summaryrefslogtreecommitdiffstats
path: root/drivers/thermal/mediatek
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/thermal/mediatek')
-rw-r--r--drivers/thermal/mediatek/Kconfig37
-rw-r--r--drivers/thermal/mediatek/Makefile2
-rw-r--r--drivers/thermal/mediatek/auxadc_thermal.c1313
-rw-r--r--drivers/thermal/mediatek/lvts_thermal.c1367
4 files changed, 2719 insertions, 0 deletions
diff --git a/drivers/thermal/mediatek/Kconfig b/drivers/thermal/mediatek/Kconfig
new file mode 100644
index 0000000000..d82c86d9be
--- /dev/null
+++ b/drivers/thermal/mediatek/Kconfig
@@ -0,0 +1,37 @@
+config MTK_THERMAL
+ tristate "MediaTek thermal drivers"
+ depends on THERMAL_OF
+ help
+ This is the option for MediaTek thermal software solutions.
+ Please enable corresponding options to get temperature
+ information from thermal sensors or turn on throttle
+ mechaisms for thermal mitigation.
+
+if MTK_THERMAL
+
+config MTK_SOC_THERMAL
+ tristate "AUXADC temperature sensor driver for MediaTek SoCs"
+ depends on HAS_IOMEM
+ help
+ Enable this option if you want to get SoC temperature
+ information for MediaTek platforms.
+ This driver configures thermal controllers to collect
+ temperature via AUXADC interface.
+
+config MTK_LVTS_THERMAL
+ tristate "LVTS Thermal Driver for MediaTek SoCs"
+ depends on HAS_IOMEM
+ help
+ Enable this option if you want to get SoC temperature
+ information for supported MediaTek platforms.
+ This driver configures LVTS (Low Voltage Thermal Sensor)
+ thermal controllers to collect temperatures via ASIF
+ (Analog Serial Interface).
+
+config MTK_LVTS_THERMAL_DEBUGFS
+ bool "LVTS thermal debugfs"
+ depends on MTK_LVTS_THERMAL && DEBUG_FS
+ help
+ Enable this option to debug the internals of the device driver.
+
+endif
diff --git a/drivers/thermal/mediatek/Makefile b/drivers/thermal/mediatek/Makefile
new file mode 100644
index 0000000000..1c6daa1e64
--- /dev/null
+++ b/drivers/thermal/mediatek/Makefile
@@ -0,0 +1,2 @@
+obj-$(CONFIG_MTK_SOC_THERMAL) += auxadc_thermal.o
+obj-$(CONFIG_MTK_LVTS_THERMAL) += lvts_thermal.o
diff --git a/drivers/thermal/mediatek/auxadc_thermal.c b/drivers/thermal/mediatek/auxadc_thermal.c
new file mode 100644
index 0000000000..8b0edb2048
--- /dev/null
+++ b/drivers/thermal/mediatek/auxadc_thermal.c
@@ -0,0 +1,1313 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (c) 2015 MediaTek Inc.
+ * Author: Hanyi Wu <hanyi.wu@mediatek.com>
+ * Sascha Hauer <s.hauer@pengutronix.de>
+ * Dawei Chien <dawei.chien@mediatek.com>
+ * Louis Yu <louis.yu@mediatek.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/nvmem-consumer.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/io.h>
+#include <linux/thermal.h>
+#include <linux/reset.h>
+#include <linux/types.h>
+
+#include "../thermal_hwmon.h"
+
+/* AUXADC Registers */
+#define AUXADC_CON1_SET_V 0x008
+#define AUXADC_CON1_CLR_V 0x00c
+#define AUXADC_CON2_V 0x010
+#define AUXADC_DATA(channel) (0x14 + (channel) * 4)
+
+#define APMIXED_SYS_TS_CON0 0x600
+#define APMIXED_SYS_TS_CON1 0x604
+
+/* Thermal Controller Registers */
+#define TEMP_MONCTL0 0x000
+#define TEMP_MONCTL1 0x004
+#define TEMP_MONCTL2 0x008
+#define TEMP_MONIDET0 0x014
+#define TEMP_MONIDET1 0x018
+#define TEMP_MSRCTL0 0x038
+#define TEMP_MSRCTL1 0x03c
+#define TEMP_AHBPOLL 0x040
+#define TEMP_AHBTO 0x044
+#define TEMP_ADCPNP0 0x048
+#define TEMP_ADCPNP1 0x04c
+#define TEMP_ADCPNP2 0x050
+#define TEMP_ADCPNP3 0x0b4
+
+#define TEMP_ADCMUX 0x054
+#define TEMP_ADCEN 0x060
+#define TEMP_PNPMUXADDR 0x064
+#define TEMP_ADCMUXADDR 0x068
+#define TEMP_ADCENADDR 0x074
+#define TEMP_ADCVALIDADDR 0x078
+#define TEMP_ADCVOLTADDR 0x07c
+#define TEMP_RDCTRL 0x080
+#define TEMP_ADCVALIDMASK 0x084
+#define TEMP_ADCVOLTAGESHIFT 0x088
+#define TEMP_ADCWRITECTRL 0x08c
+#define TEMP_MSR0 0x090
+#define TEMP_MSR1 0x094
+#define TEMP_MSR2 0x098
+#define TEMP_MSR3 0x0B8
+
+#define TEMP_SPARE0 0x0f0
+
+#define TEMP_ADCPNP0_1 0x148
+#define TEMP_ADCPNP1_1 0x14c
+#define TEMP_ADCPNP2_1 0x150
+#define TEMP_MSR0_1 0x190
+#define TEMP_MSR1_1 0x194
+#define TEMP_MSR2_1 0x198
+#define TEMP_ADCPNP3_1 0x1b4
+#define TEMP_MSR3_1 0x1B8
+
+#define PTPCORESEL 0x400
+
+#define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff)
+
+#define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16)
+#define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff)
+
+#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x)
+
+#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0)
+#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1)
+
+#define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5)
+#define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit)
+
+/* MT8173 thermal sensors */
+#define MT8173_TS1 0
+#define MT8173_TS2 1
+#define MT8173_TS3 2
+#define MT8173_TS4 3
+#define MT8173_TSABB 4
+
+/* AUXADC channel 11 is used for the temperature sensors */
+#define MT8173_TEMP_AUXADC_CHANNEL 11
+
+/* The total number of temperature sensors in the MT8173 */
+#define MT8173_NUM_SENSORS 5
+
+/* The number of banks in the MT8173 */
+#define MT8173_NUM_ZONES 4
+
+/* The number of sensing points per bank */
+#define MT8173_NUM_SENSORS_PER_ZONE 4
+
+/* The number of controller in the MT8173 */
+#define MT8173_NUM_CONTROLLER 1
+
+/* The calibration coefficient of sensor */
+#define MT8173_CALIBRATION 165
+
+/* Valid temperatures range */
+#define MT8173_TEMP_MIN -20000
+#define MT8173_TEMP_MAX 150000
+
+/*
+ * Layout of the fuses providing the calibration data
+ * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
+ * MT8183 has 6 sensors and needs 6 VTS calibration data.
+ * MT8173 has 5 sensors and needs 5 VTS calibration data.
+ * MT2701 has 3 sensors and needs 3 VTS calibration data.
+ * MT2712 has 4 sensors and needs 4 VTS calibration data.
+ */
+#define CALIB_BUF0_VALID_V1 BIT(0)
+#define CALIB_BUF1_ADC_GE_V1(x) (((x) >> 22) & 0x3ff)
+#define CALIB_BUF0_VTS_TS1_V1(x) (((x) >> 17) & 0x1ff)
+#define CALIB_BUF0_VTS_TS2_V1(x) (((x) >> 8) & 0x1ff)
+#define CALIB_BUF1_VTS_TS3_V1(x) (((x) >> 0) & 0x1ff)
+#define CALIB_BUF2_VTS_TS4_V1(x) (((x) >> 23) & 0x1ff)
+#define CALIB_BUF2_VTS_TS5_V1(x) (((x) >> 5) & 0x1ff)
+#define CALIB_BUF2_VTS_TSABB_V1(x) (((x) >> 14) & 0x1ff)
+#define CALIB_BUF0_DEGC_CALI_V1(x) (((x) >> 1) & 0x3f)
+#define CALIB_BUF0_O_SLOPE_V1(x) (((x) >> 26) & 0x3f)
+#define CALIB_BUF0_O_SLOPE_SIGN_V1(x) (((x) >> 7) & 0x1)
+#define CALIB_BUF1_ID_V1(x) (((x) >> 9) & 0x1)
+
+/*
+ * Layout of the fuses providing the calibration data
+ * These macros could be used for MT7622.
+ */
+#define CALIB_BUF0_ADC_OE_V2(x) (((x) >> 22) & 0x3ff)
+#define CALIB_BUF0_ADC_GE_V2(x) (((x) >> 12) & 0x3ff)
+#define CALIB_BUF0_DEGC_CALI_V2(x) (((x) >> 6) & 0x3f)
+#define CALIB_BUF0_O_SLOPE_V2(x) (((x) >> 0) & 0x3f)
+#define CALIB_BUF1_VTS_TS1_V2(x) (((x) >> 23) & 0x1ff)
+#define CALIB_BUF1_VTS_TS2_V2(x) (((x) >> 14) & 0x1ff)
+#define CALIB_BUF1_VTS_TSABB_V2(x) (((x) >> 5) & 0x1ff)
+#define CALIB_BUF1_VALID_V2(x) (((x) >> 4) & 0x1)
+#define CALIB_BUF1_O_SLOPE_SIGN_V2(x) (((x) >> 3) & 0x1)
+
+/*
+ * Layout of the fuses providing the calibration data
+ * These macros can be used for MT7981 and MT7986.
