diff options
Diffstat (limited to 'fs/f2fs/data.c')
-rw-r--r-- | fs/f2fs/data.c | 4285 |
1 files changed, 4285 insertions, 0 deletions
diff --git a/fs/f2fs/data.c b/fs/f2fs/data.c new file mode 100644 index 0000000000..f5f33926ac --- /dev/null +++ b/fs/f2fs/data.c @@ -0,0 +1,4285 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * fs/f2fs/data.c + * + * Copyright (c) 2012 Samsung Electronics Co., Ltd. + * http://www.samsung.com/ + */ +#include <linux/fs.h> +#include <linux/f2fs_fs.h> +#include <linux/buffer_head.h> +#include <linux/sched/mm.h> +#include <linux/mpage.h> +#include <linux/writeback.h> +#include <linux/pagevec.h> +#include <linux/blkdev.h> +#include <linux/bio.h> +#include <linux/blk-crypto.h> +#include <linux/swap.h> +#include <linux/prefetch.h> +#include <linux/uio.h> +#include <linux/sched/signal.h> +#include <linux/fiemap.h> +#include <linux/iomap.h> + +#include "f2fs.h" +#include "node.h" +#include "segment.h" +#include "iostat.h" +#include <trace/events/f2fs.h> + +#define NUM_PREALLOC_POST_READ_CTXS 128 + +static struct kmem_cache *bio_post_read_ctx_cache; +static struct kmem_cache *bio_entry_slab; +static mempool_t *bio_post_read_ctx_pool; +static struct bio_set f2fs_bioset; + +#define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE + +int __init f2fs_init_bioset(void) +{ + return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, + 0, BIOSET_NEED_BVECS); +} + +void f2fs_destroy_bioset(void) +{ + bioset_exit(&f2fs_bioset); +} + +static bool __is_cp_guaranteed(struct page *page) +{ + struct address_space *mapping = page->mapping; + struct inode *inode; + struct f2fs_sb_info *sbi; + + if (!mapping) + return false; + + inode = mapping->host; + sbi = F2FS_I_SB(inode); + + if (inode->i_ino == F2FS_META_INO(sbi) || + inode->i_ino == F2FS_NODE_INO(sbi) || + S_ISDIR(inode->i_mode)) + return true; + + if (f2fs_is_compressed_page(page)) + return false; + if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || + page_private_gcing(page)) + return true; + return false; +} + +static enum count_type __read_io_type(struct page *page) +{ + struct address_space *mapping = page_file_mapping(page); + + if (mapping) { + struct inode *inode = mapping->host; + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + + if (inode->i_ino == F2FS_META_INO(sbi)) + return F2FS_RD_META; + + if (inode->i_ino == F2FS_NODE_INO(sbi)) + return F2FS_RD_NODE; + } + return F2FS_RD_DATA; +} + +/* postprocessing steps for read bios */ +enum bio_post_read_step { +#ifdef CONFIG_FS_ENCRYPTION + STEP_DECRYPT = BIT(0), +#else + STEP_DECRYPT = 0, /* compile out the decryption-related code */ +#endif +#ifdef CONFIG_F2FS_FS_COMPRESSION + STEP_DECOMPRESS = BIT(1), +#else + STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ +#endif +#ifdef CONFIG_FS_VERITY + STEP_VERITY = BIT(2), +#else + STEP_VERITY = 0, /* compile out the verity-related code */ +#endif +}; + +struct bio_post_read_ctx { + struct bio *bio; + struct f2fs_sb_info *sbi; + struct work_struct work; + unsigned int enabled_steps; + /* + * decompression_attempted keeps track of whether + * f2fs_end_read_compressed_page() has been called on the pages in the + * bio that belong to a compressed cluster yet. + */ + bool decompression_attempted; + block_t fs_blkaddr; +}; + +/* + * Update and unlock a bio's pages, and free the bio. + * + * This marks pages up-to-date only if there was no error in the bio (I/O error, + * decryption error, or verity error), as indicated by bio->bi_status. + * + * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) + * aren't marked up-to-date here, as decompression is done on a per-compression- + * cluster basis rather than a per-bio basis. Instead, we only must do two + * things for each compressed page here: call f2fs_end_read_compressed_page() + * with failed=true if an error occurred before it would have normally gotten + * called (i.e., I/O error or decryption error, but *not* verity error), and + * release the bio's reference to the decompress_io_ctx of the page's cluster. + */ +static void f2fs_finish_read_bio(struct bio *bio, bool in_task) +{ + struct bio_vec *bv; + struct bvec_iter_all iter_all; + struct bio_post_read_ctx *ctx = bio->bi_private; + + bio_for_each_segment_all(bv, bio, iter_all) { + struct page *page = bv->bv_page; + + if (f2fs_is_compressed_page(page)) { + if (ctx && !ctx->decompression_attempted) + f2fs_end_read_compressed_page(page, true, 0, + in_task); + f2fs_put_page_dic(page, in_task); + continue; + } + + if (bio->bi_status) + ClearPageUptodate(page); + else + SetPageUptodate(page); + dec_page_count(F2FS_P_SB(page), __read_io_type(page)); + unlock_page(page); + } + + if (ctx) + mempool_free(ctx, bio_post_read_ctx_pool); + bio_put(bio); +} + +static void f2fs_verify_bio(struct work_struct *work) +{ + struct bio_post_read_ctx *ctx = + container_of(work, struct bio_post_read_ctx, work); + struct bio *bio = ctx->bio; + bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); + + /* + * fsverity_verify_bio() may call readahead() again, and while verity + * will be disabled for this, decryption and/or decompression may still + * be needed, resulting in another bio_post_read_ctx being allocated. + * So to prevent deadlocks we need to release the current ctx to the + * mempool first. This assumes that verity is the last post-read step. + */ + mempool_free(ctx, bio_post_read_ctx_pool); + bio->bi_private = NULL; + + /* + * Verify the bio's pages with fs-verity. Exclude compressed pages, + * as those were handled separately by f2fs_end_read_compressed_page(). + */ + if (may_have_compressed_pages) { + struct bio_vec *bv; + struct bvec_iter_all iter_all; + + bio_for_each_segment_all(bv, bio, iter_all) { + struct page *page = bv->bv_page; + + if (!f2fs_is_compressed_page(page) && + !fsverity_verify_page(page)) { + bio->bi_status = BLK_STS_IOERR; + break; + } + } + } else { + fsverity_verify_bio(bio); + } + + f2fs_finish_read_bio(bio, true); +} + +/* + * If the bio's data needs to be verified with fs-verity, then enqueue the + * verity work for the bio. Otherwise finish the bio now. + * + * Note that to avoid deadlocks, the verity work can't be done on the + * decryption/decompression workqueue. This is because verifying the data pages + * can involve reading verity metadata pages from the file, and these verity + * metadata pages may be encrypted and/or compressed. + */ +static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) +{ + struct bio_post_read_ctx *ctx = bio->bi_private; + + if (ctx && (ctx->enabled_steps & STEP_VERITY)) { + INIT_WORK(&ctx->work, f2fs_verify_bio); + fsverity_enqueue_verify_work(&ctx->work); + } else { + f2fs_finish_read_bio(bio, in_task); + } +} + +/* + * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last + * remaining page was read by @ctx->bio. + * + * Note that a bio may span clusters (even a mix of compressed and uncompressed + * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates + * that the bio includes at least one compressed page. The actual decompression + * is done on a per-cluster basis, not a per-bio basis. + */ +static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, + bool in_task) +{ + struct bio_vec *bv; + struct bvec_iter_all iter_all; + bool all_compressed = true; + block_t blkaddr = ctx->fs_blkaddr; + + bio_for_each_segment_all(bv, ctx->bio, iter_all) { + struct page *page = bv->bv_page; + + if (f2fs_is_compressed_page(page)) + f2fs_end_read_compressed_page(page, false, blkaddr, + in_task); + else + all_compressed = false; + + blkaddr++; + } + + ctx->decompression_attempted = true; + + /* + * Optimization: if all the bio's pages are compressed, then scheduling + * the per-bio verity work is unnecessary, as verity will be fully + * handled at the compression cluster level. + */ + if (all_compressed) + ctx->enabled_steps &= ~STEP_VERITY; +} + +static void f2fs_post_read_work(struct work_struct *work) +{ + struct bio_post_read_ctx *ctx = + container_of(work, struct bio_post_read_ctx, work); + struct bio *bio = ctx->bio; + + if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { + f2fs_finish_read_bio(bio, true); + return; + } + + if (ctx->enabled_steps & STEP_DECOMPRESS) + f2fs_handle_step_decompress(ctx, true); + + f2fs_verify_and_finish_bio(bio, true); +} + +static void f2fs_read_end_io(struct bio *bio) +{ + struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); + struct bio_post_read_ctx *ctx; + bool intask = in_task(); + + iostat_update_and_unbind_ctx(bio); + ctx = bio->bi_private; + + if (time_to_inject(sbi, FAULT_READ_IO)) + bio->bi_status = BLK_STS_IOERR; + + if (bio->bi_status) { + f2fs_finish_read_bio(bio, intask); + return; + } + + if (ctx) { + unsigned int enabled_steps = ctx->enabled_steps & + (STEP_DECRYPT | STEP_DECOMPRESS); + + /* + * If we have only decompression step between decompression and + * decrypt, we don't need post processing for this. + */ + if (enabled_steps == STEP_DECOMPRESS && + !f2fs_low_mem_mode(sbi)) { + f2fs_handle_step_decompress(ctx, intask); + } else if (enabled_steps) { + INIT_WORK(&ctx->work, f2fs_post_read_work); + queue_work(ctx->sbi->post_read_wq, &ctx->work); + return; + } + } + + f2fs_verify_and_finish_bio(bio, intask); +} + +static void f2fs_write_end_io(struct bio *bio) +{ + struct f2fs_sb_info *sbi; + struct bio_vec *bvec; + struct bvec_iter_all iter_all; + + iostat_update_and_unbind_ctx(bio); + sbi = bio->bi_private; + + if (time_to_inject(sbi, FAULT_WRITE_IO)) + bio->bi_status = BLK_STS_IOERR; + + bio_for_each_segment_all(bvec, bio, iter_all) { + struct page *page = bvec->bv_page; + enum count_type type = WB_DATA_TYPE(page); + + if (page_private_dummy(page)) { + clear_page_private_dummy(page); + unlock_page(page); + mempool_free(page, sbi->write_io_dummy); + + if (unlikely(bio->bi_status)) + f2fs_stop_checkpoint(sbi, true, + STOP_CP_REASON_WRITE_FAIL); + continue; + } + + fscrypt_finalize_bounce_page(&page); + +#ifdef CONFIG_F2FS_FS_COMPRESSION + if (f2fs_is_compressed_page(page)) { + f2fs_compress_write_end_io(bio, page); + continue; + } +#endif + + if (unlikely(bio->bi_status)) { + mapping_set_error(page->mapping, -EIO); + if (type == F2FS_WB_CP_DATA) + f2fs_stop_checkpoint(sbi, true, + STOP_CP_REASON_WRITE_FAIL); + } + + f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && + page->index != nid_of_node(page)); + + dec_page_count(sbi, type); + if (f2fs_in_warm_node_list(sbi, page)) + f2fs_del_fsync_node_entry(sbi, page); + clear_page_private_gcing(page); + end_page_writeback(page); + } + if (!get_pages(sbi, F2FS_WB_CP_DATA) && + wq_has_sleeper(&sbi->cp_wait)) + wake_up(&sbi->cp_wait); + + bio_put(bio); +} + +#ifdef CONFIG_BLK_DEV_ZONED +static void f2fs_zone_write_end_io(struct