ else
+ as->current_remaining_bytes = 0;
+ } else {
+ as->current_remaining_bytes--;
+ }
+}
+
+static void
+atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
+{
+ u32 fifolr = spi_readl(as, FLR);
+ u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
+ u32 offset = xfer->len - as->current_remaining_bytes;
+ u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
+ u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
+ u16 rd; /* RD field is the lowest 16 bits of RDR */
+
+ /* Update the number of remaining bytes to transfer */
+ num_bytes = ((xfer->bits_per_word > 8) ?
+ (num_data << 1) :
+ num_data);
+
+ if (as->current_remaining_bytes > num_bytes)
+ as->current_remaining_bytes -= num_bytes;
+ else
+ as->current_remaining_bytes = 0;
+
+ /* Handle odd number of bytes when data are more than 8bit width */
+ if (xfer->bits_per_word > 8)
+ as->current_remaining_bytes &= ~0x1;
+
+ /* Read data */
+ while (num_data) {
+ rd = spi_readl(as, RDR);
+ if (xfer->bits_per_word > 8)
+ *words++ = rd;
+ else
+ *bytes++ = rd;
+ num_data--;
+ }
+}
+
+/* Called from IRQ
+ *
+ * Must update "current_remaining_bytes" to keep track of data
+ * to transfer.
+ */
+static void
+atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
+{
+ if (as->fifo_size)
+ atmel_spi_pump_fifo_data(as, xfer);
+ else
+ atmel_spi_pump_single_data(as, xfer);
+}
+
+/* Interrupt
+ *
+ */
+static irqreturn_t
+atmel_spi_pio_interrupt(int irq, void *dev_id)
+{
+ struct spi_controller *host = dev_id;
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+ u32 status, pending, imr;
+ struct spi_transfer *xfer;
+ int ret = IRQ_NONE;
+
+ imr = spi_readl(as, IMR);
+ status = spi_readl(as, SR);
+ pending = status & imr;
+
+ if (pending & SPI_BIT(OVRES)) {
+ ret = IRQ_HANDLED;
+ spi_writel(as, IDR, SPI_BIT(OVRES));
+ dev_warn(host->dev.parent, "overrun\n");
+
+ /*
+ * When we get an overrun, we disregard the current
+ * transfer. Data will not be copied back from any
+ * bounce buffer and msg->actual_len will not be
+ * updated with the last xfer.
+ *
+ * We will also not process any remaning transfers in
+ * the message.
+ */
+ as->done_status = -EIO;
+ smp_wmb();
+
+ /* Clear any overrun happening while cleaning up */
+ spi_readl(as, SR);
+
+ complete(&as->xfer_completion);
+
+ } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
+ atmel_spi_lock(as);
+
+ if (as->current_remaining_bytes) {
+ ret = IRQ_HANDLED;
+ xfer = as->current_transfer;
+ atmel_spi_pump_pio_data(as, xfer);
+ if (!as->current_remaining_bytes)
+ spi_writel(as, IDR, pending);
+
+ complete(&as->xfer_completion);
+ }
+
+ atmel_spi_unlock(as);
+ } else {
+ WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
+ ret = IRQ_HANDLED;
+ spi_writel(as, IDR, pending);
+ }
+
+ return ret;
+}
+
+static irqreturn_t
+atmel_spi_pdc_interrupt(int irq, void *dev_id)
+{
+ struct spi_controller *host = dev_id;
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+ u32 status, pending, imr;
+ int ret = IRQ_NONE;
+
+ imr = spi_readl(as, IMR);
+ status = spi_readl(as, SR);
+ pending = status & imr;
+
+ if (pending & SPI_BIT(OVRES)) {
+
+ ret = IRQ_HANDLED;
+
+ spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
+ | SPI_BIT(OVRES)));
+
+ /* Clear any overrun happening while cleaning up */
+ spi_readl(as, SR);
+
+ as->done_status = -EIO;
+
+ complete(&as->xfer_completion);
+
+ } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
+ ret = IRQ_HANDLED;
+
+ spi_writel(as, IDR, pending);
+
+ complete(&as->xfer_completion);
+ }
+
+ return ret;
+}
+
+static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
+{
+ struct spi_delay *delay = &spi->word_delay;
+ u32 value = delay->value;
+
+ switch (delay->unit) {
+ case SPI_DELAY_UNIT_NSECS:
