diff options
Diffstat (limited to 'fs/btrfs/defrag.c')
-rw-r--r-- | fs/btrfs/defrag.c | 1379 |
1 files changed, 1379 insertions, 0 deletions
diff --git a/fs/btrfs/defrag.c b/fs/btrfs/defrag.c new file mode 100644 index 0000000000..f2ff4cbe86 --- /dev/null +++ b/fs/btrfs/defrag.c @@ -0,0 +1,1379 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2007 Oracle. All rights reserved. + */ + +#include <linux/sched.h> +#include "ctree.h" +#include "disk-io.h" +#include "print-tree.h" +#include "transaction.h" +#include "locking.h" +#include "accessors.h" +#include "messages.h" +#include "delalloc-space.h" +#include "subpage.h" +#include "defrag.h" +#include "file-item.h" +#include "super.h" + +static struct kmem_cache *btrfs_inode_defrag_cachep; + +/* + * When auto defrag is enabled we queue up these defrag structs to remember + * which inodes need defragging passes. + */ +struct inode_defrag { + struct rb_node rb_node; + /* Inode number */ + u64 ino; + /* + * Transid where the defrag was added, we search for extents newer than + * this. + */ + u64 transid; + + /* Root objectid */ + u64 root; + + /* + * The extent size threshold for autodefrag. + * + * This value is different for compressed/non-compressed extents, thus + * needs to be passed from higher layer. + * (aka, inode_should_defrag()) + */ + u32 extent_thresh; +}; + +static int __compare_inode_defrag(struct inode_defrag *defrag1, + struct inode_defrag *defrag2) +{ + if (defrag1->root > defrag2->root) + return 1; + else if (defrag1->root < defrag2->root) + return -1; + else if (defrag1->ino > defrag2->ino) + return 1; + else if (defrag1->ino < defrag2->ino) + return -1; + else + return 0; +} + +/* + * Pop a record for an inode into the defrag tree. The lock must be held + * already. + * + * If you're inserting a record for an older transid than an existing record, + * the transid already in the tree is lowered. + * + * If an existing record is found the defrag item you pass in is freed. + */ +static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, + struct inode_defrag *defrag) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct inode_defrag *entry; + struct rb_node **p; + struct rb_node *parent = NULL; + int ret; + + p = &fs_info->defrag_inodes.rb_node; + while (*p) { + parent = *p; + entry = rb_entry(parent, struct inode_defrag, rb_node); + + ret = __compare_inode_defrag(defrag, entry); + if (ret < 0) + p = &parent->rb_left; + else if (ret > 0) + p = &parent->rb_right; + else { + /* + * If we're reinserting an entry for an old defrag run, + * make sure to lower the transid of our existing + * record. + */ + if (defrag->transid < entry->transid) + entry->transid = defrag->transid; + entry->extent_thresh = min(defrag->extent_thresh, + entry->extent_thresh); + return -EEXIST; + } + } + set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); + rb_link_node(&defrag->rb_node, parent, p); + rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); + return 0; +} + +static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) +{ + if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) + return 0; + + if (btrfs_fs_closing(fs_info)) + return 0; + + return 1; +} + +/* + * Insert a defrag record for this inode if auto defrag is enabled. + */ +int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, + struct btrfs_inode *inode, u32 extent_thresh) +{ + struct btrfs_root *root = inode->root; + struct btrfs_fs_info *fs_info = root->fs_info; + struct inode_defrag *defrag; + u64 transid; + int ret; + + if (!__need_auto_defrag(fs_info)) + return 0; + + if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) + return 0; + + if (trans) + transid = trans->transid; + else + transid = inode->root->last_trans; + + defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); + if (!defrag) + return -ENOMEM; + + defrag->ino = btrfs_ino(inode); + defrag->transid = transid; + defrag->root = root->root_key.objectid; + defrag->extent_thresh = extent_thresh; + + spin_lock(&fs_info->defrag_inodes_lock); + if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { + /* + * If we set IN_DEFRAG flag and evict the inode from memory, + * and then re-read this inode, this new inode doesn't have + * IN_DEFRAG flag. At the case, we may find the existed defrag. + */ + ret = __btrfs_add_inode_defrag(inode, defrag); + if (ret) + kmem_cache_free(btrfs_inode_defrag_cachep, defrag); + } else { + kmem_cache_free(btrfs_inode_defrag_cachep, defrag); + } + spin_unlock(&fs_info->defrag_inodes_lock); + return 0; +} + +/* + * Pick the defragable inode that we want, if it doesn't exist, we will get the + * next one. + */ +static struct inode_defrag *btrfs_pick_defrag_inode( + struct