diff options
Diffstat (limited to 'fs/dcache.c')
-rw-r--r-- | fs/dcache.c | 3353 |
1 files changed, 3353 insertions, 0 deletions
diff --git a/fs/dcache.c b/fs/dcache.c new file mode 100644 index 0000000000..25ac74d30b --- /dev/null +++ b/fs/dcache.c @@ -0,0 +1,3353 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * fs/dcache.c + * + * Complete reimplementation + * (C) 1997 Thomas Schoebel-Theuer, + * with heavy changes by Linus Torvalds + */ + +/* + * Notes on the allocation strategy: + * + * The dcache is a master of the icache - whenever a dcache entry + * exists, the inode will always exist. "iput()" is done either when + * the dcache entry is deleted or garbage collected. + */ + +#include <linux/ratelimit.h> +#include <linux/string.h> +#include <linux/mm.h> +#include <linux/fs.h> +#include <linux/fscrypt.h> +#include <linux/fsnotify.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/hash.h> +#include <linux/cache.h> +#include <linux/export.h> +#include <linux/security.h> +#include <linux/seqlock.h> +#include <linux/memblock.h> +#include <linux/bit_spinlock.h> +#include <linux/rculist_bl.h> +#include <linux/list_lru.h> +#include "internal.h" +#include "mount.h" + +/* + * Usage: + * dcache->d_inode->i_lock protects: + * - i_dentry, d_u.d_alias, d_inode of aliases + * dcache_hash_bucket lock protects: + * - the dcache hash table + * s_roots bl list spinlock protects: + * - the s_roots list (see __d_drop) + * dentry->d_sb->s_dentry_lru_lock protects: + * - the dcache lru lists and counters + * d_lock protects: + * - d_flags + * - d_name + * - d_lru + * - d_count + * - d_unhashed() + * - d_parent and d_subdirs + * - childrens' d_child and d_parent + * - d_u.d_alias, d_inode + * + * Ordering: + * dentry->d_inode->i_lock + * dentry->d_lock + * dentry->d_sb->s_dentry_lru_lock + * dcache_hash_bucket lock + * s_roots lock + * + * If there is an ancestor relationship: + * dentry->d_parent->...->d_parent->d_lock + * ... + * dentry->d_parent->d_lock + * dentry->d_lock + * + * If no ancestor relationship: + * arbitrary, since it's serialized on rename_lock + */ +int sysctl_vfs_cache_pressure __read_mostly = 100; +EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); + +__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); + +EXPORT_SYMBOL(rename_lock); + +static struct kmem_cache *dentry_cache __read_mostly; + +const struct qstr empty_name = QSTR_INIT("", 0); +EXPORT_SYMBOL(empty_name); +const struct qstr slash_name = QSTR_INIT("/", 1); +EXPORT_SYMBOL(slash_name); +const struct qstr dotdot_name = QSTR_INIT("..", 2); +EXPORT_SYMBOL(dotdot_name); + +/* + * This is the single most critical data structure when it comes + * to the dcache: the hashtable for lookups. Somebody should try + * to make this good - I've just made it work. + * + * This hash-function tries to avoid losing too many bits of hash + * information, yet avoid using a prime hash-size or similar. + */ + +static unsigned int d_hash_shift __read_mostly; + +static struct hlist_bl_head *dentry_hashtable __read_mostly; + +static inline struct hlist_bl_head *d_hash(unsigned int hash) +{ + return dentry_hashtable + (hash >> d_hash_shift); +} + +#define IN_LOOKUP_SHIFT 10 +static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; + +static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, + unsigned int hash) +{ + hash += (unsigned long) parent / L1_CACHE_BYTES; + return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); +} + +struct dentry_stat_t { + long nr_dentry; + long nr_unused; + long age_limit; /* age in seconds */ + long want_pages; /* pages requested by system */ + long nr_negative; /* # of unused negative dentries */ + long dummy; /* Reserved for future use */ +}; + +static DEFINE_PER_CPU(long, nr_dentry); +static DEFINE_PER_CPU(long, nr_dentry_unused); +static DEFINE_PER_CPU(long, nr_dentry_negative); + +#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) +/* Statistics gathering. */ +static struct dentry_stat_t dentry_stat = { + .age_limit = 45, +}; + +/* + * Here we resort to our own counters instead of using generic per-cpu counters + * for consistency with what the vfs inode code does. We are expected to harvest + * better code and performance by having our own specialized counters. + * + * Please note that the loop is done over all possible CPUs, not over all online + * CPUs. The reason for this is that we don't want to play games with CPUs going + * on and off. If one of them goes off, we will just keep their counters. + * + * glommer: See cffbc8a for details, and if you ever intend to change this, + * please update all vfs counters to match. + */ +static long get_nr_dentry(void) +{ + int i; + long sum = 0; + for_each_possible_cpu(i) + sum += per_cpu(nr_dentry, i); + return sum < 0 ? 0 : sum; +} + +static long get_nr_dentry_unused(void) +{ + int i; + long sum = 0; + for_each_possible_cpu(i) + sum += per_cpu(nr_dentry_unused, i); + return sum < 0 ? 0 : sum; +} + +static long get_nr_dentry_negative(void) +{ + int i; + long sum = 0; + + for_each_possible_cpu(i) + sum += per_cpu(nr_dentry_negative, i); + return sum < 0 ? 0 : sum; +} + +static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, + size_t *lenp, loff_t *ppos) +{ + dentry_stat.nr_dentry = get_nr_dentry(); + dentry_stat.nr_unused = get_nr_dentry_unused(); + dentry_stat.nr_negative = get_nr_dentry_negative(); + return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); +} + +static struct ctl_table fs_dcache_sysctls[] = { + { + .procname = "dentry-state", + .data = &dentry_stat, + .maxlen = 6*sizeof(long), + .mode = 0444, + .proc_handler = proc_nr_dentry, + }, + { } +}; + +static int __init init_fs_dcache_sysctls(void) +{ + register_sysctl_init("fs", fs_dcache_sysctls); + return 0; +} +fs_initcall(init_fs_dcache_sysctls); +#endif + +/* + * Compare 2 name strings, return 0 if they match, otherwise non-zero. + * The strings are both count bytes long, and count is non-zero. + */ +#ifdef CONFIG_DCACHE_WORD_ACCESS + +#include <asm/word-at-a-time.h> +/* + * NOTE! 'cs' and 'scount' come from a dentry, so it has a + * aligned allocation for this particular component. We don't + * strictly need the load_unaligned_zeropad() safety, but it + * doesn't hurt either. + * + * In contrast, 'ct' and 'tcount' can be from a pathname, and do + * need the careful unaligned handling. + */ +static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) +{ + unsigned long a,b,mask; + + for (;;) { + a = read_word_at_a_time(cs); + b = load_unaligned_zeropad(ct); + if (tcount < sizeof(unsigned long)) + break; + if (unlikely(a != b)) + return 1; + cs += sizeof(unsigned long); + ct += sizeof(unsigned long); + tcount -= sizeof(unsigned long); + if (!tcount) + return 0; + } + mask = bytemask_from_count(tcount); + return unlikely(!!((a ^ b) & mask)); +} + +#else + +static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) +{ + do { + if (*cs != *ct) + return 1; + cs++; + ct++; + tcount--; + } while (tcount); + return 0; +} + +#endif + +static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) +{ + /* + * Be careful about RCU walk racing with rename: + * use 'READ_ONCE' to fetch the name pointer. + * + * NOTE! Even if a rename will mean that the length + * was not loaded atomically, we don't care. The + * RCU walk will check the sequence count eventually, + * and catch it. And we won't overrun the buffer, + * because we're reading the name pointer atomically, + * and a dentry name is guaranteed to be properly + * terminated with a NUL byte. + * + * End result: even if 'len' is wrong, we'll exit + * early because the data cannot match (there can + * be no NUL in the ct/tcount data) + */ + const unsigned char *cs = READ_ONCE(dentry->d_name.name); + + return dentry_string_cmp(cs, ct, tcount); +} + +struct external_name { + union { + atomic_t count; + struct rcu_head head; + } u; + unsigned char name[]; +}; + +static inline struct external_name *external_name(struct dentry *dentry) +{ + return container_of(dentry->d_name.name, struct external_name, name[0]); +} + +static void __d_free(struct rcu_head *head) +{ + struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); + + kmem_cache_free(dentry_cache, dentry); +} + +static void __d_free_external(struct rcu_head *head) +{ + struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); + kfree(external_name(dentry)); + kmem_cache_free(dentry_cache, dentry); +} + +static inline int dname_external(const struct dentry *dentry) +{ + return dentry->d_name.name != dentry->d_iname; +} + +void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) +{ + spin_lock(&dentry->d_lock); + name->name = dentry->d_name; + if (unlikely(dname_external(dentry))) { + atomic_inc(&external_name(dentry)->u.count); + } else { + memcpy(name->inline_name, dentry->d_iname, + dentry->d_name.len + 1); + name->name.name = name->inline_name; + } + spin_unlock(&dentry->d_lock); +} +EXPORT_SYMBOL(take_dentry_name_snapshot); + +void release_dentry_name_snapshot(struct name_snapshot *name) +{ + if (unlikely(name->name.name != name->inline_name)) { + struct external_name *p; + p = container_of(name->name.name, struct external_name, name[0]); + if (unlikely(atomic_dec_and_test(&p->u.count))) + kfree_rcu(p, u.head); + } +} +EXPORT_SYMBOL(release_dentry_name_snapshot); + +static inline void __d_set_inode_and_type(struct dentry *dentry, + struct inode *inode, + unsigned type_flags) +{ + unsigned flags; + + dentry->d_inode = inode; + flags = READ_ONCE(dentry->d_flags); + flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); + flags |= type_flags; + smp_store_release(&dentry->d_flags, flags); +} + +static inline void __d_clear_type_and_inode(struct dentry *dentry) +{ + unsigned flags = READ_ONCE(dentry->d_flags); + + flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); + WRITE_ONCE(dentry->d_flags, flags); + dentry->d_inode = NULL; + if (dentry->d_flags & DCACHE_LRU_LIST) + this_cpu_inc(nr_dentry_negative); +} + +static void dentry_free(struct dentry *dentry) +{ + WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); + if (unlikely(dname_external(dentry))) { + struct external_name *p = external_name(dentry); + if (likely(atomic_dec_and_test(&p->u.count))) { + call_rcu(&dentry->d_u.d_rcu, __d_free_external); + return; + } + } + /* if dentry was never visible to RCU, immediate free is OK */ + if (dentry->d_flags & DCACHE_NORCU) + __d_free(&dentry->d_u.d_rcu); + else + call_rcu(&dentry->d_u.d_rcu, __d_free); +} + +/* + * Release the dentry's inode, using the filesystem + * d_iput() operation if defined. + */ +static void dentry_unlink_inode(struct dentry * dentry) + __releases(dentry->d_lock) + __releases(dentry->d_inode->i_lock) +{ + struct inode *inode = dentry->d_inode; + + raw_write_seqcount_begin(&dentry->d_seq); + __d_clear_type_and_inode(dentry); + hlist_del_init(&dentry->d_u.d_alias); + raw_write_seqcount_end(&dentry->d_seq); + spin_unlock(&dentry->d_lock); + spin_unlock(&inode->i_lock); + if (!inode->i_nlink) + fsnotify_inoderemove(inode); + if (dentry->d_op && dentry->d_op->d_iput) + dentry->d_op->d_iput(dentry, inode); + else + iput(inode); +} + +/* + * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry + * is in use - which includes both the "real" per-superblock + * LRU list _and_ the DCACHE_SHRINK_LIST use. + * + * The DCACHE_SHRINK_LIST bit is set whenever the dentry is + * on the