diff options
Diffstat (limited to 'drivers/spi/spi-cadence-quadspi.c')
-rw-r--r-- | drivers/spi/spi-cadence-quadspi.c | 2031 |
1 files changed, 2031 insertions, 0 deletions
diff --git a/drivers/spi/spi-cadence-quadspi.c b/drivers/spi/spi-cadence-quadspi.c new file mode 100644 index 0000000000..2064dc4ea9 --- /dev/null +++ b/drivers/spi/spi-cadence-quadspi.c @@ -0,0 +1,2031 @@ +// SPDX-License-Identifier: GPL-2.0-only +// +// Driver for Cadence QSPI Controller +// +// Copyright Altera Corporation (C) 2012-2014. All rights reserved. +// Copyright Intel Corporation (C) 2019-2020. All rights reserved. +// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com + +#include <linux/clk.h> +#include <linux/completion.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/firmware/xlnx-zynqmp.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/iopoll.h> +#include <linux/jiffies.h> +#include <linux/kernel.h> +#include <linux/log2.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/pm_runtime.h> +#include <linux/reset.h> +#include <linux/sched.h> +#include <linux/spi/spi.h> +#include <linux/spi/spi-mem.h> +#include <linux/timer.h> + +#define CQSPI_NAME "cadence-qspi" +#define CQSPI_MAX_CHIPSELECT 16 + +/* Quirks */ +#define CQSPI_NEEDS_WR_DELAY BIT(0) +#define CQSPI_DISABLE_DAC_MODE BIT(1) +#define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2) +#define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3) +#define CQSPI_SLOW_SRAM BIT(4) +#define CQSPI_NEEDS_APB_AHB_HAZARD_WAR BIT(5) + +/* Capabilities */ +#define CQSPI_SUPPORTS_OCTAL BIT(0) + +#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0) + +enum { + CLK_QSPI_APB = 0, + CLK_QSPI_AHB, + CLK_QSPI_NUM, +}; + +struct cqspi_st; + +struct cqspi_flash_pdata { + struct cqspi_st *cqspi; + u32 clk_rate; + u32 read_delay; + u32 tshsl_ns; + u32 tsd2d_ns; + u32 tchsh_ns; + u32 tslch_ns; + u8 cs; +}; + +struct cqspi_st { + struct platform_device *pdev; + struct spi_controller *host; + struct clk *clk; + struct clk *clks[CLK_QSPI_NUM]; + unsigned int sclk; + + void __iomem *iobase; + void __iomem *ahb_base; + resource_size_t ahb_size; + struct completion transfer_complete; + + struct dma_chan *rx_chan; + struct completion rx_dma_complete; + dma_addr_t mmap_phys_base; + + int current_cs; + unsigned long master_ref_clk_hz; + bool is_decoded_cs; + u32 fifo_depth; + u32 fifo_width; + u32 num_chipselect; + bool rclk_en; + u32 trigger_address; + u32 wr_delay; + bool use_direct_mode; + bool use_direct_mode_wr; + struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT]; + bool use_dma_read; + u32 pd_dev_id; + bool wr_completion; + bool slow_sram; + bool apb_ahb_hazard; + + bool is_jh7110; /* Flag for StarFive JH7110 SoC */ +}; + +struct cqspi_driver_platdata { + u32 hwcaps_mask; + u8 quirks; + int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata, + u_char *rxbuf, loff_t from_addr, size_t n_rx); + u32 (*get_dma_status)(struct cqspi_st *cqspi); + int (*jh7110_clk_init)(struct platform_device *pdev, + struct cqspi_st *cqspi); +}; + +/* Operation timeout value */ +#define CQSPI_TIMEOUT_MS 500 +#define CQSPI_READ_TIMEOUT_MS 10 + +#define CQSPI_DUMMY_CLKS_PER_BYTE 8 +#define CQSPI_DUMMY_BYTES_MAX 4 +#define CQSPI_DUMMY_CLKS_MAX 31 + +#define CQSPI_STIG_DATA_LEN_MAX 8 + +/* Register map */ +#define CQSPI_REG_CONFIG 0x00 +#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0) +#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7) +#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9) +#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10 +#define CQSPI_REG_CONFIG_DMA_MASK BIT(15) +#define CQSPI_REG_CONFIG_BAUD_LSB 19 +#define CQSPI_REG_CONFIG_DTR_PROTO BIT(24) +#define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30) +#define CQSPI_REG_CONFIG_IDLE_LSB 31 +#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF +#define CQSPI_REG_CONFIG_BAUD_MASK 0xF + +#define CQSPI_REG_RD_INSTR 0x04 +#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0 +#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8 +#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12 +#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16 +#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20 +#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24 +#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3 +#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3 +#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3 +#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F + +#define CQSPI_REG_WR_INSTR 0x08 +#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0 +#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12 +#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16 + +#define CQSPI_REG_DELAY 0x0C +#define CQSPI_REG_DELAY_TSLCH_LSB 0 +#define CQSPI_REG_DELAY_TCHSH_LSB 8 +#define CQSPI_REG_DELAY_TSD2D_LSB 16 +#define CQSPI_REG_DELAY_TSHSL_LSB 24 +#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF +#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF +#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF +#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF + +#define CQSPI_REG_READCAPTURE 0x10 +#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0 +#define CQSPI_REG_READCAPTURE_DELAY_LSB 1 +#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF + +#define CQSPI_REG_SIZE 0x14 +#define CQSPI_REG_SIZE_ADDRESS_LSB 0 +#define CQSPI_REG_SIZE_PAGE_LSB 4 +#define CQSPI_REG_SIZE_BLOCK_LSB 16 +#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF +#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF +#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F + +#define CQSPI_REG_SRAMPARTITION 0x18 +#define CQSPI_REG_INDIRECTTRIGGER 0x1C + +#define CQSPI_REG_DMA 0x20 +#define CQSPI_REG_DMA_SINGLE_LSB 0 +#define CQSPI_REG_DMA_BURST_LSB 8 +#define CQSPI_REG_DMA_SINGLE_MASK 0xFF +#define CQSPI_REG_DMA_BURST_MASK 0xFF + +#define CQSPI_REG_REMAP 0x24 +#define CQSPI_REG_MODE_BIT 0x28 + +#define CQSPI_REG_SDRAMLEVEL 0x2C +#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0 +#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16 +#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF +#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF + +#define CQSPI_REG_WR_COMPLETION_CTRL 0x38 +#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14) + +#define CQSPI_REG_IRQSTATUS 0x40 +#define CQSPI_REG_IRQMASK 0x44 + +#define CQSPI_REG_INDIRECTRD 0x60 +#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0) +#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1) +#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5) + +#define CQSPI_REG_INDIRECTRDWATERMARK 0x64 +#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68 +#define CQSPI_REG_INDIRECTRDBYTES 0x6C + +#define CQSPI_REG_CMDCTRL 0x90 +#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0) +#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1) +#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7 +#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12 +#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15 +#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16 +#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19 +#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20 +#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23 +#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24 +#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7 +#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3 +#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7 +#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F + +#define CQSPI_REG_INDIRECTWR 0x70 +#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0) +#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1) +#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5) + +#define CQSPI_REG_INDIRECTWRWATERMARK 0x74 +#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78 +#define CQSPI_REG_INDIRECTWRBYTES 0x7C + +#define CQSPI_REG_INDTRIG_ADDRRANGE 0x80 + +#define CQSPI_REG_CMDADDRESS 0x94 +#define CQSPI_REG_CMDREADDATALOWER 0xA0 +#define CQSPI_REG_CMDREADDATAUPPER 0xA4 +#define CQSPI_REG_CMDWRITEDATALOWER 0xA8 +#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC + +#define CQSPI_REG_POLLING_STATUS 0xB0 +#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16 + +#define CQSPI_REG_OP_EXT_LOWER 0xE0 +#define CQSPI_REG_OP_EXT_READ_LSB 24 +#define CQSPI_REG_OP_EXT_WRITE_LSB 16 +#define CQSPI_REG_OP_EXT_STIG_LSB 0 + +#define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000 + +#define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800 +#define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804 + +#define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C + +#define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814 +#define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818 +#define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C +#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1) + +#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828 + +#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00 +#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6 + +/* Interrupt status bits */ +#define CQSPI_REG_IRQ_MODE_ERR BIT(0) +#define CQSPI_REG_IRQ_UNDERFLOW BIT(1) +#define CQSPI_REG_IRQ_IND_COMP BIT(2) +#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3) +#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4) +#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5) +#define CQSPI_REG_IRQ_WATERMARK BIT(6) +#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12) + +#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \ + CQSPI_REG_IRQ_IND_SRAM_FULL | \ + CQSPI_REG_IRQ_IND_COMP) + +#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \ + CQSPI_REG_IRQ_WATERMARK | \ + CQSPI_REG_IRQ_UNDERFLOW) + +#define CQSPI_IRQ_STATUS_MASK 0x1FFFF +#define CQSPI_DMA_UNALIGN 0x3 + +#define CQSPI_REG_VERSAL_DMA_VAL 0x602 + +static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr) +{ + u32 val; + + return readl_relaxed_poll_timeout(reg, val, + (((clr ? ~val : val) & mask) == mask), + 10, CQSPI_TIMEOUT_MS * 1000); +} + +static bool cqspi_is_idle(struct cqspi_st *cqspi) +{ + u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); + + return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB); +} + +static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi) +{ + u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL); + + reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB; + return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK; +} + +static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi) +{ + u32 dma_status; + + dma_status = readl(cqspi->iobase + + CQSPI_REG_VERSAL_DMA_DST_I_STS); + writel(dma_status, cqspi->iobase + + CQSPI_REG_VERSAL_DMA_DST_I_STS); + + return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK; +} + +static irqreturn_t cqspi_irq_handler(int this_irq, void *dev) +{ + struct cqspi_st *cqspi = dev; + unsigned int irq_status; + struct device *device = &cqspi->pdev->dev; + const struct cqspi_driver_platdata *ddata; + + ddata = of_device_get_match_data(device); + + /* Read interrupt status */ + irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS); + + /* Clear interrupt */ + writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS); + + if (cqspi->use_dma_read && ddata && ddata->get_dma_status) { + if (ddata->get_dma_status(cqspi)) { + complete(&cqspi->transfer_complete); + return IRQ_HANDLED; + } + } + + else if (!cqspi->slow_sram) + irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR; + else + irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR; + + if (irq_status) + complete(&cqspi->transfer_complete); + + return IRQ_HANDLED; +} + +static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op) +{ + u32 rdreg = 0; + + rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB; + rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB; + rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB; + + return rdreg; +} + +static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op) +{ + unsigned int dummy_clk; + + if (!op->dummy.nbytes) + return 0; + + dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth); + if (op->cmd.dtr) + dummy_clk /= 2; + + return dummy_clk; +} + +static int cqspi_wait_idle(struct cqspi_st *cqspi) +{ + const unsigned int poll_idle_retry = 3; + unsigned int count = 0; + unsigned long timeout; + + timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS); + while (1) { + /* + * Read few times in succession to ensure the controller + * is indeed idle, that is, the bit does not transition + * low again. + */ + if (cqspi_is_idle(cqspi)) + count++; + else + count = 0; + + if (count >= poll_idle_retry) + return 0; + + if (time_after(jiffies, timeout)) { + /* Timeout, in busy mode. */ + dev_err(&cqspi->pdev->dev, + "QSPI is still busy after %dms timeout.\n", + CQSPI_TIMEOUT_MS); + return -ETIMEDOUT; + } + + cpu_relax(); + } +} + +static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg) +{ + void __iomem *reg_base = cqspi->iobase; + int ret; + + /* Write the CMDCTRL without start execution. */ + writel(reg, reg_base + CQSPI_REG_CMDCTRL); + /* Start execute */ + reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK; + writel(reg, reg_base + CQSPI_REG_CMDCTRL); + + /* Polling for completion. */ + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL, + CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1); + if (ret) { + dev_err(&cqspi->pdev->dev, + "Flash command execution timed out.