btrfs_fs_info *fs_info, u64 root, u64 ino) +{ + struct inode_defrag *entry = NULL; + struct inode_defrag tmp; + struct rb_node *p; + struct rb_node *parent = NULL; + int ret; + + tmp.ino = ino; + tmp.root = root; + + spin_lock(&fs_info->defrag_inodes_lock); + p = fs_info->defrag_inodes.rb_node; + while (p) { + parent = p; + entry = rb_entry(parent, struct inode_defrag, rb_node); + + ret = __compare_inode_defrag(&tmp, entry); + if (ret < 0) + p = parent->rb_left; + else if (ret > 0) + p = parent->rb_right; + else + goto out; + } + + if (parent && __compare_inode_defrag(&tmp, entry) > 0) { + parent = rb_next(parent); + if (parent) + entry = rb_entry(parent, struct inode_defrag, rb_node); + else + entry = NULL; + } +out: + if (entry) + rb_erase(parent, &fs_info->defrag_inodes); + spin_unlock(&fs_info->defrag_inodes_lock); + return entry; +} + +void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) +{ + struct inode_defrag *defrag; + struct rb_node *node; + + spin_lock(&fs_info->defrag_inodes_lock); + node = rb_first(&fs_info->defrag_inodes); + while (node) { + rb_erase(node, &fs_info->defrag_inodes); + defrag = rb_entry(node, struct inode_defrag, rb_node); + kmem_cache_free(btrfs_inode_defrag_cachep, defrag); + + cond_resched_lock(&fs_info->defrag_inodes_lock); + + node = rb_first(&fs_info->defrag_inodes); + } + spin_unlock(&fs_info->defrag_inodes_lock); +} + +#define BTRFS_DEFRAG_BATCH 1024 + +static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, + struct inode_defrag *defrag) +{ + struct btrfs_root *inode_root; + struct inode *inode; + struct btrfs_ioctl_defrag_range_args range; + int ret = 0; + u64 cur = 0; + +again: + if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) + goto cleanup; + if (!__need_auto_defrag(fs_info)) + goto cleanup; + + /* Get the inode */ + inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); + if (IS_ERR(inode_root)) { + ret = PTR_ERR(inode_root); + goto cleanup; + } + + inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); + btrfs_put_root(inode_root); + if (IS_ERR(inode)) { + ret = PTR_ERR(inode); + goto cleanup; + } + + if (cur >= i_size_read(inode)) { + iput(inode); + goto cleanup; + } + + /* Do a chunk of defrag */ + clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); + memset(&range, 0, sizeof(range)); + range.len = (u64)-1; + range.start = cur; + range.extent_thresh = defrag->extent_thresh; + + sb_start_write(fs_info->sb); + ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, + BTRFS_DEFRAG_BATCH); + sb_end_write(fs_info->sb); + iput(inode); + + if (ret < 0) + goto cleanup; + + cur = max(cur + fs_info->sectorsize, range.start); + goto again; + +cleanup: + kmem_cache_free(btrfs_inode_defrag_cachep, defrag); + return ret; +} + +/* + * Run through the list of inodes in the FS that need defragging. + */ +int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) +{ + struct inode_defrag *defrag; + u64 first_ino = 0; + u64 root_objectid = 0; + + atomic_inc(&fs_info->defrag_running); + while (1) { + /* Pause the auto defragger. */ + if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) + break; + + if (!__need_auto_defrag(fs_info)) + break; + + /* find an inode to defrag */ + defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino); + if (!defrag) { + if (root_objectid || first_ino) { + root_objectid = 0; + first_ino = 0; + continue; + } else { + break; + } + } + + first_ino = defrag->ino + 1; + root_objectid = defrag->root; + + __btrfs_run_defrag_inode(fs_info, defrag); + } + atomic_dec(&fs_info->defrag_running); + + /* + * During unmount, we use the transaction_wait queue to wait for the + * defragger to stop. + */ + wake_up(&fs_info->transaction_wait); + return 0; +} + +/* + * Defrag all the leaves in a given btree. + * Read all the leaves and try to get key order to + * better reflect disk order + */ + +int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, + struct btrfs_root *root) +{ + struct btrfs_path *path = NULL; + struct btrfs_key key; + int ret = 0; + int wret; + int level; + int next_key_ret = 0; + u64 last_ret = 0; + + if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) + goto out; + + path = btrfs_alloc_path(); + if (!path) { + ret = -ENOMEM; + goto out; + } + + level = btrfs_header_level(root->node); + + if (level == 0) + goto out; + + if (root->defrag_progress.objectid == 0) { + struct extent_buffer *root_node; + u32 nritems; + + root_node = btrfs_lock_root_node(root); + nritems = btrfs_header_nritems(root_node); + root->defrag_max.objectid = 0; + /* from above we know this is not a leaf */ + btrfs_node_key_to_cpu(root_node, &root->defrag_max, + nritems - 