+ */
+#define CALIB_BUF0_ADC_GE_V3(x) (((x) >> 0) & 0x3ff)
+#define CALIB_BUF0_DEGC_CALI_V3(x) (((x) >> 20) & 0x3f)
+#define CALIB_BUF0_O_SLOPE_V3(x) (((x) >> 26) & 0x3f)
+#define CALIB_BUF1_VTS_TS1_V3(x) (((x) >> 0) & 0x1ff)
+#define CALIB_BUF1_VTS_TS2_V3(x) (((x) >> 21) & 0x1ff)
+#define CALIB_BUF1_VTS_TSABB_V3(x) (((x) >> 9) & 0x1ff)
+#define CALIB_BUF1_VALID_V3(x) (((x) >> 18) & 0x1)
+#define CALIB_BUF1_O_SLOPE_SIGN_V3(x) (((x) >> 19) & 0x1)
+#define CALIB_BUF1_ID_V3(x) (((x) >> 20) & 0x1)
+
+enum {
+ VTS1,
+ VTS2,
+ VTS3,
+ VTS4,
+ VTS5,
+ VTSABB,
+ MAX_NUM_VTS,
+};
+
+enum mtk_thermal_version {
+ MTK_THERMAL_V1 = 1,
+ MTK_THERMAL_V2,
+ MTK_THERMAL_V3,
+};
+
+/* MT2701 thermal sensors */
+#define MT2701_TS1 0
+#define MT2701_TS2 1
+#define MT2701_TSABB 2
+
+/* AUXADC channel 11 is used for the temperature sensors */
+#define MT2701_TEMP_AUXADC_CHANNEL 11
+
+/* The total number of temperature sensors in the MT2701 */
+#define MT2701_NUM_SENSORS 3
+
+/* The number of sensing points per bank */
+#define MT2701_NUM_SENSORS_PER_ZONE 3
+
+/* The number of controller in the MT2701 */
+#define MT2701_NUM_CONTROLLER 1
+
+/* The calibration coefficient of sensor */
+#define MT2701_CALIBRATION 165
+
+/* MT2712 thermal sensors */
+#define MT2712_TS1 0
+#define MT2712_TS2 1
+#define MT2712_TS3 2
+#define MT2712_TS4 3
+
+/* AUXADC channel 11 is used for the temperature sensors */
+#define MT2712_TEMP_AUXADC_CHANNEL 11
+
+/* The total number of temperature sensors in the MT2712 */
+#define MT2712_NUM_SENSORS 4
+
+/* The number of sensing points per bank */
+#define MT2712_NUM_SENSORS_PER_ZONE 4
+
+/* The number of controller in the MT2712 */
+#define MT2712_NUM_CONTROLLER 1
+
+/* The calibration coefficient of sensor */
+#define MT2712_CALIBRATION 165
+
+#define MT7622_TEMP_AUXADC_CHANNEL 11
+#define MT7622_NUM_SENSORS 1
+#define MT7622_NUM_ZONES 1
+#define MT7622_NUM_SENSORS_PER_ZONE 1
+#define MT7622_TS1 0
+#define MT7622_NUM_CONTROLLER 1
+
+/* The maximum number of banks */
+#define MAX_NUM_ZONES 8
+
+/* The calibration coefficient of sensor */
+#define MT7622_CALIBRATION 165
+
+/* MT8183 thermal sensors */
+#define MT8183_TS1 0
+#define MT8183_TS2 1
+#define MT8183_TS3 2
+#define MT8183_TS4 3
+#define MT8183_TS5 4
+#define MT8183_TSABB 5
+
+/* AUXADC channel is used for the temperature sensors */
+#define MT8183_TEMP_AUXADC_CHANNEL 11
+
+/* The total number of temperature sensors in the MT8183 */
+#define MT8183_NUM_SENSORS 6
+
+/* The number of banks in the MT8183 */
+#define MT8183_NUM_ZONES 1
+
+/* The number of sensing points per bank */
+#define MT8183_NUM_SENSORS_PER_ZONE 6
+
+/* The number of controller in the MT8183 */
+#define MT8183_NUM_CONTROLLER 2
+
+/* The calibration coefficient of sensor */
+#define MT8183_CALIBRATION 153
+
+/* AUXADC channel 11 is used for the temperature sensors */
+#define MT7986_TEMP_AUXADC_CHANNEL 11
+
+/* The total number of temperature sensors in the MT7986 */
+#define MT7986_NUM_SENSORS 1
+
+/* The number of banks in the MT7986 */
+#define MT7986_NUM_ZONES 1
+
+/* The number of sensing points per bank */
+#define MT7986_NUM_SENSORS_PER_ZONE 1
+
+/* MT7986 thermal sensors */
+#define MT7986_TS1 0
+
+/* The number of controller in the MT7986 */
+#define MT7986_NUM_CONTROLLER 1
+
+/* The calibration coefficient of sensor */
+#define MT7986_CALIBRATION 165
+
+/* MT8365 */
+#define MT8365_TEMP_AUXADC_CHANNEL 11
+#define MT8365_CALIBRATION 164
+#define MT8365_NUM_CONTROLLER 1
+#define MT8365_NUM_BANKS 1
+#define MT8365_NUM_SENSORS 3
+#define MT8365_NUM_SENSORS_PER_ZONE 3
+#define MT8365_TS1 0
+#define MT8365_TS2 1
+#define MT8365_TS3 2
+
+struct mtk_thermal;
+
+struct thermal_bank_cfg {
+ unsigned int num_sensors;
+ const int *sensors;
+};
+
+struct mtk_thermal_bank {
+ struct mtk_thermal *mt;
+ int id;
+};
+
+struct mtk_thermal_data {
+ s32 num_banks;
+ s32 num_sensors;
+ s32 auxadc_channel;
+ const int *vts_index;
+ const int *sensor_mux_values;
+ const int *msr;
+ const int *adcpnp;
+ const int cali_val;
+ const int num_controller;
+ const int *controller_offset;
+ bool need_switch_bank;
+ struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
+ enum mtk_thermal_version version;
+ u32 apmixed_buffer_ctl_reg;
+ u32 apmixed_buffer_ctl_mask;
+ u32 apmixed_buffer_ctl_set;
+};
+
+struct mtk_thermal {
+ struct device *dev;
+ void __iomem *thermal_base;
+
+ struct clk *clk_peri_therm;
+ struct clk *clk_auxadc;
+ /* lock: for getting and putting banks */
+ struct mutex lock;
+
+ /* Calibration values */
+ s32 adc_ge;
+ s32 adc_oe;
+ s32 degc_cali;
+ s32 o_slope;
+ s32 o_slope_sign;
+ s32 vts[MAX_NUM_VTS];
+
+ const struct mtk_thermal_data *conf;
+ struct mtk_thermal_bank banks[MAX_NUM_ZONES];
+
+ int (*raw_to_mcelsius)(struct mtk_thermal *mt, int sensno, s32 raw);
+};
+
+/* MT8183 thermal sensor data */
+static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
+ MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
+};
+
+static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
+ TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
+};
+
+static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
+ TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
+ TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
+};
+
+static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
+static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
+
+static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
+ VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
+};
+
+/* MT8173 thermal sensor data */
+static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
+ { MT8173_TS2, MT8173_TS3 },
+ { MT8173_TS2, MT8173_TS4 },
+ { MT8173_TS1, MT8173_TS2, MT8173_TSABB },
+ { MT8173_TS2 },
+};
+
+static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
+ TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
+};
+
+static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
+ TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
+};
+
+static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
+static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
+
+static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
+ VTS1, VTS2, VTS3, VTS4, VTSABB
+};
+
+/* MT2701 thermal sensor data */
+static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
+ MT2701_TS1, MT2701_TS2, MT2701_TSABB
+};
+
+static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
+ TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
+};
+
+static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
+ TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
+};
+
+static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
+static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
+
+static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
+ VTS1, VTS2, VTS3
+};
+
+/* MT2712 thermal sensor data */
+static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
+ MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
+};
+
+static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
+ TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
+};
+
+static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
+ TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
+};
+
+static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
+static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
+
+static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
+ VTS1, VTS2, VTS3, VTS4
+};
+
+/* MT7622 thermal sensor data */
+static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
+static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
+static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
+static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
+static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
+static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
+
+/* MT7986 thermal sensor data */
+static const int mt7986_bank_data[MT7986_NUM_SENSORS] = { MT7986_TS1, };
+static const int mt7986_msr[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
+static const int mt7986_adcpnp[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
+static const int mt7986_mux_values[MT7986_NUM_SENSORS] = { 0, };
+static const int mt7986_vts_index[MT7986_NUM_SENSORS] = { VTS1 };
+static const int mt7986_tc_offset[MT7986_NUM_CONTROLLER] = { 0x0, };
+
+/* MT8365 thermal sensor data */
+static const int mt8365_bank_data[MT8365_NUM_SENSORS] = {
+ MT8365_TS1, MT8365_TS2, MT8365_TS3
+};
+
+static const int mt8365_msr[MT8365_NUM_SENSORS_PER_ZONE] = {
+ TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
+};
+
+static const int mt8365_adcpnp[MT8365_NUM_SENSORS_PER_ZONE] = {
+ TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
+};
+
+static const int mt8365_mux_values[MT8365_NUM_SENSORS] = { 0, 1, 2 };
+static const int mt8365_tc_offset[MT8365_NUM_CONTROLLER] = { 0 };
+
+static const int mt8365_vts_index[MT8365_NUM_SENSORS] = { VTS1, VTS2, VTS3 };
+
+/*
+ * The MT8173 thermal controller has four banks. Each bank can read up to
+ * four temperature sensors simultaneously. The MT8173 has a total of 5
+ * temperature sensors. We use each bank to measure a certain area of the
+ * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
+ * areas, hence is used in different banks.
+ *
+ * The thermal core only gets the maximum temperature of all banks, so
+ * the bank concept wouldn't be necessary here. However, the SVS (Smart
+ * Voltage Scaling) unit makes its decisions based on the same bank
+ * data, and this indeed needs the temperatures of the individual banks
+ * for making better decisions.
+ */
+static const struct mtk_thermal_data mt8173_thermal_data = {
+ .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
+ .num_banks = MT8173_NUM_ZONES,
+ .num_sensors = MT8173_NUM_SENSORS,
+ .vts_index = mt8173_vts_index,
+ .cali_val = MT8173_CALIBRATION,
+ .num_controller = MT8173_NUM_CONTROLLER,
+ .controller_offset = mt8173_tc_offset,
+ .need_switch_bank = true,
+ .bank_data = {
+ {
+ .num_sensors = 2,
+ .sensors = mt8173_bank_data[0],
+ }, {
+ .num_sensors = 2,
+ .sensors = mt8173_bank_data[1],
+ }, {
+ .num_sensors = 3,
+ .sensors = mt8173_bank_data[2],
+ }, {
+ .num_sensors = 1,
+ .sensors = mt8173_bank_data[3],
+ },
+ },
+ .msr = mt8173_msr,
+ .adcpnp = mt8173_adcpnp,
+ .sensor_mux_values = mt8173_mux_values,
+ .version = MTK_THERMAL_V1,
+};
+
+/*
+ * The MT2701 thermal controller has one bank, which can read up to
+ * three temperature sensors simultaneously. The MT2701 has a total of 3
+ * temperature sensors.
+ *
+ * The thermal core only gets the maximum temperature of this one bank,
+ * so the bank concept wouldn't be necessary here. However, the SVS (Smart
+ * Voltage Scaling) unit makes its decisions based on the same bank
+ * data.
