summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/scrub.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/scrub.c')
-rw-r--r--fs/btrfs/scrub.c3062
1 files changed, 3062 insertions, 0 deletions
diff --git a/fs/btrfs/scrub.c b/fs/btrfs/scrub.c
new file mode 100644
index 0000000000..1e3ff87d04
--- /dev/null
+++ b/fs/btrfs/scrub.c
@@ -0,0 +1,3062 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2011, 2012 STRATO. All rights reserved.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/ratelimit.h>
+#include <linux/sched/mm.h>
+#include <crypto/hash.h>
+#include "ctree.h"
+#include "discard.h"
+#include "volumes.h"
+#include "disk-io.h"
+#include "ordered-data.h"
+#include "transaction.h"
+#include "backref.h"
+#include "extent_io.h"
+#include "dev-replace.h"
+#include "check-integrity.h"
+#include "raid56.h"
+#include "block-group.h"
+#include "zoned.h"
+#include "fs.h"
+#include "accessors.h"
+#include "file-item.h"
+#include "scrub.h"
+
+/*
+ * This is only the first step towards a full-features scrub. It reads all
+ * extent and super block and verifies the checksums. In case a bad checksum
+ * is found or the extent cannot be read, good data will be written back if
+ * any can be found.
+ *
+ * Future enhancements:
+ * - In case an unrepairable extent is encountered, track which files are
+ * affected and report them
+ * - track and record media errors, throw out bad devices
+ * - add a mode to also read unallocated space
+ */
+
+struct scrub_ctx;
+
+/*
+ * The following value only influences the performance.
+ *
+ * This detemines how many stripes would be submitted in one go,
+ * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
+ */
+#define SCRUB_STRIPES_PER_GROUP 8
+
+/*
+ * How many groups we have for each sctx.
+ *
+ * This would be 8M per device, the same value as the old scrub in-flight bios
+ * size limit.
+ */
+#define SCRUB_GROUPS_PER_SCTX 16
+
+#define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
+
+/*
+ * The following value times PAGE_SIZE needs to be large enough to match the
+ * largest node/leaf/sector size that shall be supported.
+ */
+#define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
+
+/* Represent one sector and its needed info to verify the content. */
+struct scrub_sector_verification {
+ bool is_metadata;
+
+ union {
+ /*
+ * Csum pointer for data csum verification. Should point to a
+ * sector csum inside scrub_stripe::csums.
+ *
+ * NULL if this data sector has no csum.
+ */
+ u8 *csum;
+
+ /*
+ * Extra info for metadata verification. All sectors inside a
+ * tree block share the same generation.
+ */
+ u64 generation;
+ };
+};
+
+enum scrub_stripe_flags {
+ /* Set when @mirror_num, @dev, @physical and @logical are set. */
+ SCRUB_STRIPE_FLAG_INITIALIZED,
+
+ /* Set when the read-repair is finished. */
+ SCRUB_STRIPE_FLAG_REPAIR_DONE,
+
+ /*
+ * Set for data stripes if it's triggered from P/Q stripe.
+ * During such scrub, we should not report errors in data stripes, nor
+ * update the accounting.
+ */
+ SCRUB_STRIPE_FLAG_NO_REPORT,
+};
+
+#define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE)
+
+/*
+ * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
+ */
+struct scrub_stripe {
+ struct scrub_ctx *sctx;
+ struct btrfs_block_group *bg;
+
+ struct page *pages[SCRUB_STRIPE_PAGES];
+ struct scrub_sector_verification *sectors;
+
+ struct btrfs_device *dev;
+ u64 logical;
+ u64 physical;
+
+ u16 mirror_num;
+
+ /* Should be BTRFS_STRIPE_LEN / sectorsize. */
+ u16 nr_sectors;
+
+ /*
+ * How many data/meta extents are in this stripe. Only for scrub status
+ * reporting purposes.
+ */
+ u16 nr_data_extents;
+ u16 nr_meta_extents;
+
+ atomic_t pending_io;
+ wait_queue_head_t io_wait;
+ wait_queue_head_t repair_wait;
+
+ /*
+ * Indicate the states of the stripe. Bits are defined in
+ * scrub_stripe_flags enum.
+ */
+ unsigned long state;
+
+ /* Indicate which sectors are covered by extent items. */
+ unsigned long extent_sector_bitmap;
+
+ /*
+ * The errors hit during the initial read of the stripe.
+ *
+ * Would be utilized for error reporting and repair.
+ *
+ * The remaining init_nr_* records the number of errors hit, only used
+ * by error reporting.
+ */
+ unsigned long init_error_bitmap;
+ unsigned int init_nr_io_errors;
+ unsigned int init_nr_csum_errors;
+ unsigned int init_nr_meta_errors;
+
+ /*
+ * The following error bitmaps are all for the current status.
+ * Every time we submit a new read, these bitmaps may be updated.
+ *
+ * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
+ *
+ * IO and csum errors can happen for both metadata and data.
+ */
+ unsigned long error_bitmap;
+ unsigned long io_error_bitmap;
+ unsigned long csum_error_bitmap;
+ unsigned long meta_error_bitmap;
+
+ /* For writeback (repair or replace) error reporting. */
+ unsigned long write_error_bitmap;
+
+ /* Writeback can be concurrent, thus we need to protect the bitmap. */
+ spinlock_t write_error_lock;
+
+ /*
+ * Checksum for the whole stripe if this stripe is inside a data block
+ * group.
+ */
+ u8 *csums;
+
+ struct work_struct work;
+};
+
+struct scrub_ctx {
+ struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
+ struct scrub_stripe *raid56_data_stripes;
+ struct btrfs_fs_info *fs_info;
+ struct btrfs_path extent_path;
+ struct btrfs_path csum_path;
+ int first_free;
+ int cur_stripe;
+ atomic_t cancel_req;
+ int readonly;
+ int sectors_per_bio;
+
+ /* State of IO submission throttling affecting the associated device */
+ ktime_t throttle_deadline;
+ u64 throttle_sent;
+
+ int is_dev_replace;
+ u64 write_pointer;
+
+ struct mutex wr_lock;
+ struct btrfs_device *wr_tgtdev;
+
+ /*
+ * statistics
+ */
+ struct btrfs_scrub_progress stat;
+ spinlock_t stat_lock;
+
+ /*
+ * Use a ref counter to avoid use-after-free issues. Scrub workers
+ * decrement bios_in_flight and workers_pending and then do a wakeup
+ * on the list_wait wait queue. We must ensure the main scrub task
+ * doesn't free the scrub context before or while the workers are
+ * doing the wakeup() call.
+ */
+ refcount_t refs;
+};
+
+struct scrub_warning {
+ struct btrfs_path *path;
+ u64 extent_item_size;
+ const char *errstr;
+ u64 physical;
+ u64 logical;
+ struct btrfs_device *dev;
+};
+
+static void release_scrub_stripe(struct scrub_stripe *stripe)
+{
+ if (!stripe)
+ return;
+
+ for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
+ if (stripe->pages[i])
+ __free_page(stripe->pages[i]);
+ stripe->pages[i] = NULL;
+ }
+ kfree(stripe->sectors);
+ kfree(stripe->csums);
+ stripe->sectors = NULL;
+ stripe->csums = NULL;
+ stripe->sctx = NULL;
+ stripe->state = 0;
+}
+
+static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
+ struct scrub_stripe *stripe)
+{
+ int ret;
+
+ memset(stripe, 0, sizeof(*stripe));
+
+ stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
+ stripe->state = 0;
+
+ init_waitqueue_head(&stripe->io_wait);
+ init_waitqueue_head(&stripe->repair_wait);
+ atomic_set(&stripe->pending_io, 0);
+ spin_lock_init(&stripe->write_error_lock);
+
+ ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
+ if (ret < 0)
+ goto error;
+
+ stripe->sectors = kcalloc(stripe->nr_sectors,
+ sizeof(struct scrub_sector_verification),
+ GFP_KERNEL);
+ if (!stripe->sectors)
+ goto error;
+
+ stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
+ fs_info->csum_size, GFP_KERNEL);
+ if (!stripe->csums)
+ goto error;
+ return 0;
+error:
+ release_scrub_stripe(stripe);
+ return -ENOMEM;
+}
+
+static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
+{
+ wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
+}
+
+static void scrub_put_ctx(struct scrub_ctx *sctx);
+
+static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
+{
+ while (atomic_read(&fs_info->scrub_pause_req)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ atomic_read(&fs_info->scrub_pause_req) == 0);
+ mutex_lock(&fs_info->scrub_lock);
+ }
+}
+
+static void scrub_pause_on(struct btrfs_fs_info *fs_info)
+{
+ atomic_inc(&fs_info->scrubs_paused);
+ wake_up(&fs_info->scrub_pause_wait);
+}
+
+static void scrub_pause_off(struct btrfs_fs_info *fs_info)
+{
+ mutex_lock(&fs_info->scrub_lock);
+ __scrub_blocked_if_needed(fs_info);
+ atomic_dec(&fs_info->scrubs_paused);
+ mutex_unlock(&fs_info->scrub_lock);
+
+ wake_up(&fs_info->scrub_pause_wait);
+}
+
+static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
+{
+ scrub_pause_on(fs_info);
+ scrub_pause_off(fs_info);
+}
+
+static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
+{
+ int i;
+
+ if (!sctx)
+ return;
+
+ for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
+ release_scrub_stripe(&sctx->stripes[i]);
+
+ kvfree(sctx);
+}
+
+static void scrub_put_ctx(struct scrub_ctx *sctx)
+{
+ if (refcount_dec_and_test(&sctx->refs))
+ scrub_free_ctx(sctx);
+}
+
+static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
+ struct btrfs_fs_info *fs_info, int is_dev_replace)
+{
+ struct scrub_ctx *sctx;
+ int i;
+
+ /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use
+ * kvzalloc().
+ */
+ sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
+ if (!sctx)
+ goto nomem;
+ refcount_set(&sctx->refs, 1);
+ sctx->is_dev_replace = is_dev_replace;
+ sctx->fs_info = fs_info;
+ sctx->extent_path.search_commit_root = 1;
+ sctx->extent_path.skip_locking = 1;
+ sctx->csum_path.search_commit_root = 1;
+ sctx->csum_path.skip_locking = 1;
+ for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
+ int ret;
+
+ ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
+ if (ret < 0)
+ goto nomem;
+ sctx->stripes[i].sctx = sctx;
+ }
+ sctx->first_free = 0;
+ atomic_set(&sctx->cancel_req, 0);
+
+ spin_lock_init(&sctx->stat_lock);
+ sctx->throttle_deadline = 0;
+
+ mutex_init(&sctx->wr_lock);
+ if (is_dev_replace) {
+ WARN_ON(!fs_info->dev_replace.tgtdev);
+ sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
+ }
+
+ return sctx;
+
+nomem:
+ scrub_free_ctx(sctx);
+ return ERR_PTR(-ENOMEM);
+}
+
+static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
+ u64 root, void *warn_ctx)
+{
+ u32 nlink;
+ int ret;
+ int i;
+ unsigned nofs_flag;
+ struct extent_buffer *eb;
+ struct btrfs_inode_item *inode_item;
+ struct scrub_warning *swarn = warn_ctx;
+ struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
+ struct inode_fs_paths *ipath = NULL;
+ struct btrfs_root *local_root;
+ struct btrfs_key key;
+
+ local_root = btrfs_get_fs_root(fs_info, root, true);
+ if (IS_ERR(local_root)) {
+ ret = PTR_ERR(local_root);
+ goto err;
+ }
+
+ /*
+ * this makes the path point to (inum INODE_ITEM ioff)
+ */
+ key.objectid = inum;
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.offset = 0;
+
+ ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
+ if (ret) {
+ btrfs_put_root(local_root);
+ btrfs_release_path(swarn->path);
+ goto err;
+ }
+
+ eb = swarn->path->nodes[0];
+ inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
+ struct btrfs_inode_item);
+ nlink = btrfs_inode_nlink(eb, inode_item);
+ btrfs_release_path(swarn->path);
+
+ /*
+ * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
+ * uses GFP_NOFS in this context, so we keep it consistent but it does
+ * not seem to be strictly necessary.