1); + btrfs_tree_unlock(root_node); + free_extent_buffer(root_node); + memset(&key, 0, sizeof(key)); + } else { + memcpy(&key, &root->defrag_progress, sizeof(key)); + } + + path->keep_locks = 1; + + ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); + if (ret < 0) + goto out; + if (ret > 0) { + ret = 0; + goto out; + } + btrfs_release_path(path); + /* + * We don't need a lock on a leaf. btrfs_realloc_node() will lock all + * leafs from path->nodes[1], so set lowest_level to 1 to avoid later + * a deadlock (attempting to write lock an already write locked leaf). + */ + path->lowest_level = 1; + wret = btrfs_search_slot(trans, root, &key, path, 0, 1); + + if (wret < 0) { + ret = wret; + goto out; + } + if (!path->nodes[1]) { + ret = 0; + goto out; + } + /* + * The node at level 1 must always be locked when our path has + * keep_locks set and lowest_level is 1, regardless of the value of + * path->slots[1]. + */ + BUG_ON(path->locks[1] == 0); + ret = btrfs_realloc_node(trans, root, + path->nodes[1], 0, + &last_ret, + &root->defrag_progress); + if (ret) { + WARN_ON(ret == -EAGAIN); + goto out; + } + /* + * Now that we reallocated the node we can find the next key. Note that + * btrfs_find_next_key() can release our path and do another search + * without COWing, this is because even with path->keep_locks = 1, + * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a + * node when path->slots[node_level - 1] does not point to the last + * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore + * we search for the next key after reallocating our node. + */ + path->slots[1] = btrfs_header_nritems(path->nodes[1]); + next_key_ret = btrfs_find_next_key(root, path, &key, 1, + BTRFS_OLDEST_GENERATION); + if (next_key_ret == 0) { + memcpy(&root->defrag_progress, &key, sizeof(key)); + ret = -EAGAIN; + } +out: + btrfs_free_path(path); + if (ret == -EAGAIN) { + if (root->defrag_max.objectid > root->defrag_progress.objectid) + goto done; + if (root->defrag_max.type > root->defrag_progress.type) + goto done; + if (root->defrag_max.offset > root->defrag_progress.offset) + goto done; + ret = 0; + } +done: + if (ret != -EAGAIN) + memset(&root->defrag_progress, 0, + sizeof(root->defrag_progress)); + + return ret; +} + +/* + * Defrag specific helper to get an extent map. + * + * Differences between this and btrfs_get_extent() are: + * + * - No extent_map will be added to inode->extent_tree + * To reduce memory usage in the long run. + * + * - Extra optimization to skip file extents older than @newer_than + * By using btrfs_search_forward() we can skip entire file ranges that + * have extents created in past transactions, because btrfs_search_forward() + * will not visit leaves and nodes with a generation smaller than given + * minimal generation threshold (@newer_than). + * + * Return valid em if we find a file extent matching the requirement. + * Return NULL if we can not find a file extent matching the requirement. + * + * Return ERR_PTR() for error. + */ +static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, + u64 start, u64 newer_than) +{ + struct btrfs_root *root = inode->root; + struct btrfs_file_extent_item *fi; + struct btrfs_path path = { 0 }; + struct extent_map *em; + struct btrfs_key key; + u64 ino = btrfs_ino(inode); + int ret; + + em = alloc_extent_map(); + if (!em) { + ret = -ENOMEM; + goto err; + } + + key.objectid = ino; + key.type = BTRFS_EXTENT_DATA_KEY; + key.offset = start; + + if (newer_than) { + ret = btrfs_search_forward(root, &key, &path, newer_than); + if (ret < 0) + goto err; + /* Can't find anything newer */ + if (ret > 0) + goto not_found; + } else { + ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); + if (ret < 0) + goto err; + } + if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { + /* + * If btrfs_search_slot() makes path to point beyond nritems, + * we should not have an empty leaf, as this inode must at + * least have its INODE_ITEM. + */ + ASSERT(btrfs_header_nritems(path.nodes[0])); + path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; + } + btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); + /* Perfect match, no need to go one slot back */ + if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && + key.offset == start) + goto iterate; + + /* We didn't find a perfect match, needs to go one slot back */ + if (path.slots[0] > 0) { + btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); + if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) + path.slots[0]--; + } + +iterate: + /* Iterate through the path to find a file extent covering @start */ + while (true) { + u64 extent_end; + + if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) + goto next; + + btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); + + /* + * We may go one slot back to INODE_REF/XATTR item, then + * need to go forward until we reach an EXTENT_DATA. + * But we should still has the correct ino as key.objectid. + */ + if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) + goto next; + + /* It's beyond our target range, definitely not extent found */ + if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) + goto not_found; + + /* + * | |<- File extent ->| + * \- start + * + * This means there is a hole between start and key.offset. + */ + if (key.offset > start) { + em->start = start; + em->orig_start = start; + em->block_start = EXTENT_MAP_HOLE; + em->len = key.offset - start; + break; + } + + fi = btrfs_item_ptr(path.nodes[0], path.slots[0], + struct btrfs_file_extent_item); + extent_end = btrfs_file_extent_end(&path); + + /* + * |<- file extent ->| | + * \- start + * + * We haven't reached start, search next slot. + */ + if (extent_end <= start) + goto next; + + /* Now this extent covers @start, convert it to em */ + btrfs_extent_item_to_extent_map(inode, &path, fi, em); + break; +next: + ret = btrfs_next_item(root, &path); + if (ret < 0) + goto err; + if (ret > 0) + goto not_found; + } + btrfs_release_path(&path); + return em; + +not_found: + btrfs_release_path(&path); + free_extent_map(em); + return NULL; + +err: + btrfs_release_path(&path); + free_extent_map(em); + return ERR_PTR(ret); +} + +static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, + u64 newer_than, bool locked) +{ + struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; + struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; + struct extent_map *em; + const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; + + /* + * Hopefully we have this extent in the tree already, try without the + * full extent lock. + */ + read_lock(&em_tree->lock); + em = lookup_extent_mapping(em_tree, start, sectorsize); + read_unlock(&em_tree->lock); + + /* + * We can get a merged extent, in that case, we need to re-search + * tree to get the original em for defrag. + * + * If @newer_than is 0 or em::generation < newer_than, we can trust + * this em, as either we don't care about the generation, or the + * merged extent map will be rejected anyway. + */ + if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) && + newer_than && em->generation >= newer_than) { + free_extent_map(em); + em = NULL; + } + + if (!em) { + struct extent_state *cached = NULL; + u64 end = start + sectorsize - 1; + + /* Get the big lock and read metadata off disk. */ + if (!locked) + lock_extent(io_tree, start, end, &cached); + em = defrag_get_extent(BTRFS_I(inode), start, newer_than); + if (!locked) + unlock_extent(io_tree, start, end, &cached); + + if (IS_ERR(em)) + return NULL; + } + + return em; +} + +static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, + const struct extent_map *em) +{ + if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) + return BTRFS_MAX_COMPRESSED; + return fs_info->max_extent_size; +} + +static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, + u32 extent_thresh, u64 newer_than, bool locked) +{ + struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); + struct extent_map *next; + bool ret = false; + + /* This is the last extent */ + if (em->start + em->len >= i_size_read(inode)) + return false; + + /* + * Here we need to pass @newer_then when checking the next extent, or + * we will hit a case we mark current extent for defrag, but the next + * one will not be a target. + * This will just cause extra IO without really reducing the fragments. + */ + next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); + /* No more em or hole */ + if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) + goto out; + if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags)) + goto out; + /* + * If the next extent is at its max capacity, defragging current extent + * makes no sense, as the total number of extents won't change. + */ + if (next->len >= get_extent_max_capacity(fs_info, em)) + goto out; + /* Skip older extent */ + if (next->generation < newer_than) + goto out; + /* Also check extent size */ + if (next->len >= extent_thresh) + goto out; + + ret = true; +out: + free_extent_map(next); + return ret; +} + +/* + * Prepare one page to be defragged. + * + * This will ensure: + * + * - Returned page is locked and has been set up properly. + * - No ordered extent exists in the page. + * - The page is uptodate. + * + * NOTE: Caller should also wait for page writeback after the cluster is + * prepared, here we don't do writeback wait for each page. + */ +static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index) +{ + struct address_space *mapping = inode->vfs_inode.i_mapping; + gfp_t mask = btrfs_alloc_write_mask(mapping); + u64 page_start = (u64)index << PAGE_SHIFT; + u64 page_end = page_start + PAGE_SIZE - 1; + struct extent_state *cached_state = NULL; + struct page *page; + int ret; + +again: + page = find_or_create_page(mapping, index, mask); + if (!page) + return ERR_PTR(-ENOMEM); + + /* + * Since we can defragment files opened read-only, we can encounter + * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We + * can't do I/O using huge pages yet, so return an error for now. + * Filesystem transparent huge pages are typically only used for + * executables that explicitly enable them, so this isn't very + * restrictive. + */ + if (PageCompound(page)) { + unlock_page(page); + put_page(page); + return ERR_PTR(-ETXTBSY); + } + + ret = set_page_extent_mapped(page); + if (ret < 0) { + unlock_page(page); + put_page(page); + return ERR_PTR(ret); + } + + /* Wait for any existing ordered extent in the range */ + while (1) { + struct btrfs_ordered_extent *ordered; + + lock_extent(&inode->io_tree, page_start, page_end, &cached_state); + ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); + unlock_extent(&inode->io_tree, page_start, page_end, + &cached_state); + if (!ordered) + break; + + unlock_page(page); + btrfs_start_ordered_extent(ordered); + btrfs_put_ordered_extent(ordered); + lock_page(page); + /* + * We unlocked the page above, so we need check if it was + * released or not. + */ + if (page->mapping != mapping || !PagePrivate(page)) { + unlock_page(page); + put_page(page); + goto again; + } + } + + /* + * Now the page range has no ordered extent any more. Read the page to + * make it uptodate. + */ + if (!PageUptodate(page)) { + btrfs_read_folio(NULL, page_folio(page)); + lock_page(page); + if (page->mapping != mapping || !PagePrivate(page)) { + unlock_page(page); + put_page(page); + goto again; + } + if (!PageUptodate(page)) { + unlock_page(page); + put_page(page); + return ERR_PTR(-EIO); + } + } + return page; +} + +struct defrag_target_range { + struct list_head list; + u64 start; + u64 len; +}; + +/* + * Collect all valid target extents. + * + * @start: file offset to lookup + * @len: length to lookup + * @extent_thresh: file extent size threshold, any extent size >= this value + * will be ignored + * @newer_than: only defrag extents newer than this value + * @do_compress: whether the defrag is doing compression + * if true, @extent_thresh will be ignored and all regular + * file extents meeting @newer_than will be targets. + * @locked: if the range has already held extent lock + * @target_list: list of targets file extents + */ +static int defrag_collect_targets(struct btrfs_inode *inode, + u64 start, u64 len, u32 extent_thresh, + u64 newer_than, bool do_compress, + bool locked, struct list_head *target_list, + u64 *last_scanned_ret) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + bool last_is_target = false; + u64 cur = start; + int ret = 0; + + while (cur < start + len) { + struct extent_map *em; + struct defrag_target_range *new; + bool next_mergeable = true; + u64 range_len; + + last_is_target = false; + em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked); + if (!em) + break; + + /* + * If the file extent is an inlined one, we may still want to + * defrag it (fallthrough) if it will cause a regular extent. + * This is for users who want to convert inline extents to + * regular ones through max_inline= mount option. + */ + if (em->block_start == EXTENT_MAP_INLINE && + em->len <= inode->root->fs_info->max_inline) + goto next; + + /* Skip hole/delalloc/preallocated extents */ + if (em->block_start == EXTENT_MAP_HOLE || + em->block_start == EXTENT_MAP_DELALLOC || + test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) + goto next; + + /* Skip older extent */ + if (em->generation < newer_than) + goto next; + + /* This em is under writeback, no need to defrag */ + if (em->generation == (u64)-1) + goto next; + + /* + * Our start offset might be in the middle of an existing extent + * map, so take that into account. + */ + range_len = em->len - (cur - em->start); + /* + * If this range of the extent map is already flagged for delalloc, + * skip it, because: + * + * 1) We could deadlock later, when trying to reserve space for + * delalloc, because in case we can't immediately reserve space + * the flusher can start delalloc and wait for the respective + * ordered extents to complete. The deadlock would happen + * because we do the space reservation while holding the range + * locked, and starting writeback, or finishing an ordered + * extent, requires locking the range; + * + * 2) If there's delalloc there, it means there's dirty pages for + * which writeback has not started yet (we clean the delalloc + * flag when starting writeback and after creating an ordered + * extent). If we mark pages in an adjacent range for defrag, + * then we will have a larger contiguous range for delalloc, + * very likely resulting in a larger extent after writeback is + * triggered (except in a case of free space fragmentation). + */ + if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, + EXTENT_DELALLOC, 0, NULL)) + goto next; + + /* + * For do_compress case, we want to compress all valid file + * extents, thus no @extent_thresh or mergeable check. + */ + if (do_compress) + goto add; + + /* Skip too large extent */ + if (range_len >= extent_thresh) + goto next; + + /* + * Skip extents already at its max capacity, this is mostly for + * compressed extents, which max cap is only 128K. + */ + if (em->len >= get_extent_max_capacity(fs_info, em)) + goto next; + + /* + * Normally there are no more extents after an inline one, thus + * @next_mergeable will normally be false and not defragged. + * So if an inline extent passed all above checks, just add it + * for defrag, and be converted to regular extents. + */ + if (em->block_start == EXTENT_MAP_INLINE) + goto add; + + next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, + extent_thresh, newer_than, locked); + if (!next_mergeable) { + struct defrag_target_range *last; + + /* Empty target list, no way to merge with last entry */ + if (list_empty(target_list)) + goto next; + last = list_entry(target_list->prev, + struct defrag_target_range, list); + /* Not mergeable with last entry */ + if (last->start + last->len != cur) + goto next; + + /* Mergeable, fall through to add it to @target_list. */ + } + +add: + last_is_target = true; + range_len = min(extent_map_end(em), start + len) - cur; + /* + * This one is a good target, check if it can be merged into + * last range of the target list. + */ + if (!list_empty(target_list)) { + struct defrag_target_range *last; + + last = list_entry(target_list->prev, + struct defrag_target_range, list); + ASSERT(last->start + last->len <= cur); + if (last->start + last->len == cur) { + /* Mergeable, enlarge the last entry */ + last->len += range_len; + goto next; + } + /* Fall through to allocate a new entry */ + } + + /* Allocate new defrag_target_range */ + new = kmalloc(sizeof(*new), GFP_NOFS); + if (!new) { + free_extent_map(em); + ret = -ENOMEM; + break; + } + new->start = cur; + new->len = range_len; + list_add_tail(&new->list, target_list); + +next: + cur = extent_map_end(em); + free_extent_map(em); + } + if (ret < 0) { + struct defrag_target_range *entry; + struct defrag_target_range *tmp; + + list_for_each_entry_safe(entry, tmp, target_list, list) { + list_del_init(&entry->list); + kfree(entry); + } + } + if (!ret && last_scanned_ret) { + /* + * If the last extent is not a target, the caller can skip to + * the end of that extent. + * Otherwise, we can only go the end of the specified range. + */ + if (!last_is_target) + *last_scanned_ret = max(cur, *last_scanned_ret); + else + *last_scanned_ret = max(start + len, *last_scanned_ret); + } + return ret; +} + +#define CLUSTER_SIZE (SZ_256K) +static_assert(PAGE_ALIGNED(CLUSTER_SIZE)); + +/* + * Defrag one contiguous target range. + * + * @inode: target inode + * @target: target range to defrag + * @pages: locked pages covering the defrag range + * @nr_pages: number of locked pages + * + * Caller should ensure: + * + * - Pages are prepared + * Pages should be locked, no ordered extent in the pages range, + * no writeback. + * + * - Extent bits are locked + */ +static int defrag_one_locked_target(struct btrfs_inode *inode, + struct defrag_target_range *target, + struct page **pages, int nr_pages, + struct extent_state **cached_state) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct extent_changeset *data_reserved = NULL; + const u64 start = target->start; + const u64 len = target->len; + unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; + unsigned long start_index = start >> PAGE_SHIFT; + unsigned long first_index = page_index(pages[0]); + int ret = 0; + int i; + + ASSERT(last_index - first_index + 1 <= nr_pages); + + ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); + if (ret < 0) + return ret; + clear_extent_bit(&inode->io_tree, start, start + len - 1, + EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | + EXTENT_DEFRAG, cached_state); + set_extent_bit(&inode->io_tree, start, start + len - 1, + EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state); + + /* Update