+ */
+static const struct mtk_thermal_data mt2701_thermal_data = {
+ .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
+ .num_banks = 1,
+ .num_sensors = MT2701_NUM_SENSORS,
+ .vts_index = mt2701_vts_index,
+ .cali_val = MT2701_CALIBRATION,
+ .num_controller = MT2701_NUM_CONTROLLER,
+ .controller_offset = mt2701_tc_offset,
+ .need_switch_bank = true,
+ .bank_data = {
+ {
+ .num_sensors = 3,
+ .sensors = mt2701_bank_data,
+ },
+ },
+ .msr = mt2701_msr,
+ .adcpnp = mt2701_adcpnp,
+ .sensor_mux_values = mt2701_mux_values,
+ .version = MTK_THERMAL_V1,
+};
+
+/*
+ * The MT8365 thermal controller has one bank, which can read up to
+ * four temperature sensors simultaneously. The MT8365 has a total of 3
+ * temperature sensors.
+ *
+ * The thermal core only gets the maximum temperature of this one bank,
+ * so the bank concept wouldn't be necessary here. However, the SVS (Smart
+ * Voltage Scaling) unit makes its decisions based on the same bank
+ * data.
+ */
+static const struct mtk_thermal_data mt8365_thermal_data = {
+ .auxadc_channel = MT8365_TEMP_AUXADC_CHANNEL,
+ .num_banks = MT8365_NUM_BANKS,
+ .num_sensors = MT8365_NUM_SENSORS,
+ .vts_index = mt8365_vts_index,
+ .cali_val = MT8365_CALIBRATION,
+ .num_controller = MT8365_NUM_CONTROLLER,
+ .controller_offset = mt8365_tc_offset,
+ .need_switch_bank = false,
+ .bank_data = {
+ {
+ .num_sensors = MT8365_NUM_SENSORS,
+ .sensors = mt8365_bank_data
+ },
+ },
+ .msr = mt8365_msr,
+ .adcpnp = mt8365_adcpnp,
+ .sensor_mux_values = mt8365_mux_values,
+ .version = MTK_THERMAL_V1,
+ .apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON0,
+ .apmixed_buffer_ctl_mask = (u32) ~GENMASK(29, 28),
+ .apmixed_buffer_ctl_set = 0,
+};
+
+/*
+ * The MT2712 thermal controller has one bank, which can read up to
+ * four temperature sensors simultaneously. The MT2712 has a total of 4
+ * temperature sensors.
+ *
+ * The thermal core only gets the maximum temperature of this one bank,
+ * so the bank concept wouldn't be necessary here. However, the SVS (Smart
+ * Voltage Scaling) unit makes its decisions based on the same bank
+ * data.
+ */
+static const struct mtk_thermal_data mt2712_thermal_data = {
+ .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
+ .num_banks = 1,
+ .num_sensors = MT2712_NUM_SENSORS,
+ .vts_index = mt2712_vts_index,
+ .cali_val = MT2712_CALIBRATION,
+ .num_controller = MT2712_NUM_CONTROLLER,
+ .controller_offset = mt2712_tc_offset,
+ .need_switch_bank = true,
+ .bank_data = {
+ {
+ .num_sensors = 4,
+ .sensors = mt2712_bank_data,
+ },
+ },
+ .msr = mt2712_msr,
+ .adcpnp = mt2712_adcpnp,
+ .sensor_mux_values = mt2712_mux_values,
+ .version = MTK_THERMAL_V1,
+};
+
+/*
+ * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
+ * access.
+ */
+static const struct mtk_thermal_data mt7622_thermal_data = {
+ .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
+ .num_banks = MT7622_NUM_ZONES,
+ .num_sensors = MT7622_NUM_SENSORS,
+ .vts_index = mt7622_vts_index,
+ .cali_val = MT7622_CALIBRATION,
+ .num_controller = MT7622_NUM_CONTROLLER,
+ .controller_offset = mt7622_tc_offset,
+ .need_switch_bank = true,
+ .bank_data = {
+ {
+ .num_sensors = 1,
+ .sensors = mt7622_bank_data,
+ },
+ },
+ .msr = mt7622_msr,
+ .adcpnp = mt7622_adcpnp,
+ .sensor_mux_values = mt7622_mux_values,
+ .version = MTK_THERMAL_V2,
+ .apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON1,
+ .apmixed_buffer_ctl_mask = GENMASK(31, 6) | BIT(3),
+ .apmixed_buffer_ctl_set = BIT(0),
+};
+
+/*
+ * The MT8183 thermal controller has one bank for the current SW framework.
+ * The MT8183 has a total of 6 temperature sensors.
+ * There are two thermal controller to control the six sensor.
+ * The first one bind 2 sensor, and the other bind 4 sensors.
+ * The thermal core only gets the maximum temperature of all sensor, so
+ * the bank concept wouldn't be necessary here. However, the SVS (Smart
+ * Voltage Scaling) unit makes its decisions based on the same bank
+ * data, and this indeed needs the temperatures of the individual banks
+ * for making better decisions.
+ */
+static const struct mtk_thermal_data mt8183_thermal_data = {
+ .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
+ .num_banks = MT8183_NUM_ZONES,
+ .num_sensors = MT8183_NUM_SENSORS,
+ .vts_index = mt8183_vts_index,
+ .cali_val = MT8183_CALIBRATION,
+ .num_controller = MT8183_NUM_CONTROLLER,
+ .controller_offset = mt8183_tc_offset,
+ .need_switch_bank = false,
+ .bank_data = {
+ {
+ .num_sensors = 6,
+ .sensors = mt8183_bank_data,
+ },
+ },
+
+ .msr = mt8183_msr,
+ .adcpnp = mt8183_adcpnp,
+ .sensor_mux_values = mt8183_mux_values,
+ .version = MTK_THERMAL_V1,
+};
+
+/*
+ * MT7986 uses AUXADC Channel 11 for raw data access.
+ */
+static const struct mtk_thermal_data mt7986_thermal_data = {
+ .auxadc_channel = MT7986_TEMP_AUXADC_CHANNEL,
+ .num_banks = MT7986_NUM_ZONES,
+ .num_sensors = MT7986_NUM_SENSORS,
+ .vts_index = mt7986_vts_index,
+ .cali_val = MT7986_CALIBRATION,
+ .num_controller = MT7986_NUM_CONTROLLER,
+ .controller_offset = mt7986_tc_offset,
+ .need_switch_bank = true,
+ .bank_data = {
+ {
+ .num_sensors = 1,
+ .sensors = mt7986_bank_data,
+ },
+ },
+ .msr = mt7986_msr,
+ .adcpnp = mt7986_adcpnp,
+ .sensor_mux_values = mt7986_mux_values,
+ .version = MTK_THERMAL_V3,
+};
+
+static bool mtk_thermal_temp_is_valid(int temp)
+{
+ return (temp >= MT8173_TEMP_MIN) && (temp <= MT8173_TEMP_MAX);
+}
+
+/**
+ * raw_to_mcelsius_v1 - convert a raw ADC value to mcelsius
+ * @mt: The thermal controller
+ * @sensno: sensor number
+ * @raw: raw ADC value
+ *
+ * This converts the raw ADC value to mcelsius using the SoC specific
+ * calibration constants
+ */
+static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
+{
+ s32 tmp;
+
+ raw &= 0xfff;
+
+ tmp = 203450520 << 3;
+ tmp /= mt->conf->cali_val + mt->o_slope;
+ tmp /= 10000 + mt->adc_ge;
+ tmp *= raw - mt->vts[sensno] - 3350;
+ tmp >>= 3;
+
+ return mt->degc_cali * 500 - tmp;
+}
+
+static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
+{
+ s32 format_1;
+ s32 format_2;
+ s32 g_oe;
+ s32 g_gain;
+ s32 g_x_roomt;
+ s32 tmp;
+
+ if (raw == 0)
+ return 0;
+
+ raw &= 0xfff;
+ g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
+ g_oe = mt->adc_oe - 512;
+ format_1 = mt->vts[VTS2] + 3105 - g_oe;
+ format_2 = (mt->degc_cali * 10) >> 1;
+ g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
+
+ tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
+ tmp = tmp * 10 * 100 / 11;
+
+ if (mt->o_slope_sign == 0)
+ tmp = tmp / (165 - mt->o_slope);
+ else
+ tmp = tmp / (165 + mt->o_slope);
+
+ return (format_2 - tmp) * 100;
+}
+
+static int raw_to_mcelsius_v3(struct mtk_thermal *mt, int sensno, s32 raw)
+{
+ s32 tmp;
+
+ if (raw == 0)
+ return 0;
+
+ raw &= 0xfff;
+ tmp = 100000 * 15 / 16 * 10000;
+ tmp /= 4096 - 512 + mt->adc_ge;
+ tmp /= 1490;
+ tmp *= raw - mt->vts[sensno] - 2900;
+
+ return mt->degc_cali * 500 - tmp;
+}
+
+/**
+ * mtk_thermal_get_bank - get bank
+ * @bank: The bank
+ *
+ * The bank registers are banked, we have to select a bank in the
+ * PTPCORESEL register to access it.
+ */
+static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
+{
+ struct mtk_thermal *mt = bank->mt;
+ u32 val;
+
+ if (mt->conf->need_switch_bank) {
+ mutex_lock(&mt->lock);
+
+ val = readl(mt->thermal_base + PTPCORESEL);
+ val &= ~0xf;
+ val |= bank->id;
+ writel(val, mt->thermal_base + PTPCORESEL);
+ }
+}
+
+/**
+ * mtk_thermal_put_bank - release bank
+ * @bank: The bank
+ *
+ * release a bank previously taken with mtk_thermal_get_bank,
+ */
+static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
+{
+ struct mtk_thermal *mt = bank->mt;
+
+ if (mt->conf->need_switch_bank)
+ mutex_unlock(&mt->lock);
+}
+
+/**
+ * mtk_thermal_bank_temperature - get the temperature of a bank
+ * @bank: The bank
+ *
+ * The temperature of a bank is considered the maximum temperature of
+ * the sensors associated to the bank.
+ */
+static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
+{
+ struct mtk_thermal *mt = bank->mt;
+ const struct mtk_thermal_data *conf = mt->conf;
+ int i, temp = INT_MIN, max = INT_MIN;
+ u32 raw;
+
+ for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
+ raw = readl(mt->thermal_base + conf->msr[i]);
+
+ temp = mt->raw_to_mcelsius(
+ mt, conf->bank_data[bank->id].sensors[i], raw);
+
+ /*
+ * Depending on the filt/sen intervals and ADC polling time,
+ * we may need up to 60 milliseconds after initialization: this
+ * will result in the first reading containing an out of range
+ * temperature value.