+ value /= 1000;
+ break;
+ case SPI_DELAY_UNIT_USECS:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return (as->spi_clk / 1000000 * value) >> 5;
+}
+
+static void initialize_native_cs_for_gpio(struct atmel_spi *as)
+{
+ int i;
+ struct spi_controller *host = platform_get_drvdata(as->pdev);
+
+ if (!as->native_cs_free)
+ return; /* already initialized */
+
+ if (!host->cs_gpiods)
+ return; /* No CS GPIO */
+
+ /*
+ * On the first version of the controller (AT91RM9200), CS0
+ * can't be used associated with GPIO
+ */
+ if (atmel_spi_is_v2(as))
+ i = 0;
+ else
+ i = 1;
+
+ for (; i < 4; i++)
+ if (host->cs_gpiods[i])
+ as->native_cs_free |= BIT(i);
+
+ if (as->native_cs_free)
+ as->native_cs_for_gpio = ffs(as->native_cs_free);
+}
+
+static int atmel_spi_setup(struct spi_device *spi)
+{
+ struct atmel_spi *as;
+ struct atmel_spi_device *asd;
+ u32 csr;
+ unsigned int bits = spi->bits_per_word;
+ int chip_select;
+ int word_delay_csr;
+
+ as = spi_controller_get_devdata(spi->controller);
+
+ /* see notes above re chipselect */
+ if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
+ dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
+ return -EINVAL;
+ }
+
+ /* Setup() is called during spi_register_controller(aka
+ * spi_register_master) but after all membmers of the cs_gpiod
+ * array have been filled, so we can looked for which native
+ * CS will be free for using with GPIO
+ */
+ initialize_native_cs_for_gpio(as);
+
+ if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
+ dev_err(&spi->dev,
+ "No native CS available to support this GPIO CS\n");
+ return -EBUSY;
+ }
+
+ if (spi_get_csgpiod(spi, 0))
+ chip_select = as->native_cs_for_gpio;
+ else
+ chip_select = spi_get_chipselect(spi, 0);
+
+ csr = SPI_BF(BITS, bits - 8);
+ if (spi->mode & SPI_CPOL)
+ csr |= SPI_BIT(CPOL);
+ if (!(spi->mode & SPI_CPHA))
+ csr |= SPI_BIT(NCPHA);
+
+ if (!spi_get_csgpiod(spi, 0))
+ csr |= SPI_BIT(CSAAT);
+ csr |= SPI_BF(DLYBS, 0);
+
+ word_delay_csr = atmel_word_delay_csr(spi, as);
+ if (word_delay_csr < 0)
+ return word_delay_csr;
+
+ /* DLYBCT adds delays between words. This is useful for slow devices
+ * that need a bit of time to setup the next transfer.
+ */
+ csr |= SPI_BF(DLYBCT, word_delay_csr);
+
+ asd = spi->controller_state;
+ if (!asd) {
+ asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
+ if (!asd)
+ return -ENOMEM;
+
+ spi->controller_state = asd;
+ }
+
+ asd->csr = csr;
+
+ dev_dbg(&spi->dev,
+ "setup: bpw %u mode 0x%x -> csr%d %08x\n",
+ bits, spi->mode, spi_get_chipselect(spi, 0), csr);
+
+ if (!atmel_spi_is_v2(as))
+ spi_writel(as, CSR0 + 4 * chip_select, csr);
+
+ return 0;
+}
+
+static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
+{
+ struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
+ /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
+ * since we already have routines for activate/deactivate translate
+ * high/low to active/inactive
+ */
+ enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
+
+ if (enable) {
+ cs_activate(as, spi);
+ } else {
+ cs_deactivate(as, spi);
+ }
+
+}
+
+static int atmel_spi_one_transfer(struct spi_controller *host,
+ struct spi_device *spi,
+ struct spi_transfer *xfer)
+{
+ struct atmel_spi *as;
+ u8 bits;
+ u32 len;
+ struct atmel_spi_device *asd;
+ int timeout;
+ int ret;
+ unsigned int dma_timeout;
+ long ret_timeout;
+
+ as = spi_controller_get_devdata(host);
+
+ asd = spi->controller_state;
+ bits = (asd->csr >> 4) & 0xf;
+ if (bits != xfer->bits_per_word - 8) {
+ dev_dbg(&spi->dev,
+ "you can't yet change bits_per_word in transfers\n");
+ return -ENOPROTOOPT;
+ }
+
+ /*
+ * DMA map early, for performance (empties dcache ASAP) and
+ * better fault reporting.