the page status */ + for (i = start_index - first_index; i <= last_index - first_index; i++) { + ClearPageChecked(pages[i]); + btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); + } + btrfs_delalloc_release_extents(inode, len); + extent_changeset_free(data_reserved); + + return ret; +} + +static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, + u32 extent_thresh, u64 newer_than, bool do_compress, + u64 *last_scanned_ret) +{ + struct extent_state *cached_state = NULL; + struct defrag_target_range *entry; + struct defrag_target_range *tmp; + LIST_HEAD(target_list); + struct page **pages; + const u32 sectorsize = inode->root->fs_info->sectorsize; + u64 last_index = (start + len - 1) >> PAGE_SHIFT; + u64 start_index = start >> PAGE_SHIFT; + unsigned int nr_pages = last_index - start_index + 1; + int ret = 0; + int i; + + ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); + ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); + + pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); + if (!pages) + return -ENOMEM; + + /* Prepare all pages */ + for (i = 0; i < nr_pages; i++) { + pages[i] = defrag_prepare_one_page(inode, start_index + i); + if (IS_ERR(pages[i])) { + ret = PTR_ERR(pages[i]); + pages[i] = NULL; + goto free_pages; + } + } + for (i = 0; i < nr_pages; i++) + wait_on_page_writeback(pages[i]); + + /* Lock the pages range */ + lock_extent(&inode->io_tree, start_index << PAGE_SHIFT, + (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, + &cached_state); + /* + * Now we have a consistent view about the extent map, re-check + * which range really needs to be defragged. + * + * And this time we have extent locked already, pass @locked = true + * so that we won't relock the extent range and cause deadlock. + */ + ret = defrag_collect_targets(inode, start, len, extent_thresh, + newer_than, do_compress, true, + &target_list, last_scanned_ret); + if (ret < 0) + goto unlock_extent; + + list_for_each_entry(entry, &target_list, list) { + ret = defrag_one_locked_target(inode, entry, pages, nr_pages, + &cached_state); + if (ret < 0) + break; + } + + list_for_each_entry_safe(entry, tmp, &target_list, list) { + list_del_init(&entry->list); + kfree(entry); + } +unlock_extent: + unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT, + (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, + &cached_state); +free_pages: + for (i = 0; i < nr_pages; i++) { + if (pages[i]) { + unlock_page(pages[i]); + put_page(pages[i]); + } + } + kfree(pages); + return ret; +} + +static int defrag_one_cluster(struct btrfs_inode *inode, + struct file_ra_state *ra, + u64 start, u32 len, u32 extent_thresh, + u64 newer_than, bool do_compress, + unsigned long *sectors_defragged, + unsigned long max_sectors, + u64 *last_scanned_ret) +{ + const u32 sectorsize = inode->root->fs_info->sectorsize; + struct defrag_target_range *entry; + struct defrag_target_range *tmp; + LIST_HEAD(target_list); + int ret; + + ret = defrag_collect_targets(inode, start, len, extent_thresh, + newer_than, do_compress, false, + &target_list, NULL); + if (ret < 0) + goto out; + + list_for_each_entry(entry, &target_list, list) { + u32 range_len = entry->len; + + /* Reached or beyond the limit */ + if (max_sectors && *sectors_defragged >= max_sectors) { + ret = 1; + break; + } + + if (max_sectors) + range_len = min_t(u32, range_len, + (max_sectors - *sectors_defragged) * sectorsize); + + /* + * If defrag_one_range() has updated last_scanned_ret, + * our range may already be invalid (e.g. hole punched). + * Skip if our range is before last_scanned_ret, as there is + * no need to defrag the range anymore. + */ + if (entry->start + range_len <= *last_scanned_ret) + continue; + + if (ra) + page_cache_sync_readahead(inode->vfs_inode.i_mapping, + ra, NULL, entry->start >> PAGE_SHIFT, + ((entry->start + range_len - 1) >> PAGE_SHIFT) - + (entry->start >> PAGE_SHIFT) + 1); + /* + * Here we may not defrag any range if holes are punched before + * we locked the pages. + * But that's fine, it only affects the @sectors_defragged + * accounting. + */ + ret = defrag_one_range(inode, entry->start, range_len, + extent_thresh, newer_than, do_compress, + last_scanned_ret); + if (ret < 0) + break; + *sectors_defragged += range_len >> + inode->root->fs_info->sectorsize_bits; + } +out: + list_for_each_entry_safe(entry, tmp, &target_list, list) { + list_del_init(&entry->list); + kfree(entry); + } + if (ret >= 0) + *last_scanned_ret = max(*last_scanned_ret, start + len); + return ret; +} + +/* + * Entry point to file defragmentation. + * + * @inode: inode to be defragged + * @ra: readahead state (can be NUL) + * @range: defrag options