+ */
+ nofs_flag = memalloc_nofs_save();
+ ipath = init_ipath(4096, local_root, swarn->path);
+ memalloc_nofs_restore(nofs_flag);
+ if (IS_ERR(ipath)) {
+ btrfs_put_root(local_root);
+ ret = PTR_ERR(ipath);
+ ipath = NULL;
+ goto err;
+ }
+ ret = paths_from_inode(inum, ipath);
+
+ if (ret < 0)
+ goto err;
+
+ /*
+ * we deliberately ignore the bit ipath might have been too small to
+ * hold all of the paths here
+ */
+ for (i = 0; i < ipath->fspath->elem_cnt; ++i)
+ btrfs_warn_in_rcu(fs_info,
+"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
+ swarn->errstr, swarn->logical,
+ btrfs_dev_name(swarn->dev),
+ swarn->physical,
+ root, inum, offset,
+ fs_info->sectorsize, nlink,
+ (char *)(unsigned long)ipath->fspath->val[i]);
+
+ btrfs_put_root(local_root);
+ free_ipath(ipath);
+ return 0;
+
+err:
+ btrfs_warn_in_rcu(fs_info,
+ "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
+ swarn->errstr, swarn->logical,
+ btrfs_dev_name(swarn->dev),
+ swarn->physical,
+ root, inum, offset, ret);
+
+ free_ipath(ipath);
+ return 0;
+}
+
+static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
+ bool is_super, u64 logical, u64 physical)
+{
+ struct btrfs_fs_info *fs_info = dev->fs_info;
+ struct btrfs_path *path;
+ struct btrfs_key found_key;
+ struct extent_buffer *eb;
+ struct btrfs_extent_item *ei;
+ struct scrub_warning swarn;
+ u64 flags = 0;
+ u32 item_size;
+ int ret;
+
+ /* Super block error, no need to search extent tree. */
+ if (is_super) {
+ btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
+ errstr, btrfs_dev_name(dev), physical);
+ return;
+ }
+ path = btrfs_alloc_path();
+ if (!path)
+ return;
+
+ swarn.physical = physical;
+ swarn.logical = logical;
+ swarn.errstr = errstr;
+ swarn.dev = NULL;
+
+ ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
+ &flags);
+ if (ret < 0)
+ goto out;
+
+ swarn.extent_item_size = found_key.offset;
+
+ eb = path->nodes[0];
+ ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
+ item_size = btrfs_item_size(eb, path->slots[0]);
+
+ if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ unsigned long ptr = 0;
+ u8 ref_level;
+ u64 ref_root;
+
+ while (true) {
+ ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
+ item_size, &ref_root,
+ &ref_level);
+ if (ret < 0) {
+ btrfs_warn(fs_info,
+ "failed to resolve tree backref for logical %llu: %d",
+ swarn.logical, ret);
+ break;
+ }
+ if (ret > 0)
+ break;
+ btrfs_warn_in_rcu(fs_info,
+"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
+ errstr, swarn.logical, btrfs_dev_name(dev),
+ swarn.physical, (ref_level ? "node" : "leaf"),
+ ref_level, ref_root);
+ }
+ btrfs_release_path(path);
+ } else {
+ struct btrfs_backref_walk_ctx ctx = { 0 };
+
+ btrfs_release_path(path);
+
+ ctx.bytenr = found_key.objectid;
+ ctx.extent_item_pos = swarn.logical - found_key.objectid;
+ ctx.fs_info = fs_info;
+
+ swarn.path = path;
+ swarn.dev = dev;
+
+ iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
+ }
+
+out:
+ btrfs_free_path(path);
+}
+
+static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
+{
+ int ret = 0;
+ u64 length;
+
+ if (!btrfs_is_zoned(sctx->fs_info))
+ return 0;
+
+ if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
+ return 0;
+
+ if (sctx->write_pointer < physical) {
+ length = physical - sctx->write_pointer;
+
+ ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
+ sctx->write_pointer, length);
+ if (!ret)
+ sctx->write_pointer = physical;
+ }
+ return ret;
+}
+
+static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
+{
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
+
+ return stripe->pages[page_index];
+}
+
+static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
+ int sector_nr)
+{
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+
+ return offset_in_page(sector_nr << fs_info->sectorsize_bits);
+}
+
+static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
+{
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
+ const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
+ const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
+ const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
+ SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
+ u8 on_disk_csum[BTRFS_CSUM_SIZE];
+ u8 calculated_csum[BTRFS_CSUM_SIZE];
+ struct btrfs_header *header;
+
+ /*
+ * Here we don't have a good way to attach the pages (and subpages)
+ * to a dummy extent buffer, thus we have to directly grab the members
+ * from pages.
+ */
+ header = (struct btrfs_header *)(page_address(first_page) + first_off);
+ memcpy(on_disk_csum, header->csum, fs_info->csum_size);
+
+ if (logical != btrfs_stack_header_bytenr(header)) {
+ bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
+ bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+ "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
+ logical, stripe->mirror_num,
+ btrfs_stack_header_bytenr(header), logical);
+ return;
+ }
+ if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
+ BTRFS_FSID_SIZE) != 0) {
+ bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
+ bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+ "tree block %llu mirror %u has bad fsid, has %pU want %pU",
+ logical, stripe->mirror_num,
+ header->fsid, fs_info->fs_devices->fsid);
+ return;
+ }
+ if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
+ BTRFS_UUID_SIZE) != 0) {
+ bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
+ bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+ "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
+ logical, stripe->mirror_num,
+ header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
+ return;
+ }
+
+ /* Now check tree block csum. */
+ shash->tfm = fs_info->csum_shash;
+ crypto_shash_init(shash);
+ crypto_shash_update(shash, page_address(first_page) + first_off +
+ BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
+
+ for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
+ struct page *page = scrub_stripe_get_page(stripe, i);
+ unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
+
+ crypto_shash_update(shash, page_address(page) + page_off,
+ fs_info->sectorsize);
+ }
+
+ crypto_shash_final(shash, calculated_csum);
+ if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
+ bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
+ bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+ "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
+ logical, stripe->mirror_num,
+ CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
+ CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
+ return;
+ }
+ if (stripe->sectors[sector_nr].generation !=
+ btrfs_stack_header_generation(header)) {
+ bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
+ bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
+ btrfs_warn_rl(fs_info,
+ "tree block %llu mirror %u has bad generation, has %llu want %llu",
+ logical, stripe->mirror_num,
+ btrfs_stack_header_generation(header),
+ stripe->sectors[sector_nr].generation);
+ return;
+ }
+ bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
+ bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
+ bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
+}
+
+static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
+{
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
+ const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
+ struct page *page = scrub_stripe_get_page(stripe, sector_nr);
+ unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
+ u8 csum_buf[BTRFS_CSUM_SIZE];
+ int ret;
+
+ ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
+
+ /* Sector not utilized, skip it. */
+ if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
+ return;
+
+ /* IO error, no need to check. */
+ if (test_bit(sector_nr, &stripe->io_error_bitmap))
+ return;
+
+ /* Metadata, verify the full tree block. */
+ if (sector->is_metadata) {
+ /*
+ * Check if the tree block crosses the stripe boudary. If
+ * crossed the boundary, we cannot verify it but only give a
+ * warning.
+ *
+ * This can only happen on a very old filesystem where chunks
+ * are not ensured to be stripe aligned.
+ */
+ if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
+ btrfs_warn_rl(fs_info,
+ "tree block at %llu crosses stripe boundary %llu",
+ stripe->logical +
+ (sector_nr << fs_info->sectorsize_bits),
+ stripe->logical);
+ return;
+ }
+ scrub_verify_one_metadata(stripe, sector_nr);
+ return;
+ }
+
+ /*
+ * Data is easier, we just verify the data csum (if we have it). For
+ * cases without csum, we have no other choice but to trust it.
+ */
+ if (!sector->csum) {
+ clear_bit(sector_nr, &stripe->error_bitmap);
+ return;
+ }
+
+ ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
+ if (ret < 0) {
+ set_bit(sector_nr, &stripe->csum_error_bitmap);
+ set_bit(sector_nr, &stripe->error_bitmap);
+ } else {
+ clear_bit(sector_nr, &stripe->csum_error_bitmap);
+ clear_bit(sector_nr, &stripe->error_bitmap);
+ }
+}
+
+/* Verify specified sectors of a stripe. */
+static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
+{
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
+ int sector_nr;
+
+ for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
+ scrub_verify_one_sector(stripe, sector_nr);
+ if (stripe->sectors[sector_nr].is_metadata)
+ sector_nr += sectors_per_tree - 1;
+ }
+}
+
+static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
+{
+ int i;
+
+ for (i = 0; i < stripe->nr_sectors; i++) {
+ if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
+ scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
+ break;
+ }
+ ASSERT(i < stripe->nr_sectors);
+ return i;
+}
+
+/*
+ * Repair read is different to the regular read:
+ *
+ * - Only reads the failed sectors
+ * - May have extra blocksize limits
+ */
+static void scrub_repair_read_endio(struct btrfs_bio *bbio)
+{
+ struct scrub_stripe *stripe = bbio->private;
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct bio_vec *bvec;
+ int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
+ u32 bio_size = 0;
+ int i;
+
+ ASSERT(sector_nr < stripe->nr_sectors);
+
+ bio_for_each_bvec_all(bvec, &bbio->bio, i)
+ bio_size += bvec->bv_len;
+
+ if (bbio->bio.bi_status) {
+ bitmap_set(&stripe->io_error_bitmap, sector_nr,
+ bio_size >> fs_info->sectorsize_bits);
+ bitmap_set(&stripe->error_bitmap, sector_nr,
+ bio_size >> fs_info->sectorsize_bits);
+ } else {
+ bitmap_clear(&stripe->io_error_bitmap, sector_nr,
+ bio_size >> fs_info->sectorsize_bits);
+ }
+ bio_put(&bbio->bio);
+ if (atomic_dec_and_test(&stripe->pending_io))
+ wake_up(&stripe->io_wait);
+}
+
+static int calc_next_mirror(int mirror, int num_copies)
+{
+ ASSERT(mirror <= num_copies);
+ return (mirror + 1 > num_copies) ? 1 : mirror + 1;
+}
+
+static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
+ int mirror, int blocksize, bool wait)
+{
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct btrfs_bio *bbio = NULL;
+ const unsigned long old_error_bitmap = stripe->error_bitmap;
+ int i;
+
+ ASSERT(stripe->mirror_num >= 1);
+ ASSERT(atomic_read(&stripe->pending_io) == 0);
+
+ for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
+ struct page *page;
+ int pgoff;
+ int ret;
+
+ page = scrub_stripe_get_page(stripe, i);
+ pgoff = scrub_stripe_get_page_offset(stripe, i);
+
+ /* The current sector cannot be merged, submit the bio. */
+ if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
+ bbio->bio.bi_iter.bi_size >= blocksize)) {
+ ASSERT(bbio->bio.bi_iter.bi_size);
+ atomic_inc(&stripe->pending_io);
+ btrfs_submit_bio(bbio, mirror);
+ if (wait)
+ wait_scrub_stripe_io(stripe);
+ bbio = NULL;
+ }
+
+ if (!bbio) {
+ bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
+ fs_info, scrub_repair_read_endio, stripe);
+ bbio->bio.bi_iter.bi_sector = (stripe->logical +
+ (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
+ }
+
+ ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
+ ASSERT(ret == fs_info->sectorsize);
+ }
+ if (bbio) {
+ ASSERT(bbio->bio.bi_iter.bi_size);
+ atomic_inc(&stripe->pending_io);
+ btrfs_submit_bio(bbio, mirror);
+ if (wait)
+ wait_scrub_stripe_io(stripe);
+ }
+}
+
+static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
+ struct scrub_stripe *stripe)
+{
+ static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct btrfs_device *dev = NULL;
+ u64 physical = 0;
+ int nr_data_sectors = 0;
+ int nr_meta_sectors = 0;
+ int nr_nodatacsum_sectors = 0;
+ int nr_repaired_sectors = 0;
+ int sector_nr;
+
+ if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
+ return;
+
+ /*
+ * Init needed infos for error reporting.