+ * Validate the reading to both address the aforementioned issue
+ * and to eventually avoid bogus readings during runtime in the
+ * event that the AUXADC gets unstable due to high EMI, etc.
+ */
+ if (!mtk_thermal_temp_is_valid(temp))
+ temp = THERMAL_TEMP_INVALID;
+
+ if (temp > max)
+ max = temp;
+ }
+
+ return max;
+}
+
+static int mtk_read_temp(struct thermal_zone_device *tz, int *temperature)
+{
+ struct mtk_thermal *mt = thermal_zone_device_priv(tz);
+ int i;
+ int tempmax = INT_MIN;
+
+ for (i = 0; i < mt->conf->num_banks; i++) {
+ struct mtk_thermal_bank *bank = &mt->banks[i];
+
+ mtk_thermal_get_bank(bank);
+
+ tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
+
+ mtk_thermal_put_bank(bank);
+ }
+
+ *temperature = tempmax;
+
+ return 0;
+}
+
+static const struct thermal_zone_device_ops mtk_thermal_ops = {
+ .get_temp = mtk_read_temp,
+};
+
+static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
+ u32 apmixed_phys_base, u32 auxadc_phys_base,
+ int ctrl_id)
+{
+ struct mtk_thermal_bank *bank = &mt->banks[num];
+ const struct mtk_thermal_data *conf = mt->conf;
+ int i;
+
+ int offset = mt->conf->controller_offset[ctrl_id];
+ void __iomem *controller_base = mt->thermal_base + offset;
+
+ bank->id = num;
+ bank->mt = mt;
+
+ mtk_thermal_get_bank(bank);
+
+ /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
+ writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
+
+ /*
+ * filt interval is 1 * 46.540us = 46.54us,
+ * sen interval is 429 * 46.540us = 19.96ms
+ */
+ writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
+ TEMP_MONCTL2_SENSOR_INTERVAL(429),
+ controller_base + TEMP_MONCTL2);
+
+ /* poll is set to 10u */
+ writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
+ controller_base + TEMP_AHBPOLL);
+
+ /* temperature sampling control, 1 sample */
+ writel(0x0, controller_base + TEMP_MSRCTL0);
+
+ /* exceed this polling time, IRQ would be inserted */
+ writel(0xffffffff, controller_base + TEMP_AHBTO);
+
+ /* number of interrupts per event, 1 is enough */
+ writel(0x0, controller_base + TEMP_MONIDET0);
+ writel(0x0, controller_base + TEMP_MONIDET1);
+
+ /*
+ * The MT8173 thermal controller does not have its own ADC. Instead it
+ * uses AHB bus accesses to control the AUXADC. To do this the thermal
+ * controller has to be programmed with the physical addresses of the
+ * AUXADC registers and with the various bit positions in the AUXADC.
+ * Also the thermal controller controls a mux in the APMIXEDSYS register
+ * space.
+ */
+
+ /*
+ * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
+ * automatically by hw
+ */
+ writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
+
+ /* AHB address for auxadc mux selection */
+ writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
+ controller_base + TEMP_ADCMUXADDR);
+
+ if (mt->conf->version == MTK_THERMAL_V1) {
+ /* AHB address for pnp sensor mux selection */
+ writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
+ controller_base + TEMP_PNPMUXADDR);
+ }
+
+ /* AHB value for auxadc enable */
+ writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
+
+ /* AHB address for auxadc enable (channel 0 immediate mode selected) */
+ writel(auxadc_phys_base + AUXADC_CON1_SET_V,
+ controller_base + TEMP_ADCENADDR);
+
+ /* AHB address for auxadc valid bit */
+ writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
+ controller_base + TEMP_ADCVALIDADDR);
+
+ /* AHB address for auxadc voltage output */
+ writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
+ controller_base + TEMP_ADCVOLTADDR);
+
+ /* read valid & voltage are at the same register */
+ writel(0x0, controller_base + TEMP_RDCTRL);
+
+ /* indicate where the valid bit is */
+ writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
+ controller_base + TEMP_ADCVALIDMASK);
+
+ /* no shift */
+ writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
+
+ /* enable auxadc mux write transaction */
+ writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
+ controller_base + TEMP_ADCWRITECTRL);
+
+ for (i = 0; i < conf->bank_data[num].num_sensors; i++)
+ writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
+ mt->thermal_base + conf->adcpnp[i]);
+
+ writel((1 << conf->bank_data[num].num_sensors) - 1,
+ controller_base + TEMP_MONCTL0);
+
+ writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
+ TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
+ controller_base + TEMP_ADCWRITECTRL);
+
+ mtk_thermal_put_bank(bank);
+}
+
+static u64 of_get_phys_base(struct device_node *np)
+{
+ struct resource res;
+
+ if (of_address_to_resource(np, 0, &res))
+ return OF_BAD_ADDR;
+
+ return res.start;
+}
+
+static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
+{
+ int i;
+
+ if (!(buf[0] & CALIB_BUF0_VALID_V1))
+ return -EINVAL;
+
+ mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
+
+ for (i = 0; i < mt->conf->num_sensors; i++) {
+ switch (mt->conf->vts_index[i]) {
+ case VTS1:
+ mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
+ break;
+ case VTS2:
+ mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
+ break;
+ case VTS3:
+ mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
+ break;
+ case VTS4:
+ mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
+ break;
+ case VTS5:
+ mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
+ break;
+ case VTSABB:
+ mt->vts[VTSABB] =
+ CALIB_BUF2_VTS_TSABB_V1(buf[2]);
+ break;
+ default:
+ break;
+ }
+ }
+
+ mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
+ if (CALIB_BUF1_ID_V1(buf[1]) &
+ CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
+ mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
+ else
+ mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
+
+ return 0;
+}
+
+static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
+{
+ if (!CALIB_BUF1_VALID_V2(buf[1]))
+ return -EINVAL;
+
+ mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
+ mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
+ mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
+ mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
+ mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
+ mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
+ mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
+ mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
+
+ return 0;
+}
+
+static int mtk_thermal_extract_efuse_v3(struct mtk_thermal *mt, u32 *buf)
+{
+ if (!CALIB_BUF1_VALID_V3(buf[1]))
+ return -EINVAL;
+
+ mt->adc_ge = CALIB_BUF0_ADC_GE_V3(buf[0]);
+ mt->degc_cali = CALIB_BUF0_DEGC_CALI_V3(buf[0]);
+ mt->o_slope = CALIB_BUF0_O_SLOPE_V3(buf[0]);
+ mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V3(buf[1]);
+ mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V3(buf[1]);
+ mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V3(buf[1]);
+ mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V3(buf[1]);
+
+ if (CALIB_BUF1_ID_V3(buf[1]) == 0)
+ mt->o_slope = 0;
+
+ return 0;
+}
+
+static int mtk_thermal_get_calibration_data(struct device *dev,
+ struct mtk_thermal *mt)
+{
+ struct nvmem_cell *cell;
+ u32 *buf;
+ size_t len;
+ int i, ret = 0;
+
+ /* Start with default values */
+ mt->adc_ge = 512;
+ mt->adc_oe = 512;
+ for (i = 0; i < mt->conf->num_sensors; i++)
+ mt->vts[i] = 260;
+ mt->degc_cali = 40;
+ mt->o_slope = 0;
+
+ cell = nvmem_cell_get(dev, "calibration-data");
+ if (IS_ERR(cell)) {
+ if (PTR_ERR(cell) == -EPROBE_DEFER)
+ return PTR_ERR(cell);
+ return 0;
+ }
+
+ buf = (u32 *)nvmem_cell_read(cell, &len);
+
+ nvmem_cell_put(cell);
+
+ if (IS_ERR(buf))
+ return PTR_ERR(buf);
+
+ if (len < 3 * sizeof(u32)) {
+ dev_warn(dev, "invalid calibration data\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ switch (mt->conf->version) {
+ case MTK_THERMAL_V1:
+ ret = mtk_thermal_extract_efuse_v1(mt, buf);
+ break;
+ case MTK_THERMAL_V2:
+ ret = mtk_thermal_extract_efuse_v2(mt, buf);
+ break;
+ case MTK_THERMAL_V3:
+ ret = mtk_thermal_extract_efuse_v3(mt, buf);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ if (ret) {
+ dev_info(dev, "Device not calibrated, using default calibration values\n");
+ ret = 0;
+ }
+
+out:
+ kfree(buf);
+
+ return ret;
+}
+
+static const struct of_device_id mtk_thermal_of_match[] = {
+ {
+ .compatible = "mediatek,mt8173-thermal",
+ .data = (void *)&mt8173_thermal_data,
+ },
+ {
+ .compatible = "mediatek,mt2701-thermal",
+ .data = (void *)&mt2701_thermal_data,
+ },
+ {
+ .compatible = "mediatek,mt2712-thermal",
+ .data = (void *)&mt2712_thermal_data,
+ },
+ {
+ .compatible = "mediatek,mt7622-thermal",
+ .data = (void *)&mt7622_thermal_data,
+ },
+ {
+ .compatible = "mediatek,mt7986-thermal",
+ .data = (void *)&mt7986_thermal_data,
+ },
+ {
+ .compatible = "mediatek,mt8183-thermal",
+ .data = (void *)&mt8183_thermal_data,
+ },
+ {
+ .compatible = "mediatek,mt8365-thermal",
+ .data = (void *)&mt8365_thermal_data,
+ }, {
+ },
+};
+MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
+
+static void mtk_thermal_turn_on_buffer(struct mtk_thermal *mt,
+ void __iomem *apmixed_base)
+{
+ u32 tmp;
+
+ if (!mt->conf->apmixed_buffer_ctl_reg)
+ return;
+
+ tmp = readl(apmixed_base + mt->conf->apmixed_buffer_ctl_reg);
+ tmp &= mt->conf->apmixed_buffer_ctl_mask;
+ tmp |= mt->conf->apmixed_buffer_ctl_set;
+ writel(tmp, apmixed_base + mt->conf->apmixed_buffer_ctl_reg);
+ udelay(200);
+}
+
+static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
+ void __iomem *auxadc_base)
+{
+ int tmp;
+
+ writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
+ writel(0x1, mt->thermal_base + TEMP_MONCTL0);
+ tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
+ writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
+}
+
+static int mtk_thermal_probe(struct platform_device *pdev)
+{
+ int ret, i, ctrl_id;
+ struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
+ struct mtk_thermal *mt;
+ u64 auxadc_phys_base, apmixed_phys_base;
+ struct thermal_zone_device *tzdev;
+ void __iomem *apmixed_base, *auxadc_base;
+
+ mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
+ if (!mt)
+ return -ENOMEM;
+
+ mt->conf = of_device_get_match_data(&pdev->dev);
+
+ mt->thermal_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
+ if (IS_ERR(mt->thermal_base))
+ return PTR_ERR(mt->thermal_base);
+
+ ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
+ if (ret)
+ return ret;
+
+ mutex_init(&mt->lock);
+
+ mt->dev = &pdev->dev;
+
+ auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
+ if (!auxadc) {
+ dev_err(&pdev->dev, "missing auxadc node\n");
+ return -ENODEV;
+ }
+
+ auxadc_base = of_iomap(auxadc, 0);
+ auxadc_phys_base = of_get_phys_base(auxadc);
+
+ of_node_put(auxadc);
+
+ if (auxadc_phys_base == OF_BAD_ADDR) {
+ dev_err(&pdev->dev, "Can't get auxadc phys address\n");
+ return -EINVAL;
+ }
+
+ apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
+ if (!apmixedsys) {
+ dev_err(&pdev->dev, "missing apmixedsys node\n");
+ return -ENODEV;
+ }
+
+ apmixed_base = of_iomap(apmixedsys, 0);
+ apmixed_phys_base = of_get_phys_base(apmixedsys);