\n"); + return ret; + } + + /* Polling QSPI idle status. */ + return cqspi_wait_idle(cqspi); +} + +static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata, + const struct spi_mem_op *op, + unsigned int shift) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + void __iomem *reg_base = cqspi->iobase; + unsigned int reg; + u8 ext; + + if (op->cmd.nbytes != 2) + return -EINVAL; + + /* Opcode extension is the LSB. */ + ext = op->cmd.opcode & 0xff; + + reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER); + reg &= ~(0xff << shift); + reg |= ext << shift; + writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER); + + return 0; +} + +static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata, + const struct spi_mem_op *op, unsigned int shift) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + void __iomem *reg_base = cqspi->iobase; + unsigned int reg; + int ret; + + reg = readl(reg_base + CQSPI_REG_CONFIG); + + /* + * We enable dual byte opcode here. The callers have to set up the + * extension opcode based on which type of operation it is. + */ + if (op->cmd.dtr) { + reg |= CQSPI_REG_CONFIG_DTR_PROTO; + reg |= CQSPI_REG_CONFIG_DUAL_OPCODE; + + /* Set up command opcode extension. */ + ret = cqspi_setup_opcode_ext(f_pdata, op, shift); + if (ret) + return ret; + } else { + reg &= ~CQSPI_REG_CONFIG_DTR_PROTO; + reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE; + } + + writel(reg, reg_base + CQSPI_REG_CONFIG); + + return cqspi_wait_idle(cqspi); +} + +static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata, + const struct spi_mem_op *op) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + void __iomem *reg_base = cqspi->iobase; + u8 *rxbuf = op->data.buf.in; + u8 opcode; + size_t n_rx = op->data.nbytes; + unsigned int rdreg; + unsigned int reg; + unsigned int dummy_clk; + size_t read_len; + int status; + + status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB); + if (status) + return status; + + if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) { + dev_err(&cqspi->pdev->dev, + "Invalid input argument, len %zu rxbuf 0x%p\n", + n_rx, rxbuf); + return -EINVAL; + } + + if (op->cmd.dtr) + opcode = op->cmd.opcode >> 8; + else + opcode = op->cmd.opcode; + + reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; + + rdreg = cqspi_calc_rdreg(op); + writel(rdreg, reg_base + CQSPI_REG_RD_INSTR); + + dummy_clk = cqspi_calc_dummy(op); + if (dummy_clk > CQSPI_DUMMY_CLKS_MAX) + return -EOPNOTSUPP; + + if (dummy_clk) + reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK) + << CQSPI_REG_CMDCTRL_DUMMY_LSB; + + reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB); + + /* 0 means 1 byte. */ + reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK) + << CQSPI_REG_CMDCTRL_RD_BYTES_LSB); + + /* setup ADDR BIT field */ + if (op->addr.nbytes) { + reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB); + reg |= ((op->addr.nbytes - 1) & + CQSPI_REG_CMDCTRL_ADD_BYTES_MASK) + << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB; + + writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS); + } + + status = cqspi_exec_flash_cmd(cqspi, reg); + if (status) + return status; + + reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER); + + /* Put the read value into rx_buf */ + read_len = (n_rx > 4) ? 4 : n_rx; + memcpy(rxbuf, ®, read_len); + rxbuf += read_len; + + if (n_rx > 4) { + reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER); + + read_len = n_rx - read_len; + memcpy(rxbuf, ®, read_len); + } + + /* Reset CMD_CTRL Reg once command read completes */ + writel(0, reg_base + CQSPI_REG_CMDCTRL); + + return 0; +} + +static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata, + const struct spi_mem_op *op) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + void __iomem *reg_base = cqspi->iobase; + u8 opcode; + const u8 *txbuf = op->data.buf.out; + size_t n_tx = op->data.nbytes; + unsigned int reg; + unsigned int data; + size_t write_len; + int ret; + + ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB); + if (ret) + return ret; + + if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) { + dev_err(&cqspi->pdev->dev, + "Invalid input argument, cmdlen %zu txbuf 0x%p\n", + n_tx, txbuf); + return -EINVAL; + } + + reg = cqspi_calc_rdreg(op); + writel(reg, reg_base + CQSPI_REG_RD_INSTR); + + if (op->cmd.dtr) + opcode = op->cmd.opcode >> 8; + else + opcode = op->cmd.opcode; + + reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; + + if (op->addr.nbytes) { + reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB); + reg |= ((op->addr.nbytes - 1) & + CQSPI_REG_CMDCTRL_ADD_BYTES_MASK) + << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB; + + writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS); + } + + if (n_tx) { + reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB); + reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK) + << CQSPI_REG_CMDCTRL_WR_BYTES_LSB; + data = 0; + write_len = (n_tx > 4) ? 4 : n_tx; + memcpy(&data, txbuf, write_len); + txbuf += write_len; + writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER); + + if (n_tx > 4) { + data = 0; + write_len = n_tx - 4; + memcpy(&data, txbuf, write_len); + writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER); + } + } + + ret = cqspi_exec_flash_cmd(cqspi, reg); + + /* Reset CMD_CTRL Reg once command write completes */ + writel(0, reg_base + CQSPI_REG_CMDCTRL); + + return ret; +} + +static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata, + const struct spi_mem_op *op) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + void __iomem *reg_base = cqspi->iobase; + unsigned int dummy_clk = 0; + unsigned int reg; + int ret; + u8 opcode; + + ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB); + if (ret) + return ret; + + if (op->cmd.dtr) + opcode = op->cmd.opcode >> 8; + else + opcode = op->cmd.opcode; + + reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB; + reg |= cqspi_calc_rdreg(op); + + /* Setup dummy clock cycles */ + dummy_clk = cqspi_calc_dummy(op); + + if (dummy_clk > CQSPI_DUMMY_CLKS_MAX) + return -EOPNOTSUPP; + + if (dummy_clk) + reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK) + << CQSPI_REG_RD_INSTR_DUMMY_LSB; + + writel(reg, reg_base + CQSPI_REG_RD_INSTR); + + /* Set address width */ + reg = readl(reg_base + CQSPI_REG_SIZE); + reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; + reg |= (op->addr.nbytes - 1); + writel(reg, reg_base + CQSPI_REG_SIZE); + return 0; +} + +static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata, + u8 *rxbuf, loff_t from_addr, + const size_t n_rx) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + struct device *dev = &cqspi->pdev->dev; + void __iomem *reg_base = cqspi->iobase; + void __iomem *ahb_base = cqspi->ahb_base; + unsigned int remaining = n_rx; + unsigned int mod_bytes = n_rx % 4; + unsigned int bytes_to_read = 0; + u8 *rxbuf_end = rxbuf + n_rx; + int ret = 0; + + writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR); + writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES); + + /* Clear all interrupts. */ + writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); + + /* + * On SoCFPGA platform reading the SRAM is slow due to + * hardware limitation and causing read interrupt storm to CPU, + * so enabling only watermark interrupt to disable all read + * interrupts later as we want to run "bytes to read" loop with + * all the read interrupts disabled for max performance. + */ + + if (!cqspi->slow_sram) + writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK); + else + writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK); + + reinit_completion(&cqspi->transfer_complete); + writel(CQSPI_REG_INDIRECTRD_START_MASK, + reg_base + CQSPI_REG_INDIRECTRD); + + while (remaining > 0) { + if (!wait_for_completion_timeout(&cqspi->transfer_complete, + msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) + ret = -ETIMEDOUT; + + /* + * Disable all read interrupts until + * we are out of "bytes to read" + */ + if (cqspi->slow_sram) + writel(0x0, reg_base + CQSPI_REG_IRQMASK); + + bytes_to_read = cqspi_get_rd_sram_level(cqspi); + + if (ret && bytes_to_read == 0) { + dev_err(dev, "Indirect read timeout, no bytes\n"); + goto failrd; + } + + while (bytes_to_read != 0) { + unsigned int word_remain = round_down(remaining, 4); + + bytes_to_read *= cqspi->fifo_width; + bytes_to_read = bytes_to_read > remaining ? + remaining : bytes_to_read; + bytes_to_read = round_down(bytes_to_read, 4); + /* Read 4 byte word chunks then single bytes */ + if (bytes_to_read) { + ioread32_rep(ahb_base, rxbuf, + (bytes_to_read / 4)); + } else if (!word_remain && mod_bytes) { + unsigned int temp = ioread32(ahb_base); + + bytes_to_read = mod_bytes; + memcpy(rxbuf, &temp, min((unsigned int) + (rxbuf_end - rxbuf), + bytes_to_read)); + } + rxbuf += bytes_to_read; + remaining -= bytes_to_read; + bytes_to_read = cqspi_get_rd_sram_level(cqspi); + } + + if (remaining > 0) { + reinit_completion(&cqspi->transfer_complete); + if (cqspi->slow_sram) + writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK); + } + } + + /* Check indirect done status */ + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD, + CQSPI_REG_INDIRECTRD_DONE_MASK, 0); + if (ret) { + dev_err(dev, "Indirect read completion error (%i)\n", ret); + goto failrd; + } + + /* Disable interrupt */ + writel(0, reg_base + CQSPI_REG_IRQMASK); + + /* Clear indirect completion status */ + writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD); + + return 0; + +failrd: + /* Disable interrupt */ + writel(0, reg_base + CQSPI_REG_IRQMASK); + + /* Cancel the indirect read */ + writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK, + reg_base + CQSPI_REG_INDIRECTRD); + return ret; +} + +static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable) +{ + void __iomem *reg_base = cqspi->iobase; + unsigned int reg; + + reg = readl(reg_base + CQSPI_REG_CONFIG); + + if (enable) + reg |= CQSPI_REG_CONFIG_ENABLE_MASK; + else + reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK; + + writel(reg, reg_base + CQSPI_REG_CONFIG); +} + +static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata, + u_char *rxbuf, loff_t from_addr, + size_t n_rx) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + struct device *dev = &cqspi->pdev->dev; + void __iomem *reg_base = cqspi->iobase; + u32 reg, bytes_to_dma; + loff_t addr = from_addr; + void *buf = rxbuf; + dma_addr_t dma_addr; + u8 bytes_rem; + int ret = 0; + + bytes_rem = n_rx % 4; + bytes_to_dma = (n_rx - bytes_rem); + + if (!bytes_to_dma) + goto nondmard; + + ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA); + if (ret) + return ret; + + cqspi_controller_enable(cqspi, 0); + + reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); + reg |= CQSPI_REG_CONFIG_DMA_MASK; + writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); + + cqspi_controller_enable(cqspi, 1); + + dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE); + if (dma_mapping_error(dev, dma_addr)) { + dev_err(dev, "dma mapping failed\n"); + return -ENOMEM; + } + + writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR); + writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES); + writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL, + reg_base + CQSPI_REG_INDTRIG_ADDRRANGE); + + /* Clear all interrupts. */ + writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); + + /* Enable DMA done interrupt */ + writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK, + reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN); + + /* Default DMA periph configuration */ + writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA); + + /* Configure DMA Dst address */ + writel(lower_32_bits(dma_addr), + reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR); + writel(upper_32_bits(dma_addr), + reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB); + + /* Configure DMA Src address */ + writel(cqspi->trigger_address, reg_base + + CQSPI_REG_VERSAL_DMA_SRC_ADDR); + + /* Set DMA destination size */ + writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE); + + /* Set DMA destination control */ + writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL, + reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL); + + writel(CQSPI_REG_INDIRECTRD_START_MASK, + reg_base + CQSPI_REG_INDIRECTRD); + + reinit_completion(&cqspi->transfer_complete); + + if (!wait_for_completion_timeout(&cqspi->transfer_complete, + msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) { + ret = -ETIMEDOUT; + goto failrd; + } + + /* Disable DMA interrupt */ + writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS); + + /* Clear indirect completion status */ + writel(CQSPI_REG_INDIRECTRD_DONE_MASK, + cqspi->iobase + CQSPI_REG_INDIRECTRD); + dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE); + + cqspi_controller_enable(cqspi, 0); + + reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); + reg &= ~CQSPI_REG_CONFIG_DMA_MASK; + writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); + + cqspi_controller_enable(cqspi, 1); + + ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, + PM_OSPI_MUX_SEL_LINEAR); + if (ret) + return ret; + +nondmard: + if (bytes_rem) { + addr += bytes_to_dma; + buf += bytes_to_dma; + ret = cqspi_indirect_read_execute(f_pdata, buf, addr, + bytes_rem); + if (ret) + return ret; + } + + return 0; + +failrd: + /* Disable DMA interrupt */ + writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS); + + /* Cancel the indirect read */ + writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, + reg_base + CQSPI_REG_INDIRECTRD); + + dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE); + + reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); + reg &= ~CQSPI_REG_CONFIG_DMA_MASK; + writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); + + zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR); + + return ret; +} + +static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata, + const struct spi_mem_op *op) +{ + unsigned int reg; + int ret; + struct cqspi_st *cqspi = f_pdata->cqspi; + void __iomem *reg_base = cqspi->iobase; + u8 opcode; + + ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB); + if (ret) + return ret; + + if (op->cmd.dtr) + opcode = op->cmd.opcode >> 8; + else + opcode = op->cmd.opcode; + + /* Set opcode. */ + reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB; + reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB; + reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB; + writel(reg, reg_base + CQSPI_REG_WR_INSTR); + reg = cqspi_calc_rdreg(op); + writel(reg, reg_base + CQSPI_REG_RD_INSTR); + + /* + * SPI NAND flashes require the address of the status register to be + * passed in the Read SR command. Also, some SPI NOR flashes like the + * cypress Semper flash expect a 4-byte dummy address in the Read SR + * command in DTR mode. + * + * But this controller does not support address