shrink list (ie not on the superblock LRU list). + * + * The per-cpu "nr_dentry_unused" counters are updated with + * the DCACHE_LRU_LIST bit. + * + * The per-cpu "nr_dentry_negative" counters are only updated + * when deleted from or added to the per-superblock LRU list, not + * from/to the shrink list. That is to avoid an unneeded dec/inc + * pair when moving from LRU to shrink list in select_collect(). + * + * These helper functions make sure we always follow the + * rules. d_lock must be held by the caller. + */ +#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) +static void d_lru_add(struct dentry *dentry) +{ + D_FLAG_VERIFY(dentry, 0); + dentry->d_flags |= DCACHE_LRU_LIST; + this_cpu_inc(nr_dentry_unused); + if (d_is_negative(dentry)) + this_cpu_inc(nr_dentry_negative); + WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); +} + +static void d_lru_del(struct dentry *dentry) +{ + D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); + dentry->d_flags &= ~DCACHE_LRU_LIST; + this_cpu_dec(nr_dentry_unused); + if (d_is_negative(dentry)) + this_cpu_dec(nr_dentry_negative); + WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); +} + +static void d_shrink_del(struct dentry *dentry) +{ + D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); + list_del_init(&dentry->d_lru); + dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); + this_cpu_dec(nr_dentry_unused); +} + +static void d_shrink_add(struct dentry *dentry, struct list_head *list) +{ + D_FLAG_VERIFY(dentry, 0); + list_add(&dentry->d_lru, list); + dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; + this_cpu_inc(nr_dentry_unused); +} + +/* + * These can only be called under the global LRU lock, ie during the + * callback for freeing the LRU list. "isolate" removes it from the + * LRU lists entirely, while shrink_move moves it to the indicated + * private list. + */ +static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) +{ + D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); + dentry->d_flags &= ~DCACHE_LRU_LIST; + this_cpu_dec(nr_dentry_unused); + if (d_is_negative(dentry)) + this_cpu_dec(nr_dentry_negative); + list_lru_isolate(lru, &dentry->d_lru); +} + +static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, + struct list_head *list) +{ + D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); + dentry->d_flags |= DCACHE_SHRINK_LIST; + if (d_is_negative(dentry)) + this_cpu_dec(nr_dentry_negative); + list_lru_isolate_move(lru, &dentry->d_lru, list); +} + +static void ___d_drop(struct dentry *dentry) +{ + struct hlist_bl_head *b; + /* + * Hashed dentries are normally on the dentry hashtable, + * with the exception of those newly allocated by + * d_obtain_root, which are always IS_ROOT: + */ + if (unlikely(IS_ROOT(dentry))) + b = &dentry->d_sb->s_roots; + else + b = d_hash(dentry->d_name.hash); + + hlist_bl_lock(b); + __hlist_bl_del(&dentry->d_hash); + hlist_bl_unlock(b); +} + +void __d_drop(struct dentry *dentry) +{ + if (!d_unhashed(dentry)) { + ___d_drop(dentry); + dentry->d_hash.pprev = NULL; + write_seqcount_invalidate(&dentry->d_seq); + } +} +EXPORT_SYMBOL(__d_drop); + +/** + * d_drop - drop a dentry + * @dentry: dentry to drop + * + * d_drop() unhashes the entry from the parent dentry hashes, so that it won't + * be found through a VFS lookup any more. Note that this is different from + * deleting the dentry - d_delete will try to mark the dentry negative if + * possible, giving a successful _negative_ lookup, while d_drop will + * just make the cache lookup fail. + * + * d_drop() is used mainly for stuff that wants to invalidate a dentry for some + * reason (NFS timeouts or autofs deletes). + * + * __d_drop requires dentry->d_lock + * + * ___d_drop doesn't mark dentry as "unhashed" + * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). + */ +void d_drop(struct dentry *dentry) +{ + spin_lock(&dentry->d_lock); + __d_drop(dentry); + spin_unlock(&dentry->d_lock); +} +EXPORT_SYMBOL(d_drop); + +static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) +{ + struct dentry *next; + /* + * Inform d_walk() and shrink_dentry_list() that we are no longer + * attached to the dentry tree + */ + dentry->d_flags |= DCACHE_DENTRY_KILLED; + if (unlikely(list_empty(&dentry->d_child))) + return; + __list_del_entry(&dentry->d_child); + /* + * Cursors can move around the list of children. While we'd been + * a normal list member, it didn't matter - ->d_child.next would've + * been updated. However, from now on it won't be and for the + * things like d_walk() it might end up with a nasty surprise. + * Normally d_walk() doesn't care about cursors moving around - + * ->d_lock on parent prevents that and since a cursor has no children + * of its own, we get through it without ever unlocking the parent. + * There is one exception, though - if we ascend from a child that + * gets killed as soon as we unlock it, the next sibling is found + * using the value left in its ->d_child.next. And if _that_ + * pointed to a cursor, and cursor got moved (e.g. by lseek()) + * before d_walk() regains parent->d_lock, we'll end up skipping + * everything the cursor had been moved past. + * + * Solution: make sure that the pointer left behind in ->d_child.next + * points to something that won't be moving around. I.e. skip the + * cursors. + */ + while (dentry->d_child.next != &parent->d_subdirs) { + next = list_entry(dentry->d_child.next, struct dentry, d_child); + if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) + break; + dentry->d_child.next = next->d_child.next; + } +} + +static void __dentry_kill(struct dentry *dentry) +{ + struct dentry *parent = NULL; + bool can_free = true; + if (!IS_ROOT(dentry)) + parent = dentry->d_parent; + + /* + * The dentry is now unrecoverably dead to the world. + */ + lockref_mark_dead(&dentry->d_lockref); + + /* + * inform the fs via d_prune that this dentry is about to be + * unhashed and destroyed. + */ + if (dentry->d_flags & DCACHE_OP_PRUNE) + dentry->d_op->d_prune(dentry); + + if (dentry->d_flags & DCACHE_LRU_LIST) { + if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) + d_lru_del(dentry); + } + /* if it was on the hash then remove it */ + __d_drop(dentry); + dentry_unlist(dentry, parent); + if (parent) + spin_unlock(&parent->d_lock); + if (dentry->d_inode) + dentry_unlink_inode(dentry); + else + spin_unlock(&dentry->d_lock); + this_cpu_dec(nr_dentry); + if (dentry->d_op && dentry->d_op->d_release) + dentry->d_op->d_release(dentry); + + spin_lock(&dentry->d_lock); + if (dentry->d_flags & DCACHE_SHRINK_LIST) { + dentry->d_flags |= DCACHE_MAY_FREE; + can_free = false; + } + spin_unlock(&dentry->d_lock); + if (likely(can_free)) + dentry_free(dentry); + cond_resched(); +} + +static struct dentry *__lock_parent(struct dentry *dentry) +{ + struct dentry *parent; + rcu_read_lock(); + spin_unlock(&dentry->d_lock); +again: + parent = READ_ONCE(dentry->d_parent); + spin_lock(&parent->d_lock); + /* + * We can't blindly lock dentry until we are sure + * that we won't violate the locking order. + * Any changes of dentry->d_parent must have + * been done with parent->d_lock held, so + * spin_lock() above is enough of a barrier + * for checking if it's still our child. + */ + if (unlikely(parent != dentry->d_parent)) { + spin_unlock(&parent->d_lock); + goto again; + } + rcu_read_unlock(); + if (parent != dentry) + spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); + else + parent = NULL; + return parent; +} + +static inline struct dentry *lock_parent(struct dentry *dentry) +{ + struct dentry *parent = dentry->d_parent; + if (IS_ROOT(dentry)) + return NULL; + if (likely(spin_trylock(&parent->d_lock))) + return parent; + return __lock_parent(dentry); +} + +static inline bool retain_dentry(struct dentry *dentry) +{ + WARN_ON(d_in_lookup(dentry)); + + /* Unreachable? Get rid of it */ + if (unlikely(d_unhashed(dentry))) + return false; + + if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) + return false; + + if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { + if (dentry->d_op->d_delete(dentry)) + return false; + } + + if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) + return false; + + /* retain; LRU fodder */ + dentry->d_lockref.count--; + if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) + d_lru_add(dentry); + else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) + dentry->d_flags |= DCACHE_REFERENCED; + return true; +} + +void d_mark_dontcache(struct inode *inode) +{ + struct dentry *de; + + spin_lock(&inode->i_lock); + hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { + spin_lock(&de->d_lock); + de->d_flags |= DCACHE_DONTCACHE; + spin_unlock(&de->d_lock); + } + inode->i_state |= I_DONTCACHE; + spin_unlock(&inode->i_lock); +} +EXPORT_SYMBOL(d_mark_dontcache); + +/* + * Finish off a dentry we've decided to kill. + * dentry->d_lock must be held, returns with it unlocked. + * Returns dentry requiring refcount drop, or NULL if we're done. + */ +static struct dentry *dentry_kill(struct dentry *dentry) + __releases(dentry->d_lock) +{ + struct inode *inode = dentry->d_inode; + struct dentry *parent = NULL; + + if (inode && unlikely(!spin_trylock(&inode->i_lock))) + goto slow_positive; + + if (!IS_ROOT(dentry)) { + parent = dentry->d_parent; + if (unlikely(!spin_trylock(&parent->d_lock))) { + parent = __lock_parent(dentry); + if (likely(inode || !dentry->d_inode)) + goto got_locks; + /* negative that became positive */ + if (parent) + spin_unlock(&parent->d_lock); + inode = dentry->d_inode; + goto slow_positive; + } + } + __dentry_kill(dentry); + return parent; + +slow_positive: + spin_unlock(&dentry->d_lock); + spin_lock(&inode->i_lock); + spin_lock(&dentry->d_lock); + parent = lock_parent(dentry); +got_locks: + if (unlikely(dentry->d_lockref.count != 1)) { + dentry->d_lockref.count--; + } else if (likely(!retain_dentry(dentry))) { + __dentry_kill(dentry); + return parent; + } + /* we are keeping it, after all */ + if (inode) + spin_unlock(&inode->i_lock); + if (parent) + spin_unlock(&parent->d_lock); + spin_unlock(&dentry->d_lock); + return NULL; +} + +/* + * Try to do a lockless dput(), and return whether that was successful. + * + * If unsuccessful, we return false, having already taken the dentry lock. + * + * The caller needs to hold the RCU read lock, so that the dentry is + * guaranteed to stay around even if the refcount goes down to zero! + */ +static inline bool fast_dput(struct dentry *dentry) +{ + int ret; + unsigned int d_flags; + + /* + * If we have a d_op->d_delete() operation, we sould not + * let the dentry count go to zero, so use "put_or_lock". + */ + if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) + return lockref_put_or_lock(&dentry->d_lockref); + + /* + * .. otherwise, we can try to just decrement the + * lockref optimistically. + */ + ret = lockref_put_return(&dentry->d_lockref); + + /* + * If the lockref_put_return() failed due to the lock being held + * by somebody else, the fast path has failed. We will need to + * get the lock, and then check the count again. + */ + if (unlikely(ret < 0)) { + spin_lock(&dentry->d_lock); + if (dentry->d_lockref.count > 1) { + dentry->d_lockref.count--; + spin_unlock(&dentry->d_lock); + return true; + } + return false; + } + + /* + * If we weren't the last ref, we're done. + */ + if (ret) + return true; + + /* + * Careful, careful. The