+ *
+ * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
+ * thus no need for dev/physical, error reporting still needs dev and physical.
+ */
+ if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
+ u64 mapped_len = fs_info->sectorsize;
+ struct btrfs_io_context *bioc = NULL;
+ int stripe_index = stripe->mirror_num - 1;
+ int ret;
+
+ /* For scrub, our mirror_num should always start at 1. */
+ ASSERT(stripe->mirror_num >= 1);
+ ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
+ stripe->logical, &mapped_len, &bioc,
+ NULL, NULL, 1);
+ /*
+ * If we failed, dev will be NULL, and later detailed reports
+ * will just be skipped.
+ */
+ if (ret < 0)
+ goto skip;
+ physical = bioc->stripes[stripe_index].physical;
+ dev = bioc->stripes[stripe_index].dev;
+ btrfs_put_bioc(bioc);
+ }
+
+skip:
+ for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
+ bool repaired = false;
+
+ if (stripe->sectors[sector_nr].is_metadata) {
+ nr_meta_sectors++;
+ } else {
+ nr_data_sectors++;
+ if (!stripe->sectors[sector_nr].csum)
+ nr_nodatacsum_sectors++;
+ }
+
+ if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
+ !test_bit(sector_nr, &stripe->error_bitmap)) {
+ nr_repaired_sectors++;
+ repaired = true;
+ }
+
+ /* Good sector from the beginning, nothing need to be done. */
+ if (!test_bit(sector_nr, &stripe->init_error_bitmap))
+ continue;
+
+ /*
+ * Report error for the corrupted sectors. If repaired, just
+ * output the message of repaired message.
+ */
+ if (repaired) {
+ if (dev) {
+ btrfs_err_rl_in_rcu(fs_info,
+ "fixed up error at logical %llu on dev %s physical %llu",
+ stripe->logical, btrfs_dev_name(dev),
+ physical);
+ } else {
+ btrfs_err_rl_in_rcu(fs_info,
+ "fixed up error at logical %llu on mirror %u",
+ stripe->logical, stripe->mirror_num);
+ }
+ continue;
+ }
+
+ /* The remaining are all for unrepaired. */
+ if (dev) {
+ btrfs_err_rl_in_rcu(fs_info,
+ "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
+ stripe->logical, btrfs_dev_name(dev),
+ physical);
+ } else {
+ btrfs_err_rl_in_rcu(fs_info,
+ "unable to fixup (regular) error at logical %llu on mirror %u",
+ stripe->logical, stripe->mirror_num);
+ }
+
+ if (test_bit(sector_nr, &stripe->io_error_bitmap))
+ if (__ratelimit(&rs) && dev)
+ scrub_print_common_warning("i/o error", dev, false,
+ stripe->logical, physical);
+ if (test_bit(sector_nr, &stripe->csum_error_bitmap))
+ if (__ratelimit(&rs) && dev)
+ scrub_print_common_warning("checksum error", dev, false,
+ stripe->logical, physical);
+ if (test_bit(sector_nr, &stripe->meta_error_bitmap))
+ if (__ratelimit(&rs) && dev)
+ scrub_print_common_warning("header error", dev, false,
+ stripe->logical, physical);
+ }
+
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
+ sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
+ sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
+ sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
+ sctx->stat.no_csum += nr_nodatacsum_sectors;
+ sctx->stat.read_errors += stripe->init_nr_io_errors;
+ sctx->stat.csum_errors += stripe->init_nr_csum_errors;
+ sctx->stat.verify_errors += stripe->init_nr_meta_errors;
+ sctx->stat.uncorrectable_errors +=
+ bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
+ sctx->stat.corrected_errors += nr_repaired_sectors;
+ spin_unlock(&sctx->stat_lock);
+}
+
+static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
+ unsigned long write_bitmap, bool dev_replace);
+
+/*
+ * The main entrance for all read related scrub work, including:
+ *
+ * - Wait for the initial read to finish
+ * - Verify and locate any bad sectors
+ * - Go through the remaining mirrors and try to read as large blocksize as
+ * possible
+ * - Go through all mirrors (including the failed mirror) sector-by-sector
+ * - Submit writeback for repaired sectors
+ *
+ * Writeback for dev-replace does not happen here, it needs extra
+ * synchronization for zoned devices.
+ */
+static void scrub_stripe_read_repair_worker(struct work_struct *work)
+{
+ struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
+ struct scrub_ctx *sctx = stripe->sctx;
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
+ stripe->bg->length);
+ int mirror;
+ int i;
+
+ ASSERT(stripe->mirror_num > 0);
+
+ wait_scrub_stripe_io(stripe);
+ scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
+ /* Save the initial failed bitmap for later repair and report usage. */
+ stripe->init_error_bitmap = stripe->error_bitmap;
+ stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
+ stripe->nr_sectors);
+ stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
+ stripe->nr_sectors);
+ stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
+ stripe->nr_sectors);
+
+ if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
+ goto out;
+
+ /*
+ * Try all remaining mirrors.
+ *
+ * Here we still try to read as large block as possible, as this is
+ * faster and we have extra safety nets to rely on.
+ */
+ for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
+ mirror != stripe->mirror_num;
+ mirror = calc_next_mirror(mirror, num_copies)) {
+ const unsigned long old_error_bitmap = stripe->error_bitmap;
+
+ scrub_stripe_submit_repair_read(stripe, mirror,
+ BTRFS_STRIPE_LEN, false);
+ wait_scrub_stripe_io(stripe);
+ scrub_verify_one_stripe(stripe, old_error_bitmap);
+ if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
+ goto out;
+ }
+
+ /*
+ * Last safety net, try re-checking all mirrors, including the failed
+ * one, sector-by-sector.
+ *
+ * As if one sector failed the drive's internal csum, the whole read
+ * containing the offending sector would be marked as error.
+ * Thus here we do sector-by-sector read.
+ *
+ * This can be slow, thus we only try it as the last resort.
+ */
+
+ for (i = 0, mirror = stripe->mirror_num;
+ i < num_copies;
+ i++, mirror = calc_next_mirror(mirror, num_copies)) {
+ const unsigned long old_error_bitmap = stripe->error_bitmap;
+
+ scrub_stripe_submit_repair_read(stripe, mirror,
+ fs_info->sectorsize, true);
+ wait_scrub_stripe_io(stripe);
+ scrub_verify_one_stripe(stripe, old_error_bitmap);
+ if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
+ goto out;
+ }
+out:
+ /*
+ * Submit the repaired sectors. For zoned case, we cannot do repair
+ * in-place, but queue the bg to be relocated.
+ */
+ if (btrfs_is_zoned(fs_info)) {
+ if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
+ btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
+ } else if (!sctx->readonly) {
+ unsigned long repaired;
+
+ bitmap_andnot(&repaired, &stripe->init_error_bitmap,
+ &stripe->error_bitmap, stripe->nr_sectors);
+ scrub_write_sectors(sctx, stripe, repaired, false);
+ wait_scrub_stripe_io(stripe);
+ }
+
+ scrub_stripe_report_errors(sctx, stripe);
+ set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
+ wake_up(&stripe->repair_wait);
+}
+
+static void scrub_read_endio(struct btrfs_bio *bbio)
+{
+ struct scrub_stripe *stripe = bbio->private;
+ struct bio_vec *bvec;
+ int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
+ int num_sectors;
+ u32 bio_size = 0;
+ int i;
+
+ ASSERT(sector_nr < stripe->nr_sectors);
+ bio_for_each_bvec_all(bvec, &bbio->bio, i)
+ bio_size += bvec->bv_len;
+ num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
+
+ if (bbio->bio.bi_status) {
+ bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
+ bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
+ } else {
+ bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
+ }
+ bio_put(&bbio->bio);
+ if (atomic_dec_and_test(&stripe->pending_io)) {
+ wake_up(&stripe->io_wait);
+ INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
+ queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
+ }
+}
+
+static void scrub_write_endio(struct btrfs_bio *bbio)
+{
+ struct scrub_stripe *stripe = bbio->private;
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct bio_vec *bvec;
+ int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
+ u32 bio_size = 0;
+ int i;
+
+ bio_for_each_bvec_all(bvec, &bbio->bio, i)
+ bio_size += bvec->bv_len;
+
+ if (bbio->bio.bi_status) {
+ unsigned long flags;
+
+ spin_lock_irqsave(&stripe->write_error_lock, flags);
+ bitmap_set(&stripe->write_error_bitmap, sector_nr,
+ bio_size >> fs_info->sectorsize_bits);
+ spin_unlock_irqrestore(&stripe->write_error_lock, flags);
+ }
+ bio_put(&bbio->bio);
+
+ if (atomic_dec_and_test(&stripe->pending_io))
+ wake_up(&stripe->io_wait);
+}
+
+static void scrub_submit_write_bio(struct scrub_ctx *sctx,
+ struct scrub_stripe *stripe,
+ struct btrfs_bio *bbio, bool dev_replace)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ u32 bio_len = bbio->bio.bi_iter.bi_size;
+ u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
+ stripe->logical;
+
+ fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
+ atomic_inc(&stripe->pending_io);
+ btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
+ if (!btrfs_is_zoned(fs_info))
+ return;
+ /*
+ * For zoned writeback, queue depth must be 1, thus we must wait for
+ * the write to finish before the next write.