bio *bio) +{ + struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; + + bio->bi_private = io->bi_private; + complete(&io->zone_wait); + f2fs_write_end_io(bio); +} +#endif + +struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, + block_t blk_addr, sector_t *sector) +{ + struct block_device *bdev = sbi->sb->s_bdev; + int i; + + if (f2fs_is_multi_device(sbi)) { + for (i = 0; i < sbi->s_ndevs; i++) { + if (FDEV(i).start_blk <= blk_addr && + FDEV(i).end_blk >= blk_addr) { + blk_addr -= FDEV(i).start_blk; + bdev = FDEV(i).bdev; + break; + } + } + } + + if (sector) + *sector = SECTOR_FROM_BLOCK(blk_addr); + return bdev; +} + +int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) +{ + int i; + + if (!f2fs_is_multi_device(sbi)) + return 0; + + for (i = 0; i < sbi->s_ndevs; i++) + if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) + return i; + return 0; +} + +static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) +{ + unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); + unsigned int fua_flag, meta_flag, io_flag; + blk_opf_t op_flags = 0; + + if (fio->op != REQ_OP_WRITE) + return 0; + if (fio->type == DATA) + io_flag = fio->sbi->data_io_flag; + else if (fio->type == NODE) + io_flag = fio->sbi->node_io_flag; + else + return 0; + + fua_flag = io_flag & temp_mask; + meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; + + /* + * data/node io flag bits per temp: + * REQ_META | REQ_FUA | + * 5 | 4 | 3 | 2 | 1 | 0 | + * Cold | Warm | Hot | Cold | Warm | Hot | + */ + if (BIT(fio->temp) & meta_flag) + op_flags |= REQ_META; + if (BIT(fio->temp) & fua_flag) + op_flags |= REQ_FUA; + return op_flags; +} + +static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) +{ + struct f2fs_sb_info *sbi = fio->sbi; + struct block_device *bdev; + sector_t sector; + struct bio *bio; + + bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); + bio = bio_alloc_bioset(bdev, npages, + fio->op | fio->op_flags | f2fs_io_flags(fio), + GFP_NOIO, &f2fs_bioset); + bio->bi_iter.bi_sector = sector; + if (is_read_io(fio->op)) { + bio->bi_end_io = f2fs_read_end_io; + bio->bi_private = NULL; + } else { + bio->bi_end_io = f2fs_write_end_io; + bio->bi_private = sbi; + } + iostat_alloc_and_bind_ctx(sbi, bio, NULL); + + if (fio->io_wbc) + wbc_init_bio(fio->io_wbc, bio); + + return bio; +} + +static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, + pgoff_t first_idx, + const struct f2fs_io_info *fio, + gfp_t gfp_mask) +{ + /* + * The f2fs garbage collector sets ->encrypted_page when it wants to + * read/write raw data without encryption. + */ + if (!fio || !fio->encrypted_page) + fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); +} + +static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, + pgoff_t next_idx, + const struct f2fs_io_info *fio) +{ + /* + * The f2fs garbage collector sets ->encrypted_page when it wants to + * read/write raw data without encryption. + */ + if (fio && fio->encrypted_page) + return !bio_has_crypt_ctx(bio); + + return fscrypt_mergeable_bio(bio, inode, next_idx); +} + +void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, + enum page_type type) +{ + WARN_ON_ONCE(!is_read_io(bio_op(bio))); + trace_f2fs_submit_read_bio(sbi->sb, type, bio); + + iostat_update_submit_ctx(bio, type); + submit_bio(bio); +} + +static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio) +{ + unsigned int start = + (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi); + + if (start == 0) + return; + + /* fill dummy pages */ + for (; start < F2FS_IO_SIZE(sbi); start++) { + struct page *page = + mempool_alloc(sbi->write_io_dummy, + GFP_NOIO | __GFP_NOFAIL); + f2fs_bug_on(sbi, !page); + + lock_page(page); + + zero_user_segment(page, 0, PAGE_SIZE); + set_page_private_dummy(page); + + if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) + f2fs_bug_on(sbi, 1); + } +} + +static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, + enum page_type type) +{ + WARN_ON_ONCE(is_read_io(bio_op(bio))); + + if (type == DATA || type == NODE) { + if (f2fs_lfs_mode(sbi) && current->plug) + blk_finish_plug(current->plug); + + if (F2FS_IO_ALIGNED(sbi)) { + f2fs_align_write_bio(sbi, bio); + /* + * In the NODE case, we lose next block address chain. + * So, we need to do checkpoint in f2fs_sync_file. + */ + if (type == NODE) + set_sbi_flag(sbi, SBI_NEED_CP); + } + } + + trace_f2fs_submit_write_bio(sbi->sb, type, bio); + iostat_update_submit_ctx(bio, type); + submit_bio(bio); +} + +static void __submit_merged_bio(struct f2fs_bio_info *io) +{ + struct f2fs_io_info *fio = &io->fio; + + if (!io->bio) + return; + + if (is_read_io(fio->op)) { + trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); + f2fs_submit_read_bio(io->sbi, io->bio, fio->type); + } else { + trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); + f2fs_submit_write_bio(io->sbi, io->bio, fio->type); + } + io->bio = NULL; +} + +static bool __has_merged_page(struct bio *bio, struct inode *inode, + struct page *page, nid_t ino) +{ + struct bio_vec *bvec; + struct bvec_iter_all iter_all; + + if (!bio) + return false; + + if (!inode && !page && !ino) + return true; + + bio_for_each_segment_all(bvec, bio, iter_all) { + struct page *target = bvec->bv_page; + + if (fscrypt_is_bounce_page(target)) { + target = fscrypt_pagecache_page(target); + if (IS_ERR(target)) + continue; + } + if (f2fs_is_compressed_page(target)) { + target = f2fs_compress_control_page(target); + if (IS_ERR(target)) + continue; + } + + if (inode && inode == target->mapping->host) + return true; + if (page && page == target) + return true; + if (ino && ino == ino_of_node(target)) + return true; + } + + return false; +} + +int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) +{ + int i; + + for (i = 0; i < NR_PAGE_TYPE; i++) { + int n = (i == META) ? 