including range and flags + * @newer_than: minimum transid to defrag + * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode + * will be defragged. + * + * Return <0 for error. + * Return >=0 for the number of sectors defragged, and range->start will be updated + * to indicate the file offset where next defrag should be started at. + * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without + * defragging all the range). + */ +int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, + struct btrfs_ioctl_defrag_range_args *range, + u64 newer_than, unsigned long max_to_defrag) +{ + struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); + unsigned long sectors_defragged = 0; + u64 isize = i_size_read(inode); + u64 cur; + u64 last_byte; + bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS); + bool ra_allocated = false; + int compress_type = BTRFS_COMPRESS_ZLIB; + int ret = 0; + u32 extent_thresh = range->extent_thresh; + pgoff_t start_index; + + if (isize == 0) + return 0; + + if (range->start >= isize) + return -EINVAL; + + if (do_compress) { + if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) + return -EINVAL; + if (range->compress_type) + compress_type = range->compress_type; + } + + if (extent_thresh == 0) + extent_thresh = SZ_256K; + + if (range->start + range->len > range->start) { + /* Got a specific range */ + last_byte = min(isize, range->start + range->len); + } else { + /* Defrag until file end */ + last_byte = isize; + } + + /* Align the range */ + cur = round_down(range->start, fs_info->sectorsize); + last_byte = round_up(last_byte, fs_info->sectorsize) - 1; + + /* + * If we were not given a ra, allocate a readahead context. As + * readahead is just an optimization, defrag will work without it so + * we don't error out. + */ + if (!ra) { + ra_allocated = true; + ra = kzalloc(sizeof(*ra), GFP_KERNEL); + if (ra) + file_ra_state_init(ra, inode->i_mapping); + } + + /* + * Make writeback start from the beginning of the range, so that the + * defrag range can be written sequentially. + */ + start_index = cur >> PAGE_SHIFT; + if (start_index < inode->i_mapping->writeback_index) + inode->i_mapping->writeback_index = start_index; + + while (cur < last_byte) { + const unsigned long prev_sectors_defragged = sectors_defragged; + u64 last_scanned = cur; + u64 cluster_end; + + if (btrfs_defrag_cancelled(fs_info)) { + ret = -EAGAIN; + break; + } + + /* We want the cluster end at page boundary when possible */ + cluster_end = (((cur >> PAGE_SHIFT) + + (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; + cluster_end = min(cluster_end, last_byte); + + btrfs_inode_lock(BTRFS_I(inode), 0); + if (IS_SWAPFILE(inode)) { + ret = -ETXTBSY; + btrfs_inode_unlock(BTRFS_I(inode), 0); + break; + } + if (!(inode->i_sb->s_flags & SB_ACTIVE)) { + btrfs_inode_unlock(BTRFS_I(inode), 0); + break; + } + if (do_compress) + BTRFS_I(inode)->defrag_compress = compress_type; + ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, + cluster_end + 1 - cur, extent_thresh, + newer_than, do_compress, §ors_defragged, + max_to_defrag, &last_scanned); + + if (sectors_defragged > prev_sectors_defragged) + balance_dirty_pages_ratelimited(inode->i_mapping); + + btrfs_inode_unlock(BTRFS_I(inode), 0); + if (ret < 0) + break; + cur = max(cluster_end + 1, last_scanned); + if (ret > 0) { + ret = 0; + break; + } + cond_resched(); + } + + if (ra_allocated) + kfree(ra); + /* + * Update range.start for autodefrag, this will indicate where to start + * in next run. + */ + range->start = cur; + if (sectors_defragged) { + /* + * We have defragged some sectors, for compression case they + * need to be written back immediately. + */ + if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { + filemap_flush(inode->i_mapping); + if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, + &BTRFS_I(inode)->runtime_flags)) + filemap_flush(inode->i_mapping); + } + if (range->compress_type == BTRFS_COMPRESS_LZO) + btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); + else if (range->compress_type == BTRFS_COMPRESS_ZSTD) + btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); + ret = sectors_defragged; + } + if (do_compress) { + btrfs_inode_lock(BTRFS_I(inode), 0); + BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; + btrfs_inode_unlock(BTRFS_I(inode), 0); + } + return ret; +} + +void __cold btrfs_auto_defrag_exit(void) +{ + kmem_cache_destroy(btrfs_inode_defrag_cachep); +} + +int __init btrfs_auto_defrag_init(void) +{ + btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", + sizeof(struct inode_defrag), 0, + SLAB_MEM_SPREAD, + NULL); + if (!btrfs_inode_defrag_cachep) + return -ENOMEM; + + return 0; +} |