+ */
+ wait_scrub_stripe_io(stripe);
+
+ /*
+ * And also need to update the write pointer if write finished
+ * successfully.
+ */
+ if (!test_bit(bio_off >> fs_info->sectorsize_bits,
+ &stripe->write_error_bitmap))
+ sctx->write_pointer += bio_len;
+}
+
+/*
+ * Submit the write bio(s) for the sectors specified by @write_bitmap.
+ *
+ * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
+ *
+ * - Only needs logical bytenr and mirror_num
+ * Just like the scrub read path
+ *
+ * - Would only result in writes to the specified mirror
+ * Unlike the regular writeback path, which would write back to all stripes
+ *
+ * - Handle dev-replace and read-repair writeback differently
+ */
+static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
+ unsigned long write_bitmap, bool dev_replace)
+{
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+ struct btrfs_bio *bbio = NULL;
+ int sector_nr;
+
+ for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
+ struct page *page = scrub_stripe_get_page(stripe, sector_nr);
+ unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
+ int ret;
+
+ /* We should only writeback sectors covered by an extent. */
+ ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
+
+ /* Cannot merge with previous sector, submit the current one. */
+ if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
+ scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
+ bbio = NULL;
+ }
+ if (!bbio) {
+ bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
+ fs_info, scrub_write_endio, stripe);
+ bbio->bio.bi_iter.bi_sector = (stripe->logical +
+ (sector_nr << fs_info->sectorsize_bits)) >>
+ SECTOR_SHIFT;
+ }
+ ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
+ ASSERT(ret == fs_info->sectorsize);
+ }
+ if (bbio)
+ scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
+}
+
+/*
+ * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
+ * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
+ */
+static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
+ unsigned int bio_size)
+{
+ const int time_slice = 1000;
+ s64 delta;
+ ktime_t now;
+ u32 div;
+ u64 bwlimit;
+
+ bwlimit = READ_ONCE(device->scrub_speed_max);
+ if (bwlimit == 0)
+ return;
+
+ /*
+ * Slice is divided into intervals when the IO is submitted, adjust by
+ * bwlimit and maximum of 64 intervals.
+ */
+ div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
+ div = min_t(u32, 64, div);
+
+ /* Start new epoch, set deadline */
+ now = ktime_get();
+ if (sctx->throttle_deadline == 0) {
+ sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
+ sctx->throttle_sent = 0;
+ }
+
+ /* Still in the time to send? */
+ if (ktime_before(now, sctx->throttle_deadline)) {
+ /* If current bio is within the limit, send it */
+ sctx->throttle_sent += bio_size;
+ if (sctx->throttle_sent <= div_u64(bwlimit, div))
+ return;
+
+ /* We're over the limit, sleep until the rest of the slice */
+ delta = ktime_ms_delta(sctx->throttle_deadline, now);
+ } else {
+ /* New request after deadline, start new epoch */
+ delta = 0;
+ }
+
+ if (delta) {
+ long timeout;
+
+ timeout = div_u64(delta * HZ, 1000);
+ schedule_timeout_interruptible(timeout);
+ }
+
+ /* Next call will start the deadline period */
+ sctx->throttle_deadline = 0;
+}
+
+/*
+ * Given a physical address, this will calculate it's
+ * logical offset. if this is a parity stripe, it will return
+ * the most left data stripe's logical offset.
+ *
+ * return 0 if it is a data stripe, 1 means parity stripe.
+ */
+static int get_raid56_logic_offset(u64 physical, int num,
+ struct map_lookup *map, u64 *offset,
+ u64 *stripe_start)
+{
+ int i;
+ int j = 0;
+ u64 last_offset;
+ const int data_stripes = nr_data_stripes(map);
+
+ last_offset = (physical - map->stripes[num].physical) * data_stripes;
+ if (stripe_start)
+ *stripe_start = last_offset;
+
+ *offset = last_offset;
+ for (i = 0; i < data_stripes; i++) {
+ u32 stripe_nr;
+ u32 stripe_index;
+ u32 rot;
+
+ *offset = last_offset + btrfs_stripe_nr_to_offset(i);
+
+ stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
+
+ /* Work out the disk rotation on this stripe-set */
+ rot = stripe_nr % map->num_stripes;
+ /* calculate which stripe this data locates */
+ rot += i;
+ stripe_index = rot % map->num_stripes;
+ if (stripe_index == num)
+ return 0;
+ if (stripe_index < num)
+ j++;
+ }
+ *offset = last_offset + btrfs_stripe_nr_to_offset(j);
+ return 1;
+}
+
+/*
+ * Return 0 if the extent item range covers any byte of the range.
+ * Return <0 if the extent item is before @search_start.
+ * Return >0 if the extent item is after @start_start + @search_len.
+ */
+static int compare_extent_item_range(struct btrfs_path *path,
+ u64 search_start, u64 search_len)
+{
+ struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
+ u64 len;
+ struct btrfs_key key;
+
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
+ key.type == BTRFS_METADATA_ITEM_KEY);
+ if (key.type == BTRFS_METADATA_ITEM_KEY)
+ len = fs_info->nodesize;
+ else
+ len = key.offset;
+
+ if (key.objectid + len <= search_start)
+ return -1;
+ if (key.objectid >= search_start + search_len)
+ return 1;
+ return 0;
+}
+
+/*
+ * Locate one extent item which covers any byte in range
+ * [@search_start, @search_start + @search_length)
+ *
+ * If the path is not initialized, we will initialize the search by doing
+ * a btrfs_search_slot().
+ * If the path is already initialized, we will use the path as the initial
+ * slot, to avoid duplicated btrfs_search_slot() calls.
+ *
+ * NOTE: If an extent item starts before @search_start, we will still
+ * return the extent item. This is for data extent crossing stripe boundary.
+ *
+ * Return 0 if we found such extent item, and @path will point to the extent item.
+ * Return >0 if no such extent item can be found, and @path will be released.
+ * Return <0 if hit fatal error, and @path will be released.
+ */
+static int find_first_extent_item(struct btrfs_root *extent_root,
+ struct btrfs_path *path,
+ u64 search_start, u64 search_len)
+{
+ struct btrfs_fs_info *fs_info = extent_root->fs_info;
+ struct btrfs_key key;
+ int ret;
+
+ /* Continue using the existing path */
+ if (path->nodes[0])
+ goto search_forward;
+
+ if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
+ key.type = BTRFS_METADATA_ITEM_KEY;
+ else
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.objectid = search_start;
+ key.offset = (u64)-1;
+
+ ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
+ if (ret < 0)
+ return ret;
+
+ ASSERT(ret > 0);
+ /*
+ * Here we intentionally pass 0 as @min_objectid, as there could be
+ * an extent item starting before @search_start.
+ */
+ ret = btrfs_previous_extent_item(extent_root, path, 0);
+ if (ret < 0)
+ return ret;
+ /*
+ * No matter whether we have found an extent item, the next loop will
+ * properly do every check on the key.
+ */
+search_forward:
+ while (true) {
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ if (key.objectid >= search_start + search_len)
+ break;
+ if (key.type != BTRFS_METADATA_ITEM_KEY &&
+ key.type != BTRFS_EXTENT_ITEM_KEY)
+ goto next;
+
+ ret = compare_extent_item_range(path, search_start, search_len);
+ if (ret == 0)
+ return ret;
+ if (ret > 0)
+ break;
+next:
+ path->slots[0]++;
+ if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
+ ret = btrfs_next_leaf(extent_root, path);
+ if (ret) {
+ /* Either no more item or fatal error */
+ btrfs_release_path(path);
+ return ret;
+ }
+ }
+ }
+ btrfs_release_path(path);
+ return 1;
+}
+
+static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
+ u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
+{
+ struct btrfs_key key;
+ struct btrfs_extent_item *ei;
+
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
+ key.type == BTRFS_EXTENT_ITEM_KEY);
+ *extent_start_ret = key.objectid;
+ if (key.type == BTRFS_METADATA_ITEM_KEY)
+ *size_ret = path->nodes[0]->fs_info->nodesize;
+ else
+ *size_ret = key.offset;
+ ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
+ *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
+ *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
+}
+
+static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
+ u64 physical, u64 physical_end)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ int ret = 0;
+
+ if (!btrfs_is_zoned(fs_info))
+ return 0;
+
+ mutex_lock(&sctx->wr_lock);
+ if (sctx->write_pointer < physical_end) {
+ ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
+ physical,
+ sctx->write_pointer);
+ if (ret)
+ btrfs_err(fs_info,
+ "zoned: failed to recover write pointer");
+ }
+ mutex_unlock(&sctx->wr_lock);
+ btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
+
+ return ret;
+}
+
+static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
+ struct scrub_stripe *stripe,
+ u64 extent_start, u64 extent_len,
+ u64 extent_flags, u64 extent_gen)
+{
+ for (u64 cur_logical = max(stripe->logical, extent_start);
+ cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
+ extent_start + extent_len);
+ cur_logical += fs_info->sectorsize) {
+ const int nr_sector = (cur_logical - stripe->logical) >>
+ fs_info->sectorsize_bits;
+ struct scrub_sector_verification *sector =
+ &stripe->sectors[nr_sector];
+
+ set_bit(nr_sector, &stripe->extent_sector_bitmap);
+ if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ sector->is_metadata = true;
+ sector->generation = extent_gen;
+ }
+ }
+}
+
+static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
+{
+ stripe->extent_sector_bitmap = 0;
+ stripe->init_error_bitmap = 0;
+ stripe->init_nr_io_errors = 0;
+ stripe->init_nr_csum_errors = 0;
+ stripe->init_nr_meta_errors = 0;
+ stripe->error_bitmap = 0;
+ stripe->io_error_bitmap = 0;
+ stripe->csum_error_bitmap = 0;
+ stripe->meta_error_bitmap = 0;
+}
+
+/*
+ * Locate one stripe which has at least one extent in its range.
+ *
+ * Return 0 if found such stripe, and store its info into @stripe.
+ * Return >0 if there is no such stripe in the specified range.
+ * Return <0 for error.
+ */
+static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
+ struct btrfs_path *extent_path,
+ struct btrfs_path *csum_path,
+ struct btrfs_device *dev, u64 physical,
+ int mirror_num, u64 logical_start,
+ u32 logical_len,
+ struct scrub_stripe *stripe)
+{
+ struct btrfs_fs_info *fs_info = bg->fs_info;
+ struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
+ struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
+ const u64 logical_end = logical_start + logical_len;
+ u64 cur_logical = logical_start;
+ u64 stripe_end;
+ u64 extent_start;
+ u64 extent_len;
+ u64 extent_flags;
+ u64 extent_gen;
+ int ret;
+
+ memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
+ stripe->nr_sectors);
+ scrub_stripe_reset_bitmaps(stripe);
+
+ /* The range must be inside the bg. */
+ ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
+
+ ret = find_first_extent_item(extent_root, extent_path, logical_start,
+ logical_len);
+ /* Either error or not found. */
+ if (ret)
+ goto out;
+ get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
+ &extent_gen);
+ if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+ stripe->nr_meta_extents++;
+ if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
+ stripe->nr_data_extents++;
+ cur_logical = max(extent_start, cur_logical);
+
+ /*
+ * Round down to stripe boundary.