+
+ of_node_put(apmixedsys);
+
+ if (apmixed_phys_base == OF_BAD_ADDR) {
+ dev_err(&pdev->dev, "Can't get auxadc phys address\n");
+ return -EINVAL;
+ }
+
+ ret = device_reset_optional(&pdev->dev);
+ if (ret)
+ return ret;
+
+ mt->clk_auxadc = devm_clk_get_enabled(&pdev->dev, "auxadc");
+ if (IS_ERR(mt->clk_auxadc)) {
+ ret = PTR_ERR(mt->clk_auxadc);
+ dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
+ return ret;
+ }
+
+ mt->clk_peri_therm = devm_clk_get_enabled(&pdev->dev, "therm");
+ if (IS_ERR(mt->clk_peri_therm)) {
+ ret = PTR_ERR(mt->clk_peri_therm);
+ dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
+ return ret;
+ }
+
+ mtk_thermal_turn_on_buffer(mt, apmixed_base);
+
+ if (mt->conf->version != MTK_THERMAL_V1)
+ mtk_thermal_release_periodic_ts(mt, auxadc_base);
+
+ if (mt->conf->version == MTK_THERMAL_V1)
+ mt->raw_to_mcelsius = raw_to_mcelsius_v1;
+ else if (mt->conf->version == MTK_THERMAL_V2)
+ mt->raw_to_mcelsius = raw_to_mcelsius_v2;
+ else
+ mt->raw_to_mcelsius = raw_to_mcelsius_v3;
+
+ for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
+ for (i = 0; i < mt->conf->num_banks; i++)
+ mtk_thermal_init_bank(mt, i, apmixed_phys_base,
+ auxadc_phys_base, ctrl_id);
+
+ tzdev = devm_thermal_of_zone_register(&pdev->dev, 0, mt,
+ &mtk_thermal_ops);
+ if (IS_ERR(tzdev))
+ return PTR_ERR(tzdev);
+
+ ret = devm_thermal_add_hwmon_sysfs(&pdev->dev, tzdev);
+ if (ret)
+ dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");
+
+ return 0;
+}
+
+static struct platform_driver mtk_thermal_driver = {
+ .probe = mtk_thermal_probe,
+ .driver = {
+ .name = "mtk-thermal",
+ .of_match_table = mtk_thermal_of_match,
+ },
+};
+
+module_platform_driver(mtk_thermal_driver);
+
+MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
+MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
+MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
+MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
+MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
+MODULE_DESCRIPTION("Mediatek thermal driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/thermal/mediatek/lvts_thermal.c b/drivers/thermal/mediatek/lvts_thermal.c
new file mode 100644
index 0000000000..effd9b00a4
--- /dev/null
+++ b/drivers/thermal/mediatek/lvts_thermal.c
@@ -0,0 +1,1367 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (c) 2023 MediaTek Inc.
+ * Author: Balsam CHIHI <bchihi@baylibre.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/clk-provider.h>
+#include <linux/delay.h>
+#include <linux/debugfs.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/kernel.h>
+#include <linux/nvmem-consumer.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/reset.h>
+#include <linux/thermal.h>
+#include <dt-bindings/thermal/mediatek,lvts-thermal.h>
+
+#include "../thermal_hwmon.h"
+
+#define LVTS_MONCTL0(__base) (__base + 0x0000)
+#define LVTS_MONCTL1(__base) (__base + 0x0004)
+#define LVTS_MONCTL2(__base) (__base + 0x0008)
+#define LVTS_MONINT(__base) (__base + 0x000C)
+#define LVTS_MONINTSTS(__base) (__base + 0x0010)
+#define LVTS_MONIDET0(__base) (__base + 0x0014)
+#define LVTS_MONIDET1(__base) (__base + 0x0018)
+#define LVTS_MONIDET2(__base) (__base + 0x001C)
+#define LVTS_MONIDET3(__base) (__base + 0x0020)
+#define LVTS_H2NTHRE(__base) (__base + 0x0024)
+#define LVTS_HTHRE(__base) (__base + 0x0028)
+#define LVTS_OFFSETH(__base) (__base + 0x0030)
+#define LVTS_OFFSETL(__base) (__base + 0x0034)
+#define LVTS_MSRCTL0(__base) (__base + 0x0038)
+#define LVTS_MSRCTL1(__base) (__base + 0x003C)
+#define LVTS_TSSEL(__base) (__base + 0x0040)
+#define LVTS_CALSCALE(__base) (__base + 0x0048)
+#define LVTS_ID(__base) (__base + 0x004C)
+#define LVTS_CONFIG(__base) (__base + 0x0050)
+#define LVTS_EDATA00(__base) (__base + 0x0054)
+#define LVTS_EDATA01(__base) (__base + 0x0058)
+#define LVTS_EDATA02(__base) (__base + 0x005C)
+#define LVTS_EDATA03(__base) (__base + 0x0060)
+#define LVTS_MSR0(__base) (__base + 0x0090)
+#define LVTS_MSR1(__base) (__base + 0x0094)
+#define LVTS_MSR2(__base) (__base + 0x0098)
+#define LVTS_MSR3(__base) (__base + 0x009C)
+#define LVTS_IMMD0(__base) (__base + 0x00A0)
+#define LVTS_IMMD1(__base) (__base + 0x00A4)
+#define LVTS_IMMD2(__base) (__base + 0x00A8)
+#define LVTS_IMMD3(__base) (__base + 0x00AC)
+#define LVTS_PROTCTL(__base) (__base + 0x00C0)
+#define LVTS_PROTTA(__base) (__base + 0x00C4)
+#define LVTS_PROTTB(__base) (__base + 0x00C8)
+#define LVTS_PROTTC(__base) (__base + 0x00CC)
+#define LVTS_CLKEN(__base) (__base + 0x00E4)
+
+#define LVTS_PERIOD_UNIT 0
+#define LVTS_GROUP_INTERVAL 0
+#define LVTS_FILTER_INTERVAL 0
+#define LVTS_SENSOR_INTERVAL 0
+#define LVTS_HW_FILTER 0x0
+#define LVTS_TSSEL_CONF 0x13121110
+#define LVTS_CALSCALE_CONF 0x300
+#define LVTS_MONINT_CONF 0x8300318C
+
+#define LVTS_MONINT_OFFSET_SENSOR0 0xC
+#define LVTS_MONINT_OFFSET_SENSOR1 0x180
+#define LVTS_MONINT_OFFSET_SENSOR2 0x3000
+#define LVTS_MONINT_OFFSET_SENSOR3 0x3000000
+
+#define LVTS_INT_SENSOR0 0x0009001F
+#define LVTS_INT_SENSOR1 0x001203E0
+#define LVTS_INT_SENSOR2 0x00247C00
+#define LVTS_INT_SENSOR3 0x1FC00000
+
+#define LVTS_SENSOR_MAX 4
+#define LVTS_GOLDEN_TEMP_MAX 62
+#define LVTS_GOLDEN_TEMP_DEFAULT 50
+#define LVTS_COEFF_A -250460
+#define LVTS_COEFF_B 250460
+
+#define LVTS_MSR_IMMEDIATE_MODE 0
+#define LVTS_MSR_FILTERED_MODE 1
+
+#define LVTS_MSR_READ_TIMEOUT_US 400
+#define LVTS_MSR_READ_WAIT_US (LVTS_MSR_READ_TIMEOUT_US / 2)
+
+#define LVTS_HW_SHUTDOWN_MT8195 105000
+
+#define LVTS_MINIMUM_THRESHOLD 20000
+
+static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
+static int coeff_b = LVTS_COEFF_B;
+
+struct lvts_sensor_data {
+ int dt_id;
+};
+
+struct lvts_ctrl_data {
+ struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
+ int cal_offset[LVTS_SENSOR_MAX];
+ int hw_tshut_temp;
+ int num_lvts_sensor;
+ int offset;
+ int mode;
+};
+
+struct lvts_data {
+ const struct lvts_ctrl_data *lvts_ctrl;
+ int num_lvts_ctrl;
+};
+
+struct lvts_sensor {
+ struct thermal_zone_device *tz;
+ void __iomem *msr;
+ void __iomem *base;
+ int id;
+ int dt_id;
+ int low_thresh;
+ int high_thresh;
+};
+
+struct lvts_ctrl {
+ struct lvts_sensor sensors[LVTS_SENSOR_MAX];
+ u32 calibration[LVTS_SENSOR_MAX];
+ u32 hw_tshut_raw_temp;
+ int num_lvts_sensor;
+ int mode;
+ void __iomem *base;
+ int low_thresh;
+ int high_thresh;
+};
+
+struct lvts_domain {
+ struct lvts_ctrl *lvts_ctrl;
+ struct reset_control *reset;
+ struct clk *clk;
+ int num_lvts_ctrl;
+ void __iomem *base;
+ size_t calib_len;
+ u8 *calib;
+#ifdef CONFIG_DEBUG_FS
+ struct dentry *dom_dentry;
+#endif
+};
+
+#ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
+
+#define LVTS_DEBUG_FS_REGS(__reg) \
+{ \
+ .name = __stringify(__reg), \
+ .offset = __reg(0), \
+}
+
+static const struct debugfs_reg32 lvts_regs[] = {
+ LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
+ LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
+ LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
+ LVTS_DEBUG_FS_REGS(LVTS_MONINT),
+ LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
+ LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
+ LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
+ LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
+ LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
+ LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
+ LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
+ LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
+ LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
+ LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
+ LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
+ LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
+ LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
+ LVTS_DEBUG_FS_REGS(LVTS_ID),
+ LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
+ LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
+ LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
+ LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
+ LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
+ LVTS_DEBUG_FS_REGS(LVTS_MSR0),
+ LVTS_DEBUG_FS_REGS(LVTS_MSR1),
+ LVTS_DEBUG_FS_REGS(LVTS_MSR2),
+ LVTS_DEBUG_FS_REGS(LVTS_MSR3),
+ LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
+ LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
+ LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
+ LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
+ LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
+ LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
+ LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
+ LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
+ LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
+};
+
+static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
+{
+ struct debugfs_regset32 *regset;
+ struct lvts_ctrl *lvts_ctrl;
+ struct dentry *dentry;
+ char name[64];
+ int i;
+
+ lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
+ if (IS_ERR(lvts_td->dom_dentry))
+ return 0;
+
+ for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
+
+ lvts_ctrl = &lvts_td->lvts_ctrl[i];
+
+ sprintf(name, "controller%d", i);
+ dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
+ if (!dentry)
+ continue;
+
+ regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
+ if (!regset)
+ continue;
+
+ regset->base = lvts_ctrl->base;
+ regset->regs = lvts_regs;
+ regset->nregs = ARRAY_SIZE(lvts_regs);
+
+ debugfs_create_regset32("registers", 0400, dentry, regset);
+ }
+
+ return 0;
+}
+
+static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
+{
+ debugfs_remove_recursive(lvts_td->dom_dentry);
+}
+
+#else
+
+static inline int lvts_debugfs_init(struct device *dev,
+ struct lvts_domain *lvts_td)
+{
+ return 0;
+}
+
+static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
+
+#endif
+
+static int lvts_raw_to_temp(u32 raw_temp)
+{
+ int temperature;
+
+ temperature = ((s64)(raw_temp & 0xFFFF) * LVTS_COEFF_A) >> 14;
+ temperature += coeff_b;
+
+ return temperature;
+}
+
+static u32 lvts_temp_to_raw(int temperature)
+{
+ u32 raw_temp = ((s64)(coeff_b - temperature)) << 14;
+
+ raw_temp = div_s64(raw_temp, -LVTS_COEFF_A);
+
+ return raw_temp;
+}
+
+static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
+{
+ struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
+ void __iomem *msr = lvts_sensor->msr;
+ u32 value;
+ int rc;
+
+ /*
+ * Measurement registers:
+ *
+ * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
+ *
+ * Bits:
+ *
+ * 32-17: Unused
+ * 16 : Valid temperature
+ * 15-0 : Raw temperature
+ */
+ rc = readl_poll_timeout(msr, value, value & BIT(16),
+ LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
+
+ /*
+ * As the thermal zone temperature will read before the
+ * hardware sensor is fully initialized, we have to check the
+ * validity of the temperature returned when reading the
+ * measurement register. The thermal controller will set the
+ * valid bit temperature only when it is totally initialized.