phase in the Read SR + * command when doing auto-HW polling. So, disable write completion + * polling on the controller's side. spinand and spi-nor will take + * care of polling the status register. + */ + if (cqspi->wr_completion) { + reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL); + reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL; + writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL); + /* + * DAC mode require auto polling as flash needs to be polled + * for write completion in case of bubble in SPI transaction + * due to slow CPU/DMA master. + */ + cqspi->use_direct_mode_wr = false; + } + + reg = readl(reg_base + CQSPI_REG_SIZE); + reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; + reg |= (op->addr.nbytes - 1); + writel(reg, reg_base + CQSPI_REG_SIZE); + return 0; +} + +static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata, + loff_t to_addr, const u8 *txbuf, + const size_t n_tx) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + struct device *dev = &cqspi->pdev->dev; + void __iomem *reg_base = cqspi->iobase; + unsigned int remaining = n_tx; + unsigned int write_bytes; + int ret; + + writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR); + writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES); + + /* Clear all interrupts. */ + writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); + + writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK); + + reinit_completion(&cqspi->transfer_complete); + writel(CQSPI_REG_INDIRECTWR_START_MASK, + reg_base + CQSPI_REG_INDIRECTWR); + /* + * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access + * Controller programming sequence, couple of cycles of + * QSPI_REF_CLK delay is required for the above bit to + * be internally synchronized by the QSPI module. Provide 5 + * cycles of delay. + */ + if (cqspi->wr_delay) + ndelay(cqspi->wr_delay); + + /* + * If a hazard exists between the APB and AHB interfaces, perform a + * dummy readback from the controller to ensure synchronization. + */ + if (cqspi->apb_ahb_hazard) + readl(reg_base + CQSPI_REG_INDIRECTWR); + + while (remaining > 0) { + size_t write_words, mod_bytes; + + write_bytes = remaining; + write_words = write_bytes / 4; + mod_bytes = write_bytes % 4; + /* Write 4 bytes at a time then single bytes. */ + if (write_words) { + iowrite32_rep(cqspi->ahb_base, txbuf, write_words); + txbuf += (write_words * 4); + } + if (mod_bytes) { + unsigned int temp = 0xFFFFFFFF; + + memcpy(&temp, txbuf, mod_bytes); + iowrite32(temp, cqspi->ahb_base); + txbuf += mod_bytes; + } + + if (!wait_for_completion_timeout(&cqspi->transfer_complete, + msecs_to_jiffies(CQSPI_TIMEOUT_MS))) { + dev_err(dev, "Indirect write timeout\n"); + ret = -ETIMEDOUT; + goto failwr; + } + + remaining -= write_bytes; + + if (remaining > 0) + reinit_completion(&cqspi->transfer_complete); + } + + /* Check indirect done status */ + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR, + CQSPI_REG_INDIRECTWR_DONE_MASK, 0); + if (ret) { + dev_err(dev, "Indirect write completion error (%i)\n", ret); + goto failwr; + } + + /* Disable interrupt. */ + writel(0, reg_base + CQSPI_REG_IRQMASK); + + /* Clear indirect completion status */ + writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR); + + cqspi_wait_idle(cqspi); + + return 0; + +failwr: + /* Disable interrupt. */ + writel(0, reg_base + CQSPI_REG_IRQMASK); + + /* Cancel the indirect write */ + writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, + reg_base + CQSPI_REG_INDIRECTWR); + return ret; +} + +static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + void __iomem *reg_base = cqspi->iobase; + unsigned int chip_select = f_pdata->cs; + unsigned int reg; + + reg = readl(reg_base + CQSPI_REG_CONFIG); + if (cqspi->is_decoded_cs) { + reg |= CQSPI_REG_CONFIG_DECODE_MASK; + } else { + reg &= ~CQSPI_REG_CONFIG_DECODE_MASK; + + /* Convert CS if without decoder. + * CS0 to 4b'1110 + * CS1 to 4b'1101 + * CS2 to 4b'1011 + * CS3 to 4b'0111 + */ + chip_select = 0xF & ~(1 << chip_select); + } + + reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK + << CQSPI_REG_CONFIG_CHIPSELECT_LSB); + reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK) + << CQSPI_REG_CONFIG_CHIPSELECT_LSB; + writel(reg, reg_base + CQSPI_REG_CONFIG); +} + +static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz, + const unsigned int ns_val) +{ + unsigned int ticks; + + ticks = ref_clk_hz / 1000; /* kHz */ + ticks = DIV_ROUND_UP(ticks * ns_val, 1000000); + + return ticks; +} + +static void cqspi_delay(struct cqspi_flash_pdata *f_pdata) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + void __iomem *iobase = cqspi->iobase; + const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz; + unsigned int tshsl, tchsh, tslch, tsd2d; + unsigned int reg; + unsigned int tsclk; + + /* calculate the number of ref ticks for one sclk tick */ + tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk); + + tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns); + /* this particular value must be at least one sclk */ + if (tshsl < tsclk) + tshsl = tsclk; + + tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns); + tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns); + tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns); + + reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK) + << CQSPI_REG_DELAY_TSHSL_LSB; + reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK) + << CQSPI_REG_DELAY_TCHSH_LSB; + reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK) + << CQSPI_REG_DELAY_TSLCH_LSB; + reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK) + << CQSPI_REG_DELAY_TSD2D_LSB; + writel(reg, iobase + CQSPI_REG_DELAY); +} + +static void cqspi_config_baudrate_div(struct cqspi_st *cqspi) +{ + const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz; + void __iomem *reg_base = cqspi->iobase; + u32 reg, div; + + /* Recalculate the baudrate divisor based on QSPI specification. */ + div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1; + + /* Maximum baud divisor */ + if (div > CQSPI_REG_CONFIG_BAUD_MASK) { + div = CQSPI_REG_CONFIG_BAUD_MASK; + dev_warn(&cqspi->pdev->dev, + "Unable to adjust clock <= %d hz. Reduced to %d hz\n", + cqspi->sclk, ref_clk_hz/((div+1)*2)); + } + + reg = readl(reg_base + CQSPI_REG_CONFIG); + reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB); + reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB; + writel(reg, reg_base + CQSPI_REG_CONFIG); +} + +static void cqspi_readdata_capture(struct cqspi_st *cqspi, + const bool bypass, + const unsigned int delay) +{ + void __iomem *reg_base = cqspi->iobase; + unsigned int reg; + + reg = readl(reg_base + CQSPI_REG_READCAPTURE); + + if (bypass) + reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB); + else + reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB); + + reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK + << CQSPI_REG_READCAPTURE_DELAY_LSB); + + reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK) + << CQSPI_REG_READCAPTURE_DELAY_LSB; + + writel(reg, reg_base + CQSPI_REG_READCAPTURE); +} + +static void