1 : NR_TEMP_TYPE; + int j; + + sbi->write_io[i] = f2fs_kmalloc(sbi, + array_size(n, sizeof(struct f2fs_bio_info)), + GFP_KERNEL); + if (!sbi->write_io[i]) + return -ENOMEM; + + for (j = HOT; j < n; j++) { + init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); + sbi->write_io[i][j].sbi = sbi; + sbi->write_io[i][j].bio = NULL; + spin_lock_init(&sbi->write_io[i][j].io_lock); + INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); + INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); + init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); +#ifdef CONFIG_BLK_DEV_ZONED + init_completion(&sbi->write_io[i][j].zone_wait); + sbi->write_io[i][j].zone_pending_bio = NULL; + sbi->write_io[i][j].bi_private = NULL; +#endif + } + } + + return 0; +} + +static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, + enum page_type type, enum temp_type temp) +{ + enum page_type btype = PAGE_TYPE_OF_BIO(type); + struct f2fs_bio_info *io = sbi->write_io[btype] + temp; + + f2fs_down_write(&io->io_rwsem); + + if (!io->bio) + goto unlock_out; + + /* change META to META_FLUSH in the checkpoint procedure */ + if (type >= META_FLUSH) { + io->fio.type = META_FLUSH; + io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; + if (!test_opt(sbi, NOBARRIER)) + io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; + } + __submit_merged_bio(io); +unlock_out: + f2fs_up_write(&io->io_rwsem); +} + +static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, + struct inode *inode, struct page *page, + nid_t ino, enum page_type type, bool force) +{ + enum temp_type temp; + bool ret = true; + + for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { + if (!force) { + enum page_type btype = PAGE_TYPE_OF_BIO(type); + struct f2fs_bio_info *io = sbi->write_io[btype] + temp; + + f2fs_down_read(&io->io_rwsem); + ret = __has_merged_page(io->bio, inode, page, ino); + f2fs_up_read(&io->io_rwsem); + } + if (ret) + __f2fs_submit_merged_write(sbi, type, temp); + + /* TODO: use HOT temp only for meta pages now. */ + if (type >= META) + break; + } +} + +void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) +{ + __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); +} + +void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, + struct inode *inode, struct page *page, + nid_t ino, enum page_type type) +{ + __submit_merged_write_cond(sbi, inode, page, ino, type, false); +} + +void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) +{ + f2fs_submit_merged_write(sbi, DATA); + f2fs_submit_merged_write(sbi, NODE); + f2fs_submit_merged_write(sbi, META); +} + +/* + * Fill the locked page with data located in the block address. + * A caller needs to unlock the page on failure. + */ +int f2fs_submit_page_bio(struct f2fs_io_info *fio) +{ + struct bio *bio; + struct page *page = fio->encrypted_page ? + fio->encrypted_page : fio->page; + + if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, + fio->is_por ? META_POR : (__is_meta_io(fio) ? + META_GENERIC : DATA_GENERIC_ENHANCE))) { + f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); + return -EFSCORRUPTED; + } + + trace_f2fs_submit_page_bio(page, fio); + + /* Allocate a new bio */ + bio = __bio_alloc(fio, 1); + + f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, + fio->page->index, fio, GFP_NOIO); + + if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { + bio_put(bio); + return -EFAULT; + } + + if (fio->io_wbc && !is_read_io(fio->op)) + wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); + + inc_page_count(fio->sbi, is_read_io(fio->op) ? + __read_io_type(page) : WB_DATA_TYPE(fio->page)); + + if (is_read_io(bio_op(bio))) + f2fs_submit_read_bio(fio->sbi, bio, fio->type); + else + f2fs_submit_write_bio(fio->sbi, bio, fio->type); + return 0; +} + +static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, + block_t last_blkaddr, block_t cur_blkaddr) +{ + if (unlikely(sbi->max_io_bytes && + bio->bi_iter.bi_size >= sbi->max_io_bytes)) + return false; + if (last_blkaddr + 1 != cur_blkaddr) + return false; + return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); +} + +static bool io_type_is_mergeable(struct f2fs_bio_info *io, + struct f2fs_io_info *fio) +{ + if (io->fio.op != fio->op) + return false; + return io->fio.op_flags == fio->op_flags; +} + +static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, + struct f2fs_bio_info *io, + struct f2fs_io_info *fio, + block_t last_blkaddr, + block_t cur_blkaddr) +{ + if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { + unsigned int filled_blocks = + F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); + unsigned int io_size = F2FS_IO_SIZE(sbi); + unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; + + /* IOs in bio is aligned and left space of vectors is not enough */ + if (!