+ *
+ * Otherwise, we may end up with garbage values out of the
+ * functionning temperature and directly jump to a system
+ * shutdown.
+ */
+ if (rc)
+ return -EAGAIN;
+
+ *temp = lvts_raw_to_temp(value & 0xFFFF);
+
+ return 0;
+}
+
+static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
+{
+ u32 masks[] = {
+ LVTS_MONINT_OFFSET_SENSOR0,
+ LVTS_MONINT_OFFSET_SENSOR1,
+ LVTS_MONINT_OFFSET_SENSOR2,
+ LVTS_MONINT_OFFSET_SENSOR3,
+ };
+ u32 value = 0;
+ int i;
+
+ value = readl(LVTS_MONINT(lvts_ctrl->base));
+
+ for (i = 0; i < ARRAY_SIZE(masks); i++) {
+ if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
+ && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
+ value |= masks[i];
+ else
+ value &= ~masks[i];
+ }
+
+ writel(value, LVTS_MONINT(lvts_ctrl->base));
+}
+
+static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
+{
+ int i;
+
+ if (high > lvts_ctrl->high_thresh)
+ return true;
+
+ for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
+ if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
+ && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
+ return false;
+
+ return true;
+}
+
+static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
+{
+ struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
+ struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, sensors[lvts_sensor->id]);
+ void __iomem *base = lvts_sensor->base;
+ u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD);
+ u32 raw_high = lvts_temp_to_raw(high);
+ bool should_update_thresh;
+
+ lvts_sensor->low_thresh = low;
+ lvts_sensor->high_thresh = high;
+
+ should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
+ if (should_update_thresh) {
+ lvts_ctrl->high_thresh = high;
+ lvts_ctrl->low_thresh = low;
+ }
+ lvts_update_irq_mask(lvts_ctrl);
+
+ if (!should_update_thresh)
+ return 0;
+
+ /*
+ * Low offset temperature threshold
+ *
+ * LVTS_OFFSETL
+ *
+ * Bits:
+ *
+ * 14-0 : Raw temperature for threshold
+ */
+ pr_debug("%s: Setting low limit temperature interrupt: %d\n",
+ thermal_zone_device_type(tz), low);
+ writel(raw_low, LVTS_OFFSETL(base));
+
+ /*
+ * High offset temperature threshold
+ *
+ * LVTS_OFFSETH
+ *
+ * Bits:
+ *
+ * 14-0 : Raw temperature for threshold
+ */
+ pr_debug("%s: Setting high limit temperature interrupt: %d\n",
+ thermal_zone_device_type(tz), high);
+ writel(raw_high, LVTS_OFFSETH(base));
+
+ return 0;
+}
+
+static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
+{
+ irqreturn_t iret = IRQ_NONE;
+ u32 value;
+ u32 masks[] = {
+ LVTS_INT_SENSOR0,
+ LVTS_INT_SENSOR1,
+ LVTS_INT_SENSOR2,
+ LVTS_INT_SENSOR3
+ };
+ int i;
+
+ /*
+ * Interrupt monitoring status
+ *
+ * LVTS_MONINTST
+ *
+ * Bits:
+ *
+ * 31 : Interrupt for stage 3
+ * 30 : Interrupt for stage 2
+ * 29 : Interrupt for state 1
+ * 28 : Interrupt using filter on sensor 3
+ *
+ * 27 : Interrupt using immediate on sensor 3
+ * 26 : Interrupt normal to hot on sensor 3
+ * 25 : Interrupt high offset on sensor 3
+ * 24 : Interrupt low offset on sensor 3
+ *
+ * 23 : Interrupt hot threshold on sensor 3
+ * 22 : Interrupt cold threshold on sensor 3
+ * 21 : Interrupt using filter on sensor 2
+ * 20 : Interrupt using filter on sensor 1
+ *
+ * 19 : Interrupt using filter on sensor 0
+ * 18 : Interrupt using immediate on sensor 2
+ * 17 : Interrupt using immediate on sensor 1
+ * 16 : Interrupt using immediate on sensor 0
+ *
+ * 15 : Interrupt device access timeout interrupt
+ * 14 : Interrupt normal to hot on sensor 2
+ * 13 : Interrupt high offset interrupt on sensor 2
+ * 12 : Interrupt low offset interrupt on sensor 2
+ *
+ * 11 : Interrupt hot threshold on sensor 2
+ * 10 : Interrupt cold threshold on sensor 2
+ * 9 : Interrupt normal to hot on sensor 1
+ * 8 : Interrupt high offset interrupt on sensor 1
+ *
+ * 7 : Interrupt low offset interrupt on sensor 1
+ * 6 : Interrupt hot threshold on sensor 1
+ * 5 : Interrupt cold threshold on sensor 1
+ * 4 : Interrupt normal to hot on sensor 0
+ *
+ * 3 : Interrupt high offset interrupt on sensor 0
+ * 2 : Interrupt low offset interrupt on sensor 0
+ * 1 : Interrupt hot threshold on sensor 0
+ * 0 : Interrupt cold threshold on sensor 0
+ *
+ * We are interested in the sensor(s) responsible of the
+ * interrupt event. We update the thermal framework with the
+ * thermal zone associated with the sensor. The framework will
+ * take care of the rest whatever the kind of interrupt, we
+ * are only interested in which sensor raised the interrupt.
+ *
+ * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
+ * => 0x1FC00000
+ * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
+ * => 0x00247C00
+ * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
+ * => 0X001203E0
+ * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
+ * => 0x0009001F
+ */
+ value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
+
+ /*
+ * Let's figure out which sensors raised the interrupt
+ *
+ * NOTE: the masks array must be ordered with the index
+ * corresponding to the sensor id eg. index=0, mask for
+ * sensor0.
+ */
+ for (i = 0; i < ARRAY_SIZE(masks); i++) {
+
+ if (!(value & masks[i]))
+ continue;
+
+ thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
+ THERMAL_TRIP_VIOLATED);
+ iret = IRQ_HANDLED;
+ }
+
+ /*
+ * Write back to clear the interrupt status (W1C)
+ */
+ writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
+
+ return iret;
+}
+
+/*
+ * Temperature interrupt handler. Even if the driver supports more
+ * interrupt modes, we use the interrupt when the temperature crosses
+ * the hot threshold the way up and the way down (modulo the
+ * hysteresis).
+ *
+ * Each thermal domain has a couple of interrupts, one for hardware
+ * reset and another one for all the thermal events happening on the
+ * different sensors.
+ *
+ * The interrupt is configured for thermal events when crossing the
+ * hot temperature limit. At each interrupt, we check in every
+ * controller if there is an interrupt pending.
+ */
+static irqreturn_t lvts_irq_handler(int irq, void *data)
+{
+ struct lvts_domain *lvts_td = data;
+ irqreturn_t aux, iret = IRQ_NONE;
+ int i;
+
+ for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
+
+ aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
+ if (aux != IRQ_HANDLED)
+ continue;
+
+ iret = IRQ_HANDLED;
+ }
+
+ return iret;
+}
+
+static struct thermal_zone_device_ops lvts_ops = {
+ .get_temp = lvts_get_temp,
+ .set_trips = lvts_set_trips,
+};
+
+static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
+ const struct lvts_ctrl_data *lvts_ctrl_data)
+{
+ struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
+ void __iomem *msr_regs[] = {
+ LVTS_MSR0(lvts_ctrl->base),
+ LVTS_MSR1(lvts_ctrl->base),
+ LVTS_MSR2(lvts_ctrl->base),
+ LVTS_MSR3(lvts_ctrl->base)
+ };
+
+ void __iomem *imm_regs[] = {
+ LVTS_IMMD0(lvts_ctrl->base),
+ LVTS_IMMD1(lvts_ctrl->base),
+ LVTS_IMMD2(lvts_ctrl->base),
+ LVTS_IMMD3(lvts_ctrl->base)
+ };
+
+ int i;
+
+ for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
+
+ int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
+
+ /*
+ * At this point, we don't know which id matches which
+ * sensor. Let's set arbitrally the id from the index.