+ */
+ if ((!host->cur_msg->is_dma_mapped)
+ && as->use_pdc) {
+ if (atmel_spi_dma_map_xfer(as, xfer) < 0)
+ return -ENOMEM;
+ }
+
+ atmel_spi_set_xfer_speed(as, spi, xfer);
+
+ as->done_status = 0;
+ as->current_transfer = xfer;
+ as->current_remaining_bytes = xfer->len;
+ while (as->current_remaining_bytes) {
+ reinit_completion(&as->xfer_completion);
+
+ if (as->use_pdc) {
+ atmel_spi_lock(as);
+ atmel_spi_pdc_next_xfer(host, xfer);
+ atmel_spi_unlock(as);
+ } else if (atmel_spi_use_dma(as, xfer)) {
+ len = as->current_remaining_bytes;
+ ret = atmel_spi_next_xfer_dma_submit(host,
+ xfer, &len);
+ if (ret) {
+ dev_err(&spi->dev,
+ "unable to use DMA, fallback to PIO\n");
+ as->done_status = ret;
+ break;
+ } else {
+ as->current_remaining_bytes -= len;
+ if (as->current_remaining_bytes < 0)
+ as->current_remaining_bytes = 0;
+ }
+ } else {
+ atmel_spi_lock(as);
+ atmel_spi_next_xfer_pio(host, xfer);
+ atmel_spi_unlock(as);
+ }
+
+ dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
+ ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
+ if (!ret_timeout) {
+ dev_err(&spi->dev, "spi transfer timeout\n");
+ as->done_status = -EIO;
+ }
+
+ if (as->done_status)
+ break;
+ }
+
+ if (as->done_status) {
+ if (as->use_pdc) {
+ dev_warn(host->dev.parent,
+ "overrun (%u/%u remaining)\n",
+ spi_readl(as, TCR), spi_readl(as, RCR));
+
+ /*
+ * Clean up DMA registers and make sure the data
+ * registers are empty.
+ */
+ spi_writel(as, RNCR, 0);
+ spi_writel(as, TNCR, 0);
+ spi_writel(as, RCR, 0);
+ spi_writel(as, TCR, 0);
+ for (timeout = 1000; timeout; timeout--)
+ if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
+ break;
+ if (!timeout)
+ dev_warn(host->dev.parent,
+ "timeout waiting for TXEMPTY");
+ while (spi_readl(as, SR) & SPI_BIT(RDRF))
+ spi_readl(as, RDR);
+
+ /* Clear any overrun happening while cleaning up */
+ spi_readl(as, SR);
+
+ } else if (atmel_spi_use_dma(as, xfer)) {
+ atmel_spi_stop_dma(host);
+ }
+ }
+
+ if (!host->cur_msg->is_dma_mapped
+ && as->use_pdc)
+ atmel_spi_dma_unmap_xfer(host, xfer);
+
+ if (as->use_pdc)
+ atmel_spi_disable_pdc_transfer(as);
+
+ return as->done_status;
+}
+
+static void atmel_spi_cleanup(struct spi_device *spi)
+{
+ struct atmel_spi_device *asd = spi->controller_state;
+
+ if (!asd)
+ return;
+
+ spi->controller_state = NULL;
+ kfree(asd);
+}
+
+static inline unsigned int atmel_get_version(struct atmel_spi *as)
+{
+ return spi_readl(as, VERSION) & 0x00000fff;
+}
+
+static void atmel_get_caps(struct atmel_spi *as)
+{
+ unsigned int version;
+
+ version = atmel_get_version(as);
+
+ as->caps.is_spi2 = version > 0x121;
+ as->caps.has_wdrbt = version >= 0x210;
+ as->caps.has_dma_support = version >= 0x212;
+ as->caps.has_pdc_support = version < 0x212;
+}
+
+static void atmel_spi_init(struct atmel_spi *as)
+{
+ spi_writel(as, CR, SPI_BIT(SWRST));
+ spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
+
+ /* It is recommended to enable FIFOs first thing after reset */
+ if (as->fifo_size)
+ spi_writel(as, CR, SPI_BIT(FIFOEN));
+
+ if (as->caps.has_wdrbt) {
+ spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
+ | SPI_BIT(MSTR));
+ } else {
+ spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
+ }
+
+ if (as->use_pdc)
+ spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
+ spi_writel(as, CR, SPI_BIT(SPIEN));
+}
+
+static int atmel_spi_probe(struct platform_device *pdev)
+{
+ struct resource *regs;
+ int irq;
+ struct clk *clk;