reference count went down + * to zero, but we don't hold the dentry lock, so + * somebody else could get it again, and do another + * dput(), and we need to not race with that. + * + * However, there is a very special and common case + * where we don't care, because there is nothing to + * do: the dentry is still hashed, it does not have + * a 'delete' op, and it's referenced and already on + * the LRU list. + * + * NOTE! Since we aren't locked, these values are + * not "stable". However, it is sufficient that at + * some point after we dropped the reference the + * dentry was hashed and the flags had the proper + * value. Other dentry users may have re-gotten + * a reference to the dentry and change that, but + * our work is done - we can leave the dentry + * around with a zero refcount. + * + * Nevertheless, there are two cases that we should kill + * the dentry anyway. + * 1. free disconnected dentries as soon as their refcount + * reached zero. + * 2. free dentries if they should not be cached. + */ + smp_rmb(); + d_flags = READ_ONCE(dentry->d_flags); + d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | + DCACHE_DISCONNECTED | DCACHE_DONTCACHE; + + /* Nothing to do? Dropping the reference was all we needed? */ + if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) + return true; + + /* + * Not the fast normal case? Get the lock. We've already decremented + * the refcount, but we'll need to re-check the situation after + * getting the lock. + */ + spin_lock(&dentry->d_lock); + + /* + * Did somebody else grab a reference to it in the meantime, and + * we're no longer the last user after all? Alternatively, somebody + * else could have killed it and marked it dead. Either way, we + * don't need to do anything else. + */ + if (dentry->d_lockref.count) { + spin_unlock(&dentry->d_lock); + return true; + } + + /* + * Re-get the reference we optimistically dropped. We hold the + * lock, and we just tested that it was zero, so we can just + * set it to 1. + */ + dentry->d_lockref.count = 1; + return false; +} + + +/* + * This is dput + * + * This is complicated by the fact that we do not want to put + * dentries that are no longer on any hash chain on the unused + * list: we'd much rather just get rid of them immediately. + * + * However, that implies that we have to traverse the dentry + * tree upwards to the parents which might _also_ now be + * scheduled for deletion (it may have been only waiting for + * its last child to go away). + * + * This tail recursion is done by hand as we don't want to depend + * on the compiler to always get this right (gcc generally doesn't). + * Real recursion would eat up our stack space. + */ + +/* + * dput - release a dentry + * @dentry: dentry to release + * + * Release a dentry. This will drop the usage count and if appropriate + * call the dentry unlink method as well as removing it from the queues and + * releasing its resources. If the parent dentries were scheduled for release + * they too may now get deleted. + */ +void dput(struct dentry *dentry) +{ + while (dentry) { + might_sleep(); + + rcu_read_lock(); + if (likely(fast_dput(dentry))) { + rcu_read_unlock(); + return; + } + + /* Slow case: now with the dentry lock held */ + rcu_read_unlock(); + + if (likely(retain_dentry(dentry))) { + spin_unlock(&dentry->d_lock); + return; + } + + dentry = dentry_kill(dentry); + } +} +EXPORT_SYMBOL(dput); + +static void __dput_to_list(struct dentry *dentry, struct list_head *list) +__must_hold(&dentry->d_lock) +{ + if (dentry->d_flags & DCACHE_SHRINK_LIST) { + /* let the owner of the list it's on deal with it */ + --dentry->d_lockref.count; + } else { + if (dentry->d_flags & DCACHE_LRU_LIST) + d_lru_del(dentry); + if (!--dentry->d_lockref.count) + d_shrink_add(dentry, list); + } +} + +void dput_to_list(struct dentry *dentry, struct list_head *list) +{ + rcu_read_lock(); + if (likely(fast_dput(dentry))) { + rcu_read_unlock(); + return; + } + rcu_read_unlock(); + if (!retain_dentry(dentry)) + __dput_to_list(dentry, list); + spin_unlock(&dentry->d_lock); +} + +/* This must be called with d_lock held */ +static inline void __dget_dlock(struct dentry *dentry) +{ + dentry->d_lockref.count++; +} + +static inline void __dget(struct dentry *dentry) +{ + lockref_get(&dentry->d_lockref); +} + +struct dentry *dget_parent(struct dentry *dentry) +{ + int gotref; + struct dentry *ret; + unsigned seq; + + /* + * Do optimistic parent lookup without any + * locking. + */ + rcu_read_lock(); + seq = raw_seqcount_begin(&dentry->d_seq); + ret = READ_ONCE(dentry->d_parent); + gotref = lockref_get_not_zero(&ret->d_lockref); + rcu_read_unlock(); + if (likely(gotref)) { + if (!read_seqcount_retry(&dentry->d_seq, seq)) + return ret; + dput(ret); + } + +repeat: + /* + * Don't need rcu_dereference because we re-check it was correct under + * the lock. + */ + rcu_read_lock(); + ret = dentry->d_parent; + spin_lock(&ret->d_lock); + if (unlikely(ret != dentry->d_parent)) { + spin_unlock(&ret->d_lock); + rcu_read_unlock(); + goto repeat; + } + rcu_read_unlock(); + BUG_ON(!ret->d_lockref.count); + ret->d_lockref.count++; + spin_unlock(&ret->d_lock); + return ret; +} +EXPORT_SYMBOL(dget_parent); + +static struct dentry * __d_find_any_alias(struct inode *inode) +{ + struct dentry *alias; + + if (hlist_empty(&inode->i_dentry)) + return NULL; + alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); + __dget(alias); + return alias; +} + +/** + * d_find_any_alias - find any alias for a given inode + * @inode: inode to find an alias for + * + * If any aliases exist for the given inode, take and return a + * reference for one of them. If no aliases exist, return %NULL. + */ +struct dentry *d_find_any_alias(struct inode *inode) +{ + struct dentry *de; + + spin_lock(&inode->i_lock); + de = __d_find_any_alias(inode); + spin_unlock(&inode->i_lock); + return de; +} +EXPORT_SYMBOL(d_find_any_alias); + +static struct dentry *__d_find_alias(struct inode *inode) +{ + struct dentry *alias; + + if (S_ISDIR(inode->i_mode)) + return __d_find_any_alias(inode); + + hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { + spin_lock(&alias->d_lock); + if (!d_unhashed(alias)) { + __dget_dlock(alias); + spin_unlock(&alias->d_lock); + return alias; + } + spin_unlock(&alias->d_lock); + } + return NULL; +} + +/** + * d_find_alias - grab a hashed alias of inode + * @inode: inode in question + * + * If inode has a hashed alias, or is a directory and has any alias, + * acquire the reference to alias and return it. Otherwise return NULL. + * Notice that if inode is a directory there can be only one alias and + * it can be unhashed only if it has no children, or if it is the root + * of a filesystem, or if the directory was renamed and d_revalidate + * was the first vfs operation to notice. + * + * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer + * any other hashed alias over that one. + */ +struct dentry *d_find_alias(struct inode *inode) +{ + struct dentry *de = NULL; + + if (!hlist_empty(&inode->i_dentry)) { + spin_lock(&inode->i_lock); + de = __d_find_alias(inode); + spin_unlock(&inode->i_lock); + } + return de; +} +EXPORT_SYMBOL(d_find_alias); + +/* + * Caller MUST be holding rcu_read_lock() and be guaranteed + * that inode won't get freed until rcu_read_unlock(). + */ +struct dentry *d_find_alias_rcu(struct inode *inode) +{ + struct hlist_head *l = &inode->i_dentry; + struct dentry *de = NULL; + + spin_lock(&inode->i_lock); + // ->i_dentry and ->i_rcu are colocated, but the latter won't be + // used without having I_FREEING set, which means no aliases left + if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { + if (S_ISDIR(inode->i_mode)) { + de = hlist_entry(l->first, struct dentry, d_u.d_alias); + } else { + hlist_for_each_entry(de, l, d_u.d_alias) + if (!d_unhashed(de)) + break; + } + } + spin_unlock(&inode->i_lock); + return de; +} + +/* + * Try to kill dentries associated with this inode. + * WARNING: you must own a reference to inode. + */ +void d_prune_aliases(struct inode *inode) +{ + struct dentry *dentry; +restart: + spin_lock(&inode->i_lock); + hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { + spin_lock(&dentry->d_lock); + if (!dentry->d_lockref.count) { + struct dentry *parent = lock_parent(dentry); + if (likely(!dentry->d_lockref.count)) { + __dentry_kill(dentry); + dput(parent); + goto restart; + } + if (parent) + spin_unlock(&parent->d_lock); + } + spin_unlock(&dentry->d_lock); + } + spin_unlock(&inode->i_lock); +} +EXPORT_SYMBOL(d_prune_aliases); + +/* + * Lock a dentry from shrink list. + * Called under rcu_read_lock() and dentry->d_lock; the former + * guarantees that nothing we access will be freed under us. + * Note that dentry is *not* protected from concurrent dentry_kill(), + * d_delete(), etc. + * + * Return false if dentry has been disrupted or grabbed, leaving + * the caller to kick it off-list. Otherwise, return true and have + * that dentry's inode and parent both locked. + */ +static bool shrink_lock_dentry(struct dentry *dentry) +{ + struct inode *inode; + struct dentry *parent; + + if (dentry->d_lockref.count) + return false; + + inode = dentry->d_inode; + if (inode && unlikely(!spin_trylock(&inode->i_lock))) { + spin_unlock(&dentry->d_lock); + spin_lock(&inode->i_lock); + spin_lock(&dentry->d_lock); + if (unlikely(dentry->d_lockref.count)) + goto out; + /* changed inode means that somebody had grabbed it */ + if (unlikely(inode != dentry->d_inode)) + goto out; + } + + parent = dentry->d_parent; + if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) + return true; + + spin_unlock(&dentry->d_lock); + spin_lock(&parent->d_lock); + if (unlikely(parent != dentry->d_parent)) { + spin_unlock(&parent->d_lock); + spin_lock(&dentry->d_lock); + goto out; + } + spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); + if (likely(!dentry->d_lockref.count)) + return true; + spin_unlock(&parent->d_lock); +out: + if (inode) + spin_unlock(&inode->i_lock); + return false; +} + +void shrink_dentry_list(struct list_head *list) +{ + while (!list_empty(list)) { + struct dentry *dentry, *parent; + + dentry = list_entry(list->prev, struct dentry, d_lru); + spin_lock(&dentry->d_lock); + rcu_read_lock(); + if (!shrink_lock_dentry(dentry)) { + bool can_free = false; + rcu_read_unlock(); + d_shrink_del(dentry); + if (dentry->d_lockref.count < 0) + can_free = dentry->d_flags & DCACHE_MAY_FREE; + spin_unlock(&dentry->d_lock); + if (can_free) + dentry_free(dentry); + continue; + } + rcu_read_unlock(); + d_shrink_del(dentry); + parent = dentry->d_parent; + if (parent != dentry) + __dput_to_list(parent, list); + __dentry_kill(dentry); + } +} + +static enum lru_status dentry_lru_isolate(struct list_head *item, + struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) +{ + struct list_head *freeable = arg; + struct dentry *dentry = container_of(item, struct dentry, d_lru); + + + /* + * we are inverting the lru lock/dentry->d_lock here, + * so use a trylock. If we fail to get the lock, just skip + * it + */ + if (!spin_trylock(&dentry->d_lock)) + return LRU_SKIP; + + /* + * Referenced dentries are still in use. If they have active + * counts, just remove them from the LRU. Otherwise give them + * another pass through the LRU. + */ + if (dentry->d_lockref.count) { + d_lru_isolate(lru, dentry); + spin_unlock(&dentry->d_lock); + return