diff options
Diffstat (limited to '')
-rw-r--r-- | fs/btrfs/backref.c | 3648 |
1 files changed, 3648 insertions, 0 deletions
diff --git a/fs/btrfs/backref.c b/fs/btrfs/backref.c new file mode 100644 index 0000000000..a4a809efc9 --- /dev/null +++ b/fs/btrfs/backref.c @@ -0,0 +1,3648 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2011 STRATO. All rights reserved. + */ + +#include <linux/mm.h> +#include <linux/rbtree.h> +#include <trace/events/btrfs.h> +#include "ctree.h" +#include "disk-io.h" +#include "backref.h" +#include "ulist.h" +#include "transaction.h" +#include "delayed-ref.h" +#include "locking.h" +#include "misc.h" +#include "tree-mod-log.h" +#include "fs.h" +#include "accessors.h" +#include "extent-tree.h" +#include "relocation.h" +#include "tree-checker.h" + +/* Just arbitrary numbers so we can be sure one of these happened. */ +#define BACKREF_FOUND_SHARED 6 +#define BACKREF_FOUND_NOT_SHARED 7 + +struct extent_inode_elem { + u64 inum; + u64 offset; + u64 num_bytes; + struct extent_inode_elem *next; +}; + +static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, + const struct btrfs_key *key, + const struct extent_buffer *eb, + const struct btrfs_file_extent_item *fi, + struct extent_inode_elem **eie) +{ + const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); + u64 offset = key->offset; + struct extent_inode_elem *e; + const u64 *root_ids; + int root_count; + bool cached; + + if (!ctx->ignore_extent_item_pos && + !btrfs_file_extent_compression(eb, fi) && + !btrfs_file_extent_encryption(eb, fi) && + !btrfs_file_extent_other_encoding(eb, fi)) { + u64 data_offset; + + data_offset = btrfs_file_extent_offset(eb, fi); + + if (ctx->extent_item_pos < data_offset || + ctx->extent_item_pos >= data_offset + data_len) + return 1; + offset += ctx->extent_item_pos - data_offset; + } + + if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) + goto add_inode_elem; + + cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, + &root_count); + if (!cached) + goto add_inode_elem; + + for (int i = 0; i < root_count; i++) { + int ret; + + ret = ctx->indirect_ref_iterator(key->objectid, offset, + data_len, root_ids[i], + ctx->user_ctx); + if (ret) + return ret; + } + +add_inode_elem: + e = kmalloc(sizeof(*e), GFP_NOFS); + if (!e) + return -ENOMEM; + + e->next = *eie; + e->inum = key->objectid; + e->offset = offset; + e->num_bytes = data_len; + *eie = e; + + return 0; +} + +static void free_inode_elem_list(struct extent_inode_elem *eie) +{ + struct extent_inode_elem *eie_next; + + for (; eie; eie = eie_next) { + eie_next = eie->next; + kfree(eie); + } +} + +static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, + const struct extent_buffer *eb, + struct extent_inode_elem **eie) +{ + u64 disk_byte; + struct btrfs_key key; + struct btrfs_file_extent_item *fi; + int slot; + int nritems; + int extent_type; + int ret; + + /* + * from the shared data ref, we only have the leaf but we need + * the key. thus, we must look into all items and see that we + * find one (some) with a reference to our extent item. + */ + nritems = btrfs_header_nritems(eb); + for (slot = 0; slot < nritems; ++slot) { + btrfs_item_key_to_cpu(eb, &key, slot); + if (key.type != BTRFS_EXTENT_DATA_KEY) + continue; + fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); + extent_type = btrfs_file_extent_type(eb, fi); + if (extent_type == BTRFS_FILE_EXTENT_INLINE) + continue; + /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ + disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); + if (disk_byte != ctx->bytenr) + continue; + + ret = check_extent_in_eb(ctx, &key, eb, fi, eie); + if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) + return ret; + } + + return 0; +} + +struct preftree { + struct rb_root_cached root; + unsigned int count; +}; + +#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } + +struct preftrees { + struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ + struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ + struct preftree indirect_missing_keys; +}; + +/* + * Checks for a shared extent during backref search. + * + * The share_count tracks prelim_refs (direct and indirect) having a + * ref->count >0: + * - incremented when a ref->count transitions to >0 + * - decremented when a ref->count transitions to <1 + */ +struct share_check { + struct btrfs_backref_share_check_ctx *ctx; + struct btrfs_root *root; + u64 inum; + u64 data_bytenr; + u64 data_extent_gen; + /* + * Counts number of inodes that refer to an extent (different inodes in + * the same root or different roots) that we could find. The sharedness + * check typically stops once this counter gets greater than 1, so it + * may not reflect the total number of inodes. + */ + int share_count; + /* + * The number of times we found our inode refers to the data extent we + * are determining the sharedness. In other words, how many file extent + * items we could find for our inode that point to our target data + * extent. The value we get here after finishing the extent sharedness + * check may be smaller than reality, but if it ends up being greater + * than 1, then we know for sure the inode has multiple file extent + * items that point to our inode, and we can safely assume it's useful + * to cache the sharedness check result. + */ + int self_ref_count; + bool have_delayed_delete_refs; +}; + +static inline int extent_is_shared(struct share_check *sc) +{ + return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; +} + +static struct kmem_cache *btrfs_prelim_ref_cache; + +int __init btrfs_prelim_ref_init(void) +{ + btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", + sizeof(struct prelim_ref), + 0, + SLAB_MEM_SPREAD, + NULL); + if (!btrfs_prelim_ref_cache) + return -ENOMEM; + return 0; +} + +void __cold btrfs_prelim_ref_exit(void) +{ + kmem_cache_destroy(btrfs_prelim_ref_cache); +} + +static void free_pref(struct prelim_ref *ref) +{ + kmem_cache_free(btrfs_prelim_ref_cache, ref); +} + +/* + * Return 0 when both refs are for the same block (and can be merged). + * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 + * indicates a 'higher' block. + */ +static int prelim_ref_compare(struct prelim_ref *ref1, + struct prelim_ref *ref2) +{ + if (ref1->level < ref2->level) + return -1; + if (ref1->level > ref2->level) + return 1; + if (ref1->root_id < ref2->root_id) + return -1; + if (ref1->root_id > ref2->root_id) + return 1; + if (ref1->key_for_search.type < ref2->key_for_search.type) + return -1; + if (ref1->key_for_search.type > ref2->key_for_search.type) + return 1; + if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) + return -1; + if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) + return 1; + if (ref1->key_for_search.offset < ref2->key_for_search.offset) + return -1; + if (ref1->key_for_search.offset > ref2->key_for_search.offset) + return 1; + if (ref1->parent < ref2->parent) + return -1; + if (ref1->parent > ref2->parent) + return 1; + + return 0; +} + +static void update_share_count(struct share_check *sc, int oldcount, + int newcount, struct prelim_ref *newref) +{ + if ((!sc) || (oldcount == 0 && newcount < 1)) + return; + + if (oldcount > 0 && newcount < 1) + sc->share_count--; + else if (oldcount < 1 && newcount > 0) + sc->share_count++; + + if (newref->root_id == sc->root->root_key.objectid && + newref->wanted_disk_byte == sc->data_bytenr && + newref->key_for_search.objectid == sc->inum) + sc->self_ref_count += newref->count; +} + +/* + * Add @newref to the @root rbtree, merging identical refs. + * + * Callers should assume that newref has been freed after calling. + */ +static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, + struct preftree *preftree, + struct prelim_ref *newref, + struct share_check *sc) +{ + struct rb_root_cached *root; + struct rb_node **p; + struct rb_node *parent = NULL; + struct prelim_ref *ref; + int result; + bool leftmost = true; + + root = &preftree->root; + p = &root->rb_root.rb_node; + + while (*p) { + parent = *p; + ref = rb_entry(parent, struct prelim_ref, rbnode); + result = prelim_ref_compare(ref, newref); + if (result < 0) { + p = &(*p)->rb_left; + } else if (result > 0) { + p = &(*p)->rb_right; + leftmost = false; + } else { + /* Identical refs, merge them and free @newref */ + struct extent_inode_elem *eie = ref->inode_list; + + while (eie && eie->next) + eie = eie->next; + + if (!eie) + ref->inode_list = newref->inode_list; + else + eie->next = newref->inode_list; + trace_btrfs_prelim_ref_merge(fs_info, ref, newref, + preftree->count); + /* + * A delayed ref can have newref->count < 0. + * The ref->count is updated to follow any + * BTRFS_[ADD|DROP]_DELAYED_REF actions. + */ + update_share_count(sc, ref->count, + ref->count + newref->count, newref); + ref->count += newref->count; + free_pref(newref); + return; + } + } + + update_share_count(sc, 0, newref->count, newref); + preftree->count++; + trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); + rb_link_node(&newref->rbnode, parent, p); + rb_insert_color_cached(&newref->rbnode, root, leftmost); +} + +/* + * Release the entire tree. We don't care about internal consistency so + * just free everything and then reset the tree root. + */ +static void prelim_release(struct preftree *preftree) +{ + struct prelim_ref *ref, *next_ref; + + rbtree_postorder_for_each_entry_safe(ref, next_ref, + &preftree->root.rb_root, rbnode) { + free_inode_elem_list(ref->inode_list); + free_pref(ref); + } + + preftree->root = RB_ROOT_CACHED; + preftree->count = 0; +} + +/* + * the rules for all callers of this function are: + * - obtaining the parent is the goal + * - if you add a key, you must know that it is a correct key + * - if you cannot add the parent or a correct key, then we will look into the + * block later to set a correct key + * + * delayed refs + * ============ + * backref type | shared | indirect | shared | indirect + * information | tree | tree | data | data + * --------------------+--------+----------+--------+---------- + * parent logical | y | - | - | - + * key to resolve | - | y | y | y + * tree block logical | - | - | - | - + * root for resolving | y | y | y | y + * + * - column 1: we've the parent -> done + * - column 2, 3, 4: we use the key to find the parent + * + * on disk refs (inline or keyed) + * ============================== + * backref type | shared | indirect | shared | indirect + * information | tree | tree | data | data + * --------------------+--------+----------+--------+---------- + * parent logical | y | - | y | - + * key to resolve | - | - | - | y + * tree block logical | y | y | y | y + * root for resolving | - | y | y | y + * + * - column 1, 3: we've the parent -> done + * - column 2: we take the first key from the block to find the parent + * (see add_missing_keys) + * - column 4: we use the key to find the parent + * + * additional information that's available but not required to find the parent + * block might help in merging entries to gain some speed. + */ +static int add_prelim_ref(const struct btrfs_fs_info *fs_info, + struct preftree *preftree, u64 root_id, + const struct btrfs_key *key, int level, u64 parent, + u64 wanted_disk_byte, int count, + struct share_check *sc, gfp_t gfp_mask) +{ + struct prelim_ref *ref; + + if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) + return 0; + + ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); + if (!ref) + return -ENOMEM; + + ref->root_id = root_id; + if (key) + ref->key_for_search = *key; + else + memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); + + ref->inode_list = NULL; + ref->level = level; + ref->count = count; + ref->parent = parent; + ref->wanted_disk_byte = wanted_disk_byte; + prelim_ref_insert(fs_info, preftree, ref, sc); + return extent_is_shared(sc); +} + +/* direct refs use root == 0, key == NULL */ +static int add_direct_ref(const struct btrfs_fs_info *fs_info, + struct preftrees *preftrees, int level, u64 parent, + u64 wanted_disk_byte, int count, + struct share_check *sc, gfp_t gfp_mask) +{ + return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, + parent, wanted_disk_byte, count, sc, gfp_mask); +} + +/* indirect refs use parent == 0 */ +static int add_indirect_ref(const struct btrfs_fs_info *fs_info, + struct preftrees *preftrees, u64 root_id, + const struct btrfs_key *key, int level, + u64 wanted_disk_byte, int count, + struct share_check *sc, gfp_t gfp_mask) +{ + struct preftree *tree = &preftrees->indirect; + + if (!key) + tree = &preftrees->indirect_missing_keys; + return