+ *
+ * The extra calculation against bg->start is to handle block groups
+ * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
+ */
+ stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
+ bg->start;
+ stripe->physical = physical + stripe->logical - logical_start;
+ stripe->dev = dev;
+ stripe->bg = bg;
+ stripe->mirror_num = mirror_num;
+ stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
+
+ /* Fill the first extent info into stripe->sectors[] array. */
+ fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
+ extent_flags, extent_gen);
+ cur_logical = extent_start + extent_len;
+
+ /* Fill the extent info for the remaining sectors. */
+ while (cur_logical <= stripe_end) {
+ ret = find_first_extent_item(extent_root, extent_path, cur_logical,
+ stripe_end - cur_logical + 1);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ ret = 0;
+ break;
+ }
+ get_extent_info(extent_path, &extent_start, &extent_len,
+ &extent_flags, &extent_gen);
+ if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+ stripe->nr_meta_extents++;
+ if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
+ stripe->nr_data_extents++;
+ fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
+ extent_flags, extent_gen);
+ cur_logical = extent_start + extent_len;
+ }
+
+ /* Now fill the data csum. */
+ if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
+ int sector_nr;
+ unsigned long csum_bitmap = 0;
+
+ /* Csum space should have already been allocated. */
+ ASSERT(stripe->csums);
+
+ /*
+ * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
+ * should contain at most 16 sectors.
+ */
+ ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
+
+ ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
+ stripe->logical, stripe_end,
+ stripe->csums, &csum_bitmap);
+ if (ret < 0)
+ goto out;
+ if (ret > 0)
+ ret = 0;
+
+ for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
+ stripe->sectors[sector_nr].csum = stripe->csums +
+ sector_nr * fs_info->csum_size;
+ }
+ }
+ set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
+out:
+ return ret;
+}
+
+static void scrub_reset_stripe(struct scrub_stripe *stripe)
+{
+ scrub_stripe_reset_bitmaps(stripe);
+
+ stripe->nr_meta_extents = 0;
+ stripe->nr_data_extents = 0;
+ stripe->state = 0;
+
+ for (int i = 0; i < stripe->nr_sectors; i++) {
+ stripe->sectors[i].is_metadata = false;
+ stripe->sectors[i].csum = NULL;
+ stripe->sectors[i].generation = 0;
+ }
+}
+
+static void scrub_submit_initial_read(struct scrub_ctx *sctx,
+ struct scrub_stripe *stripe)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct btrfs_bio *bbio;
+ unsigned int nr_sectors = min_t(u64, BTRFS_STRIPE_LEN, stripe->bg->start +
+ stripe->bg->length - stripe->logical) >>
+ fs_info->sectorsize_bits;
+ int mirror = stripe->mirror_num;
+
+ ASSERT(stripe->bg);
+ ASSERT(stripe->mirror_num > 0);
+ ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
+
+ bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
+ scrub_read_endio, stripe);
+
+ bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
+ /* Read the whole range inside the chunk boundary. */
+ for (unsigned int cur = 0; cur < nr_sectors; cur++) {
+ struct page *page = scrub_stripe_get_page(stripe, cur);
+ unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
+ int ret;
+
+ ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
+ /* We should have allocated enough bio vectors. */
+ ASSERT(ret == fs_info->sectorsize);
+ }
+ atomic_inc(&stripe->pending_io);
+
+ /*
+ * For dev-replace, either user asks to avoid the source dev, or
+ * the device is missing, we try the next mirror instead.
+ */
+ if (sctx->is_dev_replace &&
+ (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
+ BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
+ !stripe->dev->bdev)) {
+ int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
+ stripe->bg->length);
+
+ mirror = calc_next_mirror(mirror, num_copies);
+ }
+ btrfs_submit_bio(bbio, mirror);
+}
+
+static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
+{
+ int i;
+
+ for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
+ if (stripe->sectors[i].is_metadata) {
+ struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
+
+ btrfs_err(fs_info,
+ "stripe %llu has unrepaired metadata sector at %llu",
+ stripe->logical,
+ stripe->logical + (i << fs_info->sectorsize_bits));
+ return true;
+ }
+ }
+ return false;
+}
+
+static void submit_initial_group_read(struct scrub_ctx *sctx,
+ unsigned int first_slot,
+ unsigned int nr_stripes)
+{
+ struct blk_plug plug;
+
+ ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
+ ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
+
+ scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
+ btrfs_stripe_nr_to_offset(nr_stripes));
+ blk_start_plug(&plug);
+ for (int i = 0; i < nr_stripes; i++) {
+ struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
+
+ /* Those stripes should be initialized. */
+ ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
+ scrub_submit_initial_read(sctx, stripe);
+ }
+ blk_finish_plug(&plug);
+}
+
+static int flush_scrub_stripes(struct scrub_ctx *sctx)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct scrub_stripe *stripe;
+ const int nr_stripes = sctx->cur_stripe;
+ int ret = 0;
+
+ if (!nr_stripes)
+ return 0;
+
+ ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
+
+ /* Submit the stripes which are populated but not submitted. */
+ if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
+ const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
+
+ submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
+ }
+
+ for (int i = 0; i < nr_stripes; i++) {
+ stripe = &sctx->stripes[i];
+
+ wait_event(stripe->repair_wait,
+ test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
+ }
+
+ /* Submit for dev-replace. */
+ if (sctx->is_dev_replace) {
+ /*
+ * For dev-replace, if we know there is something wrong with
+ * metadata, we should immedately abort.
+ */
+ for (int i = 0; i < nr_stripes; i++) {
+ if (stripe_has_metadata_error(&sctx->stripes[i])) {
+ ret = -EIO;
+ goto out;
+ }
+ }
+ for (int i = 0; i < nr_stripes; i++) {
+ unsigned long good;
+
+ stripe = &sctx->stripes[i];
+
+ ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
+
+ bitmap_andnot(&good, &stripe->extent_sector_bitmap,
+ &stripe->error_bitmap, stripe->nr_sectors);
+ scrub_write_sectors(sctx, stripe, good, true);
+ }
+ }
+
+ /* Wait for the above writebacks to finish. */
+ for (int i = 0; i < nr_stripes; i++) {
+ stripe = &sctx->stripes[i];
+
+ wait_scrub_stripe_io(stripe);
+ scrub_reset_stripe(stripe);
+ }
+out:
+ sctx->cur_stripe = 0;
+ return ret;
+}
+
+static void raid56_scrub_wait_endio(struct bio *bio)
+{
+ complete(bio->bi_private);
+}
+
+static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
+ struct btrfs_device *dev, int mirror_num,
+ u64 logical, u32 length, u64 physical,
+ u64 *found_logical_ret)
+{
+ struct scrub_stripe *stripe;
+ int ret;
+
+ /*
+ * There should always be one slot left, as caller filling the last
+ * slot should flush them all.
+ */
+ ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
+
+ /* @found_logical_ret must be specified. */
+ ASSERT(found_logical_ret);
+
+ stripe = &sctx->stripes[sctx->cur_stripe];
+ scrub_reset_stripe(stripe);
+ ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
+ &sctx->csum_path, dev, physical,
+ mirror_num, logical, length, stripe);
+ /* Either >0 as no more extents or <0 for error. */
+ if (ret)
+ return ret;
+ *found_logical_ret = stripe->logical;
+ sctx->cur_stripe++;
+
+ /* We filled one group, submit it. */
+ if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
+ const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
+
+ submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
+ }
+
+ /* Last slot used, flush them all. */
+ if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
+ return flush_scrub_stripes(sctx);
+ return 0;
+}
+
+static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
+ struct btrfs_device *scrub_dev,
+ struct btrfs_block_group *bg,
+ struct map_lookup *map,
+ u64 full_stripe_start)
+{
+ DECLARE_COMPLETION_ONSTACK(io_done);
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct btrfs_raid_bio *rbio;
+ struct btrfs_io_context *bioc = NULL;
+ struct btrfs_path extent_path = { 0 };
+ struct btrfs_path csum_path = { 0 };
+ struct bio *bio;
+ struct scrub_stripe *stripe;
+ bool all_empty = true;
+ const int data_stripes = nr_data_stripes(map);
+ unsigned long extent_bitmap = 0;
+ u64 length = btrfs_stripe_nr_to_offset(data_stripes);
+ int ret;
+
+ ASSERT(sctx->raid56_data_stripes);
+
+ /*
+ * For data stripe search, we cannot re-use the same extent/csum paths,
+ * as the data stripe bytenr may be smaller than previous extent. Thus
+ * we have to use our own extent/csum paths.
+ */
+ extent_path.search_commit_root = 1;
+ extent_path.skip_locking = 1;
+ csum_path.search_commit_root = 1;
+ csum_path.skip_locking = 1;
+
+ for (int i = 0; i < data_stripes; i++) {
+ int stripe_index;
+ int rot;
+ u64 physical;
+
+ stripe = &sctx->raid56_data_stripes[i];
+ rot = div_u64(full_stripe_start - bg->start,
+ data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
+ stripe_index = (i + rot) % map->num_stripes;
+ physical = map->stripes[stripe_index].physical +
+ btrfs_stripe_nr_to_offset(rot);
+
+ scrub_reset_stripe(stripe);
+ set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
+ ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
+ map->stripes[stripe_index].dev, physical, 1,
+ full_stripe_start + btrfs_stripe_nr_to_offset(i),
+ BTRFS_STRIPE_LEN, stripe);
+ if (ret < 0)
+ goto out;
+ /*
+ * No extent in this data stripe, need to manually mark them
+ * initialized to make later read submission happy.
+ */
+ if (ret > 0) {
+ stripe->logical = full_stripe_start +
+ btrfs_stripe_nr_to_offset(i);
+ stripe->dev = map->stripes[stripe_index].dev;
+ stripe->mirror_num = 1;
+ set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
+ }
+ }
+
+ /* Check if all data stripes are empty. */
+ for (int i = 0; i < data_stripes; i++) {
+ stripe = &sctx->raid56_data_stripes[i];
+ if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
+ all_empty = false;
+ break;
+ }
+ }
+ if (all_empty) {
+ ret = 0;
+ goto out;
+ }
+
+ for (int i = 0; i < data_stripes; i++) {
+ stripe = &sctx->raid56_data_stripes[i];
+ scrub_submit_initial_read(sctx, stripe);
+ }
+ for (int i = 0; i < data_stripes; i++) {
+ stripe = &sctx->raid56_data_stripes[i];
+
+ wait_event(stripe->repair_wait,
+ test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
+ }
+ /* For now, no zoned support for RAID56. */
+ ASSERT(!btrfs_is_zoned(sctx->fs_info));
+
+ /*
+ * Now all data stripes are properly verified. Check if we have any
+ * unrepaired, if so abort immediately or we could further corrupt the
+ * P/Q stripes.