LRU_REMOVED; + } + + if (dentry->d_flags & DCACHE_REFERENCED) { + dentry->d_flags &= ~DCACHE_REFERENCED; + spin_unlock(&dentry->d_lock); + + /* + * The list move itself will be made by the common LRU code. At + * this point, we've dropped the dentry->d_lock but keep the + * lru lock. This is safe to do, since every list movement is + * protected by the lru lock even if both locks are held. + * + * This is guaranteed by the fact that all LRU management + * functions are intermediated by the LRU API calls like + * list_lru_add and list_lru_del. List movement in this file + * only ever occur through this functions or through callbacks + * like this one, that are called from the LRU API. + * + * The only exceptions to this are functions like + * shrink_dentry_list, and code that first checks for the + * DCACHE_SHRINK_LIST flag. Those are guaranteed to be + * operating only with stack provided lists after they are + * properly isolated from the main list. It is thus, always a + * local access. + */ + return LRU_ROTATE; + } + + d_lru_shrink_move(lru, dentry, freeable); + spin_unlock(&dentry->d_lock); + + return LRU_REMOVED; +} + +/** + * prune_dcache_sb - shrink the dcache + * @sb: superblock + * @sc: shrink control, passed to list_lru_shrink_walk() + * + * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This + * is done when we need more memory and called from the superblock shrinker + * function. + * + * This function may fail to free any resources if all the dentries are in + * use. + */ +long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) +{ + LIST_HEAD(dispose); + long freed; + + freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, + dentry_lru_isolate, &dispose); + shrink_dentry_list(&dispose); + return freed; +} + +static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, + struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) +{ + struct list_head *freeable = arg; + struct dentry *dentry = container_of(item, struct dentry, d_lru); + + /* + * we are inverting the lru lock/dentry->d_lock here, + * so use a trylock. If we fail to get the lock, just skip + * it + */ + if (!spin_trylock(&dentry->d_lock)) + return LRU_SKIP; + + d_lru_shrink_move(lru, dentry, freeable); + spin_unlock(&dentry->d_lock); + + return LRU_REMOVED; +} + + +/** + * shrink_dcache_sb - shrink dcache for a superblock + * @sb: superblock + * + * Shrink the dcache for the specified super block. This is used to free + * the dcache before unmounting a file system. + */ +void shrink_dcache_sb(struct super_block *sb) +{ + do { + LIST_HEAD(dispose); + + list_lru_walk(&sb->s_dentry_lru, + dentry_lru_isolate_shrink, &dispose, 1024); + shrink_dentry_list(&dispose); + } while (list_lru_count(&sb->s_dentry_lru) > 0); +} +EXPORT_SYMBOL(shrink_dcache_sb); + +/** + * enum d_walk_ret - action to talke during tree walk + * @D_WALK_CONTINUE: contrinue walk + * @D_WALK_QUIT: quit walk + * @D_WALK_NORETRY: quit when retry is needed + * @D_WALK_SKIP: skip this dentry and its children + */ +enum d_walk_ret { + D_WALK_CONTINUE, + D_WALK_QUIT, + D_WALK_NORETRY, + D_WALK_SKIP, +}; + +/** + * d_walk - walk the dentry tree + * @parent: start of walk + * @data: data passed to @enter() and @finish() + * @enter: callback when first entering the dentry + * + * The @enter() callbacks are called with d_lock held. + */ +static void d_walk(struct dentry *parent, void *data, + enum d_walk_ret (*enter)(void *, struct dentry *)) +{ + struct dentry *this_parent; + struct list_head *next; + unsigned seq = 0; + enum d_walk_ret ret; + bool retry = true; + +again: + read_seqbegin_or_lock(&rename_lock, &seq); + this_parent = parent; + spin_lock(&this_parent->d_lock); + + ret = enter(data, this_parent); + switch (ret) { + case D_WALK_CONTINUE: + break; + case D_WALK_QUIT: + case D_WALK_SKIP: + goto out_unlock; + case D_WALK_NORETRY: + retry = false; + break; + } +repeat: + next = this_parent->d_subdirs.next; +resume: + while (next != &this_parent->d_subdirs) { + struct list_head *tmp = next; + struct dentry *dentry = list_entry(tmp, struct dentry, d_child); + next = tmp->next; + + if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) + continue; + + spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); + + ret = enter(data, dentry); + switch (ret) { + case D_WALK_CONTINUE: + break; + case D_WALK_QUIT: + spin_unlock(&dentry->d_lock); + goto out_unlock; + case D_WALK_NORETRY: + retry = false; + break; + case D_WALK_SKIP: + spin_unlock(&dentry->d_lock); + continue; + } + + if (!list_empty(&dentry->d_subdirs)) { + spin_unlock(&this_parent->d_lock); + spin_release(&dentry->d_lock.dep_map, _RET_IP_); + this_parent = dentry; + spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); + goto repeat; + } + spin_unlock(&dentry->d_lock); + } + /* + * All done at this level ... ascend and resume the search. + */ + rcu_read_lock(); +ascend: + if (this_parent != parent) { + struct dentry *child = this_parent; + this_parent = child->d_parent; + + spin_unlock(&child->d_lock); + spin_lock(&this_parent->d_lock); + + /* might go back up the wrong parent if we have had a rename. */ + if (need_seqretry(&rename_lock, seq)) + goto rename_retry; + /* go into the first sibling still alive */ + do { + next = child->d_child.next; + if (next == &this_parent->d_subdirs) + goto ascend; + child = list_entry(next, struct dentry, d_child); + } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); + rcu_read_unlock(); + goto resume; + } + if (need_seqretry(&rename_lock, seq)) + goto rename_retry; + rcu_read_unlock(); + +out_unlock: + spin_unlock(&this_parent->d_lock); + done_seqretry(&rename_lock, seq); + return; + +rename_retry: + spin_unlock(&this_parent->d_lock); + rcu_read_unlock(); + BUG_ON(seq & 1); + if (!retry) + return; + seq = 1; + goto again; +} + +struct check_mount { + struct vfsmount *mnt; + unsigned int mounted; +}; + +static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) +{ + struct check_mount *info = data; + struct path path = { .mnt = info->mnt, .dentry = dentry }; + + if (likely(!d_mountpoint(dentry))) + return D_WALK_CONTINUE; + if (__path_is_mountpoint(&path)) { + info->mounted = 1; + return D_WALK_QUIT; + } + return D_WALK_CONTINUE; +} + +/** + * path_has_submounts - check for mounts over a dentry in the + * current namespace. + * @parent: path to check. + * + * Return true if the parent or its subdirectories contain + * a mount point in the current namespace. + */ +int path_has_submounts(const struct path *parent) +{ + struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; + + read_seqlock_excl(&mount_lock); + d_walk(parent->dentry, &data, path_check_mount); + read_sequnlock_excl(&mount_lock); + + return data.mounted; +} +EXPORT_SYMBOL(path_has_submounts); + +/* + * Called by mount code to set a mountpoint and check if the mountpoint is + * reachable (e.g. NFS can unhash a directory dentry and then the complete + * subtree can become unreachable). + * + * Only one of d_invalidate() and d_set_mounted() must succeed. For + * this reason take rename_lock and d_lock on dentry and ancestors. + */ +int d_set_mounted(struct dentry *dentry) +{ + struct dentry *p; + int ret = -ENOENT; + write_seqlock(&rename_lock); + for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { + /* Need exclusion wrt. d_invalidate() */ + spin_lock(&p->d_lock); + if (unlikely(d_unhashed(p))) { + spin_unlock(&p->d_lock); + goto out; + } + spin_unlock(&p->d_lock); + } + spin_lock(&dentry->d_lock); + if (!d_unlinked(dentry)) { + ret = -EBUSY; + if (!d_mountpoint(dentry)) { + dentry->d_flags |= DCACHE_MOUNTED; + ret = 0; + } + } + spin_unlock(&dentry->d_lock); +out: + write_sequnlock(&rename_lock); + return ret; +} + +/* + * Search the dentry child list of the specified parent, + * and move any unused dentries to the end of the unused + * list for prune_dcache(). We descend to the next level + * whenever the d_subdirs list is non-empty and continue + * searching. + * + * It returns zero iff there are no unused children, + * otherwise it returns the number of children moved to + * the end of the unused list. This may not be the total + * number of unused children, because select_parent can + * drop the lock and return early due to latency + * constraints. + */ + +struct select_data { + struct dentry *start; + union { + long found; + struct dentry *victim; + }; + struct list_head dispose; +}; + +static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) +{ + struct select_data *data = _data; + enum d_walk_ret ret = D_WALK_CONTINUE; + + if (data->start == dentry) + goto out; + + if (dentry->d_flags & DCACHE_SHRINK_LIST) { + data->found++; + } else { + if (dentry->d_flags & DCACHE_LRU_LIST) + d_lru_del(dentry); + if (!dentry->d_lockref.count) { + d_shrink_add(dentry, &data->dispose); + data->found++; + } + } + /* + * We can return to the caller if we have found some (this + * ensures forward progress). We'll be coming back to find + * the rest. + */ + if (!list_empty(&data->dispose)) + ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; +out: + return ret; +} + +static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) +{ + struct select_data *data = _data; + enum d_walk_ret ret = D_WALK_CONTINUE; + + if (data->start == dentry) + goto out; + + if (dentry->d_flags & DCACHE_SHRINK_LIST) { + if (!dentry->d_lockref.count) { + rcu_read_lock(); + data->victim = dentry; + return D_WALK_QUIT; + } + } else { + if (dentry->d_flags & DCACHE_LRU_LIST) + d_lru_del(dentry); + if (!dentry->d_lockref.count) + d_shrink_add(dentry, &data->dispose); + } + /* + * We can return to the caller if we have found some (this + * ensures forward progress). We'll be coming back to find + * the rest. + */ + if (!list_empty(&data->dispose)) + ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; +out: + return ret; +} + +/** + * shrink_dcache_parent - prune dcache + * @parent: parent of entries to prune + * + * Prune the dcache to remove unused children of the parent dentry. + */ +void shrink_dcache_parent(struct dentry *parent) +{ + for (;;) { + struct select_data data = {.start = parent}; + + INIT_LIST_HEAD(&data.dispose); + d_walk(parent, &data, select_collect); + + if (!list_empty(&data.dispose)) { + shrink_dentry_list(&data.dispose); + continue; + } + + cond_resched(); + if (!data.found) + break; + data.victim = NULL; + d_walk(parent, &data, select_collect2); + if (data.victim) { + struct dentry *parent; + spin_lock(&data.victim->d_lock); + if (!shrink_lock_dentry(data.victim)) { + spin_unlock(&data.victim->d_lock); + rcu_read_unlock(); + } else { + rcu_read_unlock(); + parent = data.victim->d_parent; + if (parent != data.victim) + __dput_to_list(parent, &data.dispose); + __dentry_kill(data.victim); + } + } + if (!list_empty(&data.dispose)) + shrink_dentry_list(&data.dispose); + } +} +EXPORT_SYMBOL(shrink_dcache_parent); + +static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) +{ + /* it has busy descendents; complain about those instead */ + if (!list_empty(&dentry->d_subdirs)) + return D_WALK_CONTINUE; + + /* root with refcount 1 is fine */ + if (dentry == _data && dentry->d_lockref.count == 1) + return D_WALK_CONTINUE; + + WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} " + " still in use (%d) [unmount of %s %s]\n", + dentry, + dentry->d_inode ? + dentry->d_inode->i_ino : 