+ int ret;
+ struct spi_controller *host;
+ struct atmel_spi *as;
+
+ /* Select default pin state */
+ pinctrl_pm_select_default_state(&pdev->dev);
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
+ clk = devm_clk_get(&pdev->dev, "spi_clk");
+ if (IS_ERR(clk))
+ return PTR_ERR(clk);
+
+ /* setup spi core then atmel-specific driver state */
+ host = spi_alloc_host(&pdev->dev, sizeof(*as));
+ if (!host)
+ return -ENOMEM;
+
+ /* the spi->mode bits understood by this driver: */
+ host->use_gpio_descriptors = true;
+ host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
+ host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
+ host->dev.of_node = pdev->dev.of_node;
+ host->bus_num = pdev->id;
+ host->num_chipselect = 4;
+ host->setup = atmel_spi_setup;
+ host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
+ SPI_CONTROLLER_GPIO_SS);
+ host->transfer_one = atmel_spi_one_transfer;
+ host->set_cs = atmel_spi_set_cs;
+ host->cleanup = atmel_spi_cleanup;
+ host->auto_runtime_pm = true;
+ host->max_dma_len = SPI_MAX_DMA_XFER;
+ host->can_dma = atmel_spi_can_dma;
+ platform_set_drvdata(pdev, host);
+
+ as = spi_controller_get_devdata(host);
+
+ spin_lock_init(&as->lock);
+
+ as->pdev = pdev;
+ as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
+ if (IS_ERR(as->regs)) {
+ ret = PTR_ERR(as->regs);
+ goto out_unmap_regs;
+ }
+ as->phybase = regs->start;
+ as->irq = irq;
+ as->clk = clk;
+
+ init_completion(&as->xfer_completion);
+
+ atmel_get_caps(as);
+
+ as->use_dma = false;
+ as->use_pdc = false;
+ if (as->caps.has_dma_support) {
+ ret = atmel_spi_configure_dma(host, as);
+ if (ret == 0) {
+ as->use_dma = true;
+ } else if (ret == -EPROBE_DEFER) {
+ goto out_unmap_regs;
+ }
+ } else if (as->caps.has_pdc_support) {
+ as->use_pdc = true;
+ }
+
+ if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
+ as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
+ SPI_MAX_DMA_XFER,
+ &as->dma_addr_rx_bbuf,
+ GFP_KERNEL | GFP_DMA);
+ if (!as->addr_rx_bbuf) {
+ as->use_dma = false;
+ } else {
+ as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
+ SPI_MAX_DMA_XFER,
+ &as->dma_addr_tx_bbuf,
+ GFP_KERNEL | GFP_DMA);
+ if (!as->addr_tx_bbuf) {
+ as->use_dma = false;
+ dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
+ as->addr_rx_bbuf,
+ as->dma_addr_rx_bbuf);
+ }
+ }
+ if (!as->use_dma)
+ dev_info(host->dev.parent,
+ " can not allocate dma coherent memory\n");
+ }
+
+ if (as->caps.has_dma_support && !as->use_dma)
+ dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
+
+ if (as->use_pdc) {
+ ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
+ 0, dev_name(&pdev->dev), host);
+ } else {
+ ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
+ 0, dev_name(&pdev->dev), host);
+ }
+ if (ret)
+ goto out_unmap_regs;
+
+ /* Initialize the hardware */
+ ret = clk_prepare_enable(clk);
+ if (ret)
+ goto out_free_irq;
+
+ as->spi_clk = clk_get_rate(clk);
+
+ as->fifo_size = 0;
+ if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
+ &as->fifo_size)) {
+ dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
+ }
+
+ atmel_spi_init(as);
+
+ pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
+ pm_runtime_use_autosuspend(&pdev->dev);
+ pm_runtime_set_active(&pdev->dev);
+ pm_runtime_enable(&pdev->dev);
+
+ ret = devm_spi_register_controller(&pdev->dev, host);
+ if (ret)
+ goto out_free_dma;
+
+ /* go! */
+ dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