add_prelim_ref(fs_info, tree, root_id, key, level, 0, + wanted_disk_byte, count, sc, gfp_mask); +} + +static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) +{ + struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; + struct rb_node *parent = NULL; + struct prelim_ref *ref = NULL; + struct prelim_ref target = {}; + int result; + + target.parent = bytenr; + + while (*p) { + parent = *p; + ref = rb_entry(parent, struct prelim_ref, rbnode); + result = prelim_ref_compare(ref, &target); + + if (result < 0) + p = &(*p)->rb_left; + else if (result > 0) + p = &(*p)->rb_right; + else + return 1; + } + return 0; +} + +static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, + struct btrfs_root *root, struct btrfs_path *path, + struct ulist *parents, + struct preftrees *preftrees, struct prelim_ref *ref, + int level) +{ + int ret = 0; + int slot; + struct extent_buffer *eb; + struct btrfs_key key; + struct btrfs_key *key_for_search = &ref->key_for_search; + struct btrfs_file_extent_item *fi; + struct extent_inode_elem *eie = NULL, *old = NULL; + u64 disk_byte; + u64 wanted_disk_byte = ref->wanted_disk_byte; + u64 count = 0; + u64 data_offset; + u8 type; + + if (level != 0) { + eb = path->nodes[level]; + ret = ulist_add(parents, eb->start, 0, GFP_NOFS); + if (ret < 0) + return ret; + return 0; + } + + /* + * 1. We normally enter this function with the path already pointing to + * the first item to check. But sometimes, we may enter it with + * slot == nritems. + * 2. We are searching for normal backref but bytenr of this leaf + * matches shared data backref + * 3. The leaf owner is not equal to the root we are searching + * + * For these cases, go to the next leaf before we continue. + */ + eb = path->nodes[0]; + if (path->slots[0] >= btrfs_header_nritems(eb) || + is_shared_data_backref(preftrees, eb->start) || + ref->root_id != btrfs_header_owner(eb)) { + if (ctx->time_seq == BTRFS_SEQ_LAST) + ret = btrfs_next_leaf(root, path); + else + ret = btrfs_next_old_leaf(root, path, ctx->time_seq); + } + + while (!ret && count < ref->count) { + eb = path->nodes[0]; + slot = path->slots[0]; + + btrfs_item_key_to_cpu(eb, &key, slot); + + if (key.objectid != key_for_search->objectid || + key.type != BTRFS_EXTENT_DATA_KEY) + break; + + /* + * We are searching for normal backref but bytenr of this leaf + * matches shared data backref, OR + * the leaf owner is not equal to the root we are searching for + */ + if (slot == 0 && + (is_shared_data_backref(preftrees, eb->start) || + ref->root_id != btrfs_header_owner(eb))) { + if (ctx->time_seq == BTRFS_SEQ_LAST) + ret = btrfs_next_leaf(root, path); + else + ret = btrfs_next_old_leaf(root, path, ctx->time_seq); + continue; + } + fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); + type = btrfs_file_extent_type(eb, fi); + if (type == BTRFS_FILE_EXTENT_INLINE) + goto next; + disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); + data_offset = btrfs_file_extent_offset(eb, fi); + + if (disk_byte == wanted_disk_byte) { + eie = NULL; + old = NULL; + if (ref->key_for_search.offset == key.offset - data_offset) + count++; + else + goto next; + if (!ctx->skip_inode_ref_list) { + ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); + if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || + ret < 0) + break; + } + if (ret > 0) + goto next; + ret = ulist_add_merge_ptr(parents, eb->start, + eie, (void **)&old, GFP_NOFS); + if (ret < 0) + break; + if (!ret && !ctx->skip_inode_ref_list) { + while (old->next) + old = old->next; + old->next = eie; + } + eie = NULL; + } +next: + if (ctx->time_seq == BTRFS_SEQ_LAST) + ret = btrfs_next_item(root, path); + else + ret = btrfs_next_old_item(root, path, ctx->time_seq); + } + + if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) + free_inode_elem_list(eie); + else if (ret > 0) + ret = 0; + + return ret; +} + +/* + * resolve an indirect backref in the form (root_id, key, level) + * to a logical address + */ +static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, + struct btrfs_path *path, + struct preftrees *preftrees, + struct prelim_ref *ref, struct ulist *parents) +{ + struct btrfs_root *root; + struct extent_buffer *eb; + int ret = 0; + int root_level; + int level = ref->level; + struct btrfs_key search_key = ref->key_for_search; + + /* + * If we're search_commit_root we could possibly be holding locks on + * other tree nodes. This happens when qgroups does backref walks when + * adding new delayed refs. To deal with this we need to look in cache + * for the root, and if we don't find it then we need to search the + * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage + * here. + */ + if (path->search_commit_root) + root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); + else + root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); + if (IS_ERR(root)) { + ret = PTR_ERR(root); + goto out_free; + } + + if (!path->search_commit_root && + test_bit(BTRFS_ROOT_DELETING, &root->state)) { + ret = -ENOENT; + goto out; + } + + if (btrfs_is_testing(ctx->fs_info)) { + ret = -ENOENT; + goto out; + } + + if (path->search_commit_root) + root_level = btrfs_header_level(root->commit_root); + else if (ctx->time_seq == BTRFS_SEQ_LAST) + root_level = btrfs_header_level(root->node); + else + root_level = btrfs_old_root_level(root, ctx->time_seq); + + if (root_level + 1 == level) + goto out; + + /* + * We can often find data backrefs with an offset that is too large + * (>= LLONG_MAX, maximum allowed file offset) due to underflows when + * subtracting a file's offset with the data offset of its + * corresponding extent data item. This can happen for example in the + * clone ioctl. + * + * So if we detect such case we set the search key's offset to zero to + * make sure we will find the matching file extent item at + * add_all_parents(), otherwise we will miss it because the offset + * taken form the backref is much larger then the offset of the file + * extent item. This can make us scan a very large number of file + * extent items, but at least it will not make us miss any. + * + * This is an ugly workaround for a behaviour that should have never + * existed, but it does and a fix for the clone ioctl would touch a lot + * of places, cause backwards incompatibility and would not fix the + * problem for extents cloned with older kernels. + */ + if (search_key.type == BTRFS_EXTENT_DATA_KEY && + search_key.offset >= LLONG_MAX) + search_key.offset = 0; + path->lowest_level = level; + if (ctx->time_seq == BTRFS_SEQ_LAST) + ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); + else + ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); + + btrfs_debug(ctx->fs_info, + "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", + ref->root_id, level, ref->count, ret, + ref->key_for_search.objectid, ref->key_for_search.type, + ref->key_for_search.offset); + if (ret < 0) + goto out; + + eb = path->nodes[level]; + while (!eb) { + if (WARN_ON(!level)) { + ret = 1; + goto out; + } + level--; + eb = path->nodes[level]; + } + + ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); +out: + btrfs_put_root(root); +out_free: + path->lowest_level = 0; + btrfs_release_path(path); + return ret; +} + +static struct extent_inode_elem * +unode_aux_to_inode_list(struct ulist_node *node) +{ + if (!node) + return NULL; + return (struct extent_inode_elem *)(uintptr_t)node->aux; +} + +static void free_leaf_list(struct ulist *ulist) +{ + struct ulist_node *node; + struct ulist_iterator uiter; + + ULIST_ITER_INIT(&uiter); + while ((node = ulist_next(ulist, &uiter))) + free_inode_elem_list(unode_aux_to_inode_list(node)); + + ulist_free(ulist); +} + +/* + * We maintain three separate rbtrees: one for direct refs, one for + * indirect refs which have a key, and one for indirect refs which do not + * have a key. Each tree does merge on insertion. + * + * Once all of the references are located, we iterate over the tree of + * indirect refs with missing keys. An appropriate key is located and + * the ref is moved onto the tree for indirect refs. After all missing + * keys are thus located, we iterate over the indirect ref tree, resolve + * each reference, and then insert the resolved reference onto the + * direct tree (merging there too). + * + * New backrefs (i.e., for parent nodes) are added to the appropriate + * rbtree as they are encountered. The new backrefs are subsequently + * resolved as above. + */ +static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, + struct btrfs_path *path, + struct preftrees *preftrees, + struct share_check *sc) +{ + int err; + int ret = 0; + struct ulist *parents; + struct ulist_node *node; + struct ulist_iterator uiter; + struct rb_node *rnode; + + parents = ulist_alloc(GFP_NOFS); + if (!parents) + return -ENOMEM; + + /* + * We could trade memory usage for performance here by iterating + * the tree, allocating new refs for each insertion, and then + * freeing the entire indirect tree when we're done. In some test + * cases, the tree can grow quite large (~200k objects). + */ + while ((rnode = rb_first_cached(&preftrees->indirect.root))) { + struct prelim_ref *ref; + + ref = rb_entry(rnode, struct prelim_ref, rbnode); + if (WARN(ref->parent, + "BUG: direct ref found in indirect tree")) { + ret = -EINVAL; + goto out; + } + + rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); + preftrees->indirect.count--; + + if (ref->count == 0) { + free_pref(ref); + continue; + } + + if (sc && ref->root_id != sc->root->root_key.objectid) { + free_pref(ref); + ret = BACKREF_FOUND_SHARED; + goto out; + } + err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); + /* + * we can only tolerate ENOENT,otherwise,we should catch error + * and return directly. + */ + if (err == -ENOENT) { + prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, + NULL); + continue; + } else if (err) { + free_pref(ref); + ret = err; + goto out; + } + + /* we put the first parent into the ref at hand */ + ULIST_ITER_INIT(&uiter); + node = ulist_next(parents, &uiter); + ref->parent = node ? node->val : 0; + ref->inode_list = unode_aux_to_inode_list(node); + + /* Add a prelim_ref(s) for any other parent(s). */ + while ((node = ulist_next(parents, &uiter))) { + struct prelim_ref *new_ref; + + new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, + GFP_NOFS); + if (!new_ref) { + free_pref(ref); + ret = -ENOMEM; + goto out; + } + memcpy(new_ref, ref, sizeof(*ref)); + new_ref->parent = node->val; + new_ref->inode_list = unode_aux_to_inode_list(node); + prelim_ref_insert(ctx->fs_info, &preftrees->direct, + new_ref, NULL); + } + + /* + * Now it's a direct ref, put it in the direct tree. We must + * do this last because the ref could be merged/freed here. + */ + prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); + + ulist_reinit(parents); + cond_resched(); + } +out: + /* + * We may have inode lists attached to refs in the parents ulist, so we + * must free them before freeing the ulist and its refs. + */ + free_leaf_list(parents); + return ret; +} + +/* + * read tree blocks and add keys where required. + */ +static int add_missing_keys(struct btrfs_fs_info *fs_info, + struct preftrees *preftrees, bool lock) +{ + struct prelim_ref *ref; + struct extent_buffer *eb; + struct preftree *tree = &preftrees->indirect_missing_keys; + struct rb_node *node; + + while ((node = rb_first_cached(&tree->root))) { + struct btrfs_tree_parent_check check = { 0 }; + + ref = rb_entry(node, struct prelim_ref, rbnode); + rb_erase_cached(node, &tree->root); + + BUG_ON(ref->parent); /* should not be a direct ref */ + BUG_ON(ref->key_for_search.type); + BUG_ON(!ref->wanted_disk_byte); + + check.level = ref->level - 1; + check.owner_root = ref->root_id; + + eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); + if (IS_ERR(eb)) { + free_pref(ref); + return PTR_ERR(eb); + } + if (!extent_buffer_uptodate(eb)) { + free_pref(ref); + free_extent_buffer(eb); + return -EIO; + } + + if (lock) + btrfs_tree_read_lock(eb); + if (btrfs_header_level(eb) == 0) + btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); + else + btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); + if (lock) + btrfs_tree_read_unlock(eb); + free_extent_buffer(eb); + prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); + cond_resched(); + } + return 0; +} + +/* + * add all currently queued delayed refs from this head whose seq nr is + * smaller or equal that seq to the list + */ +static int add_delayed_refs(const struct btrfs_fs_info *fs_info, + struct