0UL, + dentry, + dentry->d_lockref.count, + dentry->d_sb->s_type->name, + dentry->d_sb->s_id); + return D_WALK_CONTINUE; +} + +static void do_one_tree(struct dentry *dentry) +{ + shrink_dcache_parent(dentry); + d_walk(dentry, dentry, umount_check); + d_drop(dentry); + dput(dentry); +} + +/* + * destroy the dentries attached to a superblock on unmounting + */ +void shrink_dcache_for_umount(struct super_block *sb) +{ + struct dentry *dentry; + + WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); + + dentry = sb->s_root; + sb->s_root = NULL; + do_one_tree(dentry); + + while (!hlist_bl_empty(&sb->s_roots)) { + dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); + do_one_tree(dentry); + } +} + +static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) +{ + struct dentry **victim = _data; + if (d_mountpoint(dentry)) { + __dget_dlock(dentry); + *victim = dentry; + return D_WALK_QUIT; + } + return D_WALK_CONTINUE; +} + +/** + * d_invalidate - detach submounts, prune dcache, and drop + * @dentry: dentry to invalidate (aka detach, prune and drop) + */ +void d_invalidate(struct dentry *dentry) +{ + bool had_submounts = false; + spin_lock(&dentry->d_lock); + if (d_unhashed(dentry)) { + spin_unlock(&dentry->d_lock); + return; + } + __d_drop(dentry); + spin_unlock(&dentry->d_lock); + + /* Negative dentries can be dropped without further checks */ + if (!dentry->d_inode) + return; + + shrink_dcache_parent(dentry); + for (;;) { + struct dentry *victim = NULL; + d_walk(dentry, &victim, find_submount); + if (!victim) { + if (had_submounts) + shrink_dcache_parent(dentry); + return; + } + had_submounts = true; + detach_mounts(victim); + dput(victim); + } +} +EXPORT_SYMBOL(d_invalidate); + +/** + * __d_alloc - allocate a dcache entry + * @sb: filesystem it will belong to + * @name: qstr of the name + * + * Allocates a dentry. It returns %NULL if there is insufficient memory + * available. On a success the dentry is returned. The name passed in is + * copied and the copy passed in may be reused after this call. + */ + +static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) +{ + struct dentry *dentry; + char *dname; + int err; + + dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, + GFP_KERNEL); + if (!dentry) + return NULL; + + /* + * We guarantee that the inline name is always NUL-terminated. + * This way the memcpy() done by the name switching in rename + * will still always have a NUL at the end, even if we might + * be overwriting an internal NUL character + */ + dentry->d_iname[DNAME_INLINE_LEN-1] = 0; + if (unlikely(!name)) { + name = &slash_name; + dname = dentry->d_iname; + } else if (name->len > DNAME_INLINE_LEN-1) { + size_t size = offsetof(struct external_name, name[1]); + struct external_name *p = kmalloc(size + name->len, + GFP_KERNEL_ACCOUNT | + __GFP_RECLAIMABLE); + if (!p) { + kmem_cache_free(dentry_cache, dentry); + return NULL; + } + atomic_set(&p->u.count, 1); + dname = p->name; + } else { + dname = dentry->d_iname; + } + + dentry->d_name.len = name->len; + dentry->d_name.hash = name->hash; + memcpy(dname, name->name, name->len); + dname[name->len] = 0; + + /* Make sure we always see the terminating NUL character */ + smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ + + dentry->d_lockref.count = 1; + dentry->d_flags = 0; + spin_lock_init(&dentry->d_lock); + seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); + dentry->d_inode = NULL; + dentry->d_parent = dentry; + dentry->d_sb = sb; + dentry->d_op = NULL; + dentry->d_fsdata = NULL; + INIT_HLIST_BL_NODE(&dentry->d_hash); + INIT_LIST_HEAD(&dentry->d_lru); + INIT_LIST_HEAD(&dentry->d_subdirs); + INIT_HLIST_NODE(&dentry->d_u.d_alias); + INIT_LIST_HEAD(&dentry->d_child); + d_set_d_op(dentry, dentry->d_sb->s_d_op); + + if (dentry->d_op && dentry->d_op->d_init) { + err = dentry->d_op->d_init(dentry); + if (err) { + if (dname_external(dentry)) + kfree(external_name(dentry)); + kmem_cache_free(dentry_cache, dentry); + return NULL; + } + } + + this_cpu_inc(nr_dentry); + + return dentry; +} + +/** + * d_alloc - allocate a dcache entry + * @parent: parent of entry to allocate + * @name: qstr of the name + * + * Allocates a dentry. It returns %NULL if there is insufficient memory + * available. On a success the dentry is returned. The name passed in is + * copied and the copy passed in may be reused after this call. + */ +struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) +{ + struct dentry *dentry = __d_alloc(parent->d_sb, name); + if (!dentry) + return NULL; + spin_lock(&parent->d_lock); + /* + * don't need child lock because it is not subject + * to concurrency here + */ + __dget_dlock(parent); + dentry->d_parent = parent; + list_add(&dentry->d_child, &parent->d_subdirs); + spin_unlock(&parent->d_lock); + + return dentry; +} +EXPORT_SYMBOL(d_alloc); + +struct dentry *d_alloc_anon(struct super_block *sb) +{ + return __d_alloc(sb, NULL); +} +EXPORT_SYMBOL(d_alloc_anon); + +struct dentry *d_alloc_cursor(struct dentry * parent) +{ + struct dentry *dentry = d_alloc_anon(parent->d_sb); + if (dentry) { + dentry->d_flags |= DCACHE_DENTRY_CURSOR; + dentry->d_parent = dget(parent); + } + return dentry; +} + +/** + * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) + * @sb: the superblock + * @name: qstr of the name + * + * For a filesystem that just pins its dentries in memory and never + * performs lookups at all, return an unhashed IS_ROOT dentry. + * This is used for pipes, sockets et.al. - the stuff that should + * never be anyone's children or parents. Unlike all other + * dentries, these will not have RCU delay between dropping the + * last reference and freeing them. + * + * The only user is alloc_file_pseudo() and that's what should + * be considered a public interface. Don't use directly. + */ +struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) +{ + struct dentry *dentry = __d_alloc(sb, name); + if (likely(dentry)) + dentry->d_flags |= DCACHE_NORCU; + return dentry; +} + +struct dentry *d_alloc_name(struct dentry *parent, const char *name) +{ + struct qstr q; + + q.name = name; + q.hash_len = hashlen_string(parent, name); + return d_alloc(parent, &q); +} +EXPORT_SYMBOL(d_alloc_name); + +void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) +{ + WARN_ON_ONCE(dentry->d_op); + WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | + DCACHE_OP_COMPARE | + DCACHE_OP_REVALIDATE | + DCACHE_OP_WEAK_REVALIDATE | + DCACHE_OP_DELETE | + DCACHE_OP_REAL)); + dentry->d_op = op; + if (!op) + return; + if (op->d_hash) + dentry->d_flags |= DCACHE_OP_HASH; + if (op->d_compare) + dentry->d_flags |= DCACHE_OP_COMPARE; + if (op->d_revalidate) + dentry->d_flags |= DCACHE_OP_REVALIDATE; + if (op->d_weak_revalidate) + dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; + if (op->d_delete) + dentry->d_flags |= DCACHE_OP_DELETE; + if (op->d_prune) + dentry->d_flags |= DCACHE_OP_PRUNE; + if (op->d_real) + dentry->d_flags |= DCACHE_OP_REAL; + +} +EXPORT_SYMBOL(d_set_d_op); + + +/* + * d_set_fallthru - Mark a dentry as falling through to a lower layer + * @dentry - The dentry to mark + * + * Mark a dentry as falling through to the lower layer (as set with + * d_pin_lower()). This flag may be recorded on the medium. + */ +void d_set_fallthru(struct dentry *dentry) +{ + spin_lock(&dentry->d_lock); + dentry->d_flags |= DCACHE_FALLTHRU; + spin_unlock(&dentry->d_lock); +} +EXPORT_SYMBOL(d_set_fallthru); + +static unsigned d_flags_for_inode(struct inode *inode) +{ + unsigned add_flags = DCACHE_REGULAR_TYPE; + + if (!inode) + return DCACHE_MISS_TYPE; + + if (S_ISDIR(inode->i_mode)) { + add_flags = DCACHE_DIRECTORY_TYPE; + if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { + if (unlikely(!inode->i_op->lookup)) + add_flags = DCACHE_AUTODIR_TYPE; + else + inode->i_opflags |= IOP_LOOKUP; + } + goto type_determined; + } + + if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { + if (unlikely(inode->i_op->get_link)) { + add_flags = DCACHE_SYMLINK_TYPE; + goto type_determined; + } + inode->i_opflags |= IOP_NOFOLLOW; + } + + if (unlikely(!S_ISREG(inode->i_mode))) + add_flags = DCACHE_SPECIAL_TYPE; + +type_determined: + if (unlikely(IS_AUTOMOUNT(inode))) + add_flags |= DCACHE_NEED_AUTOMOUNT; + return add_flags; +} + +static void __d_instantiate(struct dentry *dentry, struct inode *inode) +{ + unsigned add_flags = d_flags_for_inode(inode); + WARN_ON(d_in_lookup(dentry)); + + spin_lock(&dentry->d_lock); + /* + * Decrement negative dentry count if it was in the LRU list. + */ + if (dentry->d_flags & DCACHE_LRU_LIST) + this_cpu_dec(nr_dentry_negative); + hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); + raw_write_seqcount_begin(&dentry->d_seq); + __d_set_inode_and_type(dentry, inode, add_flags); + raw_write_seqcount_end(&dentry->d_seq); + fsnotify_update_flags(dentry); + spin_unlock(&dentry->d_lock); +} + +/** + * d_instantiate - fill in inode information for a dentry + * @entry: dentry to complete + * @inode: inode to attach to this dentry + * + * Fill in inode information in the entry. + * + * This turns negative dentries into productive full members + * of society. + * + * NOTE! This assumes that the inode count has been incremented + * (or otherwise set) by the caller to indicate that it is now + * in use by the dcache. + */ + +void d_instantiate(struct dentry *entry, struct inode * inode) +{ + BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); + if (inode) { + security_d_instantiate(entry, inode); + spin_lock(&inode->i_lock); + __d_instantiate(entry, inode); + spin_unlock(&inode->i_lock); + } +} +EXPORT_SYMBOL(d_instantiate); + +/* + * This should be equivalent to d_instantiate() + unlock_new_inode(), + * with lockdep-related part of unlock_new_inode() done before + * anything else. Use that instead of open-coding d_instantiate()/ + * unlock_new_inode() combinations. + */ +void d_instantiate_new(struct dentry *entry, struct inode *inode) +{ + BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); + BUG_ON(!inode); + lockdep_annotate_inode_mutex_key(inode); + security_d_instantiate(entry, inode); + spin_lock(&inode->i_lock); + __d_instantiate(entry, inode); + WARN_ON(!