(filled_blocks % io_size) && left_vecs < io_size) + return false; + } + if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) + return false; + return io_type_is_mergeable(io, fio); +} + +static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, + struct page *page, enum temp_type temp) +{ + struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; + struct bio_entry *be; + + be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); + be->bio = bio; + bio_get(bio); + + if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) + f2fs_bug_on(sbi, 1); + + f2fs_down_write(&io->bio_list_lock); + list_add_tail(&be->list, &io->bio_list); + f2fs_up_write(&io->bio_list_lock); +} + +static void del_bio_entry(struct bio_entry *be) +{ + list_del(&be->list); + kmem_cache_free(bio_entry_slab, be); +} + +static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, + struct page *page) +{ + struct f2fs_sb_info *sbi = fio->sbi; + enum temp_type temp; + bool found = false; + int ret = -EAGAIN; + + for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { + struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; + struct list_head *head = &io->bio_list; + struct bio_entry *be; + + f2fs_down_write(&io->bio_list_lock); + list_for_each_entry(be, head, list) { + if (be->bio != *bio) + continue; + + found = true; + + f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, + *fio->last_block, + fio->new_blkaddr)); + if (f2fs_crypt_mergeable_bio(*bio, + fio->page->mapping->host, + fio->page->index, fio) && + bio_add_page(*bio, page, PAGE_SIZE, 0) == + PAGE_SIZE) { + ret = 0; + break; + } + + /* page can't be merged into bio; submit the bio */ + del_bio_entry(be); + f2fs_submit_write_bio(sbi, *bio, DATA); + break; + } + f2fs_up_write(&io->bio_list_lock); + } + + if (ret) { + bio_put(*bio); + *bio = NULL; + } + + return ret; +} + +void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, + struct bio **bio, struct page *page) +{ + enum temp_type temp; + bool found = false; + struct bio *target = bio ? *bio : NULL; + + f2fs_bug_on(sbi, !target && !page); + + for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { + struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; + struct list_head *head = &io->bio_list; + struct bio_entry *be; + + if (list_empty(head)) + continue; + + f2fs_down_read(&io->bio_list_lock); + list_for_each_entry(be, head, list) { + if (target) + found = (target == be->bio); + else + found = __has_merged_page(be->bio, NULL, + page, 0); + if (found) + break; + } + f2fs_up_read(&io->bio_list_lock); + + if (!found) + continue; + + found = false; + + f2fs_down_write(&io->bio_list_lock); + list_for_each_entry(be, head, list) { + if (target) + found = (target == be->bio); + else + found = __has_merged_page(be->bio, NULL, + page, 0); + if (found) { + target = be->bio; + del_bio_entry(be); + break; + } + } + f2fs_up_write(&io->bio_list_lock); + } + + if (found) + f2fs_submit_write_bio(sbi, target, DATA); + if (bio && *bio) { + bio_put(*bio); + *bio = NULL; + } +} + +int f2fs_merge_page_bio(struct f2fs_io_info *fio) +{ + struct bio *bio = *fio->bio; + struct page *page = fio->encrypted_page ? + fio->encrypted_page : fio->page; + + if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, + __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) { + f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); + return -EFSCORRUPTED; + } + + trace_f2fs_submit_page_bio(page, fio); + + if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, + fio->new_blkaddr)) + f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); +alloc_new: + if (!bio) { + bio = __bio_alloc(fio, BIO_MAX_VECS); + f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, + fio->page->index, fio, GFP_NOIO); + + add_bio_entry(fio->sbi, bio, page, fio->temp); + } else { + if (add_ipu_page(fio, &bio, page)) + goto alloc_new; + } + + if (fio->io_wbc) + wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); + + inc_page_count(fio->sbi, WB_DATA_TYPE(page)); + + *fio->last_block = fio->new_blkaddr; + *fio->bio = bio; + + return 0; +} + +#ifdef CONFIG_BLK_DEV_ZONED +static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) +{ + int devi = 0; + + if (f2fs_is_multi_device(sbi)) { + devi = f2fs_target_device_index(sbi, blkaddr); + if (blkaddr < FDEV(devi).start_blk || + blkaddr > FDEV(devi).end_blk) { + f2fs_err(sbi, "Invalid block %x", blkaddr); + return false; + } + blkaddr -= FDEV(devi).start_blk; + } + return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM && + f2fs_blkz_is_seq(sbi, devi, blkaddr) && + (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); +} +#endif + +void f2fs_submit_page_write(struct f2fs_io_info *fio) +{ + struct f2fs_sb_info *sbi = fio->sbi; + enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); + struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; + struct page *bio_page; + + f2fs_bug_on(sbi, is_read_io(fio->op)); + + f2fs_down_write(&io->io_rwsem); + +#ifdef CONFIG_BLK_DEV_ZONED + if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { + wait_for_completion_io(&io->zone_wait); + bio_put(io->zone_pending_bio); + io->zone_pending_bio = NULL; + io->bi_private = NULL; + } +#endif + +next: + if (fio->in_list) { + spin_lock(&io->io_lock); + if (list_empty(&io->io_list)) { + spin_unlock(&io->io_lock); + goto out; + } + fio = list_first_entry(&io->io_list, + struct f2fs_io_info, list); + list_del(&fio->list); + spin_unlock(&io->io_lock); + } + + verify_fio_blkaddr(fio); + + if (fio->encrypted_page) + bio_page = fio->encrypted_page; + else if (fio->compressed_page) + bio_page = fio->compressed_page; + else + bio_page = fio->page; + + /* set submitted = true as a return value */ + fio->submitted = 1; + + inc_page_count(sbi, WB_DATA_TYPE(bio_page)); + + if (io->bio && + (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, + fio->new_blkaddr) || + !