btrfs_delayed_ref_head *head, u64 seq, + struct preftrees *preftrees, struct share_check *sc) +{ + struct btrfs_delayed_ref_node *node; + struct btrfs_key key; + struct rb_node *n; + int count; + int ret = 0; + + spin_lock(&head->lock); + for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { + node = rb_entry(n, struct btrfs_delayed_ref_node, + ref_node); + if (node->seq > seq) + continue; + + switch (node->action) { + case BTRFS_ADD_DELAYED_EXTENT: + case BTRFS_UPDATE_DELAYED_HEAD: + WARN_ON(1); + continue; + case BTRFS_ADD_DELAYED_REF: + count = node->ref_mod; + break; + case BTRFS_DROP_DELAYED_REF: + count = node->ref_mod * -1; + break; + default: + BUG(); + } + switch (node->type) { + case BTRFS_TREE_BLOCK_REF_KEY: { + /* NORMAL INDIRECT METADATA backref */ + struct btrfs_delayed_tree_ref *ref; + struct btrfs_key *key_ptr = NULL; + + if (head->extent_op && head->extent_op->update_key) { + btrfs_disk_key_to_cpu(&key, &head->extent_op->key); + key_ptr = &key; + } + + ref = btrfs_delayed_node_to_tree_ref(node); + ret = add_indirect_ref(fs_info, preftrees, ref->root, + key_ptr, ref->level + 1, + node->bytenr, count, sc, + GFP_ATOMIC); + break; + } + case BTRFS_SHARED_BLOCK_REF_KEY: { + /* SHARED DIRECT METADATA backref */ + struct btrfs_delayed_tree_ref *ref; + + ref = btrfs_delayed_node_to_tree_ref(node); + + ret = add_direct_ref(fs_info, preftrees, ref->level + 1, + ref->parent, node->bytenr, count, + sc, GFP_ATOMIC); + break; + } + case BTRFS_EXTENT_DATA_REF_KEY: { + /* NORMAL INDIRECT DATA backref */ + struct btrfs_delayed_data_ref *ref; + ref = btrfs_delayed_node_to_data_ref(node); + + key.objectid = ref->objectid; + key.type = BTRFS_EXTENT_DATA_KEY; + key.offset = ref->offset; + + /* + * If we have a share check context and a reference for + * another inode, we can't exit immediately. This is + * because even if this is a BTRFS_ADD_DELAYED_REF + * reference we may find next a BTRFS_DROP_DELAYED_REF + * which cancels out this ADD reference. + * + * If this is a DROP reference and there was no previous + * ADD reference, then we need to signal that when we + * process references from the extent tree (through + * add_inline_refs() and add_keyed_refs()), we should + * not exit early if we find a reference for another + * inode, because one of the delayed DROP references + * may cancel that reference in the extent tree. + */ + if (sc && count < 0) + sc->have_delayed_delete_refs = true; + + ret = add_indirect_ref(fs_info, preftrees, ref->root, + &key, 0, node->bytenr, count, sc, + GFP_ATOMIC); + break; + } + case BTRFS_SHARED_DATA_REF_KEY: { + /* SHARED DIRECT FULL backref */ + struct btrfs_delayed_data_ref *ref; + + ref = btrfs_delayed_node_to_data_ref(node); + + ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, + node->bytenr, count, sc, + GFP_ATOMIC); + break; + } + default: + WARN_ON(1); + } + /* + * We must ignore BACKREF_FOUND_SHARED until all delayed + * refs have been checked. + */ + if (ret && (ret != BACKREF_FOUND_SHARED)) + break; + } + if (!ret) + ret = extent_is_shared(sc); + + spin_unlock(&head->lock); + return ret; +} + +/* + * add all inline backrefs for bytenr to the list + * + * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. + */ +static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, + struct btrfs_path *path, + int *info_level, struct preftrees *preftrees, + struct share_check *sc) +{ + int ret = 0; + int slot; + struct extent_buffer *leaf; + struct btrfs_key key; + struct btrfs_key found_key; + unsigned long ptr; + unsigned long end; + struct btrfs_extent_item *ei; + u64 flags; + u64 item_size; + + /* + * enumerate all inline refs + */ + leaf = path->nodes[0]; + slot = path->slots[0]; + + item_size = btrfs_item_size(leaf, slot); + BUG_ON(item_size < sizeof(*ei)); + + ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); + + if (ctx->check_extent_item) { + ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); + if (ret) + return ret; + } + + flags = btrfs_extent_flags(leaf, ei); + btrfs_item_key_to_cpu(leaf, &found_key, slot); + + ptr = (unsigned long)(ei + 1); + end = (unsigned long)ei + item_size; + + if (found_key.type == BTRFS_EXTENT_ITEM_KEY && + flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { + struct btrfs_tree_block_info *info; + + info = (struct btrfs_tree_block_info *)ptr; + *info_level = btrfs_tree_block_level(leaf, info); + ptr += sizeof(struct btrfs_tree_block_info); + BUG_ON(ptr > end); + } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { + *info_level = found_key.offset; + } else { + BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); + } + + while (ptr < end) { + struct btrfs_extent_inline_ref *iref; + u64 offset; + int type; + + iref = (struct btrfs_extent_inline_ref *)ptr; + type = btrfs_get_extent_inline_ref_type(leaf, iref, + BTRFS_REF_TYPE_ANY); + if (type == BTRFS_REF_TYPE_INVALID) + return -EUCLEAN; + + offset = btrfs_extent_inline_ref_offset(leaf, iref); + + switch (type) { + case BTRFS_SHARED_BLOCK_REF_KEY: + ret = add_direct_ref(ctx->fs_info, preftrees, + *info_level + 1, offset, + ctx->bytenr, 1, NULL, GFP_NOFS); + break; + case BTRFS_SHARED_DATA_REF_KEY: { + struct btrfs_shared_data_ref *sdref; + int count; + + sdref = (struct btrfs_shared_data_ref *)(iref + 1); + count = btrfs_shared_data_ref_count(leaf, sdref); + + ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, + ctx->bytenr, count, sc, GFP_NOFS); + break; + } + case BTRFS_TREE_BLOCK_REF_KEY: + ret = add_indirect_ref(ctx->fs_info, preftrees, offset, + NULL, *info_level + 1, + ctx->bytenr, 1, NULL, GFP_NOFS); + break; + case BTRFS_EXTENT_DATA_REF_KEY: { + struct btrfs_extent_data_ref *dref; + int count; + u64 root; + + dref = (struct btrfs_extent_data_ref *)(&iref->offset); + count = btrfs_extent_data_ref_count(leaf, dref); + key.objectid = btrfs_extent_data_ref_objectid(leaf, + dref); + key.type = BTRFS_EXTENT_DATA_KEY; + key.offset = btrfs_extent_data_ref_offset(leaf, dref); + + if (sc && key.objectid != sc->inum && + !sc->have_delayed_delete_refs) { + ret = BACKREF_FOUND_SHARED; + break; + } + + root = btrfs_extent_data_ref_root(leaf, dref); + + if (!ctx->skip_data_ref || + !ctx->skip_data_ref(root, key.objectid, key.offset, + ctx->user_ctx)) + ret = add_indirect_ref(ctx->fs_info, preftrees, + root, &key, 0, ctx->bytenr, + count, sc, GFP_NOFS); + break; + } + default: + WARN_ON(1); + } + if (ret) + return ret; + ptr += btrfs_extent_inline_ref_size(type); + } + + return 0; +} + +/* + * add all non-inline backrefs for bytenr to the list + * + * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. + */ +static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, + struct btrfs_root *extent_root, + struct btrfs_path *path, + int info_level, struct preftrees *preftrees, + struct share_check *sc) +{ + struct btrfs_fs_info *fs_info = extent_root->fs_info; + int ret; + int slot; + struct extent_buffer *leaf; + struct btrfs_key key; + + while (1) { + ret = btrfs_next_item(extent_root, path); + if (ret < 0) + break; + if (ret) { + ret = 0; + break; + } + + slot = path->slots[0]; + leaf = path->nodes[0]; + btrfs_item_key_to_cpu(leaf, &key, slot); + + if (key.objectid != ctx->bytenr) + break; + if (key.type < BTRFS_TREE_BLOCK_REF_KEY) + continue; + if (key.type > BTRFS_SHARED_DATA_REF_KEY) + break; + + switch (key.type) { + case BTRFS_SHARED_BLOCK_REF_KEY: + /* SHARED DIRECT METADATA backref */ + ret = add_direct_ref(fs_info, preftrees, + info_level + 1, key.offset, + ctx->bytenr, 1, NULL, GFP_NOFS); + break; + case BTRFS_SHARED_DATA_REF_KEY: { + /* SHARED DIRECT FULL backref */ + struct btrfs_shared_data_ref *sdref; + int count; + + sdref = btrfs_item_ptr(leaf, slot, + struct btrfs_shared_data_ref); + count = btrfs_shared_data_ref_count(leaf, sdref); + ret = add_direct_ref(fs_info, preftrees, 0, + key.offset, ctx->bytenr, count, + sc, GFP_NOFS); + break; + } + case BTRFS_TREE_BLOCK_REF_KEY: + /* NORMAL INDIRECT METADATA backref */ + ret = add_indirect_ref(fs_info, preftrees, key.offset, + NULL, info_level + 1, ctx->bytenr, + 1, NULL, GFP_NOFS); + break; + case BTRFS_EXTENT_DATA_REF_KEY: { + /* NORMAL INDIRECT DATA backref */ + struct btrfs_extent_data_ref *dref; + int count; + u64 root; + + dref = btrfs_item_ptr(leaf, slot, + struct btrfs_extent_data_ref); + count = btrfs_extent_data_ref_count(leaf, dref); + key.objectid = btrfs_extent_data_ref_objectid(leaf, + dref); + key.type = BTRFS_EXTENT_DATA_KEY; + key.offset = btrfs_extent_data_ref_offset(leaf, dref); + + if (sc && key.objectid != sc->inum && + !sc->have_delayed_delete_refs) { + ret = BACKREF_FOUND_SHARED; + break; + } + + root = btrfs_extent_data_ref_root(leaf, dref); + + if (!ctx->skip_data_ref || + !ctx->skip_data_ref(root, key.objectid, key.offset, + ctx->user_ctx)) + ret = add_indirect_ref(fs_info, preftrees, root, + &key, 0, ctx->bytenr, + count, sc, GFP_NOFS); + break; + } + default: + WARN_ON(1); + } + if (ret) + return ret; + + } + + return ret; +} + +/* + * The caller has joined a transaction or is holding a read lock on the + * fs_info->commit_root_sem semaphore, so no need to worry about the root's last + * snapshot field changing while updating or checking the cache. + */ +static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, + struct btrfs_root *root, + u64 bytenr, int level, bool *is_shared) +{ + const struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_backref_shared_cache_entry *entry; + + if (!current->journal_info) + lockdep_assert_held(&fs_info->commit_root_sem); + + if (!ctx->use_path_cache) + return false; + + if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) + return false; + + /* + * Level -1 is used for the data extent, which is not reliable to cache + * because its reference count can increase or decrease without us + * realizing. We cache results only for extent buffers that lead from + * the root node down to the leaf with the file extent item. + */ + ASSERT(level >= 0); + + entry = &ctx->path_cache_entries[level]; + + /* Unused cache entry or being used for some other extent buffer. */ + if (entry->bytenr != bytenr) + return false; + + /* + * We cached a false result, but the last snapshot generation of the + * root changed, so we now have a snapshot. Don't trust the result. + */ + if (!entry->is_shared && + entry->gen != btrfs_root_last_snapshot(&root->root_item)) + return false; + + /* + * If we cached a true result and the last generation used for dropping + * a root changed, we can not trust the result, because the dropped root + * could be a snapshot sharing this extent buffer. + */ + if (entry->is_shared && + entry->gen != btrfs_get_last_root_drop_gen(fs_info)) + return false; + + *is_shared = entry->is_shared; + /* + * If the node at this level is shared, than all nodes below are also + * shared. Currently some of the nodes below may be marked as not shared + * because we have just switched from one leaf to another, and switched + * also other nodes above the leaf and below the current level, so mark + * them as shared. + */ + if (*is_shared) { + for (int i = 0; i < level; i++) { + ctx->path_cache_entries[i].is_shared = true; + ctx->path_cache_entries[i].gen = entry->gen; + } + } + + return true; +} + +/* + * The caller has joined a transaction or is holding a read lock on the + * fs_info->commit_root_sem semaphore, so no need to worry about the root's last + * snapshot field changing while updating or checking the cache. + */ +static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, + struct btrfs_root *root, + u64 bytenr, int level, bool is_shared) +{ + const struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_backref_shared_cache_entry *entry; + u64 gen; + + if (!current->journal_info) + lockdep_assert_held(&fs_info->commit_root_sem); + + if (!ctx->use_path_cache) + return; + + if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) + return; + + /* + * Level -1 is used for the data extent, which is not reliable to cache + * because its reference count can increase or decrease without us + * realizing. We cache results only for extent buffers that lead from + * the root node down to the leaf with the file extent item. + */ + ASSERT(level >= 0); + + if (is_shared) + gen = btrfs_get_last_root_drop_gen(fs_info); + else + gen = btrfs_root_last_snapshot(&root->root_item); + + entry = &ctx->path_cache_entries[level]; + entry->bytenr = bytenr; + entry->is_shared = is_shared; + entry->gen = gen; + + /* + * If we found an extent buffer is shared, set the cache result for all + * extent buffers below it to true. As nodes in the