(inode->i_state & I_NEW)); + inode->i_state &= ~I_NEW & ~I_CREATING; + smp_mb(); + wake_up_bit(&inode->i_state, __I_NEW); + spin_unlock(&inode->i_lock); +} +EXPORT_SYMBOL(d_instantiate_new); + +struct dentry *d_make_root(struct inode *root_inode) +{ + struct dentry *res = NULL; + + if (root_inode) { + res = d_alloc_anon(root_inode->i_sb); + if (res) + d_instantiate(res, root_inode); + else + iput(root_inode); + } + return res; +} +EXPORT_SYMBOL(d_make_root); + +static struct dentry *__d_instantiate_anon(struct dentry *dentry, + struct inode *inode, + bool disconnected) +{ + struct dentry *res; + unsigned add_flags; + + security_d_instantiate(dentry, inode); + spin_lock(&inode->i_lock); + res = __d_find_any_alias(inode); + if (res) { + spin_unlock(&inode->i_lock); + dput(dentry); + goto out_iput; + } + + /* attach a disconnected dentry */ + add_flags = d_flags_for_inode(inode); + + if (disconnected) + add_flags |= DCACHE_DISCONNECTED; + + spin_lock(&dentry->d_lock); + __d_set_inode_and_type(dentry, inode, add_flags); + hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); + if (!disconnected) { + hlist_bl_lock(&dentry->d_sb->s_roots); + hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); + hlist_bl_unlock(&dentry->d_sb->s_roots); + } + spin_unlock(&dentry->d_lock); + spin_unlock(&inode->i_lock); + + return dentry; + + out_iput: + iput(inode); + return res; +} + +struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) +{ + return __d_instantiate_anon(dentry, inode, true); +} +EXPORT_SYMBOL(d_instantiate_anon); + +static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) +{ + struct dentry *tmp; + struct dentry *res; + + if (!inode) + return ERR_PTR(-ESTALE); + if (IS_ERR(inode)) + return ERR_CAST(inode); + + res = d_find_any_alias(inode); + if (res) + goto out_iput; + + tmp = d_alloc_anon(inode->i_sb); + if (!tmp) { + res = ERR_PTR(-ENOMEM); + goto out_iput; + } + + return __d_instantiate_anon(tmp, inode, disconnected); + +out_iput: + iput(inode); + return res; +} + +/** + * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode + * @inode: inode to allocate the dentry for + * + * Obtain a dentry for an inode resulting from NFS filehandle conversion or + * similar open by handle operations. The returned dentry may be anonymous, + * or may have a full name (if the inode was already in the cache). + * + * When called on a directory inode, we must ensure that the inode only ever + * has one dentry. If a dentry is found, that is returned instead of + * allocating a new one. + * + * On successful return, the reference to the inode has been transferred + * to the dentry. In case of an error the reference on the inode is released. + * To make it easier to use in export operations a %NULL or IS_ERR inode may + * be passed in and the error will be propagated to the return value, + * with a %NULL @inode replaced by ERR_PTR(-ESTALE). + */ +struct dentry *d_obtain_alias(struct inode *inode) +{ + return __d_obtain_alias(inode, true); +} +EXPORT_SYMBOL(d_obtain_alias); + +/** + * d_obtain_root - find or allocate a dentry for a given inode + * @inode: inode to allocate the dentry for + * + * Obtain an IS_ROOT dentry for the root of a filesystem. + * + * We must ensure that directory inodes only ever have one dentry. If a + * dentry is found, that is returned instead of allocating a new one. + * + * On successful return, the reference to the inode has been transferred + * to the dentry. In case of an error the reference on the inode is + * released. A %NULL or IS_ERR inode may be passed in and will be the + * error will be propagate to the return value, with a %NULL @inode + * replaced by ERR_PTR(-ESTALE). + */ +struct dentry *d_obtain_root(struct inode *inode) +{ + return __d_obtain_alias(inode, false); +} +EXPORT_SYMBOL(d_obtain_root); + +/** + * d_add_ci - lookup or allocate new dentry with case-exact name + * @inode: the inode case-insensitive lookup has found + * @dentry: the negative dentry that was passed to the parent's lookup func + * @name: the case-exact name to be associated with the returned dentry + * + * This is to avoid filling the dcache with case-insensitive names to the + * same inode, only the actual correct case is stored in the dcache for + * case-insensitive filesystems. + * + * For a case-insensitive lookup match and if the case-exact dentry + * already exists in the dcache, use it and return it. + * + * If no entry exists with the exact case name, allocate new dentry with + * the exact case, and return the spliced entry. + */ +struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, + struct qstr *name) +{ + struct dentry *found, *res; + + /* + * First check if a dentry matching the name already exists, + * if not go ahead and create it now. + */ + found = d_hash_and_lookup(dentry->d_parent, name); + if (found) { + iput(inode); + return found; + } + if (d_in_lookup(dentry)) { + found = d_alloc_parallel(dentry->d_parent, name, + dentry->d_wait); + if (IS_ERR(found) || !d_in_lookup(found)) { + iput(inode); + return found; + } + } else { + found = d_alloc(dentry->d_parent, name); + if (!found) { + iput(inode); + return ERR_PTR(-ENOMEM); + } + } + res = d_splice_alias(inode, found); + if (res) { + d_lookup_done(found); + dput(found); + return res; + } + return found; +} +EXPORT_SYMBOL(d_add_ci); + +/** + * d_same_name - compare dentry name with case-exact name + * @parent: parent dentry + * @dentry: the negative dentry that was passed to the parent's lookup func + * @name: the case-exact name to be associated with the returned dentry + * + * Return: true if names are same, or false + */ +bool d_same_name(const struct dentry *dentry, const struct dentry *parent, + const struct qstr *name) +{ + if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { + if (dentry->d_name.len != name->len) + return false; + return dentry_cmp(dentry, name->name, name->len) == 0; + } + return parent->d_op->d_compare(dentry, + dentry->d_name.len, dentry->d_name.name, + name) == 0; +} +EXPORT_SYMBOL_GPL(d_same_name); + +/* + * This is __d_lookup_rcu() when the parent dentry has + * DCACHE_OP_COMPARE, which makes things much nastier. + */ +static noinline struct dentry *__d_lookup_rcu_op_compare( + const struct dentry *parent, + const struct qstr *name, + unsigned *seqp) +{ + u64 hashlen = name->hash_len; + struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); + struct hlist_bl_node *node; + struct dentry *dentry; + + hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { + int tlen; + const char *tname; + unsigned seq; + +seqretry: + seq = raw_seqcount_begin(&dentry->d_seq); + if (dentry->d_parent != parent) + continue; + if (d_unhashed(dentry)) + continue; + if (dentry->d_name.hash != hashlen_hash(hashlen)) + continue; + tlen = dentry->d_name.len; + tname = dentry->d_name.name; + /* we want a consistent (name,len) pair */ + if (read_seqcount_retry(&dentry->d_seq, seq)) { + cpu_relax(); + goto seqretry; + } + if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) + continue; + *seqp = seq; + return dentry; + } + return NULL; +} + +/** + * __d_lookup_rcu - search for a dentry (racy, store-free) + * @parent: parent dentry + * @name: qstr of name we wish to find + * @seqp: returns d_seq value at the point where the dentry was found + * Returns: dentry, or NULL + * + * __d_lookup_rcu is the dcache lookup function for rcu-walk name + * resolution (store-free path walking) design described in + * Documentation/filesystems/path-lookup.txt. + * + * This is not to be used outside core vfs. + * + * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock + * held, and rcu_read_lock held. The returned dentry must not be stored into + * without taking d_lock and checking d_seq sequence count against @seq + * returned here. + * + * A refcount may be taken on the found dentry with the d_rcu_to_refcount + * function. + * + * Alternatively, __d_lookup_rcu may be called again to look up the child of + * the returned dentry, so long as its parent's seqlock is checked after the + * child is looked up. Thus, an interlocking stepping of sequence lock checks + * is formed, giving integrity down the path walk. + * + * NOTE! The caller *has* to check the resulting dentry against the sequence + * number we've returned before using any of the resulting dentry state! + */ +struct dentry *__d_lookup_rcu(const struct dentry *parent, + const struct qstr *name, + unsigned *seqp) +{ + u64 hashlen = name->hash_len; + const unsigned char *str = name->name; + struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); + struct hlist_bl_node *node; + struct dentry *dentry; + + /* + * Note: There is significant duplication with __d_lookup_rcu which is + * required to prevent single threaded performance regressions + * especially on architectures where smp_rmb (in seqcounts) are costly. + * Keep the two functions in sync. + */ + + if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) + return __d_lookup_rcu_op_compare(parent, name, seqp); + + /* + * The hash list is protected using RCU. + * + * Carefully use d_seq when comparing a candidate dentry, to avoid + * races with d_move(). + * + * It is possible that concurrent renames can mess up our list + * walk here and result in missing our dentry, resulting in the + * false-negative result. d_lookup() protects against concurrent + * renames using rename_lock seqlock. + * + * See Documentation/filesystems/path-lookup.txt for more details. + */ + hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { + unsigned seq; + + /* + * The dentry sequence count protects us from concurrent + * renames, and thus protects parent and name fields. + * + * The caller must perform a seqcount check in order + * to do anything useful with the returned dentry. + * + * NOTE! We do a "raw" seqcount_begin here. That means that + * we don't wait for the sequence count to stabilize if it + * is in the middle of a sequence change. If we do the slow + * dentry compare, we will do seqretries until it is stable, + * and if we end up with a successful lookup, we actually + * want to exit RCU lookup anyway. + * + * Note that raw_seqcount_begin still *does* smp_rmb(), so + * we are still guaranteed NUL-termination of ->d_name.name. + */ + seq = raw_seqcount_begin(&dentry->d_seq); + if (dentry->d_parent != parent) + continue; + if (d_unhashed(dentry)) + continue; + if (dentry->d_name.hash_len != hashlen) + continue; + if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) + continue; + *seqp = seq; + return dentry; + } + return NULL; +} + +/** + * d_lookup - search for a dentry + * @parent: parent dentry + * @name: qstr of name we wish to find + * Returns: dentry, or NULL + * + * d_lookup searches the children of the parent dentry for the name in + * question. If the dentry is found its reference count is incremented and the + * dentry is returned. The caller must use dput to free the entry when it has + * finished using it. %NULL is returned if the dentry does not exist. + */ +struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) +{ + struct dentry *dentry; + unsigned seq; + + do { + seq = read_seqbegin(&rename_lock); + dentry = __d_lookup(parent, name); + if (dentry) + break; + } while (read_seqretry(&rename_lock, seq)); + return dentry; +} +EXPORT_SYMBOL(d_lookup); + +/** + * __d_lookup - search for a dentry (racy) + * @parent: parent dentry + * @name: qstr of name we wish to find + * Returns: dentry, or NULL + * + * __d_lookup is like d_lookup, however it may (rarely) return a + * false-negative result due to unrelated rename activity. + * + * __d_lookup is slightly faster by avoiding rename_lock read seqlock, + * however it must be used carefully, eg. with a following d_lookup in + * the case of failure. + * + * __d_lookup callers must be commented. + */ +struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) +{ + unsigned int hash = name->hash; + struct hlist_bl_head *b = d_hash(hash); + struct hlist_bl_node *node; + struct dentry *found = NULL; + struct dentry *dentry; + + /* + * Note: There is significant duplication with __d_lookup_rcu which is + * required to prevent single threaded performance regressions + * especially on architectures where smp_rmb (in seqcounts) are costly. + * Keep the two functions in sync. + */ + + /* + * The hash list is protected using RCU. + * + * Take d_lock when comparing a candidate dentry, to avoid races + * with d_move(). + * + * It is possible that concurrent renames can mess up our list + * walk here and result in missing our dentry, resulting in the + * false-negative result. d_lookup() protects against concurrent + * renames using rename_lock seqlock. + * + * See Documentation/filesystems/path-lookup.txt for more details. + */ + rcu_read_lock(); + + hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { + + if (dentry->d_name.hash != hash) + continue; + + spin_lock(&dentry->d_lock); + if (dentry->d_parent != parent) + goto next; + if (d_unhashed(dentry)) + goto next; + + if (!d_same_name(dentry, parent, name)) + goto next; + + dentry->d_lockref.count++; + found = dentry; + spin_unlock(&dentry->d_lock); + break; +next: + spin_unlock(&dentry->d_lock); + } + rcu_read_unlock(); + + return found; +} + +/** + * d_hash_and_lookup - hash the qstr then search for a dentry + * @dir: Directory to search in + * @name: qstr of name we wish to find + * + * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) + */ +struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) +{ + /* + * Check for a fs-specific hash function. Note that we must + * calculate the standard hash first, as the d_op->d_hash() + * routine may choose to leave the hash value unchanged. + */ + name->hash = full_name_hash(dir, name->name, name->len); + if (dir->d_flags & DCACHE_OP_HASH) { + int err = dir->d_op->d_hash(dir, name); + if (unlikely(err < 0)) + return ERR_PTR(err); + } + return d_lookup(dir, name); +} +EXPORT_SYMBOL(d_hash_and_lookup); + +/* + * When a file is deleted, we have two options: + * - turn this dentry into a negative dentry + * - unhash this dentry and free it. + * + * Usually, we want to just turn this into + * a negative dentry, but if anybody else is + * currently using the dentry or the inode + * we can't do that and we fall back on removing + * it from the hash queues and waiting for + * it to be deleted later when it has no users + */ + +/** + * d_delete - delete a dentry + * @dentry: The dentry to delete + * + * Turn the dentry into a negative dentry if possible, otherwise + * remove it from the hash queues so it can be deleted later + */ + +void d_delete(struct dentry * dentry) +{ + struct inode *inode = dentry->d_inode; + + spin_lock(&inode->i_lock); + spin_lock(&dentry->d_lock); + /* + * Are we the only user? + */ + if (dentry->d_lockref.count == 1) { + dentry->d_flags &= ~DCACHE_CANT_MOUNT; + dentry_unlink_inode(dentry); + } else { + __d_drop(dentry); + spin_unlock(&dentry->d_lock); + spin_unlock(&inode->i_lock); + } +} +EXPORT_SYMBOL(d_delete); + +static void __d_rehash(struct dentry *entry) +{ + struct hlist_bl_head *b = d_hash(entry->d_name.hash); + + hlist_bl_lock(b); + hlist_bl_add_head_rcu(&entry->d_hash, b); + hlist_bl_unlock(b); +} + +/** + * d_rehash - add an entry back to the hash + * @entry: dentry to add to the hash + * + * Adds a dentry to the hash according to its name. + */ + +void d_rehash(struct dentry * entry) +{ + spin_lock(&entry->d_lock); + __d_rehash(entry); + spin_unlock(&entry->d_lock); +} +EXPORT_SYMBOL(d_rehash); + +static inline unsigned start_dir_add(struct inode *dir) +{ + preempt_disable_nested(); + for (;;) { + unsigned n = dir->i_dir_seq; + if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) + return n; + cpu_relax(); + } +} + +static inline void end_dir_add(struct inode *dir, unsigned int n, + wait_queue_head_t *d_wait) +{ + smp_store_release(&dir->i_dir_seq, n + 2); + preempt_enable_nested(); + wake_up_all(d_wait); +} + +static void d_wait_lookup(struct dentry *dentry) +{ + if (d_in_lookup(dentry)) { + DECLARE_WAITQUEUE(wait, current); + add_wait_queue(dentry->d_wait, &wait); + do { + set_current_state(TASK_UNINTERRUPTIBLE); + spin_unlock(&dentry->d_lock); + schedule(); + spin_lock(&dentry->d_lock); + } while (d_in_lookup(dentry)); + } +} + +struct dentry *d_alloc_parallel(struct dentry *parent, + const struct qstr *name, + wait_queue_head_t *wq) +{ + unsigned int hash = name->hash; + struct hlist_bl_head *b = in_lookup_hash(parent, hash); + struct hlist_bl_node *node; + struct dentry *new = d_alloc(parent, name); + struct dentry *dentry; + unsigned seq, r_seq, d_seq; + + if (unlikely(!new)) + return ERR_PTR(-ENOMEM); + +retry: + rcu_read_lock(); + seq = smp_load_acquire(&parent->d_inode->i_dir_seq); + r_seq = read_seqbegin(&rename_lock); + dentry = __d_lookup_rcu(parent, name, &d_seq); + if (unlikely(dentry)) { + if (!lockref_get_not_dead(&dentry->d_lockref)) { + rcu_read_unlock(); + goto retry; + } + if (read_seqcount_retry(&dentry->d_seq, d_seq)) { + rcu_read_unlock(); + dput(dentry); + goto retry; + } + rcu_read_unlock(); + dput(new); + return dentry; + } + if (unlikely(read_seqretry(&rename_lock, r_seq))) { + rcu_read_unlock(); + goto retry; + } + + if (unlikely(seq & 1)) { + rcu_read_unlock(); + goto retry; + } + + hlist_bl_lock(b); + if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { + hlist_bl_unlock(b); + rcu_read_unlock(); + goto retry; + } + /* + * No changes for the parent since the beginning of d_lookup(). + * Since all removals from the chain happen with hlist_bl_lock(), + * any potential in-lookup matches are going to stay here until + * we unlock the chain. All fields are stable in everything + * we encounter. + */ + hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { + if (dentry->d_name.hash != hash) + continue; + if (dentry->d_parent != parent) + continue; + if (!d_same_name(dentry, parent, name)) + continue; + hlist_bl_unlock(b); + /* now we can try to grab a reference */ + if (!lockref_get_not_dead(&dentry->d_lockref)) { + rcu_read_unlock(); + goto retry; + } + + rcu_read_unlock(); + /* + * somebody is likely to be still doing lookup for it; + * wait for them to finish + */ + spin_lock(&dentry->d_lock); + d_wait_lookup(dentry); + /* + * it's not in-lookup anymore; in principle we should repeat + * everything from dcache lookup, but it's likely to be what + * d_lookup() would've found anyway. If it is, just return it; + * otherwise we really have to repeat the whole thing. + */ + if (unlikely(dentry->d_name.hash != hash)) + goto mismatch; + if (unlikely(dentry->d_parent != parent)) + goto mismatch; + if (unlikely(d_unhashed(dentry))) + goto mismatch; + if (unlikely(!d_same_name(dentry, parent, name))) + goto mismatch; + /* OK, it *is* a hashed match; return it */ + spin_unlock(&dentry->d_lock); + dput(new); + return dentry; + } + rcu_read_unlock(); + /* we can't take ->d_lock here; it's OK, though. */ + new->d_flags |= DCACHE_PAR_LOOKUP; + new->d_wait = wq; + hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); + hlist_bl_unlock(b); + return new; +mismatch: + spin_unlock(&dentry->d_lock); + dput(dentry); + goto retry; +} +EXPORT_SYMBOL(d_alloc_parallel); + +/* + * - Unhash the dentry + * - Retrieve and clear the waitqueue head in dentry + * - Return the waitqueue head + */ +static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) +{ + wait_queue_head_t *d_wait; + struct hlist_bl_head *b; + + lockdep_assert_held(&dentry->d_lock); + + b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); + hlist_bl_lock(b); + dentry->d_flags &= ~DCACHE_PAR_LOOKUP; + __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); + d_wait = dentry->d_wait; + dentry->d_wait = NULL; + hlist_bl_unlock(b); + INIT_HLIST_NODE(&dentry->d_u.d_alias); + INIT_LIST_HEAD(&dentry->d_lru); + return d_wait; +} + +void __d_lookup_unhash_wake(struct dentry *dentry) +{ + spin_lock(&dentry->d_lock); + wake_up_all(__d_lookup_unhash(dentry)); + spin_unlock(&dentry->d_lock); +} +EXPORT_SYMBOL(__d_lookup_unhash_wake); + +/* inode->i_lock held if inode is non-NULL */ + +static inline void __d_add(struct dentry *dentry, struct inode *inode) +{ + wait_queue_head_t *d_wait; + struct inode *dir = NULL; + unsigned n; + spin_lock(&dentry->d_lock); + if (unlikely(d_in_lookup(dentry))) { + dir = dentry->d_parent->d_inode; + n = start_dir_add(dir); + d_wait = __d_lookup_unhash(dentry); + } + if (inode) { + unsigned add_flags = d_flags_for_inode(inode); + hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); + raw_write_seqcount_begin(&dentry->d_seq); + __d_set_inode_and_type(dentry, inode, add_flags); + raw_write_seqcount_end(&dentry->d_seq); + fsnotify_update_flags(dentry); + } + __d_rehash(dentry); + if (dir) + end_dir_add(dir, n, d_wait); + spin_unlock(&dentry->d_lock); + if (inode) + spin_unlock(&inode->i_lock); +} + +/** + * d_add - add dentry to hash queues + * @entry: dentry to add + * @inode: The inode to attach to this dentry + * + * This adds the entry to the hash queues and initializes @inode. + * The entry was actually filled in earlier during d_alloc(). + */ + +void d_add(struct dentry *entry, struct inode *inode) +{ + if (inode) { + security_d_instantiate(entry, inode); + spin_lock(&inode->i_lock); + } + __d_add(entry, inode); +} +EXPORT_SYMBOL(d_add); + +/** + * d_exact_alias - find and hash an exact unhashed alias + * @entry: dentry to add + * @inode: The inode to go with this dentry + * + * If an unhashed dentry with the same name/parent and desired + * inode already exists, hash and return it. Otherwise, return + * NULL. + * + * Parent directory should be locked. + */ +struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) +{ + struct dentry *alias; + unsigned int hash = entry->d_name.hash; + + spin_lock(&inode->i_lock); + hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { + /* + * Don't need alias->d_lock here, because aliases with + * d_parent == entry->d_parent are not subject to name or + * parent changes, because the parent inode i_mutex is held. + */ + if (alias->d_name.hash != hash) + continue; + if (alias->d_parent != entry->d_parent) + continue; + if (!d_same_name(alias, entry->d_parent, &entry->d_name)) + continue; + spin_lock(&alias->d_lock); + if (!d_unhashed(alias)) { + spin_unlock(&alias->d_lock); + alias = NULL; + } else { + __dget_dlock(alias); + __d_rehash(alias); + spin_unlock(&alias->d_lock); + } + spin_unlock(&inode->i_lock); + return alias; + } + spin_unlock(&inode->i_lock); + return NULL; +} +EXPORT_SYMBOL(d_exact_alias); + +static void swap_names(struct dentry *dentry, struct dentry *target) +{ + if (unlikely(dname_external(target))) { + if (unlikely(dname_external(dentry))) { + /* + * Both external: swap the pointers + */ + swap(target->d_name.name, dentry->d_name.name); + } else { + /* + * dentry:internal, target:external. Steal target's + * storage and make target internal. + */ + memcpy(target->d_iname, dentry->d_name.name, + dentry->d_name.len + 1); + dentry->d_name.name = target->d_name.name; + target->d_name.name = target->d_iname; + } + } else { + if (unlikely(dname_external(dentry))) { + /* + * dentry:external, target:internal. Give dentry's + * storage to target and make dentry internal + */ + memcpy(dentry->d_iname, target->d_name.name, + target->d_name.len + 1); + target->d_name.name = dentry->d_name.name; + dentry->d_name.name = dentry->d_iname; + } else { + /* + * Both are internal. + */ + unsigned int i; + BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); + for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { + swap(((long *) &dentry->d_iname)[i], + ((long *) &target->d_iname)[i]); + } + } + } + swap(dentry->d_name.hash_len, target->d_name.hash_len); +} + +static void copy_name(struct dentry *dentry, struct dentry *target) +{ + struct external_name *old_name = NULL; + if (unlikely(dname_external(dentry))) + old_name = external_name(dentry); + if (unlikely(dname_external(target))) { + atomic_inc(&external_name(target)->u.count); + dentry->d_name = target->d_name; + } else { + memcpy(dentry->d_iname, target->d_name.name, + target->d_name.len + 1); + dentry->d_name.name = dentry->d_iname; + dentry->d_name.hash_len = target->d_name.hash_len; + } + if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) + kfree_rcu(old_name, u.head); +} + +/* + * __d_move - move a dentry + * @dentry: entry to move + * @target: new dentry + * @exchange: exchange the two dentries + * + * Update the dcache to reflect the move of a file name. Negative + * dcache entries should not be moved in this way. Caller must hold + * rename_lock, the i_mutex of the source and target directories, + * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). + */ +static void __d_move(struct dentry *dentry, struct dentry *target, + bool exchange) +{ + struct dentry *old_parent, *p; + wait_queue_head_t *d_wait; + struct inode *dir = NULL; + unsigned n; + + WARN_ON(!dentry->d_inode); + if (WARN_ON(dentry == target)) + return; + + BUG_ON(d_ancestor(target, dentry)); + old_parent = dentry->d_parent; + p = d_ancestor(old_parent, target); + if (IS_ROOT(dentry)) { + BUG_ON(p); + spin_lock(&target->d_parent->d_lock); + } else if (!p) { + /* target is not a descendent of dentry->d_parent */ + spin_lock(&target->d_parent->d_lock); + spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); + } else { + BUG_ON(p == dentry); + spin_lock(&old_parent->d_lock); + if (p != target) + spin_lock_nested(&target->d_parent->d_lock, + DENTRY_D_LOCK_NESTED); + } + spin_lock_nested(&dentry->d_lock, 2); + spin_lock_nested(&target->d_lock, 3); + + if (unlikely(d_in_lookup(target))) { + dir = target->d_parent->d_inode; + n = start_dir_add(dir); + d_wait = __d_lookup_unhash(target); + } + + write_seqcount_begin(&dentry->d_seq); + write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); + + /* unhash both */ + if (!d_unhashed(dentry)) + ___d_drop(dentry); + if (!d_unhashed(target)) + ___d_drop(target); + + /* ... and switch them in the tree */ + dentry->d_parent = target->d_parent; + if (!exchange) { + copy_name(dentry, target); + target->d_hash.pprev = NULL; + dentry->d_parent->d_lockref.count++; + if (dentry != old_parent) /* wasn't IS_ROOT */ + WARN_ON(!--old_parent->d_lockref.count); + } else { + target->d_parent = old_parent; + swap_names(dentry, target); + list_move(&target->d_child, &target->d_parent->d_subdirs); + __d_rehash(target); + fsnotify_update_flags(target); + } + list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); + __d_rehash(dentry); + fsnotify_update_flags(dentry); + fscrypt_handle_d_move(dentry); + + write_seqcount_end(&target->d_seq); + write_seqcount_end(&dentry->d_seq); + + if (dir) + end_dir_add(dir, n, d_wait); + + if (dentry->d_parent != old_parent) + spin_unlock(&dentry->d_parent->d_lock); + if (dentry != old_parent) + spin_unlock(&old_parent->d_lock); + spin_unlock(&target->d_lock); + spin_unlock(&dentry->d_lock); +} + +/* + * d_move - move a dentry + * @dentry: entry to move + * @target: new dentry + * + * Update the dcache to reflect the move of a file name. Negative + * dcache entries should not be moved in this way. See the locking + * requirements for __d_move. + */ +void d_move(struct dentry *dentry, struct dentry *target) +{ + write_seqlock(&rename_lock); + __d_move(dentry, target, false); + write_sequnlock(&rename_lock); +} +EXPORT_SYMBOL(d_move); + +/* + * d_exchange - exchange two dentries + * @dentry1: first dentry + * @dentry2: second dentry + */ +void d_exchange(struct dentry *dentry1, struct dentry *dentry2) +{ + write_seqlock(&rename_lock); + + WARN_ON(!dentry1->d_inode); + WARN_ON(!dentry2->d_inode); + WARN_ON(IS_ROOT(dentry1)); + WARN_ON(IS_ROOT(dentry2)); + + __d_move(dentry1, dentry2, true); + + write_sequnlock(&rename_lock); +} + +/** + * d_ancestor - search for an ancestor + * @p1: ancestor dentry + * @p2: child dentry + * + * Returns the ancestor dentry of p2 which is a child of p1, if p1 is + * an ancestor of p2, else NULL. + */ +struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) +{ + struct dentry *p; + + for (p = p2; !IS_ROOT(p); p = p->d_parent) { + if (p->d_parent == p1) + return p; + } + return NULL; +} + +/* + * This helper attempts to cope with remotely renamed directories + * + * It assumes that the caller is already holding + * dentry->d_parent->d_inode->i_mutex, and rename_lock + * + * Note: If ever the locking in lock_rename() changes, then please + * remember to update this too... + */ +static int __d_unalias(struct inode *inode, + struct dentry *dentry, struct dentry *alias) +{ + struct mutex *m1 = NULL; + struct rw_semaphore *m2 = NULL; + int ret = -ESTALE; + + /* If alias and dentry share a parent, then no extra locks required */ + if (alias->d_parent == dentry->d_parent) + goto out_unalias; + + /* See lock_rename() */ + if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) + goto out_err; + m1 = &dentry->d_sb->s_vfs_rename_mutex; + if (!inode_trylock_shared(alias->d_parent->d_inode)) + goto out_err; + m2 = &alias->d_parent->d_inode->i_rwsem; +out_unalias: + __d_move(alias, dentry, false); + ret = 0; +out_err: + if (m2) + up_read(m2); + if (m1) + mutex_unlock(m1); + return ret; +} + +/** + * d_splice_alias - splice a disconnected dentry into the tree if one exists + * @inode: the inode which may have a disconnected dentry + * @dentry: a negative dentry which we want to point to the inode. + * + * If inode is a directory and has an IS_ROOT alias, then d_move that in + * place of the given dentry and return it, else simply d_add the inode + * to the dentry and return NULL. + * + * If a non-IS_ROOT directory is found, the filesystem is corrupt, and + * we should error out: directories can't have multiple aliases. + * + * This is needed in the lookup routine of any filesystem that is exportable + * (via knfsd) so that we can build dcache paths to directories effectively. + * + * If a dentry was found and moved, then it is returned. Otherwise NULL + * is returned. This matches the expected return value of ->lookup. + * + * Cluster filesystems may call this function with a negative, hashed dentry. + * In that case, we know that the inode will be a regular file, and also this + * will only occur during atomic_open. So we need to check for the dentry + * being already hashed only in the final case. + */ +struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) +{ + if (IS_ERR(inode)) + return ERR_CAST(inode); + + BUG_ON(!d_unhashed(dentry)); + + if (!inode) + goto out; + + security_d_instantiate(dentry, inode); + spin_lock(&inode->i_lock); + if (S_ISDIR(inode->i_mode)) { + struct dentry *new = __d_find_any_alias(inode); + if (unlikely(new)) { + /* The reference to new ensures it remains an alias */ + spin_unlock(&inode->i_lock); + write_seqlock(&rename_lock); + if (unlikely(d_ancestor(new, dentry))) { + write_sequnlock(&rename_lock); + dput(new); + new = ERR_PTR(-ELOOP); + pr_warn_ratelimited( + "VFS: Lookup of '%s' in %s %s" + " would have caused loop\n", + dentry->d_name.name, + inode->i_sb->s_type->name, + inode->i_sb->s_id); + } else if (!IS_ROOT(new)) { + struct dentry *old_parent = dget(new->d_parent); + int err = __d_unalias(inode, dentry, new); + write_sequnlock(&rename_lock); + if (err) { + dput(new); + new = ERR_PTR(err); + } + dput(old_parent); + } else { + __d_move(new, dentry, false); + write_sequnlock(&rename_lock); + } + iput(inode); + return new; + } + } +out: + __d_add(dentry, inode); + return NULL; +} +EXPORT_SYMBOL(d_splice_alias); + +/* + * Test whether new_dentry is a subdirectory of old_dentry. + * + * Trivially implemented using the dcache structure + */ + +/** + * is_subdir - is new dentry a subdirectory of old_dentry + * @new_dentry: new dentry + * @old_dentry: old dentry + * + * Returns true if new_dentry is a subdirectory of the parent (at any depth). + * Returns false otherwise. + * Caller must ensure that "new_dentry" is pinned before calling is_subdir() + */ + +bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) +{ + bool result; + unsigned seq; + + if (new_dentry == old_dentry) + return true; + + do { + /* for restarting inner loop in case of seq retry */ + seq = read_seqbegin(&rename_lock); + /* + * Need rcu_readlock to protect against the d_parent trashing + * due to d_move + */ + rcu_read_lock(); + if (d_ancestor(old_dentry, new_dentry)) + result = true; + else + result = false; + rcu_read_unlock(); + } while (read_seqretry(&rename_lock, seq)); + + return result; +} +EXPORT_SYMBOL(is_subdir); + +static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) +{ + struct dentry *root = data; + if (dentry != root) { + if (d_unhashed(dentry) || !dentry->d_inode) + return D_WALK_SKIP; + + if (!(dentry->d_flags & DCACHE_GENOCIDE)) { + dentry->d_flags |= DCACHE_GENOCIDE; + dentry->d_lockref.count--; + } + } + return D_WALK_CONTINUE; +} + +void d_genocide(struct dentry *parent) +{ + d_walk(parent, parent, d_genocide_kill); +} + +void d_tmpfile(struct file *file, struct inode *inode) +{ + struct dentry *dentry = file->f_path.dentry; + + inode_dec_link_count(inode); + BUG_ON(dentry->d_name.name != dentry->d_iname || + !hlist_unhashed(&dentry->d_u.d_alias) || + !d_unlinked(dentry)); + spin_lock(&dentry->d_parent->d_lock); + spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); + dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", + (unsigned long long)inode->i_ino); + spin_unlock(&dentry->d_lock); + spin_unlock(&dentry->d_parent->d_lock); + d_instantiate(dentry, inode); +} +EXPORT_SYMBOL(d_tmpfile); + +static __initdata unsigned long dhash_entries; +static int __init set_dhash_entries(char *str) +{ + if (!str) + return 0; + dhash_entries = simple_strtoul(str, &str, 0); + return 1; +} +__setup("dhash_entries=", set_dhash_entries); + +static void __init dcache_init_early(void) +{ + /* If hashes are distributed across NUMA nodes, defer + * hash allocation until vmalloc space is available. + */ + if (hashdist) + return; + + dentry_hashtable = + alloc_large_system_hash("Dentry cache", + sizeof(struct hlist_bl_head), + dhash_entries, + 13, + HASH_EARLY | HASH_ZERO, + &d_hash_shift, + NULL, + 0, + 0); + d_hash_shift = 32 - d_hash_shift; +} + +static void __init dcache_init(void) +{ + /* + * A constructor could be added for stable state like the lists, + * but it is probably not worth it because of the cache nature + * of the dcache. + */ + dentry_cache = KMEM_CACHE_USERCOPY(dentry, + SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, + d_iname); + + /* Hash may have been set up in dcache_init_early */ + if (!hashdist) + return; + + dentry_hashtable = + alloc_large_system_hash("Dentry cache", + sizeof(struct hlist_bl_head), + dhash_entries, + 13, + HASH_ZERO, + &d_hash_shift, + NULL, + 0, + 0); + d_hash_shift = 32 - d_hash_shift; +} + +/* SLAB cache for __getname() consumers */ +struct kmem_cache *names_cachep __read_mostly; +EXPORT_SYMBOL(names_cachep); + +void __init vfs_caches_init_early(void) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) + INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); + + dcache_init_early(); + inode_init_early(); +} + +void __init vfs_caches_init(void) +{ + names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, + SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); + + dcache_init(); + inode_init(); + files_init(); + files_maxfiles_init(); + mnt_init(); + bdev_cache_init(); + chrdev_init(); +} |