+ atmel_get_version(as), (unsigned long)regs->start,
+ irq);
+
+ return 0;
+
+out_free_dma:
+ pm_runtime_disable(&pdev->dev);
+ pm_runtime_set_suspended(&pdev->dev);
+
+ if (as->use_dma)
+ atmel_spi_release_dma(host);
+
+ spi_writel(as, CR, SPI_BIT(SWRST));
+ spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
+ clk_disable_unprepare(clk);
+out_free_irq:
+out_unmap_regs:
+ spi_controller_put(host);
+ return ret;
+}
+
+static void atmel_spi_remove(struct platform_device *pdev)
+{
+ struct spi_controller *host = platform_get_drvdata(pdev);
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+
+ pm_runtime_get_sync(&pdev->dev);
+
+ /* reset the hardware and block queue progress */
+ if (as->use_dma) {
+ atmel_spi_stop_dma(host);
+ atmel_spi_release_dma(host);
+ if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
+ dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
+ as->addr_tx_bbuf,
+ as->dma_addr_tx_bbuf);
+ dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
+ as->addr_rx_bbuf,
+ as->dma_addr_rx_bbuf);
+ }
+ }
+
+ spin_lock_irq(&as->lock);
+ spi_writel(as, CR, SPI_BIT(SWRST));
+ spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
+ spi_readl(as, SR);
+ spin_unlock_irq(&as->lock);
+
+ clk_disable_unprepare(as->clk);
+
+ pm_runtime_put_noidle(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
+}
+
+static int atmel_spi_runtime_suspend(struct device *dev)
+{
+ struct spi_controller *host = dev_get_drvdata(dev);
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+
+ clk_disable_unprepare(as->clk);
+ pinctrl_pm_select_sleep_state(dev);
+
+ return 0;
+}
+
+static int atmel_spi_runtime_resume(struct device *dev)
+{
+ struct spi_controller *host = dev_get_drvdata(dev);
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+
+ pinctrl_pm_select_default_state(dev);
+
+ return clk_prepare_enable(as->clk);
+}
+
+static int atmel_spi_suspend(struct device *dev)
+{
+ struct spi_controller *host = dev_get_drvdata(dev);
+ int ret;
+
+ /* Stop the queue running */
+ ret = spi_controller_suspend(host);
+ if (ret)
+ return ret;
+
+ if (!pm_runtime_suspended(dev))
+ atmel_spi_runtime_suspend(dev);
+
+ return 0;
+}
+
+static int atmel_spi_resume(struct device *dev)
+{
+ struct spi_controller *host = dev_get_drvdata(dev);
+ struct atmel_spi *as = spi_controller_get_devdata(host);
+ int ret;
+
+ ret = clk_prepare_enable(as->clk);
+ if (ret)
+ return ret;
+
+ atmel_spi_init(as);
+
+ clk_disable_unprepare(as->clk);
+
+ if (!pm_runtime_suspended(dev)) {
+ ret = atmel_spi_runtime_resume(dev);
+ if (ret)
+ return ret;
+ }
+
+ /* Start the queue running */
+ return spi_controller_resume(host);
+}
+
+static const struct dev_pm_ops atmel_spi_pm_ops = {
+ SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
+ RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
+ atmel_spi_runtime_resume, NULL)
+};
+
+static const struct of_device_id atmel_spi_dt_ids[] = {
+ { .compatible = "atmel,at91rm9200-spi" },
+ { /* sentinel */ }
+};
+
+MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
+
+static struct platform_driver atmel_spi_driver = {
+ .driver = {
+ .name = "atmel_spi",
+ .pm = pm_ptr(&atmel_spi_pm_ops),
+ .of_match_table = atmel_spi_dt_ids,
+ },
+ .probe = atmel_spi_probe,
+ .remove_new = atmel_spi_remove,
+};
+module_platform_driver(atmel_spi_driver);
+
+MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
+MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:atmel_spi");