path are COWed, + * their sharedness is moved to their children, and if a leaf is COWed, + * then the sharedness of a data extent becomes direct, the refcount of + * data extent is increased in the extent item at the extent tree. + */ + if (is_shared) { + for (int i = 0; i < level; i++) { + entry = &ctx->path_cache_entries[i]; + entry->is_shared = is_shared; + entry->gen = gen; + } + } +} + +/* + * this adds all existing backrefs (inline backrefs, backrefs and delayed + * refs) for the given bytenr to the refs list, merges duplicates and resolves + * indirect refs to their parent bytenr. + * When roots are found, they're added to the roots list + * + * @ctx: Backref walking context object, must be not NULL. + * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a + * shared extent is detected. + * + * Otherwise this returns 0 for success and <0 for an error. + * + * FIXME some caching might speed things up + */ +static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, + struct share_check *sc) +{ + struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); + struct btrfs_key key; + struct btrfs_path *path; + struct btrfs_delayed_ref_root *delayed_refs = NULL; + struct btrfs_delayed_ref_head *head; + int info_level = 0; + int ret; + struct prelim_ref *ref; + struct rb_node *node; + struct extent_inode_elem *eie = NULL; + struct preftrees preftrees = { + .direct = PREFTREE_INIT, + .indirect = PREFTREE_INIT, + .indirect_missing_keys = PREFTREE_INIT + }; + + /* Roots ulist is not needed when using a sharedness check context. */ + if (sc) + ASSERT(ctx->roots == NULL); + + key.objectid = ctx->bytenr; + key.offset = (u64)-1; + if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) + key.type = BTRFS_METADATA_ITEM_KEY; + else + key.type = BTRFS_EXTENT_ITEM_KEY; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + if (!ctx->trans) { + path->search_commit_root = 1; + path->skip_locking = 1; + } + + if (ctx->time_seq == BTRFS_SEQ_LAST) + path->skip_locking = 1; + +again: + head = NULL; + + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) + goto out; + if (ret == 0) { + /* This shouldn't happen, indicates a bug or fs corruption. */ + ASSERT(ret != 0); + ret = -EUCLEAN; + goto out; + } + + if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && + ctx->time_seq != BTRFS_SEQ_LAST) { + /* + * We have a specific time_seq we care about and trans which + * means we have the path lock, we need to grab the ref head and + * lock it so we have a consistent view of the refs at the given + * time. + */ + delayed_refs = &ctx->trans->transaction->delayed_refs; + spin_lock(&delayed_refs->lock); + head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); + if (head) { + if (!mutex_trylock(&head->mutex)) { + refcount_inc(&head->refs); + spin_unlock(&delayed_refs->lock); + + btrfs_release_path(path); + + /* + * Mutex was contended, block until it's + * released and try again + */ + mutex_lock(&head->mutex); + mutex_unlock(&head->mutex); + btrfs_put_delayed_ref_head(head); + goto again; + } + spin_unlock(&delayed_refs->lock); + ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, + &preftrees, sc); + mutex_unlock(&head->mutex); + if (ret) + goto out; + } else { + spin_unlock(&delayed_refs->lock); + } + } + + if (path->slots[0]) { + struct extent_buffer *leaf; + int slot; + + path->slots[0]--; + leaf = path->nodes[0]; + slot = path->slots[0]; + btrfs_item_key_to_cpu(leaf, &key, slot); + if (key.objectid == ctx->bytenr && + (key.type == BTRFS_EXTENT_ITEM_KEY || + key.type == BTRFS_METADATA_ITEM_KEY)) { + ret = add_inline_refs(ctx, path, &info_level, + &preftrees, sc); + if (ret) + goto out; + ret = add_keyed_refs(ctx, root, path, info_level, + &preftrees, sc); + if (ret) + goto out; + } + } + + /* + * If we have a share context and we reached here, it means the extent + * is not directly shared (no multiple reference items for it), + * otherwise we would have exited earlier with a return value of + * BACKREF_FOUND_SHARED after processing delayed references or while + * processing inline or keyed references from the extent tree. + * The extent may however be indirectly shared through shared subtrees + * as a result from creating snapshots, so we determine below what is + * its parent node, in case we are dealing with a metadata extent, or + * what's the leaf (or leaves), from a fs tree, that has a file extent + * item pointing to it in case we are dealing with a data extent. + */ + ASSERT(extent_is_shared(sc) == 0); + + /* + * If we are here for a data extent and we have a share_check structure + * it means the data extent is not directly shared (does not have + * multiple reference items), so we have to check if a path in the fs + * tree (going from the root node down to the leaf that has the file + * extent item pointing to the data extent) is shared, that is, if any + * of the extent buffers in the path is referenced by other trees. + */ + if (sc && ctx->bytenr == sc->data_bytenr) { + /* + * If our data extent is from a generation more recent than the + * last generation used to snapshot the root, then we know that + * it can not be shared through subtrees, so we can skip + * resolving indirect references, there's no point in + * determining the extent buffers for the path from the fs tree + * root node down to the leaf that has the file extent item that + * points to the data extent. + */ + if (sc->data_extent_gen > + btrfs_root_last_snapshot(&sc->root->root_item)) { + ret = BACKREF_FOUND_NOT_SHARED; + goto out; + } + + /* + * If we are only determining if a data extent is shared or not + * and the corresponding file extent item is located in the same + * leaf as the previous file extent item, we can skip resolving + * indirect references for a data extent, since the fs tree path + * is the same (same leaf, so same path). We skip as long as the + * cached result for the leaf is valid and only if there's only + * one file extent item pointing to the data extent, because in + * the case of multiple file extent items, they may be located + * in different leaves and therefore we have multiple paths. + */ + if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && + sc->self_ref_count == 1) { + bool cached; + bool is_shared; + + cached = lookup_backref_shared_cache(sc->ctx, sc->root, + sc->ctx->curr_leaf_bytenr, + 0, &is_shared); + if (cached) { + if (is_shared) + ret = BACKREF_FOUND_SHARED; + else + ret = BACKREF_FOUND_NOT_SHARED; + goto out; + } + } + } + + btrfs_release_path(path); + + ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); + if (ret) + goto out; + + WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); + + ret = resolve_indirect_refs(ctx, path, &preftrees, sc); + if (ret) + goto out; + + WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); + + /* + * This walks the tree of merged and resolved refs. Tree blocks are + * read in as needed. Unique entries are added to the ulist, and + * the list of found roots is updated. + * + * We release the entire tree in one go before returning. + */ + node = rb_first_cached(&preftrees.direct.root); + while (node) { + ref = rb_entry(node, struct prelim_ref, rbnode); + node = rb_next(&ref->rbnode); + /* + * ref->count < 0 can happen here if there are delayed + * refs with a node->action of BTRFS_DROP_DELAYED_REF. + * prelim_ref_insert() relies on this when merging + * identical refs to keep the overall count correct. + * prelim_ref_insert() will merge only those refs + * which compare identically. Any refs having + * e.g. different offsets would not be merged, + * and would retain their original ref->count < 0. + */ + if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { + /* no parent == root of tree */ + ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); + if (ret < 0) + goto out; + } + if (ref->count && ref->parent) { + if (!ctx->skip_inode_ref_list && !ref->inode_list && + ref->level == 0) { + struct btrfs_tree_parent_check check = { 0 }; + struct extent_buffer *eb; + + check.level = ref->level; + + eb = read_tree_block(ctx->fs_info, ref->parent, + &check); + if (IS_ERR(eb)) { + ret = PTR_ERR(eb); + goto out; + } + if (!extent_buffer_uptodate(eb)) { + free_extent_buffer(eb); + ret = -EIO; + goto out; + } + + if (!path->skip_locking) + btrfs_tree_read_lock(eb); + ret = find_extent_in_eb(ctx, eb, &eie); + if (!path->skip_locking) + btrfs_tree_read_unlock(eb); + free_extent_buffer(eb); + if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || + ret < 0) + goto out; + ref->inode_list = eie; + /* + * We transferred the list ownership to the ref, + * so set to NULL to avoid a double free in case + * an error happens after this. + */ + eie = NULL; + } + ret = ulist_add_merge_ptr(ctx->refs, ref->parent, + ref->inode_list, + (void **)&eie, GFP_NOFS); + if (ret < 0) + goto out; + if (!ret && !ctx->skip_inode_ref_list) { + /* + * We've recorded that parent, so we must extend + * its inode list here. + * + * However if there was corruption we may not + * have found an eie, return an error in this + * case. + */ + ASSERT(eie); + if (!eie) { + ret = -EUCLEAN; + goto out; + } + while (eie->next) + eie = eie->next; + eie->next = ref->inode_list; + } + eie = NULL; + /* + * We have transferred the inode list ownership from + * this ref to the ref we added to the 'refs' ulist. + * So set this ref's inode list to NULL to avoid + * use-after-free when our caller uses it or double + * frees in case an error happens before we return. + */ + ref->inode_list = NULL; + } + cond_resched(); + } + +out: + btrfs_free_path(path); + + prelim_release(&preftrees.direct); + prelim_release(&preftrees.indirect); + prelim_release(&preftrees.indirect_missing_keys); + + if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) + free_inode_elem_list(eie); + return ret; +} + +/* + * Finds all leaves with a reference to the specified combination of + * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are + * added to the ulist at @ctx->refs, and that ulist is allocated by this + * function. The caller should free the ulist with free_leaf_list() if + * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is + * enough. + * + * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. + */ +int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) +{ + int ret; + + ASSERT(ctx->refs == NULL); + + ctx->refs = ulist_alloc(GFP_NOFS); + if (!ctx->refs) + return -ENOMEM; + + ret = find_parent_nodes(ctx, NULL); + if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || + (ret < 0 && ret != -ENOENT)) { + free_leaf_list(ctx->refs); + ctx->refs = NULL; + return ret; + } + + return 0; +} + +/* + * Walk all backrefs for a given extent to find all roots that reference this + * extent. Walking a backref means finding all extents that reference this + * extent and in turn walk the backrefs of those, too. Naturally this is a + * recursive process, but here it is implemented in an iterative fashion: We + * find all referencing extents for the extent in question and put them on a + * list. In turn, we find all referencing extents for those, further appending + * to the list. The way we iterate the list allows adding more elements after + * the current while iterating. The process stops when we reach the end of the + * list. + * + * Found roots are added to @ctx->roots, which is allocated by this function if + * it points to NULL, in which case the caller is responsible for freeing it + * after it's not needed anymore. + * This function requires @ctx->refs to be NULL, as it uses it for allocating a + * ulist to do temporary work, and frees it before returning. + * + * Returns 0 on success, < 0 on error. + */ +static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) +{ + const u64 orig_bytenr = ctx->bytenr; + const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list; + bool roots_ulist_allocated = false; + struct ulist_iterator uiter; + int ret = 0; + + ASSERT(ctx->refs == NULL); + + ctx->refs = ulist_alloc(GFP_NOFS); + if (!ctx->refs) + return -ENOMEM; + + if (!ctx->roots) { + ctx->roots = ulist_alloc(GFP_NOFS); + if (!ctx->roots) { + ulist_free(ctx->refs); + ctx->refs = NULL; + return -ENOMEM; + } + roots_ulist_allocated = true; + } + + ctx->skip_inode_ref_list = true; + + ULIST_ITER_INIT(&uiter); + while (1) { + struct ulist_node *node; + + ret = find_parent_nodes(ctx, NULL); + if (ret < 0 && ret != -ENOENT) { + if (roots_ulist_allocated) { + ulist_free(ctx->roots); + ctx->roots = NULL; + } + break; + } + ret = 0; + node = ulist_next(ctx->refs, &uiter); + if (!node) + break; + ctx->bytenr = node->val; + cond_resched(); + } + + ulist_free(ctx->refs); + ctx->refs = NULL; + ctx->bytenr = orig_bytenr; + ctx->skip_inode_ref_list = orig_skip_inode_ref_list; + + return ret; +} + +int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, + bool skip_commit_root_sem) +{ + int ret; + + if (!ctx->trans && !skip_commit_root_sem) + down_read(&ctx->fs_info->commit_root_sem); + ret = btrfs_find_all_roots_safe(ctx); + if (!ctx->trans && !skip_commit_root_sem) + up_read(&ctx->fs_info->commit_root_sem); + return ret; +} + +struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) +{ + struct btrfs_backref_share_check_ctx *ctx; + + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) + return NULL; + + ulist_init(&ctx->refs); + + return ctx; +} + +void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) +{ + if (!ctx) + return; + + ulist_release(&ctx->refs); + kfree(ctx); +} + +/* + * Check if a data extent is shared or not. + * + * @inode: The inode whose extent we are checking. + * @bytenr: Logical bytenr of the extent we are checking. + * @extent_gen: Generation of the extent (file extent item) or 0 if it is + * not known. + * @ctx: A backref sharedness check context. + * + * btrfs_is_data_extent_shared uses the backref walking code but will short + * circuit as soon as it finds a root or inode that doesn't match the + * one passed in. This provides a significant performance benefit for + * callers (such as fiemap) which want to know whether the extent is + * shared but do not need a ref count. + * + * This attempts to attach to the running transaction in order to account for + * delayed refs, but continues on even when no running transaction exists. + * + * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. + */ +int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, + u64 extent_gen, + struct btrfs_backref_share_check_ctx *ctx) +{ + struct btrfs_backref_walk_ctx walk_ctx = { 0 }; + struct btrfs_root *root = inode->root; + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_trans_handle *trans; + struct ulist_iterator uiter; + struct ulist_node *node; + struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); + int ret = 0; + struct share_check shared = { + .ctx = ctx, + .root = root, + .inum = btrfs_ino(inode), + .data_bytenr = bytenr, + .data_extent_gen = extent_gen, + .share_count = 0, + .self_ref_count = 0, + .have_delayed_delete_refs = false, + }; + int level; + bool leaf_cached; + bool leaf_is_shared; + + for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { + if (ctx->prev_extents_cache[i].bytenr == bytenr) + return ctx->prev_extents_cache[i].is_shared; + } + + ulist_init(&ctx->refs); + + trans = btrfs_join_transaction_nostart(root); + if (IS_ERR(trans)) { + if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { + ret = PTR_ERR(trans); + goto out; + } + trans = NULL; + down_read(&fs_info->commit_root_sem); + } else { + btrfs_get_tree_mod_seq(fs_info, &elem); + walk_ctx.time_seq = elem.seq; + } + + ctx->use_path_cache = true; + + /* + * We may have previously determined that the current leaf is shared. + * If it is, then we have a data extent that is shared due to a shared + * subtree (caused by snapshotting) and we don't need to check for data + * backrefs. If the leaf is not shared, then we must do backref walking + * to determine if the data extent is shared through reflinks. + */ + leaf_cached = lookup_backref_shared_cache(ctx, root, + ctx->curr_leaf_bytenr, 0, + &leaf_is_shared); + if (leaf_cached && leaf_is_shared) { + ret = 1; + goto out_trans; + } + + walk_ctx.skip_inode_ref_list = true; + walk_ctx.trans = trans; + walk_ctx.fs_info = fs_info; + walk_ctx.refs = &ctx->refs; + + /* -1 means we are in the bytenr of the data extent. */ + level = -1; + ULIST_ITER_INIT(&uiter); + while (1) { + const unsigned long prev_ref_count = ctx->refs.nnodes; + + walk_ctx.bytenr = bytenr; + ret = find_parent_nodes(&walk_ctx, &shared); + if (ret == BACKREF_FOUND_SHARED || + ret == BACKREF_FOUND_NOT_SHARED) { + /* If shared must return 1, otherwise return 0. */ + ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; + if (level >= 0) + store_backref_shared_cache(ctx, root, bytenr, + level, ret == 1); + break; + } + if (ret < 0 && ret != -ENOENT) + break; + ret = 0; + + /* + * More than one extent buffer (bytenr) may have been added to + * the ctx->refs ulist, in which case we have to check multiple + * tree paths in case the first one is not shared, so we can not + * use the path cache which is made for a single path. Multiple + * extent buffers at the current level happen when: + * + * 1) level -1, the data extent: If our data extent was not + * directly shared (without multiple reference items), then + * it might have a single reference item with a count > 1 for + * the same offset, which means there are 2 (or more) file + * extent items that point to the data extent - this happens + * when a file extent item needs to be split and then one + * item gets moved to another leaf due to a b+tree leaf split + * when inserting some item. In this case the file extent + * items may be located in different leaves and therefore + * some of the leaves may be referenced through shared + * subtrees while others are not. Since our extent buffer + * cache only works for a single path (by far the most common + * case and simpler to deal with), we can not use it if we + * have multiple leaves (which implies multiple paths). + * + * 2) level >= 0, a tree node/leaf: We can have a mix of direct + * and indirect references on a b+tree node/leaf, so we have + * to check multiple paths, and the extent buffer (the + * current bytenr) may be shared or not. One example is + * during relocation as we may get a shared tree block ref + * (direct ref) and a non-shared tree block ref (indirect + * ref) for the same node/leaf. + */ + if ((ctx->refs.nnodes - prev_ref_count) > 1) + ctx->use_path_cache = false; + + if (level >= 0) + store_backref_shared_cache(ctx, root, bytenr, + level, false); + node = ulist_next(&ctx->refs, &uiter); + if (!node) + break; + bytenr = node->val; + if (ctx->use_path_cache) { + bool is_shared; + bool cached; + + level++; + cached = lookup_backref_shared_cache(ctx, root, bytenr, + level, &is_shared); + if (cached) { + ret = (is_shared ? 1 : 0); + break; + } + } + shared.share_count = 0; + shared.have_delayed_delete_refs = false; + cond_resched(); + } + + /* + * If the path cache is disabled, then it means at some tree level we + * got multiple parents due to a mix of direct and indirect backrefs or + * multiple leaves with file extent items pointing to the same data + * extent. We have to invalidate the cache and cache only the sharedness + * result for the levels where we got only one node/reference. + */ + if (!ctx->use_path_cache) { + int i = 0; + + level--; + if (ret >= 0 && level >= 0) { + bytenr = ctx->path_cache_entries[level].bytenr; + ctx->use_path_cache = true; + store_backref_shared_cache(ctx, root, bytenr, level, ret); + i = level + 1; + } + + for ( ; i < BTRFS_MAX_LEVEL; i++) + ctx->path_cache_entries[i].bytenr = 0; + } + + /* + * Cache the sharedness result for the data extent if we know our inode + * has more than 1 file extent item that refers to the data extent. + */ + if (ret >= 0 && shared.self_ref_count > 1) { + int slot = ctx->prev_extents_cache_slot; + + ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; + ctx->prev_extents_cache[slot].is_shared = (ret == 1); + + slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; + ctx->prev_extents_cache_slot = slot; + } + +out_trans: + if (trans) { + btrfs_put_tree_mod_seq(fs_info, &elem); + btrfs_end_transaction(trans); + } else { + up_read(&fs_info->commit_root_sem); + } +out: + ulist_release(&ctx->refs); + ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; + + return ret; +} + +int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, + u64 start_off, struct btrfs_path *path, + struct btrfs_inode_extref **ret_extref, + u64 *found_off) +{ + int ret, slot; + struct btrfs_key key; + struct btrfs_key found_key; + struct btrfs_inode_extref *extref; + const struct extent_buffer *leaf; + unsigned long ptr; + + key.objectid = inode_objectid; + key.type = BTRFS_INODE_EXTREF_KEY; + key.offset = start_off; + + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) + return ret; + + while (1) { + leaf = path->nodes[0]; + slot = path->slots[0]; + if (slot >= btrfs_header_nritems(leaf)) { + /* + * If the item at offset is not found, + * btrfs_search_slot will point us to the slot + * where it should be inserted. In our case + * that will be the slot directly before the + * next INODE_REF_KEY_V2 item. In the case + * that we're pointing to the last slot in a + * leaf, we must move one leaf over. + */ + ret = btrfs_next_leaf(root, path); + if (ret) { + if (ret >= 1) + ret = -ENOENT; + break; + } + continue; + } + + btrfs_item_key_to_cpu(leaf, &found_key, slot); + + /* + * Check that we're still looking at an extended ref key for + * this particular objectid. If we have different + * objectid or type then there are no more to be found + * in the tree and we can exit. + */ + ret = -ENOENT; + if (found_key.objectid != inode_objectid) + break; + if (found_key.type != BTRFS_INODE_EXTREF_KEY) + break; + + ret = 0; + ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); + extref = (struct btrfs_inode_extref *)ptr; + *ret_extref = extref; + if (found_off) + *found_off = found_key.offset; + break; + } + + return ret; +} + +/* + * this iterates to turn a name (from iref/extref) into a full filesystem path. + * Elements of the path are separated by '/' and the path is guaranteed to be + * 0-terminated. the path is only given within the current file system. + * Therefore, it never starts with a '/'. the caller is responsible to provide + * "size" bytes in "dest". the dest buffer will be filled backwards. finally, + * the start point of the resulting string is returned. this pointer is within + * dest, normally. + * in case the path buffer would overflow, the pointer is decremented further + * as if output was written to the buffer, though no more output is actually + * generated. that way, the caller can determine how much space would be + * required for the path to fit into the buffer. in that case, the returned + * value will be smaller than dest. callers must check this! + */ +char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, + u32 name_len, unsigned long name_off, + struct extent_buffer *eb_in, u64 parent, + char *dest, u32 size) +{ + int slot; + u64 next_inum; + int ret; + s64 bytes_left = ((s64)size) - 1; + struct extent_buffer *eb = eb_in; + struct btrfs_key found_key; + struct btrfs_inode_ref *iref; + + if (bytes_left >= 0) + dest[bytes_left] = '\0'; + + while (1) { + bytes_left -= name_len; + if (bytes_left >= 0) + read_extent_buffer(eb, dest + bytes_left, + name_off, name_len); + if (eb != eb_in) { + if (!path->skip_locking) + btrfs_tree_read_unlock(eb); + free_extent_buffer(eb); + } + ret = btrfs_find_item(fs_root, path, parent, 0, + BTRFS_INODE_REF_KEY, &found_key); + if (ret > 0) + ret = -ENOENT; + if (ret) + break; + + next_inum = found_key.offset; + + /* regular exit ahead */ + if (parent == next_inum) + break; + + slot = path->slots[0]; + eb = path->nodes[0]; + /* make sure we can use eb after releasing the path */ + if (eb != eb_in) { + path->nodes[0] = NULL; + path->locks[0] = 0; + } + btrfs_release_path(path); + iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); + + name_len = btrfs_inode_ref_name_len(eb, iref); + name_off = (unsigned long)(iref + 1); + + parent = next_inum; + --bytes_left; + if (bytes_left >= 0) + dest[bytes_left] = '/'; + } + + btrfs_release_path(path); + + if (ret) + return ERR_PTR(ret); + + return dest + bytes_left; +} + +/* + * this makes the path point to (logical EXTENT_ITEM *) + * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for + * tree blocks and <0 on error. + */ +int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, + struct btrfs_path *path, struct btrfs_key *found_key, + u64 *flags_ret) +{ + struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); + int ret; + u64 flags; + u64 size = 0; + u32 item_size; + const struct extent_buffer *eb; + struct btrfs_extent_item *ei; + struct btrfs_key key; + + if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) + key.type = BTRFS_METADATA_ITEM_KEY; + else + key.type = BTRFS_EXTENT_ITEM_KEY; + key.objectid = logical; + key.offset = (u64)-1; + + ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); + if (ret < 0) + return ret; + + ret = btrfs_previous_extent_item(extent_root, path, 0); + if (ret) { + if (ret > 0) + ret = -ENOENT; + return ret; + } + btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); + if (found_key->type == BTRFS_METADATA_ITEM_KEY) + size = fs_info->nodesize; + else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) + size = found_key->offset; + + if (found_key->objectid > logical || + found_key->objectid + size <= logical) { + btrfs_debug(fs_info, + "logical %llu is not within any extent", logical); + return -ENOENT; + } + + eb = path->nodes[0]; + item_size = btrfs_item_size(eb, path->slots[0]); + BUG_ON(item_size < sizeof(*ei)); + + ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); + flags = btrfs_extent_flags(eb, ei); + + btrfs_debug(fs_info, + "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", + logical, logical - found_key->objectid, found_key->objectid, + found_key->offset, flags, item_size); + + WARN_ON(!flags_ret); + if (flags_ret) { + if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) + *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; + else if (flags & BTRFS_EXTENT_FLAG_DATA) + *flags_ret = BTRFS_EXTENT_FLAG_DATA; + else + BUG(); + return 0; + } + + return -EIO; +} + +/* + * helper function to iterate extent inline refs. ptr must point to a 0 value + * for the first call and may be modified. it is used to track state. + * if more refs exist, 0 is returned and the next call to + * get_extent_inline_ref must pass the modified ptr parameter to get the + * next ref. after the last ref was processed, 1 is returned. + * returns <0 on error + */ +static int get_extent_inline_ref(unsigned long *ptr, + const struct extent_buffer *eb, + const struct btrfs_key *key, + const struct btrfs_extent_item *ei, + u32 item_size, + struct btrfs_extent_inline_ref **out_eiref, + int *out_type) +{ + unsigned long end; + u64 flags; + struct btrfs_tree_block_info *info; + + if (!*ptr) { + /* first call */ + flags = btrfs_extent_flags(eb, ei); + if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { + if (key->type == BTRFS_METADATA_ITEM_KEY) { + /* a skinny metadata extent */ + *out_eiref = + (struct btrfs_extent_inline_ref *)(ei + 1); + } else { + WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); + info = (struct btrfs_tree_block_info *)(ei + 1); + *out_eiref = + (struct btrfs_extent_inline_ref *)(info + 1); + } + } else { + *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); + } + *ptr = (unsigned long)*out_eiref; + if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) + return -ENOENT; + } + + end = (unsigned long)ei + item_size; + *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); + *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, + BTRFS_REF_TYPE_ANY); + if (*out_type == BTRFS_REF_TYPE_INVALID) + return -EUCLEAN; + + *ptr += btrfs_extent_inline_ref_size(*out_type); + WARN_ON(*ptr > end); + if (*ptr == end) + return 1; /* last */ + + return 0; +} + +/* + * reads the tree block backref for an extent. tree level and root are returned + * through out_level and out_root. ptr must point to a 0 value for the first + * call and may be modified (see get_extent_inline_ref comment). + * returns 0 if data was provided, 1 if there was no more data to provide or + * <0 on error. + */ +int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, + struct btrfs_key *key, struct btrfs_extent_item *ei, + u32 item_size, u64 *out_root, u8 *out_level) +{ + int ret; + int type; + struct btrfs_extent_inline_ref *eiref; + + if (*ptr == (unsigned long)-1) + return 1; + + while (1) { + ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, + &eiref, &type); + if (ret < 0) + return ret; + + if (type == BTRFS_TREE_BLOCK_REF_KEY || + type == BTRFS_SHARED_BLOCK_REF_KEY) + break; + + if (ret == 1) + return 1; + } + + /* we can treat both ref types equally here */ + *out_root = btrfs_extent_inline_ref_offset(eb, eiref); + + if (key->type == BTRFS_EXTENT_ITEM_KEY) { + struct btrfs_tree_block_info *info; + + info = (struct btrfs_tree_block_info *)(ei + 1); + *out_level = btrfs_tree_block_level(eb, info); + } else { + ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); + *out_level = (u8)key->offset; + } + + if (ret == 1) + *ptr = (unsigned long)-1; + + return 0; +} + +static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, + struct extent_inode_elem *inode_list, + u64 root, u64 extent_item_objectid, + iterate_extent_inodes_t *iterate, void *ctx) +{ + struct extent_inode_elem *eie; + int ret = 0; + + for (eie = inode_list; eie; eie = eie->next) { + btrfs_debug(fs_info, + "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", + extent_item_objectid, eie->inum, + eie->offset, root); + ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); + if (ret) { + btrfs_debug(fs_info, + "stopping iteration for %llu due to ret=%d", + extent_item_objectid, ret); + break; + } + } + + return ret; +} + +/* + * calls iterate() for every inode that references the extent identified by + * the given parameters. + * when the iterator function returns a non-zero value, iteration stops. + */ +int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, + bool search_commit_root, + iterate_extent_inodes_t *iterate, void *user_ctx) +{ + int ret; + struct ulist *refs; + struct ulist_node *ref_node; + struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); + struct ulist_iterator ref_uiter; + + btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", + ctx->bytenr); + + ASSERT(ctx->trans == NULL); + ASSERT(ctx->roots == NULL); + + if (!search_commit_root) { + struct btrfs_trans_handle *trans; + + trans = btrfs_attach_transaction(ctx->fs_info->tree_root); + if (IS_ERR(trans)) { + if (PTR_ERR(trans) != -ENOENT && + PTR_ERR(trans) != -EROFS) + return PTR_ERR(trans); + trans = NULL; + } + ctx->trans = trans; + } + + if (ctx->trans) { + btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); + ctx->time_seq = seq_elem.seq; + } else { + down_read(&ctx->fs_info->commit_root_sem); + } + + ret = btrfs_find_all_leafs(ctx); + if (ret) + goto out; + refs = ctx->refs; + ctx->refs = NULL; + + ULIST_ITER_INIT(&ref_uiter); + while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { + const u64 leaf_bytenr = ref_node->val; + struct ulist_node *root_node; + struct ulist_iterator root_uiter; + struct extent_inode_elem *inode_list; + + inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; + + if (ctx->cache_lookup) { + const u64 *root_ids; + int root_count; + bool cached; + + cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, + &root_ids, &root_count); + if (cached) { + for (int i = 0; i < root_count; i++) { + ret = iterate_leaf_refs(ctx->fs_info, + inode_list, + root_ids[i], + leaf_bytenr, + iterate, + user_ctx); + if (ret) + break; + } + continue; + } + } + + if (!ctx->roots) { + ctx->roots = ulist_alloc(GFP_NOFS); + if (!ctx->roots) { + ret = -ENOMEM; + break; + } + } + + ctx->bytenr = leaf_bytenr; + ret = btrfs_find_all_roots_safe(ctx); + if (ret) + break; + + if (ctx->cache_store) + ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); + + ULIST_ITER_INIT(&root_uiter); + while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { + btrfs_debug(ctx->fs_info, + "root %llu references leaf %llu, data list %#llx", + root_node->val, ref_node->val, + ref_node->aux); + ret = iterate_leaf_refs(ctx->fs_info, inode_list, + root_node->val, ctx->bytenr, + iterate, user_ctx); + } + ulist_reinit(ctx->roots); + } + + free_leaf_list(refs); +out: + if (ctx->trans) { + btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); + btrfs_end_transaction(ctx->trans); + ctx->trans = NULL; + } else { + up_read(&ctx->fs_info->commit_root_sem); + } + + ulist_free(ctx->roots); + ctx->roots = NULL; + + if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) + ret = 0; + + return ret; +} + +static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) +{ + struct btrfs_data_container *inodes = ctx; + const size_t c = 3 * sizeof(u64); + + if (inodes->bytes_left >= c) { + inodes->bytes_left -= c; + inodes->val[inodes->elem_cnt] = inum; + inodes->val[inodes->elem_cnt + 1] = offset; + inodes->val[inodes->elem_cnt + 2] = root; + inodes->elem_cnt += 3; + } else { + inodes->bytes_missing += c - inodes->bytes_left; + inodes->bytes_left = 0; + inodes->elem_missed += 3; + } + + return 0; +} + +int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, + struct btrfs_path *path, + void *ctx, bool ignore_offset) +{ + struct btrfs_backref_walk_ctx walk_ctx = { 0 }; + int ret; + u64 flags = 0; + struct btrfs_key found_key; + int search_commit_root = path->search_commit_root; + + ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); + btrfs_release_path(path); + if (ret < 0) + return ret; + if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) + return -EINVAL; + + walk_ctx.bytenr = found_key.objectid; + if (ignore_offset) + walk_ctx.ignore_extent_item_pos = true; + else + walk_ctx.extent_item_pos = logical - found_key.objectid; + walk_ctx.fs_info = fs_info; + + return iterate_extent_inodes(&walk_ctx, search_commit_root, + build_ino_list, ctx); +} + +static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, + struct extent_buffer *eb, struct inode_fs_paths *ipath); + +static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) +{ + int ret = 0; + int slot; + u32 cur; + u32 len; + u32 name_len; + u64 parent = 0; + int found = 0; + struct btrfs_root *fs_root = ipath->fs_root; + struct btrfs_path *path = ipath->btrfs_path; + struct extent_buffer *eb; + struct btrfs_inode_ref *iref; + struct btrfs_key found_key; + + while (!ret) { + ret = btrfs_find_item(fs_root, path, inum, + parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, + &found_key); + + if (ret < 0) + break; + if (ret) { + ret = found ? 0 : -ENOENT; + break; + } + ++found; + + parent = found_key.offset; + slot = path->slots[0]; + eb = btrfs_clone_extent_buffer(path->nodes[0]); + if (!eb) { + ret = -ENOMEM; + break; + } + btrfs_release_path(path); + + iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); + + for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { + name_len = btrfs_inode_ref_name_len(eb, iref); + /* path must be released before calling iterate()! */ + btrfs_debug(fs_root->fs_info, + "following ref at offset %u for inode %llu in tree %llu", + cur, found_key.objectid, + fs_root->root_key.objectid); + ret = inode_to_path(parent, name_len, + (unsigned long)(iref + 1), eb, ipath); + if (ret) + break; + len = sizeof(*iref) + name_len; + iref = (struct btrfs_inode_ref *)((char *)iref + len); + } + free_extent_buffer(eb); + } + + btrfs_release_path(path); + + return ret; +} + +static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) +{ + int ret; + int slot; + u64 offset = 0; + u64 parent; + int found = 0; + struct btrfs_root *fs_root = ipath->fs_root; + struct btrfs_path *path = ipath->btrfs_path; + struct extent_buffer *eb; + struct btrfs_inode_extref *extref; + u32 item_size; + u32 cur_offset; + unsigned long ptr; + + while (1) { + ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, + &offset); + if (ret < 0) + break; + if (ret) { + ret = found ? 