+ */
+ lvts_sensor[i].id = i;
+
+ /*
+ * The thermal zone registration will set the trip
+ * point interrupt in the thermal controller
+ * register. But this one will be reset in the
+ * initialization after. So we need to post pone the
+ * thermal zone creation after the controller is
+ * setup. For this reason, we store the device tree
+ * node id from the data in the sensor structure
+ */
+ lvts_sensor[i].dt_id = dt_id;
+
+ /*
+ * We assign the base address of the thermal
+ * controller as a back pointer. So it will be
+ * accessible from the different thermal framework ops
+ * as we pass the lvts_sensor pointer as thermal zone
+ * private data.
+ */
+ lvts_sensor[i].base = lvts_ctrl->base;
+
+ /*
+ * Each sensor has its own register address to read from.
+ */
+ lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
+ imm_regs[i] : msr_regs[i];
+
+ lvts_sensor[i].low_thresh = INT_MIN;
+ lvts_sensor[i].high_thresh = INT_MIN;
+ };
+
+ lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
+
+ return 0;
+}
+
+/*
+ * The efuse blob values follows the sensor enumeration per thermal
+ * controller. The decoding of the stream is as follow:
+ *
+ * stream index map for MCU Domain :
+ *
+ * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
+ * 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
+ *
+ * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
+ * 0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
+ *
+ * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
+ * 0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
+ *
+ * stream index map for AP Domain :
+ *
+ * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
+ * 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
+ *
+ * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
+ * 0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
+ *
+ * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
+ * 0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
+ *
+ * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
+ * 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
+ *
+ * The data description gives the offset of the calibration data in
+ * this bytes stream for each sensor.
+ */
+static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
+ const struct lvts_ctrl_data *lvts_ctrl_data,
+ u8 *efuse_calibration)
+{
+ int i;
+
+ for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
+ memcpy(&lvts_ctrl->calibration[i],
+ efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);
+
+ return 0;
+}
+
+/*
+ * The efuse bytes stream can be split into different chunk of
+ * nvmems. This function reads and concatenate those into a single
+ * buffer so it can be read sequentially when initializing the
+ * calibration data.
+ */
+static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
+ const struct lvts_data *lvts_data)
+{
+ struct device_node *np = dev_of_node(dev);
+ struct nvmem_cell *cell;
+ struct property *prop;
+ const char *cell_name;
+
+ of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
+ size_t len;
+ u8 *efuse;
+
+ cell = of_nvmem_cell_get(np, cell_name);
+ if (IS_ERR(cell)) {
+ dev_err(dev, "Failed to get cell '%s'\n", cell_name);
+ return PTR_ERR(cell);
+ }
+
+ efuse = nvmem_cell_read(cell, &len);
+
+ nvmem_cell_put(cell);
+
+ if (IS_ERR(efuse)) {
+ dev_err(dev, "Failed to read cell '%s'\n", cell_name);
+ return PTR_ERR(efuse);
+ }
+
+ lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
+ lvts_td->calib_len + len, GFP_KERNEL);
+ if (!lvts_td->calib)
+ return -ENOMEM;
+
+ memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
+
+ lvts_td->calib_len += len;
+
+ kfree(efuse);
+ }
+
+ return 0;
+}
+
+static int lvts_golden_temp_init(struct device *dev, u32 *value)
+{
+ u32 gt;
+
+ gt = (*value) >> 24;
+
+ if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
+ golden_temp = gt;
+
+ coeff_b = golden_temp * 500 + LVTS_COEFF_B;
+
+ return 0;
+}
+
+static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
+ const struct lvts_data *lvts_data)
+{
+ size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
+ struct lvts_ctrl *lvts_ctrl;
+ int i, ret;
+
+ /*
+ * Create the calibration bytes stream from efuse data
+ */
+ ret = lvts_calibration_read(dev, lvts_td, lvts_data);
+ if (ret)
+ return ret;
+
+ /*
+ * The golden temp information is contained in the first chunk
+ * of efuse data.
+ */
+ ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib);
+ if (ret)
+ return ret;
+
+ lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
+ if (!lvts_ctrl)
+ return -ENOMEM;
+
+ for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
+
+ lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
+
+ ret = lvts_sensor_init(dev, &lvts_ctrl[i],
+ &lvts_data->lvts_ctrl[i]);
+ if (ret)
+ return ret;
+
+ ret = lvts_calibration_init(dev, &lvts_ctrl[i],
+ &lvts_data->lvts_ctrl[i],
+ lvts_td->calib);
+ if (ret)
+ return ret;
+
+ /*
+ * The mode the ctrl will use to read the temperature
+ * (filtered or immediate)
+ */
+ lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
+
+ /*
+ * The temperature to raw temperature must be done
+ * after initializing the calibration.
+ */
+ lvts_ctrl[i].hw_tshut_raw_temp =
+ lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp);
+
+ lvts_ctrl[i].low_thresh = INT_MIN;
+ lvts_ctrl[i].high_thresh = INT_MIN;
+ }
+
+ /*
+ * We no longer need the efuse bytes stream, let's free it
+ */
+ devm_kfree(dev, lvts_td->calib);
+
+ lvts_td->lvts_ctrl = lvts_ctrl;
+ lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
+
+ return 0;
+}
+
+/*
+ * At this point the configuration register is the only place in the
+ * driver where we write multiple values. Per hardware constraint,
+ * each write in the configuration register must be separated by a
+ * delay of 2 us.
+ */
+static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
+{
+ int i;
+
+ /*
+ * Configuration register
+ */
+ for (i = 0; i < nr_cmds; i++) {
+ writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
+ usleep_range(2, 4);
+ }
+}
+
+static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
+{
+ /*
+ * LVTS_PROTCTL : Thermal Protection Sensor Selection
+ *
+ * Bits:
+ *
+ * 19-18 : Sensor to base the protection on
+ * 17-16 : Strategy:
+ * 00 : Average of 4 sensors
+ * 01 : Max of 4 sensors
+ * 10 : Selected sensor with bits 19-18
+ * 11 : Reserved
+ */
+ writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
+
+ /*
+ * LVTS_PROTTA : Stage 1 temperature threshold
+ * LVTS_PROTTB : Stage 2 temperature threshold
+ * LVTS_PROTTC : Stage 3 temperature threshold
+ *
+ * Bits:
+ *
+ * 14-0: Raw temperature threshold
+ *
+ * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
+ * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
+ */
+ writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
+
+ /*
+ * LVTS_MONINT : Interrupt configuration register
+ *
+ * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
+ * register, except we set the bits to enable the interrupt.
+ */
+ writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
+
+ return 0;
+}
+
+static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
+{
+ int ret;
+
+ ret = reset_control_assert(reset);
+ if (ret)
+ return ret;
+
+ return reset_control_deassert(reset);
+}
+
+/*
+ * Enable or disable the clocks of a specified thermal controller
+ */
+static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
+{
+ /*
+ * LVTS_CLKEN : Internal LVTS clock
+ *
+ * Bits:
+ *
+ * 0 : enable / disable clock
+ */
+ writel(enable, LVTS_CLKEN(lvts_ctrl->base));
+
+ return 0;
+}
+
+static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
+{
+ u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
+
+ lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
+
+ /*
+ * LVTS_ID : Get ID and status of the thermal controller
+ *
+ * Bits:
+ *
+ * 0-5 : thermal controller id
+ * 7 : thermal controller connection is valid
+ */
+ id = readl(LVTS_ID(lvts_ctrl->base));
+ if (!(id & BIT(7)))
+ return -EIO;
+
+ return 0;
+}
+
+static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
+{
+ /*
+ * Write device mask: 0xC1030000
+ */
+ u32 cmds[] = {
+ 0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
+ 0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
+ 0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
+ 0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
+ };
+
+ lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
+
+ return 0;
+}
+
+static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
+{
+ int i;
+ void __iomem *lvts_edata[] = {
+ LVTS_EDATA00(lvts_ctrl->base),
+ LVTS_EDATA01(lvts_ctrl->base),
+ LVTS_EDATA02(lvts_ctrl->base),
+ LVTS_EDATA03(lvts_ctrl->base)
+ };
+
+ /*
+ * LVTS_EDATA0X : Efuse calibration reference value for sensor X
+ *
+ * Bits:
+ *
+ * 20-0 : Efuse value for normalization data
+ */
+ for (i = 0; i < LVTS_SENSOR_MAX; i++)
+ writel(lvts_ctrl->calibration[i], lvts_edata[i]);
+
+ return 0;
+}
+
+static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
+{
+ u32 value;
+
+ /*
+ * LVTS_TSSEL : Sensing point index numbering
+ *
+ * Bits:
+ *
+ * 31-24: ADC Sense 3
+ * 23-16: ADC Sense 2
+ * 15-8 : ADC Sense 1
+ * 7-0 : ADC Sense 0
+ */
+ value = LVTS_TSSEL_CONF;
+ writel(value, LVTS_TSSEL(lvts_ctrl->base));
+
+ /*
+ * LVTS_CALSCALE : ADC voltage round
+ */
+ value = 0x300;
+ value = LVTS_CALSCALE_CONF;
+
+ /*
+ * LVTS_MSRCTL0 : Sensor filtering strategy
+ *
+ * Filters:
+ *
+ * 000 : One sample
+ * 001 : Avg 2 samples
+ * 010 : 4 samples, drop min and max, avg 2 samples
+ * 011 : 6 samples, drop min and max, avg 4 samples
+ * 100 : 10 samples, drop min and max, avg 8 samples
+ * 101 : 18 samples, drop min and max, avg 16 samples
+ *
+ * Bits:
+ *
+ * 0-2 : Sensor0 filter
+ * 3-5 : Sensor1 filter
+ * 6-8 : Sensor2 filter
+ * 9-11 : Sensor3 filter
+ */
+ value = LVTS_HW_FILTER << 9 | LVTS_HW_FILTER << 6 |
+ LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
+ writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
+
+ /*
+ * LVTS_MONCTL1 : Period unit and group interval configuration
+ *
+ * The clock source of LVTS thermal controller is 26MHz.
+ *
+ * The period unit is a time base for all the interval delays
+ * specified in the registers. By default we use 12. The time
+ * conversion is done by multiplying by 256 and 1/26.10^6
+ *
+ * An interval delay multiplied by the period unit gives the
+ * duration in seconds.
+ *
+ * - Filter interval delay is a delay between two samples of
+ * the same sensor.