+ *
+ * During the loop, also populate extent_bitmap.
+ */
+ for (int i = 0; i < data_stripes; i++) {
+ unsigned long error;
+
+ stripe = &sctx->raid56_data_stripes[i];
+
+ /*
+ * We should only check the errors where there is an extent.
+ * As we may hit an empty data stripe while it's missing.
+ */
+ bitmap_and(&error, &stripe->error_bitmap,
+ &stripe->extent_sector_bitmap, stripe->nr_sectors);
+ if (!bitmap_empty(&error, stripe->nr_sectors)) {
+ btrfs_err(fs_info,
+"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
+ full_stripe_start, i, stripe->nr_sectors,
+ &error);
+ ret = -EIO;
+ goto out;
+ }
+ bitmap_or(&extent_bitmap, &extent_bitmap,
+ &stripe->extent_sector_bitmap, stripe->nr_sectors);
+ }
+
+ /* Now we can check and regenerate the P/Q stripe. */
+ bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
+ bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
+ bio->bi_private = &io_done;
+ bio->bi_end_io = raid56_scrub_wait_endio;
+
+ btrfs_bio_counter_inc_blocked(fs_info);
+ ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
+ &length, &bioc, NULL, NULL, 1);
+ if (ret < 0) {
+ btrfs_put_bioc(bioc);
+ btrfs_bio_counter_dec(fs_info);
+ goto out;
+ }
+ rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
+ BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
+ btrfs_put_bioc(bioc);
+ if (!rbio) {
+ ret = -ENOMEM;
+ btrfs_bio_counter_dec(fs_info);
+ goto out;
+ }
+ /* Use the recovered stripes as cache to avoid read them from disk again. */
+ for (int i = 0; i < data_stripes; i++) {
+ stripe = &sctx->raid56_data_stripes[i];
+
+ raid56_parity_cache_data_pages(rbio, stripe->pages,
+ full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
+ }
+ raid56_parity_submit_scrub_rbio(rbio);
+ wait_for_completion_io(&io_done);
+ ret = blk_status_to_errno(bio->bi_status);
+ bio_put(bio);
+ btrfs_bio_counter_dec(fs_info);
+
+ btrfs_release_path(&extent_path);
+ btrfs_release_path(&csum_path);
+out:
+ return ret;
+}
+
+/*
+ * Scrub one range which can only has simple mirror based profile.
+ * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
+ * RAID0/RAID10).
+ *
+ * Since we may need to handle a subset of block group, we need @logical_start
+ * and @logical_length parameter.
+ */
+static int scrub_simple_mirror(struct scrub_ctx *sctx,
+ struct btrfs_block_group *bg,
+ struct map_lookup *map,
+ u64 logical_start, u64 logical_length,
+ struct btrfs_device *device,
+ u64 physical, int mirror_num)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ const u64 logical_end = logical_start + logical_length;
+ u64 cur_logical = logical_start;
+ int ret;
+
+ /* The range must be inside the bg */
+ ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
+
+ /* Go through each extent items inside the logical range */
+ while (cur_logical < logical_end) {
+ u64 found_logical = U64_MAX;
+ u64 cur_physical = physical + cur_logical - logical_start;
+
+ /* Canceled? */
+ if (atomic_read(&fs_info->scrub_cancel_req) ||
+ atomic_read(&sctx->cancel_req)) {
+ ret = -ECANCELED;
+ break;
+ }
+ /* Paused? */
+ if (atomic_read(&fs_info->scrub_pause_req)) {
+ /* Push queued extents */
+ scrub_blocked_if_needed(fs_info);
+ }
+ /* Block group removed? */
+ spin_lock(&bg->lock);
+ if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
+ spin_unlock(&bg->lock);
+ ret = 0;
+ break;
+ }
+ spin_unlock(&bg->lock);
+
+ ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
+ cur_logical, logical_end - cur_logical,
+ cur_physical, &found_logical);
+ if (ret > 0) {
+ /* No more extent, just update the accounting */
+ sctx->stat.last_physical = physical + logical_length;
+ ret = 0;
+ break;
+ }
+ if (ret < 0)
+ break;
+
+ /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
+ ASSERT(found_logical != U64_MAX);
+ cur_logical = found_logical + BTRFS_STRIPE_LEN;
+
+ /* Don't hold CPU for too long time */
+ cond_resched();
+ }
+ return ret;
+}
+
+/* Calculate the full stripe length for simple stripe based profiles */
+static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
+{
+ ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID10));
+
+ return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
+}
+
+/* Get the logical bytenr for the stripe */
+static u64 simple_stripe_get_logical(struct map_lookup *map,
+ struct btrfs_block_group *bg,
+ int stripe_index)
+{
+ ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID10));
+ ASSERT(stripe_index < map->num_stripes);
+
+ /*
+ * (stripe_index / sub_stripes) gives how many data stripes we need to
+ * skip.
+ */
+ return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
+ bg->start;
+}
+
+/* Get the mirror number for the stripe */
+static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
+{
+ ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID10));
+ ASSERT(stripe_index < map->num_stripes);
+
+ /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
+ return stripe_index % map->sub_stripes + 1;
+}
+
+static int scrub_simple_stripe(struct scrub_ctx *sctx,
+ struct btrfs_block_group *bg,
+ struct map_lookup *map,
+ struct btrfs_device *device,
+ int stripe_index)
+{
+ const u64 logical_increment = simple_stripe_full_stripe_len(map);
+ const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
+ const u64 orig_physical = map->stripes[stripe_index].physical;
+ const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
+ u64 cur_logical = orig_logical;
+ u64 cur_physical = orig_physical;
+ int ret = 0;
+
+ while (cur_logical < bg->start + bg->length) {
+ /*
+ * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
+ * just RAID1, so we can reuse scrub_simple_mirror() to scrub
+ * this stripe.
+ */
+ ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
+ BTRFS_STRIPE_LEN, device, cur_physical,
+ mirror_num);
+ if (ret)
+ return ret;
+ /* Skip to next stripe which belongs to the target device */
+ cur_logical += logical_increment;
+ /* For physical offset, we just go to next stripe */
+ cur_physical += BTRFS_STRIPE_LEN;
+ }
+ return ret;
+}
+
+static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
+ struct btrfs_block_group *bg,
+ struct extent_map *em,
+ struct btrfs_device *scrub_dev,
+ int stripe_index)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct map_lookup *map = em->map_lookup;
+ const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
+ const u64 chunk_logical = bg->start;
+ int ret;
+ int ret2;
+ u64 physical = map->stripes[stripe_index].physical;
+ const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
+ const u64 physical_end = physical + dev_stripe_len;
+ u64 logical;
+ u64 logic_end;
+ /* The logical increment after finishing one stripe */
+ u64 increment;
+ /* Offset inside the chunk */
+ u64 offset;
+ u64 stripe_logical;
+ int stop_loop = 0;
+
+ /* Extent_path should be released by now. */
+ ASSERT(sctx->extent_path.nodes[0] == NULL);
+
+ scrub_blocked_if_needed(fs_info);
+
+ if (sctx->is_dev_replace &&
+ btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
+ mutex_lock(&sctx->wr_lock);
+ sctx->write_pointer = physical;
+ mutex_unlock(&sctx->wr_lock);
+ }
+
+ /* Prepare the extra data stripes used by RAID56. */
+ if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
+ ASSERT(sctx->raid56_data_stripes == NULL);
+
+ sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
+ sizeof(struct scrub_stripe),
+ GFP_KERNEL);
+ if (!sctx->raid56_data_stripes) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ for (int i = 0; i < nr_data_stripes(map); i++) {
+ ret = init_scrub_stripe(fs_info,
+ &sctx->raid56_data_stripes[i]);
+ if (ret < 0)
+ goto out;
+ sctx->raid56_data_stripes[i].bg = bg;
+ sctx->raid56_data_stripes[i].sctx = sctx;
+ }
+ }
+ /*
+ * There used to be a big double loop to handle all profiles using the
+ * same routine, which grows larger and more gross over time.
+ *
+ * So here we handle each profile differently, so simpler profiles
+ * have simpler scrubbing function.
+ */
+ if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_RAID56_MASK))) {
+ /*
+ * Above check rules out all complex profile, the remaining
+ * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
+ * mirrored duplication without stripe.
+ *
+ * Only @physical and @mirror_num needs to calculated using
+ * @stripe_index.
+ */
+ ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
+ scrub_dev, map->stripes[stripe_index].physical,
+ stripe_index + 1);
+ offset = 0;
+ goto out;
+ }
+ if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
+ ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
+ offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
+ goto out;
+ }
+
+ /* Only RAID56 goes through the old code */
+ ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
+ ret = 0;
+
+ /* Calculate the logical end of the stripe */
+ get_raid56_logic_offset(physical_end, stripe_index,
+ map, &logic_end, NULL);
+ logic_end += chunk_logical;
+
+ /* Initialize @offset in case we need to go to out: label */
+ get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
+ increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
+
+ /*
+ * Due to the rotation, for RAID56 it's better to iterate each stripe
+ * using their physical offset.
+ */
+ while (physical < physical_end) {
+ ret = get_raid56_logic_offset(physical, stripe_index, map,
+ &logical, &stripe_logical);
+ logical += chunk_logical;
+ if (ret) {
+ /* it is parity strip */
+ stripe_logical += chunk_logical;
+ ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
+ map, stripe_logical);
+ if (ret)
+ goto out;
+ goto next;
+ }
+
+ /*
+ * Now we're at a data stripe, scrub each extents in the range.
+ *
+ * At this stage, if we ignore the repair part, inside each data
+ * stripe it is no different than SINGLE profile.
+ * We can reuse scrub_simple_mirror() here, as the repair part
+ * is still based on @mirror_num.
+ */
+ ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
+ scrub_dev, physical, 1);
+ if (ret < 0)
+ goto out;
+next:
+ logical += increment;
+ physical += BTRFS_STRIPE_LEN;
+ spin_lock(&sctx->stat_lock);
+ if (stop_loop)
+ sctx->stat.last_physical =
+ map->stripes[stripe_index].physical + dev_stripe_len;
+ else
+ sctx->stat.last_physical = physical;
+ spin_unlock(&sctx->stat_lock);
+ if (stop_loop)
+ break;
+ }
+out:
+ ret2 = flush_scrub_stripes(sctx);
+ if (!ret)
+ ret = ret2;
+ btrfs_release_path(&sctx->extent_path);
+ btrfs_release_path(&sctx->csum_path);
+
+ if (sctx->raid56_data_stripes) {
+ for (int i = 0; i < nr_data_stripes(map); i++)
+ release_scrub_stripe(&sctx->raid56_data_stripes[i]);
+ kfree(sctx->raid56_data_stripes);
+ sctx->raid56_data_stripes = NULL;
+ }
+
+ if (sctx->is_dev_replace && ret >= 0) {
+ int ret2;
+
+ ret2 = sync_write_pointer_for_zoned(sctx,
+ chunk_logical + offset,
+ map->stripes[stripe_index].physical,
+ physical_end);
+ if (ret2)
+ ret = ret2;
+ }
+
+ return ret < 0 ? ret : 0;
+}
+
+static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
+ struct btrfs_block_group *bg,
+ struct btrfs_device *scrub_dev,
+ u64 dev_offset,
+ u64 dev_extent_len)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct extent_map_tree *map_tree = &fs_info->mapping_tree;
+ struct map_lookup *map;
+ struct extent_map *em;
+ int i;
+ int ret = 0;
+
+ read_lock(&map_tree->lock);
+ em = lookup_extent_mapping(map_tree, bg->start, bg->length);
+ read_unlock(&map_tree->lock);
+
+ if (!em) {
+ /*
+ * Might have been an unused block group deleted by the cleaner
+ * kthread or relocation.