0 : -ENOENT; + break; + } + ++found; + + slot = path->slots[0]; + eb = btrfs_clone_extent_buffer(path->nodes[0]); + if (!eb) { + ret = -ENOMEM; + break; + } + btrfs_release_path(path); + + item_size = btrfs_item_size(eb, slot); + ptr = btrfs_item_ptr_offset(eb, slot); + cur_offset = 0; + + while (cur_offset < item_size) { + u32 name_len; + + extref = (struct btrfs_inode_extref *)(ptr + cur_offset); + parent = btrfs_inode_extref_parent(eb, extref); + name_len = btrfs_inode_extref_name_len(eb, extref); + ret = inode_to_path(parent, name_len, + (unsigned long)&extref->name, eb, ipath); + if (ret) + break; + + cur_offset += btrfs_inode_extref_name_len(eb, extref); + cur_offset += sizeof(*extref); + } + free_extent_buffer(eb); + + offset++; + } + + btrfs_release_path(path); + + return ret; +} + +/* + * returns 0 if the path could be dumped (probably truncated) + * returns <0 in case of an error + */ +static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, + struct extent_buffer *eb, struct inode_fs_paths *ipath) +{ + char *fspath; + char *fspath_min; + int i = ipath->fspath->elem_cnt; + const int s_ptr = sizeof(char *); + u32 bytes_left; + + bytes_left = ipath->fspath->bytes_left > s_ptr ? + ipath->fspath->bytes_left - s_ptr : 0; + + fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; + fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, + name_off, eb, inum, fspath_min, bytes_left); + if (IS_ERR(fspath)) + return PTR_ERR(fspath); + + if (fspath > fspath_min) { + ipath->fspath->val[i] = (u64)(unsigned long)fspath; + ++ipath->fspath->elem_cnt; + ipath->fspath->bytes_left = fspath - fspath_min; + } else { + ++ipath->fspath->elem_missed; + ipath->fspath->bytes_missing += fspath_min - fspath; + ipath->fspath->bytes_left = 0; + } + + return 0; +} + +/* + * this dumps all file system paths to the inode into the ipath struct, provided + * is has been created large enough. each path is zero-terminated and accessed + * from ipath->fspath->val[i]. + * when it returns, there are ipath->fspath->elem_cnt number of paths available + * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the + * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, + * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would + * have been needed to return all paths. + */ +int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) +{ + int ret; + int found_refs = 0; + + ret = iterate_inode_refs(inum, ipath); + if (!ret) + ++found_refs; + else if (ret != -ENOENT) + return ret; + + ret = iterate_inode_extrefs(inum, ipath); + if (ret == -ENOENT && found_refs) + return 0; + + return ret; +} + +struct btrfs_data_container *init_data_container(u32 total_bytes) +{ + struct btrfs_data_container *data; + size_t alloc_bytes; + + alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); + data = kvmalloc(alloc_bytes, GFP_KERNEL); + if (!data) + return ERR_PTR(-ENOMEM); + + if (total_bytes >= sizeof(*data)) { + data->bytes_left = total_bytes - sizeof(*data); + data->bytes_missing = 0; + } else { + data->bytes_missing = sizeof(*data) - total_bytes; + data->bytes_left = 0; + } + + data->elem_cnt = 0; + data->elem_missed = 0; + + return data; +} + +/* + * allocates space to return multiple file system paths for an inode. + * total_bytes to allocate are passed, note that space usable for actual path + * information will be total_bytes - sizeof(struct inode_fs_paths). + * the returned pointer must be freed with free_ipath() in the end. + */ +struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, + struct btrfs_path *path) +{ + struct inode_fs_paths *ifp; + struct btrfs_data_container *fspath; + + fspath = init_data_container(total_bytes); + if (IS_ERR(fspath)) + return ERR_CAST(fspath); + + ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); + if (!ifp) { + kvfree(fspath); + return ERR_PTR(-ENOMEM); + } + + ifp->btrfs_path = path; + ifp->fspath = fspath; + ifp->fs_root = fs_root; + + return ifp; +} + +void free_ipath(struct inode_fs_paths *ipath) +{ + if (!ipath) + return; + kvfree(ipath->fspath); + kfree(ipath); +} + +struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) +{ + struct btrfs_backref_iter *ret; + + ret = kzalloc(sizeof(*ret), GFP_NOFS); + if (!ret) + return NULL; + + ret->path = btrfs_alloc_path(); + if (!ret->path) { + kfree(ret); + return NULL; + } + + /* Current backref iterator only supports iteration in commit root */ + ret->path->search_commit_root = 1; + ret->path->skip_locking = 1; + ret->fs_info = fs_info; + + return ret; +} + +int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) +{ + struct btrfs_fs_info *fs_info = iter->fs_info; + struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); + struct btrfs_path *path = iter->path; + struct btrfs_extent_item *ei; + struct btrfs_key key; + int ret; + + key.objectid = bytenr; + key.type = BTRFS_METADATA_ITEM_KEY; + key.offset = (u64)-1; + iter->bytenr = bytenr; + + ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); + if (ret < 0) + return ret; + if (ret == 0) { + ret = -EUCLEAN; + goto release; + } + if (path->slots[0] == 0) { + WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); + ret = -EUCLEAN; + goto release; + } + path->slots[0]--; + + btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); + if ((key.type != BTRFS_EXTENT_ITEM_KEY && + key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { + ret = -ENOENT; + goto release; + } + memcpy(&iter->cur_key, &key, sizeof(key)); + iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], + path->slots[0]); + iter->end_ptr = (u32)(iter->item_ptr + + btrfs_item_size(path->nodes[0], path->slots[0])); + ei = btrfs_item_ptr(path->nodes[0], path->slots[0], + struct btrfs_extent_item); + + /* + * Only support iteration on tree backref yet. + * + * This is an extra precaution for non skinny-metadata, where + * EXTENT_ITEM is also used for tree blocks, that we can only use + * extent flags to determine if it's a tree block. + */ + if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { + ret = -ENOTSUPP; + goto release; + } + iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); + + /* If there is no inline backref, go search for keyed backref */ + if (iter->cur_ptr >= iter->end_ptr) { + ret = btrfs_next_item(extent_root, path); + + /* No inline nor keyed ref */ + if (ret > 0) { + ret = -ENOENT; + goto release; + } + if (ret < 0) + goto release; + + btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, + path->slots[0]); + if (iter->cur_key.objectid != bytenr || + (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && + iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { + ret = -ENOENT; + goto release; + } + iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], + path->slots[0]); + iter->item_ptr = iter->cur_ptr; + iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( + path->nodes[0], path->slots[0])); + } + + return 0; +release: + btrfs_backref_iter_release(iter); + return ret; +} + +/* + * Go to the next backref item of current bytenr, can be either inlined or + * keyed. + * + * Caller needs to check whether it's inline ref or not by iter->cur_key. + * + * Return 0 if we get next backref without problem. + * Return >0 if there is no extra backref for this bytenr. + * Return <0 if there is something wrong happened. + */ +int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) +{ + struct extent_buffer *eb = btrfs_backref_get_eb(iter); + struct btrfs_root *extent_root; + struct btrfs_path *path = iter->path; + struct btrfs_extent_inline_ref *iref; + int ret; + u32 size; + + if (btrfs_backref_iter_is_inline_ref(iter)) { + /* We're still inside the inline refs */ + ASSERT(iter->cur_ptr < iter->end_ptr); + + if (btrfs_backref_has_tree_block_info(iter)) { + /* First tree block info */ + size = sizeof(struct btrfs_tree_block_info); + } else { + /* Use inline ref type to determine the size */ + int type; + + iref = (struct btrfs_extent_inline_ref *) + ((unsigned long)iter->cur_ptr); + type = btrfs_extent_inline_ref_type(eb, iref); + + size = btrfs_extent_inline_ref_size(type); + } + iter->cur_ptr += size; + if (iter->cur_ptr < iter->end_ptr) + return 0; + + /* All inline items iterated, fall through */ + } + + /* We're at keyed items, there is no inline item, go to the next one */ + extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); + ret = btrfs_next_item(extent_root, iter->path); + if (ret) + return ret; + + btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); + if (iter->cur_key.objectid != iter->bytenr || + (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && + iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) + return 1; + iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], + path->slots[0]); + iter->cur_ptr = iter->item_ptr; + iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], + path->slots[0]); + return 0; +} + +void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, + struct btrfs_backref_cache *cache, int is_reloc) +{ + int i; + + cache->rb_root = RB_ROOT; + for (i = 0; i < BTRFS_MAX_LEVEL; i++) + INIT_LIST_HEAD(&cache->pending[i]); + INIT_LIST_HEAD(&cache->changed); + INIT_LIST_HEAD(&cache->detached); + INIT_LIST_HEAD(&cache->leaves); + INIT_LIST_HEAD(&cache->pending_edge); + INIT_LIST_HEAD(&cache->useless_node); + cache->fs_info = fs_info; + cache->is_reloc = is_reloc; +} + +struct btrfs_backref_node *btrfs_backref_alloc_node( + struct btrfs_backref_cache *cache, u64 bytenr, int level) +{ + struct btrfs_backref_node *node; + + ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); + node = kzalloc(sizeof(*node), GFP_NOFS); + if (!node) + return node; + + INIT_LIST_HEAD(&node->list); + INIT_LIST_HEAD(&node->upper); + INIT_LIST_HEAD(&node->lower); + RB_CLEAR_NODE(&node->rb_node); + cache->nr_nodes++; + node->level = level; + node->bytenr = bytenr; + + return node; +} + +struct btrfs_backref_edge *btrfs_backref_alloc_edge( + struct btrfs_backref_cache *cache) +{ + struct btrfs_backref_edge *edge; + + edge = kzalloc(sizeof(*edge), GFP_NOFS); + if (edge) + cache->nr_edges++; + return edge; +} + +/* + * Drop the backref node from cache, also cleaning up all its + * upper edges and any uncached nodes in the path. + * + * This cleanup happens bottom up, thus the node should either + * be the lowest node in the cache or a detached node. + */ +void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, + struct btrfs_backref_node *node) +{ + struct btrfs_backref_node *upper; + struct btrfs_backref_edge *edge; + + if (!node) + return; + + BUG_ON(!node->lowest && !node->detached); + while (!list_empty(&node->upper)) { + edge = list_entry(node->upper.next, struct btrfs_backref_edge, + list[LOWER]); + upper = edge->node[UPPER]; + list_del(&edge->list[LOWER]); + list_del(&edge->list[UPPER]); + btrfs_backref_free_edge(cache, edge); + + /* + * Add the node to leaf node list if no other child block + * cached. + */ + if (list_empty(&upper->lower)) { + list_add_tail(&upper->lower, &cache->leaves); + upper->lowest = 1; + } + } + + btrfs_backref_drop_node(cache, node); +} + +/* + * Release all nodes/edges from current cache + */ +void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) +{ + struct btrfs_backref_node *node; + int i; + + while (!list_empty(&cache->detached)) { + node = list_entry(cache->detached.next, + struct btrfs_backref_node, list); + btrfs_backref_cleanup_node(cache, node); + } + + while (!list_empty(&cache->leaves)) { + node = list_entry(cache->leaves.next, + struct btrfs_backref_node, lower); + btrfs_backref_cleanup_node(cache, node); + } + + cache->last_trans = 0; + + for (i = 0; i < BTRFS_MAX_LEVEL; i++) + ASSERT(list_empty(&cache->pending[i])); + ASSERT(list_empty(&cache->pending_edge)); + ASSERT(list_empty(&cache->useless_node)); + ASSERT(list_empty(&cache->changed)); + ASSERT(list_empty(&cache->detached)); + ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); + ASSERT(!cache->nr_nodes); + ASSERT(!cache->nr_edges); +} + +/* + * Handle direct tree backref + * + * Direct tree backref means, the backref item shows its parent bytenr + * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). + * + * @ref_key: The converted backref key. + * For keyed backref, it's the item key. + * For inlined backref, objectid is the bytenr, + * type is btrfs_inline_ref_type, offset is + * btrfs_inline_ref_offset. + */ +static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, + struct btrfs_key *ref_key, + struct btrfs_backref_node *cur) +{ + struct btrfs_backref_edge *edge; + struct btrfs_backref_node *upper; + struct rb_node *rb_node; + + ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); + + /* Only reloc root uses backref pointing to itself */ + if (ref_key->objectid == ref_key->offset) { + struct btrfs_root *root; + + cur->is_reloc_root = 1; + /* Only reloc backref cache cares about a specific root */ + if (cache->is_reloc) { + root = find_reloc_root(cache->fs_info, cur->bytenr); + if (!root) + return -ENOENT; + cur->root = root; + } else { + /* + * For generic purpose backref cache, reloc root node + * is useless. + */ + list_add(&cur->list, &cache->useless_node); + } + return 0; + } + + edge = btrfs_backref_alloc_edge(cache); + if (!edge) + return -ENOMEM; + + rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); + if (!rb_node) { + /* Parent node not yet cached */ + upper = btrfs_backref_alloc_node(cache, ref_key->offset, + cur->level + 1); + if (!upper) { + btrfs_backref_free_edge(cache, edge); + return -ENOMEM; + } + + /* + * Backrefs for the upper level block isn't cached, add the + * block to pending list + */ + list_add_tail(&edge->list[UPPER], &cache->pending_edge); + } else { + /* Parent node already cached */ + upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); + ASSERT(upper->checked); + INIT_LIST_HEAD(&edge->list[UPPER]); + } + btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); + return 0; +} + +/* + * Handle indirect tree backref + * + * Indirect tree