cqspi_configure(struct cqspi_flash_pdata *f_pdata, + unsigned long sclk) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + int switch_cs = (cqspi->current_cs != f_pdata->cs); + int switch_ck = (cqspi->sclk != sclk); + + if (switch_cs || switch_ck) + cqspi_controller_enable(cqspi, 0); + + /* Switch chip select. */ + if (switch_cs) { + cqspi->current_cs = f_pdata->cs; + cqspi_chipselect(f_pdata); + } + + /* Setup baudrate divisor and delays */ + if (switch_ck) { + cqspi->sclk = sclk; + cqspi_config_baudrate_div(cqspi); + cqspi_delay(f_pdata); + cqspi_readdata_capture(cqspi, !cqspi->rclk_en, + f_pdata->read_delay); + } + + if (switch_cs || switch_ck) + cqspi_controller_enable(cqspi, 1); +} + +static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata, + const struct spi_mem_op *op) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + loff_t to = op->addr.val; + size_t len = op->data.nbytes; + const u_char *buf = op->data.buf.out; + int ret; + + ret = cqspi_write_setup(f_pdata, op); + if (ret) + return ret; + + /* + * Some flashes like the Cypress Semper flash expect a dummy 4-byte + * address (all 0s) with the read status register command in DTR mode. + * But this controller does not support sending dummy address bytes to + * the flash when it is polling the write completion register in DTR + * mode. So, we can not use direct mode when in DTR mode for writing + * data. + */ + if (!op->cmd.dtr && cqspi->use_direct_mode && + cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) { + memcpy_toio(cqspi->ahb_base + to, buf, len); + return cqspi_wait_idle(cqspi); + } + + return cqspi_indirect_write_execute(f_pdata, to, buf, len); +} + +static void cqspi_rx_dma_callback(void *param) +{ + struct cqspi_st *cqspi = param; + + complete(&cqspi->rx_dma_complete); +} + +static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata, + u_char *buf, loff_t from, size_t len) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + struct device *dev = &cqspi->pdev->dev; + enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from; + int ret = 0; + struct dma_async_tx_descriptor *tx; + dma_cookie_t cookie; + dma_addr_t dma_dst; + struct device *ddev; + + if (!cqspi->rx_chan || !virt_addr_valid(buf)) { + memcpy_fromio(buf, cqspi->ahb_base + from, len); + return 0; + } + + ddev = cqspi->rx_chan->device->dev; + dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE); + if (dma_mapping_error(ddev, dma_dst)) { + dev_err(dev, "dma mapping failed\n"); + return -ENOMEM; + } + tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src, + len, flags); + if (!tx) { + dev_err(dev, "device_prep_dma_memcpy error\n"); + ret = -EIO; + goto err_unmap; + } + + tx->callback = cqspi_rx_dma_callback; + tx->callback_param = cqspi; + cookie = tx->tx_submit(tx); + reinit_completion(&cqspi->rx_dma_complete); + + ret = dma_submit_error(cookie); + if (ret) { + dev_err(dev, "dma_submit_error %d\n", cookie); + ret = -EIO; + goto err_unmap; + } + + dma_async_issue_pending(cqspi->rx_chan); + if (!wait_for_completion_timeout(&cqspi->rx_dma_complete, + msecs_to_jiffies(max_t(size_t, len, 500)))) { + dmaengine_terminate_sync(cqspi->rx_chan); + dev_err(dev, "DMA wait_for_completion_timeout\n"); + ret = -ETIMEDOUT; + goto err_unmap; + } + +err_unmap: + dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE); + + return ret; +} + +static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata, + const struct spi_mem_op *op) +{ + struct cqspi_st *cqspi = f_pdata->cqspi; + struct device *dev = &cqspi->pdev->dev; + const struct cqspi_driver_platdata *ddata; + loff_t from = op->addr.val; + size_t len = op->data.nbytes; + u_char *buf = op->data.buf.in; + u64 dma_align = (u64)(uintptr_t)buf; + int ret; + + ddata = of_device_get_match_data(dev); + + ret = cqspi_read_setup(f_pdata, op); + if (ret) + return ret; + + if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size)) + return cqspi_direct_read_execute(f_pdata, buf, from, len); + + if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma && + virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0)) + return ddata->indirect_read_dma(f_pdata, buf, from, len); + + return cqspi_indirect_read_execute(f_pdata, buf, from, len); +} + +static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op) +{ + struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller); + struct cqspi_flash_pdata *f_pdata; + + f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)]; + cqspi_configure(f_pdata, mem->spi->max_speed_hz); + + if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) { + /* + * Performing reads in DAC mode forces to read minimum 4 bytes + * which is unsupported on some flash devices during register + * reads, prefer STIG mode for such small reads. + */ + if (!op->addr.nbytes || + op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX) + return cqspi_command_read(f_pdata, op); + + return cqspi_read(f_pdata, op); + } + + if (!op->addr.nbytes || !op->data.buf.out) + return cqspi_command_write(f_pdata, op); + + return cqspi_write(f_pdata, op); +} + +static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) +{ + int ret; + + ret = cqspi_mem_process(mem, op); + if (ret) + dev_err(&mem->spi->dev, "operation failed with %d\n", ret); + + return ret; +} + +static bool cqspi_supports_mem_op(struct spi_mem *mem, + const struct spi_mem_op *op) +{ + bool all_true, all_false; + + /* + * op->dummy.dtr is required for converting nbytes into ncycles. + * Also, don't check the dtr field of the op phase having zero nbytes. + */ + all_true = op->cmd.dtr && + (!op->addr.nbytes || op->addr.dtr) && + (!op->dummy.nbytes || op->dummy.dtr) && + (!op->data.nbytes || op->data.dtr); + + all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr && + !op->data.dtr; + + if (all_true) { + /* Right now we only support 8-8-8 DTR mode. */ + if (op->cmd.nbytes && op->cmd.buswidth != 8) + return false; + if (op->addr.nbytes && op->addr.buswidth != 8) + return false; + if (op->data.nbytes && op->data.buswidth != 8) + return false; + } else if (!all_false) { + /* Mixed DTR modes are not supported. */ + return false; + } + + return spi_mem_default_supports_op(mem, op); +} + +static int cqspi_of_get_flash_pdata(struct platform_device *pdev, + struct cqspi_flash_pdata *f_pdata, + struct device_node *np) +{ + if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) { + dev_err(&pdev->dev, "couldn't determine read-delay\n"); + return -ENXIO; + } + + if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) { + dev_err(&pdev->dev, "couldn't determine tshsl-ns\n"); + return -ENXIO; + } + + if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) { + dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n"); + return -ENXIO; + } + + if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) { + dev_err(&pdev->dev, "couldn't determine tchsh-ns\n"); + return -ENXIO; + } + + if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) { + dev_err(&pdev->dev, "couldn't determine tslch-ns\n"); + return -ENXIO; + } + + if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) { + dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n"); + return -ENXIO; + } + + return 0; +} + +static int cqspi_of_get_pdata(struct cqspi_st *cqspi) +{ + struct device *dev = &cqspi->pdev->dev; + struct device_node *np = dev->of_node; + u32 id[2]; + + cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs"); + + if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) { + dev_err(dev, "couldn't determine fifo-depth\n"); + return -ENXIO; + } + + if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) { + dev_err(dev, "couldn't determine fifo-width\n"); + return -ENXIO; + } + + if (of_property_read_u32(np, "cdns,trigger-address", + &cqspi->trigger_address)) { + dev_err(dev, "couldn't determine trigger-address\n"); + return -ENXIO; + } + + if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect)) + cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT; + + cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en"); + + if (!of_property_read_u32_array(np, "power-domains", id, + ARRAY_SIZE(id))) + cqspi->pd_dev_id = id[1]; + + return 0; +} + +static void cqspi_controller_init(struct cqspi_st *cqspi) +{ + u32 reg; + + cqspi_controller_enable(cqspi, 0); + + /* Configure the remap address register, no remap */ + writel(0, cqspi->iobase + CQSPI_REG_REMAP); + + /* Disable all interrupts. */ + writel(0, cqspi->iobase + CQSPI_REG_IRQMASK); + + /* Configure the SRAM split to 1:1 . */ + writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION); + + /* Load indirect trigger address. */ + writel(cqspi->trigger_address, + cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER); + + /* Program read watermark -- 1/2 of the FIFO. */ + writel(cqspi->fifo_depth * cqspi->fifo_width / 2, + cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK); + /* Program write watermark -- 1/8 of the FIFO. */ + writel(cqspi->fifo_depth * cqspi->fifo_width / 8, + cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK); + + /* Disable direct access controller */ + if (!cqspi->use_direct_mode) { + reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); + reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL; + writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); + } + + /* Enable DMA interface */ + if (cqspi->use_dma_read) { + reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); + reg |= CQSPI_REG_CONFIG_DMA_MASK; + writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); + } + + cqspi_controller_enable(cqspi, 1); +} + +static int cqspi_request_mmap_dma(struct cqspi_st *cqspi) +{ + dma_cap_mask_t mask; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + cqspi->rx_chan = dma_request_chan_by_mask(&mask); + if (IS_ERR(cqspi->rx_chan)) { + int ret = PTR_ERR(cqspi->rx_chan); + + cqspi->rx_chan = NULL; + return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n"); + } + init_completion(&cqspi->rx_dma_complete); + + return 0; +} + +static const char *cqspi_get_name(struct spi_mem *mem) +{ + struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller); + struct device *dev = &cqspi->pdev->dev; + + return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), + spi_get_chipselect(mem->spi, 0)); +} + +static const struct spi_controller_mem_ops cqspi_mem_ops = { + .exec_op = cqspi_exec_mem_op, + .get_name = cqspi_get_name, + .supports_op = cqspi_supports_mem_op, +}; + +static const struct spi_controller_mem_caps cqspi_mem_caps = { + .dtr = true, +}; + +static int cqspi_setup_flash(struct cqspi_st *cqspi) +{ + struct platform_device *pdev = cqspi->pdev; + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + struct cqspi_flash_pdata *f_pdata; + unsigned int cs; + int ret; + + /* Get flash device data */ + for_each_available_child_of_node(dev->of_node, np) { + ret = of_property_read_u32(np, "reg", &cs); + if (ret) { + dev_err(dev, "Couldn't determine chip select.\n"); + of_node_put(np); + return ret; + } + + if (cs >= CQSPI_MAX_CHIPSELECT) { + dev_err(dev, "Chip select %d out of range.\n", cs); + of_node_put(np); + return -EINVAL; + } + + f_pdata = &cqspi->f_pdata[cs]; + f_pdata->cqspi = cqspi; + f_pdata->cs = cs; + + ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np); + if (ret) { + of_node_put(np); + return ret; + } + } + + return 0; +} + +static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi) +{ + static struct clk_bulk_data qspiclk[] = { + { .id = "apb" }, + { .id = "ahb" }, + }; + + int ret = 0; + + ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk); + if (ret) { + dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__); + return ret; + } + + cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk; + cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk; + + ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]); + if (ret) { + dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__); + return ret; + } + + ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]); + if (ret) { + dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__); + goto disable_apb_clk; + } + + cqspi->is_jh7110 = true; + + return 0; + +disable_apb_clk: + clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]); + + return ret; +} + +static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi) +{ + clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]); + clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]); +} +static int cqspi_probe(struct platform_device *pdev) +{ + const struct cqspi_driver_platdata *ddata; + struct reset_control *rstc, *rstc_ocp, *rstc_ref; + struct device *dev = &pdev->dev; + struct spi_controller *host; + struct resource *res_ahb; + struct cqspi_st *cqspi; + int ret; + int irq; + + host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi)); + if (!host) { + dev_err(&pdev->dev, "devm_spi_alloc_host failed\n"); + return -ENOMEM; + } + host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL; + host->mem_ops = &cqspi_mem_ops; + host->mem_caps = &cqspi_mem_caps; + host->dev.of_node = pdev->dev.of_node; + + cqspi = spi_controller_get_devdata(host); + + cqspi->pdev = pdev; + cqspi->host = host; + cqspi->is_jh7110 = false; + platform_set_drvdata(pdev, cqspi); + + /* Obtain configuration from OF. */ + ret = cqspi_of_get_pdata(cqspi); + if (ret) { + dev_err(dev, "Cannot get mandatory OF data.\n"); + return -ENODEV; + } + + /* Obtain QSPI clock. */ + cqspi->clk = devm_clk_get(dev, NULL); + if (IS_ERR(cqspi->clk)) { + dev_err(dev, "Cannot claim QSPI clock.\n"); + ret = PTR_ERR(cqspi->clk); + return ret; + } + + /* Obtain and remap controller address. */ + cqspi->iobase = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(cqspi->iobase)) { + dev_err(dev, "Cannot remap controller address.\n"); + ret = PTR_ERR(cqspi->iobase); + return ret; + } + + /* Obtain and remap AHB address. */ + cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb); + if (IS_ERR(cqspi->ahb_base)) { + dev_err(dev, "Cannot remap AHB address.\n"); + ret = PTR_ERR(cqspi->ahb_base); + return ret; + } + cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start; + cqspi->ahb_size = resource_size(res_ahb); + + init_completion(&cqspi->transfer_complete); + + /* Obtain IRQ line. */ + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return -ENXIO; + + pm_runtime_enable(dev); + ret = pm_runtime_resume_and_get(dev); + if (ret < 0) + goto probe_pm_failed; + + ret = clk_prepare_enable(cqspi->clk); + if (ret) { + dev_err(dev, "Cannot enable QSPI clock.