+ */
+ spin_lock(&bg->lock);
+ if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
+ ret = -EINVAL;
+ spin_unlock(&bg->lock);
+
+ return ret;
+ }
+ if (em->start != bg->start)
+ goto out;
+ if (em->len < dev_extent_len)
+ goto out;
+
+ map = em->map_lookup;
+ for (i = 0; i < map->num_stripes; ++i) {
+ if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
+ map->stripes[i].physical == dev_offset) {
+ ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
+ if (ret)
+ goto out;
+ }
+ }
+out:
+ free_extent_map(em);
+
+ return ret;
+}
+
+static int finish_extent_writes_for_zoned(struct btrfs_root *root,
+ struct btrfs_block_group *cache)
+{
+ struct btrfs_fs_info *fs_info = cache->fs_info;
+ struct btrfs_trans_handle *trans;
+
+ if (!btrfs_is_zoned(fs_info))
+ return 0;
+
+ btrfs_wait_block_group_reservations(cache);
+ btrfs_wait_nocow_writers(cache);
+ btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ return btrfs_commit_transaction(trans);
+}
+
+static noinline_for_stack
+int scrub_enumerate_chunks(struct scrub_ctx *sctx,
+ struct btrfs_device *scrub_dev, u64 start, u64 end)
+{
+ struct btrfs_dev_extent *dev_extent = NULL;
+ struct btrfs_path *path;
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct btrfs_root *root = fs_info->dev_root;
+ u64 chunk_offset;
+ int ret = 0;
+ int ro_set;
+ int slot;
+ struct extent_buffer *l;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_block_group *cache;
+ struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->reada = READA_FORWARD;
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+
+ key.objectid = scrub_dev->devid;
+ key.offset = 0ull;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+
+ while (1) {
+ u64 dev_extent_len;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ break;
+ if (ret > 0) {
+ if (path->slots[0] >=
+ btrfs_header_nritems(path->nodes[0])) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ break;
+ if (ret > 0) {
+ ret = 0;
+ break;
+ }
+ } else {
+ ret = 0;
+ }
+ }
+
+ l = path->nodes[0];
+ slot = path->slots[0];
+
+ btrfs_item_key_to_cpu(l, &found_key, slot);
+
+ if (found_key.objectid != scrub_dev->devid)
+ break;
+
+ if (found_key.type != BTRFS_DEV_EXTENT_KEY)
+ break;
+
+ if (found_key.offset >= end)
+ break;
+
+ if (found_key.offset < key.offset)
+ break;
+
+ dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+ dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
+
+ if (found_key.offset + dev_extent_len <= start)
+ goto skip;
+
+ chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
+
+ /*
+ * get a reference on the corresponding block group to prevent
+ * the chunk from going away while we scrub it
+ */
+ cache = btrfs_lookup_block_group(fs_info, chunk_offset);
+
+ /* some chunks are removed but not committed to disk yet,
+ * continue scrubbing */
+ if (!cache)
+ goto skip;
+
+ ASSERT(cache->start <= chunk_offset);
+ /*
+ * We are using the commit root to search for device extents, so
+ * that means we could have found a device extent item from a
+ * block group that was deleted in the current transaction. The
+ * logical start offset of the deleted block group, stored at
+ * @chunk_offset, might be part of the logical address range of
+ * a new block group (which uses different physical extents).
+ * In this case btrfs_lookup_block_group() has returned the new
+ * block group, and its start address is less than @chunk_offset.
+ *
+ * We skip such new block groups, because it's pointless to
+ * process them, as we won't find their extents because we search
+ * for them using the commit root of the extent tree. For a device
+ * replace it's also fine to skip it, we won't miss copying them
+ * to the target device because we have the write duplication
+ * setup through the regular write path (by btrfs_map_block()),
+ * and we have committed a transaction when we started the device
+ * replace, right after setting up the device replace state.
+ */
+ if (cache->start < chunk_offset) {
+ btrfs_put_block_group(cache);
+ goto skip;
+ }
+
+ if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
+ if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
+ btrfs_put_block_group(cache);
+ goto skip;
+ }
+ }
+
+ /*
+ * Make sure that while we are scrubbing the corresponding block
+ * group doesn't get its logical address and its device extents
+ * reused for another block group, which can possibly be of a
+ * different type and different profile. We do this to prevent
+ * false error detections and crashes due to bogus attempts to
+ * repair extents.
+ */
+ spin_lock(&cache->lock);
+ if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
+ spin_unlock(&cache->lock);
+ btrfs_put_block_group(cache);
+ goto skip;
+ }
+ btrfs_freeze_block_group(cache);
+ spin_unlock(&cache->lock);
+
+ /*
+ * we need call btrfs_inc_block_group_ro() with scrubs_paused,
+ * to avoid deadlock caused by:
+ * btrfs_inc_block_group_ro()
+ * -> btrfs_wait_for_commit()
+ * -> btrfs_commit_transaction()
+ * -> btrfs_scrub_pause()
+ */
+ scrub_pause_on(fs_info);
+
+ /*
+ * Don't do chunk preallocation for scrub.
+ *
+ * This is especially important for SYSTEM bgs, or we can hit
+ * -EFBIG from btrfs_finish_chunk_alloc() like:
+ * 1. The only SYSTEM bg is marked RO.
+ * Since SYSTEM bg is small, that's pretty common.
+ * 2. New SYSTEM bg will be allocated
+ * Due to regular version will allocate new chunk.
+ * 3. New SYSTEM bg is empty and will get cleaned up
+ * Before cleanup really happens, it's marked RO again.
+ * 4. Empty SYSTEM bg get scrubbed
+ * We go back to 2.
+ *
+ * This can easily boost the amount of SYSTEM chunks if cleaner
+ * thread can't be triggered fast enough, and use up all space
+ * of btrfs_super_block::sys_chunk_array
+ *
+ * While for dev replace, we need to try our best to mark block
+ * group RO, to prevent race between:
+ * - Write duplication
+ * Contains latest data
+ * - Scrub copy
+ * Contains data from commit tree
+ *
+ * If target block group is not marked RO, nocow writes can
+ * be overwritten by scrub copy, causing data corruption.
+ * So for dev-replace, it's not allowed to continue if a block
+ * group is not RO.
+ */
+ ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
+ if (!ret && sctx->is_dev_replace) {
+ ret = finish_extent_writes_for_zoned(root, cache);
+ if (ret) {
+ btrfs_dec_block_group_ro(cache);
+ scrub_pause_off(fs_info);
+ btrfs_put_block_group(cache);
+ break;
+ }
+ }
+
+ if (ret == 0) {
+ ro_set = 1;
+ } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
+ !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
+ /*
+ * btrfs_inc_block_group_ro return -ENOSPC when it
+ * failed in creating new chunk for metadata.
+ * It is not a problem for scrub, because
+ * metadata are always cowed, and our scrub paused
+ * commit_transactions.
+ *
+ * For RAID56 chunks, we have to mark them read-only
+ * for scrub, as later we would use our own cache
+ * out of RAID56 realm.
+ * Thus we want the RAID56 bg to be marked RO to
+ * prevent RMW from screwing up out cache.
+ */
+ ro_set = 0;
+ } else if (ret == -ETXTBSY) {
+ btrfs_warn(fs_info,
+ "skipping scrub of block group %llu due to active swapfile",
+ cache->start);
+ scrub_pause_off(fs_info);
+ ret = 0;
+ goto skip_unfreeze;
+ } else {
+ btrfs_warn(fs_info,
+ "failed setting block group ro: %d", ret);
+ btrfs_unfreeze_block_group(cache);
+ btrfs_put_block_group(cache);
+ scrub_pause_off(fs_info);
+ break;
+ }
+
+ /*
+ * Now the target block is marked RO, wait for nocow writes to
+ * finish before dev-replace.
+ * COW is fine, as COW never overwrites extents in commit tree.
+ */
+ if (sctx->is_dev_replace) {
+ btrfs_wait_nocow_writers(cache);
+ btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
+ cache->length);
+ }
+
+ scrub_pause_off(fs_info);
+ down_write(&dev_replace->rwsem);
+ dev_replace->cursor_right = found_key.offset + dev_extent_len;
+ dev_replace->cursor_left = found_key.offset;
+ dev_replace->item_needs_writeback = 1;
+ up_write(&dev_replace->rwsem);
+
+ ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
+ dev_extent_len);
+ if (sctx->is_dev_replace &&
+ !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
+ cache, found_key.offset))
+ ro_set = 0;
+
+ down_write(&dev_replace->rwsem);
+ dev_replace->cursor_left = dev_replace->cursor_right;
+ dev_replace->item_needs_writeback = 1;
+ up_write(&dev_replace->rwsem);
+
+ if (ro_set)
+ btrfs_dec_block_group_ro(cache);
+
+ /*
+ * We might have prevented the cleaner kthread from deleting
+ * this block group if it was already unused because we raced
+ * and set it to RO mode first. So add it back to the unused
+ * list, otherwise it might not ever be deleted unless a manual
+ * balance is triggered or it becomes used and unused again.