+ *
+ * - Sensor interval delay is a delay between two samples of
+ * different sensors.
+ *
+ * - Group interval delay is a delay between different rounds.
+ *
+ * For example:
+ * If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
+ * and two sensors, TS1 and TS2, are in a LVTS thermal controller
+ * and then
+ * Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
+ * Filter interval delay = 1 * Period unit = 118.149us
+ * Sensor interval delay = 2 * Period unit = 236.298us
+ * Group interval delay = 1 * Period unit = 118.149us
+ *
+ * TS1 TS1 ... TS1 TS2 TS2 ... TS2 TS1...
+ * <--> Filter interval delay
+ * <--> Sensor interval delay
+ * <--> Group interval delay
+ * Bits:
+ * 29 - 20 : Group interval
+ * 16 - 13 : Send a single interrupt when crossing the hot threshold (1)
+ * or an interrupt everytime the hot threshold is crossed (0)
+ * 9 - 0 : Period unit
+ *
+ */
+ value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
+ writel(value, LVTS_MONCTL1(lvts_ctrl->base));
+
+ /*
+ * LVTS_MONCTL2 : Filtering and sensor interval
+ *
+ * Bits:
+ *
+ * 25-16 : Interval unit in PERIOD_UNIT between sample on
+ * the same sensor, filter interval
+ * 9-0 : Interval unit in PERIOD_UNIT between each sensor
+ *
+ */
+ value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
+ writel(value, LVTS_MONCTL2(lvts_ctrl->base));
+
+ return lvts_irq_init(lvts_ctrl);
+}
+
+static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
+{
+ struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
+ struct thermal_zone_device *tz;
+ u32 sensor_map = 0;
+ int i;
+ /*
+ * Bitmaps to enable each sensor on immediate and filtered modes, as
+ * described in MSRCTL1 and MONCTL0 registers below, respectively.
+ */
+ u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
+ u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
+
+ u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
+ sensor_imm_bitmap : sensor_filt_bitmap;
+
+ for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
+
+ int dt_id = lvts_sensors[i].dt_id;
+
+ tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
+ &lvts_ops);
+ if (IS_ERR(tz)) {
+ /*
+ * This thermal zone is not described in the
+ * device tree. It is not an error from the
+ * thermal OF code POV, we just continue.
+ */
+ if (PTR_ERR(tz) == -ENODEV)
+ continue;
+
+ return PTR_ERR(tz);
+ }
+
+ devm_thermal_add_hwmon_sysfs(dev, tz);
+
+ /*
+ * The thermal zone pointer will be needed in the
+ * interrupt handler, we store it in the sensor
+ * structure. The thermal domain structure will be
+ * passed to the interrupt handler private data as the
+ * interrupt is shared for all the controller
+ * belonging to the thermal domain.
+ */
+ lvts_sensors[i].tz = tz;
+
+ /*
+ * This sensor was correctly associated with a thermal
+ * zone, let's set the corresponding bit in the sensor
+ * map, so we can enable the temperature monitoring in
+ * the hardware thermal controller.
+ */
+ sensor_map |= sensor_bitmap[i];
+ }
+
+ /*
+ * The initialization of the thermal zones give us
+ * which sensor point to enable. If any thermal zone
+ * was not described in the device tree, it won't be
+ * enabled here in the sensor map.
+ */
+ if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
+ /*
+ * LVTS_MSRCTL1 : Measurement control
+ *
+ * Bits:
+ *
+ * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
+ * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
+ * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
+ * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
+ *
+ * That configuration will ignore the filtering and the delays
+ * introduced in MONCTL1 and MONCTL2
+ */
+ writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
+ } else {
+ /*
+ * Bits:
+ * 9: Single point access flow
+ * 0-3: Enable sensing point 0-3
+ */
+ writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
+ }
+
+ return 0;
+}
+
+static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
+ const struct lvts_data *lvts_data)
+{
+ struct lvts_ctrl *lvts_ctrl;
+ int i, ret;
+
+ ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
+ if (ret)
+ return ret;
+
+ ret = lvts_domain_reset(dev, lvts_td->reset);
+ if (ret) {
+ dev_dbg(dev, "Failed to reset domain");
+ return ret;
+ }
+
+ for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
+
+ lvts_ctrl = &lvts_td->lvts_ctrl[i];
+
+ /*
+ * Initialization steps:
+ *
+ * - Enable the clock
+ * - Connect to the LVTS
+ * - Initialize the LVTS
+ * - Prepare the calibration data
+ * - Select monitored sensors
+ * [ Configure sampling ]
+ * [ Configure the interrupt ]
+ * - Start measurement
+ */
+ ret = lvts_ctrl_set_enable(lvts_ctrl, true);
+ if (ret) {
+ dev_dbg(dev, "Failed to enable LVTS clock");
+ return ret;
+ }
+
+ ret = lvts_ctrl_connect(dev, lvts_ctrl);
+ if (ret) {
+ dev_dbg(dev, "Failed to connect to LVTS controller");
+ return ret;
+ }
+
+ ret = lvts_ctrl_initialize(dev, lvts_ctrl);
+ if (ret) {
+ dev_dbg(dev, "Failed to initialize controller");
+ return ret;
+ }
+
+ ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
+ if (ret) {
+ dev_dbg(dev, "Failed to calibrate controller");
+ return ret;
+ }
+
+ ret = lvts_ctrl_configure(dev, lvts_ctrl);
+ if (ret) {
+ dev_dbg(dev, "Failed to configure controller");
+ return ret;
+ }
+
+ ret = lvts_ctrl_start(dev, lvts_ctrl);
+ if (ret) {
+ dev_dbg(dev, "Failed to start controller");
+ return ret;
+ }
+ }
+
+ return lvts_debugfs_init(dev, lvts_td);
+}
+
+static int lvts_probe(struct platform_device *pdev)
+{
+ const struct lvts_data *lvts_data;
+ struct lvts_domain *lvts_td;
+ struct device *dev = &pdev->dev;
+ struct resource *res;
+ int irq, ret;
+
+ lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
+ if (!lvts_td)
+ return -ENOMEM;
+
+ lvts_data = of_device_get_match_data(dev);
+
+ lvts_td->clk = devm_clk_get_enabled(dev, NULL);
+ if (IS_ERR(lvts_td->clk))
+ return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
+
+ res = platform_get_mem_or_io(pdev, 0);
+ if (!res)
+ return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
+
+ lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
+ if (IS_ERR(lvts_td->base))
+ return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
+
+ lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
+ if (IS_ERR(lvts_td->reset))
+ return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
+ ret = lvts_domain_init(dev, lvts_td, lvts_data);
+ if (ret)
+ return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
+
+ /*
+ * At this point the LVTS is initialized and enabled. We can
+ * safely enable the interrupt.
+ */
+ ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
+ IRQF_ONESHOT, dev_name(dev), lvts_td);
+ if (ret)
+ return dev_err_probe(dev, ret, "Failed to request interrupt\n");
+
+ platform_set_drvdata(pdev, lvts_td);
+
+ return 0;
+}
+
+static int lvts_remove(struct platform_device *pdev)
+{
+ struct lvts_domain *lvts_td;
+ int i;
+
+ lvts_td = platform_get_drvdata(pdev);
+
+ for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
+ lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
+
+ lvts_debugfs_exit(lvts_td);
+
+ return 0;
+}
+
+static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
+ {
+ .cal_offset = { 0x04, 0x07 },
+ .lvts_sensor = {
+ { .dt_id = MT8195_MCU_BIG_CPU0 },
+ { .dt_id = MT8195_MCU_BIG_CPU1 }
+ },
+ .num_lvts_sensor = 2,
+ .offset = 0x0,
+ .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
+ },
+ {
+ .cal_offset = { 0x0d, 0x10 },
+ .lvts_sensor = {
+ { .dt_id = MT8195_MCU_BIG_CPU2 },
+ { .dt_id = MT8195_MCU_BIG_CPU3 }
+ },
+ .num_lvts_sensor = 2,
+ .offset = 0x100,
+ .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
+ },
+ {
+ .cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
+ .lvts_sensor = {
+ { .dt_id = MT8195_MCU_LITTLE_CPU0 },
+ { .dt_id = MT8195_MCU_LITTLE_CPU1 },
+ { .dt_id = MT8195_MCU_LITTLE_CPU2 },
+ { .dt_id = MT8195_MCU_LITTLE_CPU3 }
+ },
+ .num_lvts_sensor = 4,
+ .offset = 0x200,
+ .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
+ }
+};
+
+static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
+ {
+ .cal_offset = { 0x25, 0x28 },
+ .lvts_sensor = {
+ { .dt_id = MT8195_AP_VPU0 },
+ { .dt_id = MT8195_AP_VPU1 }
+ },
+ .num_lvts_sensor = 2,
+ .offset = 0x0,
+ .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
+ },
+ {
+ .cal_offset = { 0x2e, 0x31 },
+ .lvts_sensor = {
+ { .dt_id = MT8195_AP_GPU0 },
+ { .dt_id = MT8195_AP_GPU1 }
+ },
+ .num_lvts_sensor = 2,
+ .offset = 0x100,
+ .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
+ },
+ {
+ .cal_offset = { 0x37, 0x3a, 0x3d },
+ .lvts_sensor = {
+ { .dt_id = MT8195_AP_VDEC },
+ { .dt_id = MT8195_AP_IMG },
+ { .dt_id = MT8195_AP_INFRA },
+ },
+ .num_lvts_sensor = 3,
+ .offset = 0x200,
+ .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
+ },
+ {
+ .cal_offset = { 0x43, 0x46 },
+ .lvts_sensor = {
+ { .dt_id = MT8195_AP_CAM0 },
+ { .dt_id = MT8195_AP_CAM1 }
+ },
+ .num_lvts_sensor = 2,
+ .offset = 0x300,
+ .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
+ }
+};
+
+static const struct lvts_data mt8195_lvts_mcu_data = {
+ .lvts_ctrl = mt8195_lvts_mcu_data_ctrl,
+ .num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
+};
+
+static const struct lvts_data mt8195_lvts_ap_data = {
+ .lvts_ctrl = mt8195_lvts_ap_data_ctrl,
+ .num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
+};
+
+static const struct of_device_id lvts_of_match[] = {
+ { .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
+ { .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
+ {},
+};
+MODULE_DEVICE_TABLE(of, lvts_of_match);
+
+static struct platform_driver lvts_driver = {
+ .probe = lvts_probe,
+ .remove = lvts_remove,
+ .driver = {
+ .name = "mtk-lvts-thermal",
+ .of_match_table = lvts_of_match,
+ },
+};
+module_platform_driver(lvts_driver);
+
+MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
+MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
+MODULE_LICENSE("GPL");