\n"); + goto probe_clk_failed; + } + + /* Obtain QSPI reset control */ + rstc = devm_reset_control_get_optional_exclusive(dev, "qspi"); + if (IS_ERR(rstc)) { + ret = PTR_ERR(rstc); + dev_err(dev, "Cannot get QSPI reset.\n"); + goto probe_reset_failed; + } + + rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp"); + if (IS_ERR(rstc_ocp)) { + ret = PTR_ERR(rstc_ocp); + dev_err(dev, "Cannot get QSPI OCP reset.\n"); + goto probe_reset_failed; + } + + if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) { + rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref"); + if (IS_ERR(rstc_ref)) { + ret = PTR_ERR(rstc_ref); + dev_err(dev, "Cannot get QSPI REF reset.\n"); + goto probe_reset_failed; + } + reset_control_assert(rstc_ref); + reset_control_deassert(rstc_ref); + } + + reset_control_assert(rstc); + reset_control_deassert(rstc); + + reset_control_assert(rstc_ocp); + reset_control_deassert(rstc_ocp); + + cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk); + host->max_speed_hz = cqspi->master_ref_clk_hz; + + /* write completion is supported by default */ + cqspi->wr_completion = true; + + ddata = of_device_get_match_data(dev); + if (ddata) { + if (ddata->quirks & CQSPI_NEEDS_WR_DELAY) + cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC, + cqspi->master_ref_clk_hz); + if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL) + host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL; + if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) { + cqspi->use_direct_mode = true; + cqspi->use_direct_mode_wr = true; + } + if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA) + cqspi->use_dma_read = true; + if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION) + cqspi->wr_completion = false; + if (ddata->quirks & CQSPI_SLOW_SRAM) + cqspi->slow_sram = true; + if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR) + cqspi->apb_ahb_hazard = true; + + if (ddata->jh7110_clk_init) { + ret = cqspi_jh7110_clk_init(pdev, cqspi); + if (ret) + goto probe_reset_failed; + } + + if (of_device_is_compatible(pdev->dev.of_node, + "xlnx,versal-ospi-1.0")) { + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); + if (ret) + goto probe_reset_failed; + } + } + + ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0, + pdev->name, cqspi); + if (ret) { + dev_err(dev, "Cannot request IRQ.\n"); + goto probe_reset_failed; + } + + cqspi_wait_idle(cqspi); + cqspi_controller_init(cqspi); + cqspi->current_cs = -1; + cqspi->sclk = 0; + + host->num_chipselect = cqspi->num_chipselect; + + ret = cqspi_setup_flash(cqspi); + if (ret) { + dev_err(dev, "failed to setup flash parameters %d\n", ret); + goto probe_setup_failed; + } + + if (cqspi->use_direct_mode) { + ret = cqspi_request_mmap_dma(cqspi); + if (ret == -EPROBE_DEFER) + goto probe_setup_failed; + } + + ret = spi_register_controller(host); + if (ret) { + dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret); + goto probe_setup_failed; + } + + return 0; +probe_setup_failed: + cqspi_controller_enable(cqspi, 0); +probe_reset_failed: + if (cqspi->is_jh7110) + cqspi_jh7110_disable_clk(pdev, cqspi); + clk_disable_unprepare(cqspi->clk); +probe_clk_failed: + pm_runtime_put_sync(dev); +probe_pm_failed: + pm_runtime_disable(dev); + return ret; +} + +static void cqspi_remove(struct platform_device *pdev) +{ + struct cqspi_st *cqspi = platform_get_drvdata(pdev); + + spi_unregister_controller(cqspi->host); + cqspi_controller_enable(cqspi, 0); + + if (cqspi->rx_chan) + dma_release_channel(cqspi->rx_chan); + + clk_disable_unprepare(cqspi->clk); + + if (cqspi->is_jh7110) + cqspi_jh7110_disable_clk(pdev, cqspi); + + pm_runtime_put_sync(&pdev->dev); + pm_runtime_disable(&pdev->dev); +} + +static int cqspi_suspend(struct device *dev) +{ + struct cqspi_st *cqspi = dev_get_drvdata(dev); + struct spi_controller *host = dev_get_drvdata(dev); + int ret; + + ret = spi_controller_suspend(host); + cqspi_controller_enable(cqspi, 0); + + clk_disable_unprepare(cqspi->clk); + + return ret; +} + +static int cqspi_resume(struct device *dev) +{ + struct cqspi_st *cqspi = dev_get_drvdata(dev); + struct spi_controller *host = dev_get_drvdata(dev); + + clk_prepare_enable(cqspi->clk); + cqspi_wait_idle(cqspi); + cqspi_controller_init(cqspi); + + cqspi->current_cs = -1; + cqspi->sclk = 0; + + return spi_controller_resume(host); +} + +static DEFINE_SIMPLE_DEV_PM_OPS(cqspi_dev_pm_ops, cqspi_suspend, cqspi_resume); + +static const struct cqspi_driver_platdata cdns_qspi = { + .quirks = CQSPI_DISABLE_DAC_MODE, +}; + +static const struct cqspi_driver_platdata k2g_qspi = { + .quirks = CQSPI_NEEDS_WR_DELAY, +}; + +static const struct cqspi_driver_platdata am654_ospi = { + .hwcaps_mask = CQSPI_SUPPORTS_OCTAL, + .quirks = CQSPI_NEEDS_WR_DELAY, +}; + +static const struct cqspi_driver_platdata intel_lgm_qspi = { + .quirks = CQSPI_DISABLE_DAC_MODE, +}; + +static const struct cqspi_driver_platdata socfpga_qspi = { + .quirks = CQSPI_DISABLE_DAC_MODE + | CQSPI_NO_SUPPORT_WR_COMPLETION + | CQSPI_SLOW_SRAM, +}; + +static const struct cqspi_driver_platdata versal_ospi = { + .hwcaps_mask = CQSPI_SUPPORTS_OCTAL, + .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA, + .indirect_read_dma = cqspi_versal_indirect_read_dma, + .get_dma_status = cqspi_get_versal_dma_status, +}; + +static const struct cqspi_driver_platdata jh7110_qspi = { + .quirks = CQSPI_DISABLE_DAC_MODE, + .jh7110_clk_init = cqspi_jh7110_clk_init, +}; + +static const struct cqspi_driver_platdata pensando_cdns_qspi = { + .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE, +}; + +static const struct of_device_id cqspi_dt_ids[] = { + { + .compatible = "cdns,qspi-nor", + .data = &cdns_qspi, + }, + { + .compatible = "ti,k2g-qspi", + .data = &k2g_qspi, + }, + { + .compatible = "ti,am654-ospi", + .data = &am654_ospi, + }, + { + .compatible = "intel,lgm-qspi", + .data = &intel_lgm_qspi, + }, + { + .compatible = "xlnx,versal-ospi-1.0", + .data = &versal_ospi, + }, + { + .compatible = "intel,socfpga-qspi", + .data = &socfpga_qspi, + }, + { + .compatible = "starfive,jh7110-qspi", + .data = &jh7110_qspi, + }, + { + .compatible = "amd,pensando-elba-qspi", + .data = &pensando_cdns_qspi, + }, + { /* end of table */ } +}; + +MODULE_DEVICE_TABLE(of, cqspi_dt_ids); + +static struct platform_driver cqspi_platform_driver = { + .probe = cqspi_probe, + .remove_new = cqspi_remove, + .driver = { + .name = CQSPI_NAME, + .pm = &cqspi_dev_pm_ops, + .of_match_table = cqspi_dt_ids, + }, +}; + +module_platform_driver(cqspi_platform_driver); + +MODULE_DESCRIPTION("Cadence QSPI Controller Driver"); +MODULE_LICENSE("GPL v2"); +MODULE_ALIAS("platform:" CQSPI_NAME); +MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>"); +MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>"); +MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>"); +MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>"); +MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>"); |