backref means, we only know which tree the node belongs to. + * We still need to do a tree search to find out the parents. This is for + * TREE_BLOCK_REF backref (keyed or inlined). + * + * @trans: Transaction handle. + * @ref_key: The same as @ref_key in handle_direct_tree_backref() + * @tree_key: The first key of this tree block. + * @path: A clean (released) path, to avoid allocating path every time + * the function get called. + */ +static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans, + struct btrfs_backref_cache *cache, + struct btrfs_path *path, + struct btrfs_key *ref_key, + struct btrfs_key *tree_key, + struct btrfs_backref_node *cur) +{ + struct btrfs_fs_info *fs_info = cache->fs_info; + struct btrfs_backref_node *upper; + struct btrfs_backref_node *lower; + struct btrfs_backref_edge *edge; + struct extent_buffer *eb; + struct btrfs_root *root; + struct rb_node *rb_node; + int level; + bool need_check = true; + int ret; + + root = btrfs_get_fs_root(fs_info, ref_key->offset, false); + if (IS_ERR(root)) + return PTR_ERR(root); + if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) + cur->cowonly = 1; + + if (btrfs_root_level(&root->root_item) == cur->level) { + /* Tree root */ + ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); + /* + * For reloc backref cache, we may ignore reloc root. But for + * general purpose backref cache, we can't rely on + * btrfs_should_ignore_reloc_root() as it may conflict with + * current running relocation and lead to missing root. + * + * For general purpose backref cache, reloc root detection is + * completely relying on direct backref (key->offset is parent + * bytenr), thus only do such check for reloc cache. + */ + if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { + btrfs_put_root(root); + list_add(&cur->list, &cache->useless_node); + } else { + cur->root = root; + } + return 0; + } + + level = cur->level + 1; + + /* Search the tree to find parent blocks referring to the block */ + path->search_commit_root = 1; + path->skip_locking = 1; + path->lowest_level = level; + ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); + path->lowest_level = 0; + if (ret < 0) { + btrfs_put_root(root); + return ret; + } + if (ret > 0 && path->slots[level] > 0) + path->slots[level]--; + + eb = path->nodes[level]; + if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { + btrfs_err(fs_info, +"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", + cur->bytenr, level - 1, root->root_key.objectid, + tree_key->objectid, tree_key->type, tree_key->offset); + btrfs_put_root(root); + ret = -ENOENT; + goto out; + } + lower = cur; + + /* Add all nodes and edges in the path */ + for (; level < BTRFS_MAX_LEVEL; level++) { + if (!path->nodes[level]) { + ASSERT(btrfs_root_bytenr(&root->root_item) == + lower->bytenr); + /* Same as previous should_ignore_reloc_root() call */ + if (btrfs_should_ignore_reloc_root(root) && + cache->is_reloc) { + btrfs_put_root(root); + list_add(&lower->list, &cache->useless_node); + } else { + lower->root = root; + } + break; + } + + edge = btrfs_backref_alloc_edge(cache); + if (!edge) { + btrfs_put_root(root); + ret = -ENOMEM; + goto out; + } + + eb = path->nodes[level]; + rb_node = rb_simple_search(&cache->rb_root, eb->start); + if (!rb_node) { + upper = btrfs_backref_alloc_node(cache, eb->start, + lower->level + 1); + if (!upper) { + btrfs_put_root(root); + btrfs_backref_free_edge(cache, edge); + ret = -ENOMEM; + goto out; + } + upper->owner = btrfs_header_owner(eb); + if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) + upper->cowonly = 1; + + /* + * If we know the block isn't shared we can avoid + * checking its backrefs. + */ + if (btrfs_block_can_be_shared(trans, root, eb)) + upper->checked = 0; + else + upper->checked = 1; + + /* + * Add the block to pending list if we need to check its + * backrefs, we only do this once while walking up a + * tree as we will catch anything else later on. + */ + if (!upper->checked && need_check) { + need_check = false; + list_add_tail(&edge->list[UPPER], + &cache->pending_edge); + } else { + if (upper->checked) + need_check = true; + INIT_LIST_HEAD(&edge->list[UPPER]); + } + } else { + upper = rb_entry(rb_node, struct btrfs_backref_node, + rb_node); + ASSERT(upper->checked); + INIT_LIST_HEAD(&edge->list[UPPER]); + if (!upper->owner) + upper->owner = btrfs_header_owner(eb); + } + btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); + + if (rb_node) { + btrfs_put_root(root); + break; + } + lower = upper; + upper = NULL; + } +out: + btrfs_release_path(path); + return ret; +} + +/* + * Add backref node @cur into @cache. + * + * NOTE: Even if the function returned 0, @cur is not yet cached as its upper + * links aren't yet bi-directional. Needs to finish such links. + * Use btrfs_backref_finish_upper_links() to finish such linkage. + * + * @trans: Transaction handle. + * @path: Released path for indirect tree backref lookup + * @iter: Released backref iter for extent tree search + * @node_key: The first key of the tree block + */ +int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, + struct btrfs_backref_cache *cache, + struct btrfs_path *path, + struct btrfs_backref_iter *iter, + struct btrfs_key *node_key, + struct btrfs_backref_node *cur) +{ + struct btrfs_backref_edge *edge; + struct btrfs_backref_node *exist; + int ret; + + ret = btrfs_backref_iter_start(iter, cur->bytenr); + if (ret < 0) + return ret; + /* + * We skip the first btrfs_tree_block_info, as we don't use the key + * stored in it, but fetch it from the tree block + */ + if (btrfs_backref_has_tree_block_info(iter)) { + ret = btrfs_backref_iter_next(iter); + if (ret < 0) + goto out; + /* No extra backref? This means the tree block is corrupted */ + if (ret > 0) { + ret = -EUCLEAN; + goto out; + } + } + WARN_ON(cur->checked); + if (!list_empty(&cur->upper)) { + /* + * The backref was added previously when processing backref of + * type BTRFS_TREE_BLOCK_REF_KEY + */ + ASSERT(list_is_singular(&cur->upper)); + edge = list_entry(cur->upper.next, struct btrfs_backref_edge, + list[LOWER]); + ASSERT(list_empty(&edge->list[UPPER])); + exist = edge->node[UPPER]; + /* + * Add the upper level block to pending list if we need check + * its backrefs + */ + if (!exist->checked) + list_add_tail(&edge->list[UPPER], &cache->pending_edge); + } else { + exist = NULL; + } + + for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { + struct extent_buffer *eb; + struct btrfs_key key; + int type; + + cond_resched(); + eb = btrfs_backref_get_eb(iter); + + key.objectid = iter->bytenr; + if (btrfs_backref_iter_is_inline_ref(iter)) { + struct btrfs_extent_inline_ref *iref; + + /* Update key for inline backref */ + iref = (struct btrfs_extent_inline_ref *) + ((unsigned long)iter->cur_ptr); + type = btrfs_get_extent_inline_ref_type(eb, iref, + BTRFS_REF_TYPE_BLOCK); + if (type == BTRFS_REF_TYPE_INVALID) { + ret = -EUCLEAN; + goto out; + } + key.type = type; + key.offset = btrfs_extent_inline_ref_offset(eb, iref); + } else { + key.type = iter->cur_key.type; + key.offset = iter->cur_key.offset; + } + + /* + * Parent node found and matches current inline ref, no need to + * rebuild this node for this inline ref + */ + if (exist && + ((key.type == BTRFS_TREE_BLOCK_REF_KEY && + exist->owner == key.offset) || + (key.type == BTRFS_SHARED_BLOCK_REF_KEY && + exist->bytenr == key.offset))) { + exist = NULL; + continue; + } + + /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ + if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { + ret = handle_direct_tree_backref(cache, &key, cur); + if (ret < 0) + goto out; + } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { + /* + * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref + * offset means the root objectid. We need to search + * the tree to get its parent bytenr. + */ + ret = handle_indirect_tree_backref(trans, cache, path, + &key, node_key, cur); + if (ret < 0) + goto out; + } + /* + * Unrecognized tree backref items (if it can pass tree-checker) + * would be ignored. + */ + } + ret = 0; + cur->checked = 1; + WARN_ON(exist); +out: + btrfs_backref_iter_release(iter); + return ret; +} + +/* + * Finish the upwards linkage created by btrfs_backref_add_tree_node() + */ +int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, + struct btrfs_backref_node *start) +{ + struct list_head *useless_node = &cache->useless_node; + struct btrfs_backref_edge *edge; + struct rb_node *rb_node; + LIST_HEAD(pending_edge); + + ASSERT(start->checked); + + /* Insert this node to cache if it's not COW-only */ + if (!start->cowonly) { + rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, + &start->rb_node); + if (rb_node) + btrfs_backref_panic(cache->fs_info, start->bytenr, + -EEXIST); + list_add_tail(&start->lower, &cache->leaves); + } + + /* + * Use breadth first search to iterate all related edges. + * + * The starting points are all the edges of this node + */ + list_for_each_entry(edge, &start->upper, list[LOWER]) + list_add_tail(&edge->list[UPPER], &pending_edge); + + while (!list_empty(&pending_edge)) { + struct btrfs_backref_node *upper; + struct btrfs_backref_node *lower; + + edge = list_first_entry(&pending_edge, + struct btrfs_backref_edge, list[UPPER]); + list_del_init(&edge->list[UPPER]); + upper = edge->node[UPPER]; + lower = edge->node[LOWER]; + + /* Parent is detached, no need to keep any edges */ + if (upper->detached) { + list_del(&edge->list[LOWER]); + btrfs_backref_free_edge(cache, edge); + + /* Lower node is orphan, queue for cleanup */ + if (list_empty(&lower->upper)) + list_add(&lower->list, useless_node); + continue; + } + + /* + * All new nodes added in current build_backref_tree() haven't + * been linked to the cache rb tree. + * So if we have upper->rb_node populated, this means a cache + * hit. We only need to link the edge, as @upper and all its + * parents have already been linked. + */ + if (!RB_EMPTY_NODE(&upper->rb_node)) { + if (upper->lowest) { + list_del_init(&upper->lower); + upper->lowest = 0; + } + + list_add_tail(&edge->list[UPPER], &upper->lower); + continue; + } + + /* Sanity check, we shouldn't have any unchecked nodes */ + if (!upper->checked) { + ASSERT(0); + return -EUCLEAN; + } + + /* Sanity check, COW-only node has non-COW-only parent */ + if (start->cowonly != upper->cowonly) { + ASSERT(0); + return -EUCLEAN; + } + + /* Only cache non-COW-only (subvolume trees) tree blocks */ + if (!upper->cowonly) { + rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, + &upper->rb_node); + if (rb_node) { + btrfs_backref_panic(cache->fs_info, + upper->bytenr, -EEXIST); + return -EUCLEAN; + } + } + + list_add_tail(&edge->list[UPPER], &upper->lower); + + /* + * Also queue all the parent edges of this uncached node + * to finish the upper linkage + */ + list_for_each_entry(edge, &upper->upper, list[LOWER]) + list_add_tail(&edge->list[UPPER], &pending_edge); + } + return 0; +} + +void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, + struct btrfs_backref_node *node) +{ + struct btrfs_backref_node *lower; + struct btrfs_backref_node *upper; + struct btrfs_backref_edge *edge; + + while (!list_empty(&cache->useless_node)) { + lower = list_first_entry(&cache->useless_node, + struct btrfs_backref_node, list); + list_del_init(&lower->list); + } + while (!list_empty(&cache->pending_edge)) { + edge = list_first_entry(&cache->pending_edge, + struct btrfs_backref_edge, list[UPPER]); + list_del(&edge->list[UPPER]); + list_del(&edge->list[LOWER]); + lower = edge->node[LOWER]; + upper = edge->node[UPPER]; + btrfs_backref_free_edge(cache, edge); + + /* + * Lower is no longer linked to any upper backref nodes and + * isn't in the cache, we can free it ourselves. + */ + if (list_empty(&lower->upper) && + RB_EMPTY_NODE(&lower->rb_node)) + list_add(&lower->list, &cache->useless_node); + + if (!RB_EMPTY_NODE(&upper->rb_node)) + continue; + + /* Add this guy's upper edges to the list to process */ + list_for_each_entry(edge, &upper->upper, list[LOWER]) + list_add_tail(&edge->list[UPPER], + &cache->pending_edge); + if (list_empty(&upper->upper)) + list_add(&upper->list, &cache->useless_node); + } + + while (!list_empty(&cache->useless_node)) { + lower = list_first_entry(&cache->useless_node, + struct btrfs_backref_node, list); + list_del_init(&lower->list); + if (lower == node) + node = NULL; + btrfs_backref_drop_node(cache, lower); + } + + btrfs_backref_cleanup_node(cache, node); + ASSERT(list_empty(&cache->useless_node) && + list_empty(&cache->pending_edge)); +} |