+ */
+ spin_lock(&cache->lock);
+ if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
+ !cache->ro && cache->reserved == 0 && cache->used == 0) {
+ spin_unlock(&cache->lock);
+ if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
+ btrfs_discard_queue_work(&fs_info->discard_ctl,
+ cache);
+ else
+ btrfs_mark_bg_unused(cache);
+ } else {
+ spin_unlock(&cache->lock);
+ }
+skip_unfreeze:
+ btrfs_unfreeze_block_group(cache);
+ btrfs_put_block_group(cache);
+ if (ret)
+ break;
+ if (sctx->is_dev_replace &&
+ atomic64_read(&dev_replace->num_write_errors) > 0) {
+ ret = -EIO;
+ break;
+ }
+ if (sctx->stat.malloc_errors > 0) {
+ ret = -ENOMEM;
+ break;
+ }
+skip:
+ key.offset = found_key.offset + dev_extent_len;
+ btrfs_release_path(path);
+ }
+
+ btrfs_free_path(path);
+
+ return ret;
+}
+
+static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
+ struct page *page, u64 physical, u64 generation)
+{
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+ struct bio_vec bvec;
+ struct bio bio;
+ struct btrfs_super_block *sb = page_address(page);
+ int ret;
+
+ bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
+ bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
+ __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
+ ret = submit_bio_wait(&bio);
+ bio_uninit(&bio);
+
+ if (ret < 0)
+ return ret;
+ ret = btrfs_check_super_csum(fs_info, sb);
+ if (ret != 0) {
+ btrfs_err_rl(fs_info,
+ "super block at physical %llu devid %llu has bad csum",
+ physical, dev->devid);
+ return -EIO;
+ }
+ if (btrfs_super_generation(sb) != generation) {
+ btrfs_err_rl(fs_info,
+"super block at physical %llu devid %llu has bad generation %llu expect %llu",
+ physical, dev->devid,
+ btrfs_super_generation(sb), generation);
+ return -EUCLEAN;
+ }
+
+ return btrfs_validate_super(fs_info, sb, -1);
+}
+
+static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
+ struct btrfs_device *scrub_dev)
+{
+ int i;
+ u64 bytenr;
+ u64 gen;
+ int ret = 0;
+ struct page *page;
+ struct btrfs_fs_info *fs_info = sctx->fs_info;
+
+ if (BTRFS_FS_ERROR(fs_info))
+ return -EROFS;
+
+ page = alloc_page(GFP_KERNEL);
+ if (!page) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.malloc_errors++;
+ spin_unlock(&sctx->stat_lock);
+ return -ENOMEM;
+ }
+
+ /* Seed devices of a new filesystem has their own generation. */
+ if (scrub_dev->fs_devices != fs_info->fs_devices)
+ gen = scrub_dev->generation;
+ else
+ gen = fs_info->last_trans_committed;
+
+ for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
+ bytenr = btrfs_sb_offset(i);
+ if (bytenr + BTRFS_SUPER_INFO_SIZE >
+ scrub_dev->commit_total_bytes)
+ break;
+ if (!btrfs_check_super_location(scrub_dev, bytenr))
+ continue;
+
+ ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
+ if (ret) {
+ spin_lock(&sctx->stat_lock);
+ sctx->stat.super_errors++;
+ spin_unlock(&sctx->stat_lock);
+ }
+ }
+ __free_page(page);
+ return 0;
+}
+
+static void scrub_workers_put(struct btrfs_fs_info *fs_info)
+{
+ if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
+ &fs_info->scrub_lock)) {
+ struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
+
+ fs_info->scrub_workers = NULL;
+ mutex_unlock(&fs_info->scrub_lock);
+
+ if (scrub_workers)
+ destroy_workqueue(scrub_workers);
+ }
+}
+
+/*
+ * get a reference count on fs_info->scrub_workers. start worker if necessary
+ */
+static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
+{
+ struct workqueue_struct *scrub_workers = NULL;
+ unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
+ int max_active = fs_info->thread_pool_size;
+ int ret = -ENOMEM;
+
+ if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
+ return 0;
+
+ scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
+ if (!scrub_workers)
+ return -ENOMEM;
+
+ mutex_lock(&fs_info->scrub_lock);
+ if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
+ ASSERT(fs_info->scrub_workers == NULL);
+ fs_info->scrub_workers = scrub_workers;
+ refcount_set(&fs_info->scrub_workers_refcnt, 1);
+ mutex_unlock(&fs_info->scrub_lock);
+ return 0;
+ }
+ /* Other thread raced in and created the workers for us */
+ refcount_inc(&fs_info->scrub_workers_refcnt);
+ mutex_unlock(&fs_info->scrub_lock);
+
+ ret = 0;
+
+ destroy_workqueue(scrub_workers);
+ return ret;
+}
+
+int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
+ u64 end, struct btrfs_scrub_progress *progress,
+ int readonly, int is_dev_replace)
+{
+ struct btrfs_dev_lookup_args args = { .devid = devid };
+ struct scrub_ctx *sctx;
+ int ret;
+ struct btrfs_device *dev;
+ unsigned int nofs_flag;
+ bool need_commit = false;
+
+ if (btrfs_fs_closing(fs_info))
+ return -EAGAIN;
+
+ /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
+ ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
+
+ /*
+ * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
+ * value (max nodesize / min sectorsize), thus nodesize should always
+ * be fine.
+ */
+ ASSERT(fs_info->nodesize <=
+ SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
+
+ /* Allocate outside of device_list_mutex */
+ sctx = scrub_setup_ctx(fs_info, is_dev_replace);
+ if (IS_ERR(sctx))
+ return PTR_ERR(sctx);
+
+ ret = scrub_workers_get(fs_info);
+ if (ret)
+ goto out_free_ctx;
+
+ mutex_lock(&fs_info->fs_devices->device_list_mutex);
+ dev = btrfs_find_device(fs_info->fs_devices, &args);
+ if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
+ !is_dev_replace)) {
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ ret = -ENODEV;
+ goto out;
+ }
+
+ if (!is_dev_replace && !readonly &&
+ !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ btrfs_err_in_rcu(fs_info,
+ "scrub on devid %llu: filesystem on %s is not writable",
+ devid, btrfs_dev_name(dev));
+ ret = -EROFS;
+ goto out;
+ }
+
+ mutex_lock(&fs_info->scrub_lock);
+ if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
+ test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ ret = -EIO;
+ goto out;
+ }
+
+ down_read(&fs_info->dev_replace.rwsem);
+ if (dev->scrub_ctx ||
+ (!is_dev_replace &&
+ btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
+ up_read(&fs_info->dev_replace.rwsem);
+ mutex_unlock(&fs_info->scrub_lock);
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ ret = -EINPROGRESS;
+ goto out;
+ }
+ up_read(&fs_info->dev_replace.rwsem);
+
+ sctx->readonly = readonly;
+ dev->scrub_ctx = sctx;
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+
+ /*
+ * checking @scrub_pause_req here, we can avoid
+ * race between committing transaction and scrubbing.
+ */
+ __scrub_blocked_if_needed(fs_info);
+ atomic_inc(&fs_info->scrubs_running);
+ mutex_unlock(&fs_info->scrub_lock);
+
+ /*
+ * In order to avoid deadlock with reclaim when there is a transaction
+ * trying to pause scrub, make sure we use GFP_NOFS for all the
+ * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
+ * invoked by our callees. The pausing request is done when the
+ * transaction commit starts, and it blocks the transaction until scrub
+ * is paused (done at specific points at scrub_stripe() or right above
+ * before incrementing fs_info->scrubs_running).
+ */
+ nofs_flag = memalloc_nofs_save();
+ if (!is_dev_replace) {
+ u64 old_super_errors;
+
+ spin_lock(&sctx->stat_lock);
+ old_super_errors = sctx->stat.super_errors;
+ spin_unlock(&sctx->stat_lock);
+
+ btrfs_info(fs_info, "scrub: started on devid %llu", devid);
+ /*
+ * by holding device list mutex, we can
+ * kick off writing super in log tree sync.
+ */
+ mutex_lock(&fs_info->fs_devices->device_list_mutex);
+ ret = scrub_supers(sctx, dev);
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+
+ spin_lock(&sctx->stat_lock);
+ /*
+ * Super block errors found, but we can not commit transaction
+ * at current context, since btrfs_commit_transaction() needs
+ * to pause the current running scrub (hold by ourselves).
+ */
+ if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
+ need_commit = true;
+ spin_unlock(&sctx->stat_lock);
+ }
+
+ if (!ret)
+ ret = scrub_enumerate_chunks(sctx, dev, start, end);
+ memalloc_nofs_restore(nofs_flag);
+
+ atomic_dec(&fs_info->scrubs_running);
+ wake_up(&fs_info->scrub_pause_wait);
+
+ if (progress)
+ memcpy(progress, &sctx->stat, sizeof(*progress));
+
+ if (!is_dev_replace)
+ btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
+ ret ? "not finished" : "finished", devid, ret);
+
+ mutex_lock(&fs_info->scrub_lock);
+ dev->scrub_ctx = NULL;
+ mutex_unlock(&fs_info->scrub_lock);
+
+ scrub_workers_put(fs_info);
+ scrub_put_ctx(sctx);
+
+ /*
+ * We found some super block errors before, now try to force a
+ * transaction commit, as scrub has finished.
+ */
+ if (need_commit) {
+ struct btrfs_trans_handle *trans;
+
+ trans = btrfs_start_transaction(fs_info->tree_root, 0);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ btrfs_err(fs_info,
+ "scrub: failed to start transaction to fix super block errors: %d", ret);
+ return ret;
+ }
+ ret = btrfs_commit_transaction(trans);
+ if (ret < 0)
+ btrfs_err(fs_info,
+ "scrub: failed to commit transaction to fix super block errors: %d", ret);
+ }
+ return ret;
+out:
+ scrub_workers_put(fs_info);
+out_free_ctx:
+ scrub_free_ctx(sctx);
+
+ return ret;
+}
+
+void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
+{
+ mutex_lock(&fs_info->scrub_lock);
+ atomic_inc(&fs_info->scrub_pause_req);
+ while (atomic_read(&fs_info->scrubs_paused) !=
+ atomic_read(&fs_info->scrubs_running)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ atomic_read(&fs_info->scrubs_paused) ==
+ atomic_read(&fs_info->scrubs_running));
+ mutex_lock(&fs_info->scrub_lock);
+ }
+ mutex_unlock(&fs_info->scrub_lock);
+}
+
+void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
+{
+ atomic_dec(&fs_info->scrub_pause_req);
+ wake_up(&fs_info->scrub_pause_wait);
+}
+
+int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
+{
+ mutex_lock(&fs_info->scrub_lock);
+ if (!atomic_read(&fs_info->scrubs_running)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ return -ENOTCONN;
+ }
+
+ atomic_inc(&fs_info->scrub_cancel_req);
+ while (atomic_read(&fs_info->scrubs_running)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ atomic_read(&fs_info->scrubs_running) == 0);
+ mutex_lock(&fs_info->scrub_lock);
+ }
+ atomic_dec(&fs_info->scrub_cancel_req);
+ mutex_unlock(&fs_info->scrub_lock);
+
+ return 0;
+}
+
+int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
+{
+ struct btrfs_fs_info *fs_info = dev->fs_info;
+ struct scrub_ctx *sctx;
+
+ mutex_lock(&fs_info->scrub_lock);
+ sctx = dev->scrub_ctx;
+ if (!sctx) {
+ mutex_unlock(&fs_info->scrub_lock);
+ return -ENOTCONN;
+ }
+ atomic_inc(&sctx->cancel_req);
+ while (dev->scrub_ctx) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ dev->scrub_ctx == NULL);
+ mutex_lock(&fs_info->scrub_lock);
+ }
+ mutex_unlock(&fs_info->scrub_lock);
+
+ return 0;
+}
+
+int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
+ struct btrfs_scrub_progress *progress)
+{
+ struct btrfs_dev_lookup_args args = { .devid = devid };
+ struct btrfs_device *dev;
+ struct scrub_ctx *sctx = NULL;
+
+ mutex_lock(&fs_info->fs_devices->device_list_mutex);
+ dev = btrfs_find_device(fs_info->fs_devices, &args);
+ if (dev)
+ sctx = dev->scrub_ctx;
+ if (sctx)
+ memcpy(progress, &sctx->stat, sizeof(*progress));
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+
+ return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
+}