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, + bio_page->index, fio))) + __submit_merged_bio(io); +alloc_new: + if (io->bio == NULL) { + if (F2FS_IO_ALIGNED(sbi) && + (fio->type == DATA || fio->type == NODE) && + fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { + dec_page_count(sbi, WB_DATA_TYPE(bio_page)); + fio->retry = 1; + goto skip; + } + io->bio = __bio_alloc(fio, BIO_MAX_VECS); + f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, + bio_page->index, fio, GFP_NOIO); + io->fio = *fio; + } + + if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { + __submit_merged_bio(io); + goto alloc_new; + } + + if (fio->io_wbc) + wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); + + io->last_block_in_bio = fio->new_blkaddr; + + trace_f2fs_submit_page_write(fio->page, fio); +skip: + if (fio->in_list) + goto next; +out: +#ifdef CONFIG_BLK_DEV_ZONED + if (f2fs_sb_has_blkzoned(sbi) && btype < META && + is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { + bio_get(io->bio); + reinit_completion(&io->zone_wait); + io->bi_private = io->bio->bi_private; + io->bio->bi_private = io; + io->bio->bi_end_io = f2fs_zone_write_end_io; + io->zone_pending_bio = io->bio; + __submit_merged_bio(io); + } +#endif + if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || + !f2fs_is_checkpoint_ready(sbi)) + __submit_merged_bio(io); + f2fs_up_write(&io->io_rwsem); +} + +static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, + unsigned nr_pages, blk_opf_t op_flag, + pgoff_t first_idx, bool for_write) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + struct bio *bio; + struct bio_post_read_ctx *ctx = NULL; + unsigned int post_read_steps = 0; + sector_t sector; + struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); + + bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), + REQ_OP_READ | op_flag, + for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); + if (!bio) + return ERR_PTR(-ENOMEM); + bio->bi_iter.bi_sector = sector; + f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); + bio->bi_end_io = f2fs_read_end_io; + + if (fscrypt_inode_uses_fs_layer_crypto(inode)) + post_read_steps |= STEP_DECRYPT; + + if (f2fs_need_verity(inode, first_idx)) + post_read_steps |= STEP_VERITY; + + /* + * STEP_DECOMPRESS is handled specially, since a compressed file might + * contain both compressed and uncompressed clusters. We'll allocate a + * bio_post_read_ctx if the file is compressed, but the caller is + * responsible for enabling STEP_DECOMPRESS if it's actually needed. + */ + + if (post_read_steps || f2fs_compressed_file(inode)) { + /* Due to the mempool, this never fails. */ + ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); + ctx->bio = bio; + ctx->sbi = sbi; + ctx->enabled_steps = post_read_steps; + ctx->fs_blkaddr = blkaddr; + ctx->decompression_attempted = false; + bio->bi_private = ctx; + } + iostat_alloc_and_bind_ctx(sbi, bio, ctx); + + return bio; +} + +/* This can handle encryption stuffs */ +static int f2fs_submit_page_read(struct inode *inode, struct page *page, + block_t blkaddr, blk_opf_t op_flags, + bool for_write) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + struct bio *bio; + + bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, + page->index, for_write); + if (IS_ERR(bio)) + return PTR_ERR(bio); + + /* wait for GCed page writeback via META_MAPPING */ + f2fs_wait_on_block_writeback(inode, blkaddr); + + if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { + iostat_update_and_unbind_ctx(bio); + if (bio->bi_private) + mempool_free(bio->bi_private, bio_post_read_ctx_pool); + bio_put(bio); + return -EFAULT; + } + inc_page_count(sbi, F2FS_RD_DATA); + f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); + f2fs_submit_read_bio(sbi, bio, DATA); + return 0; +} + +static void __set_data_blkaddr(struct dnode_of_data *dn) +{ + struct f2fs_node *rn = F2FS_NODE(dn->node_page); + __le32 *addr_array; + int base = 0; + + if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) + base = get_extra_isize(dn->inode); + + /* Get physical address of data block */ + addr_array = blkaddr_in_node(rn); + addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); +} + +/* + * Lock ordering for the change of data block address: + * ->data_page + * ->node_page + * update block addresses in the node page + */ +void f2fs_set_data_blkaddr(struct dnode_of_data *dn) +{ + f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); + __set_data_blkaddr(dn); + if (set_page_dirty(dn->node_page)) + dn->node_changed = true; +} + +void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) +{ + dn->data_blkaddr = blkaddr; + f2fs_set_data_blkaddr(dn); + f2fs_update_read_extent_cache(dn); +} + +/* dn->ofs_in_node will be returned with up-to-date last block pointer */ +int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); + int err; + + if (!count) + return 0; + + if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) + return -EPERM; + if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) + return err; + + trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, + dn->ofs_in_node, count); + + f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); + + for (; count > 0; dn->ofs_in_node++) { + block_t blkaddr = f2fs_data_blkaddr(dn); + + if (blkaddr == NULL_ADDR) { + dn->data_blkaddr = NEW_ADDR; + __set_data_blkaddr(dn); + count--; + } + } + + if (set_page_dirty(dn->node_page)) + dn->node_changed = true; + return 0; +} + +/* Should keep dn->ofs_in_node unchanged */ +int f2fs_reserve_new_block(struct dnode_of_data *dn) +{ + unsigned int ofs_in_node = dn->ofs_in_node; + int ret; + + ret = f2fs_reserve_new_blocks(dn, 1); + dn->ofs_in_node = ofs_in_node; + return ret; +} + +int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) +{ + bool need_put = dn->inode_page ? false : true; + int err; + + err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); + if (err) + return err; + + if (dn->data_blkaddr == NULL_ADDR) + err = f2fs_reserve_new_block(dn); + if (err || need_put) + f2fs_put_dnode(dn); + return err; +} + +struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, + blk_opf_t op_flags, bool for_write, + pgoff_t *next_pgofs) +{ + struct address_space *mapping = inode->i_mapping; + struct dnode_of_data dn; + struct page *page; + int err; + + page = f2fs_grab_cache_page(mapping, index, for_write); + if (!page) + return ERR_PTR(-ENOMEM); + + if (f2fs_lookup_read_extent_cache_block(inode, index, + &dn.data_blkaddr)) { + if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, + DATA_GENERIC_ENHANCE_READ)) { + err = -EFSCORRUPTED; + f2fs_handle_error(F2FS_I_SB(inode), + ERROR_INVALID_BLKADDR); + goto put_err; + } + goto got_it; + } + + set_new_dnode(&dn, inode, NULL, NULL, 0); + err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); + if (err) { + if (err == -ENOENT && next_pgofs) + *next_pgofs = f2fs_get_next_page_offset(&dn, index); + goto put_err; + } + f2fs_put_dnode(&dn); + + if (unlikely(dn.data_blkaddr == NULL_ADDR)) { + err = -ENOENT; + if (next_pgofs) + *next_pgofs = index + 1; + goto put_err; + } + if (dn.data_blkaddr != NEW_ADDR && + !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), + dn.data_blkaddr, + DATA_GENERIC_ENHANCE)) { + err = -EFSCORRUPTED; + f2fs_handle_error(F2FS_I_SB(inode), + ERROR_INVALID_BLKADDR); + goto put_err; + } +got_it: + if (PageUptodate(page)) { + unlock_page(page); + return page; + } + + /* + * A new dentry page is allocated but not able to be written, since its + * new inode page couldn't be allocated due to -ENOSPC. + * In such the case, its blkaddr can be remained as NEW_ADDR. + * see, f2fs_add_link -> f2fs_get_new_data_page -> + * f2fs_init_inode_metadata. + */ + if (dn.data_blkaddr == NEW_ADDR) { + zero_user_segment(page, 0, PAGE_SIZE); + if (!PageUptodate(page)) + SetPageUptodate(page); + unlock_page(page); + return page; + } + + err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, + op_flags, for_write); + if (err) + goto put_err; + return page; + +put_err: + f2fs_put_page(page, 1); + return ERR_PTR(err); +} + +struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, + pgoff_t *next_pgofs) +{ + struct address_space *mapping = inode->i_mapping; + struct page *page; + + page = find_get_page(mapping, index); + if (page && PageUptodate(page)) + return page; + f2fs_put_page(page, 0); + + page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs); + if (IS_ERR(page)) + return page; + + if (PageUptodate(page)) + return page; + + wait_on_page_locked(page); + if (unlikely(!PageUptodate(page))) { + f2fs_put_page(page, 0); + return ERR_PTR(-EIO); + } + return page; +} + +/* + * If it tries to access a hole, return an error. + * Because, the callers, functions in dir.c and GC, should be able to know + * whether this page exists or not. + */ +struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, + bool for_write) +{ + struct address_space *mapping = inode->i_mapping; + struct page *page; + + page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL); + if (IS_ERR(page)) + return page; + + /* wait for read completion */ + lock_page(page); + if (unlikely(page->mapping != mapping || !PageUptodate(page))) { + f2fs_put_page(page, 1); + return ERR_PTR(-EIO); + } + return page; +} + +/* + * Caller ensures that this data page is never allocated. + * A new zero-filled data page is allocated in the page cache. + * + * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and + * f2fs_unlock_op(). + * Note that, ipage is set only by make_empty_dir, and if any error occur, + * ipage should be released by this function. + */ +struct page *f2fs_get_new_data_page(struct inode *inode, + struct page *ipage, pgoff_t index, bool new_i_size) +{ + struct address_space *mapping = inode->i_mapping; + struct page *page; + struct dnode_of_data dn; + int err; + + page = f2fs_grab_cache_page(mapping, index, true); + if (!page) { + /* + * before exiting, we should make sure ipage will be released + * if any error occur. + */ + f2fs_put_page(ipage, 1); + return ERR_PTR(-ENOMEM); + } + + set_new_dnode(&dn, inode, ipage, NULL, 0); + err = f2fs_reserve_block(&dn, index); + if (err) { + f2fs_put_page(page, 1); + return ERR_PTR(err); + } + if (!ipage) + f2fs_put_dnode(&dn); + + if (PageUptodate(page)) + goto got_it; + + if (dn.data_blkaddr == NEW_ADDR) { + zero_user_segment(page, 0, PAGE_SIZE); + if (!PageUptodate(page)) + SetPageUptodate(page); + } else { + f2fs_put_page(page, 1); + + /* if ipage exists, blkaddr should be NEW_ADDR */ + f2fs_bug_on(F2FS_I_SB(inode), ipage); + page = f2fs_get_lock_data_page(inode, index, true); + if (IS_ERR(page)) + return page; + } +got_it: + if (new_i_size && i_size_read(inode) < + ((loff_t)(index + 1) << PAGE_SHIFT)) + f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); + return page; +} + +static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); + struct f2fs_summary sum; + struct node_info ni; + block_t old_blkaddr; + blkcnt_t count = 1; + int err; + + if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) + return -EPERM; + + err = f2fs_get_node_info(sbi, dn->nid, &ni, false); + if (err) + return err; + + dn->data_blkaddr = f2fs_data_blkaddr(dn); + if (dn->data_blkaddr == NULL_ADDR) { + err = inc_valid_block_count(sbi, dn->inode, &count); + if (unlikely(err)) + return err; + } + + set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); + old_blkaddr = dn->data_blkaddr; + f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, + &sum, seg_type, NULL); + if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { + invalidate_mapping_pages(META_MAPPING(sbi), + old_blkaddr, old_blkaddr); + f2fs_invalidate_compress_page(sbi, old_blkaddr); + } + f2fs_update_data_blkaddr(dn, dn->data_blkaddr); + return 0; +} + +static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) +{ + if (flag == F2FS_GET_BLOCK_PRE_AIO) + f2fs_down_read(&sbi->node_change); + else + f2fs_lock_op(sbi); +} + +static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) +{ + if (flag == F2FS_GET_BLOCK_PRE_AIO) + f2fs_up_read(&sbi->node_change); + else + f2fs_unlock_op(sbi); +} + +int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); + int err = 0; + + f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); + if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, + &dn->data_blkaddr)) + err = f2fs_reserve_block(dn, index); + f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); + + return err; +} + +static int f2fs_map_no_dnode(struct inode *inode, + struct f2fs_map_blocks *map, struct dnode_of_data *dn, + pgoff_t pgoff) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + + /* + * There is one exceptional case that read_node_page() may return + * -ENOENT due to filesystem has been shutdown or cp_error, return + * -EIO in that case. + */ + if (map->m_may_create && + (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) + return -EIO; + + if (map->m_next_pgofs) + *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); + if (map->m_next_extent) + *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); + return 0; +} + +static bool f2fs_map_blocks_cached(struct inode *inode, + struct f2fs_map_blocks *map, int flag) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + unsigned int maxblocks = map->m_len; + pgoff_t pgoff = (pgoff_t)map->m_lblk; + struct extent_info ei = {}; + + if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) + return false; + + map->m_pblk = ei.blk + pgoff - ei.fofs; + map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); + map->m_flags = F2FS_MAP_MAPPED; + if (map->m_next_extent) + *map->m_next_extent = pgoff + map->m_len; + + /* for hardware encryption, but to avoid potential issue in future */ + if (flag == F2FS_GET_BLOCK_DIO) + f2fs_wait_on_block_writeback_range(inode, + map->m_pblk, map->m_len); + + if (f2fs_allow_multi_device_dio(sbi, flag)) { + int bidx = f2fs_target_device_index(sbi, map->m_pblk); + struct f2fs_dev_info *dev = &sbi->devs[bidx]; + + map->m_bdev = dev->bdev; + map->m_pblk -= dev->start_blk; + map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); + } else { + map->m_bdev = inode->i_sb->s_bdev; + } + return true; +} + +/* + * f2fs_map_blocks() tries to find or build mapping relationship which + * maps continuous logical blocks to physical blocks, and return such + * info via f2fs_map_blocks structure. + */ +int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) +{ + unsigned int maxblocks = map->m_len; + struct dnode_of_data dn; + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; + pgoff_t pgofs, end_offset, end; + int err = 0, ofs = 1; + unsigned int ofs_in_node, last_ofs_in_node; + blkcnt_t prealloc; + block_t blkaddr; + unsigned int start_pgofs; + int bidx = 0; + bool is_hole; + + if (!maxblocks) + return 0; + + if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) + goto out; + + map->m_bdev = inode->i_sb->s_bdev; + map->m_multidev_dio = + f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); + + map->m_len = 0; + map->m_flags = 0; + + /* it only supports block size == page size */ + pgofs = (pgoff_t)map->m_lblk; + end = pgofs + maxblocks; + +next_dnode: + if (map->m_may_create) + f2fs_map_lock(sbi, flag); + + /* When reading holes, we need its node page */ + set_new_dnode(&dn, inode, NULL, NULL, 0); + err = f2fs_get_dnode_of_data(&dn, pgofs, mode); + if (err) { + if (flag == F2FS_GET_BLOCK_BMAP) + map->m_pblk = 0; + if (err == -ENOENT) + err = f2fs_map_no_dnode(inode, map, &dn, pgofs); + goto unlock_out; + } + + start_pgofs = pgofs; + prealloc = 0; + last_ofs_in_node = ofs_in_node = dn.ofs_in_node; + end_offset = ADDRS_PER_PAGE(dn.node_page, inode); + +next_block: + blkaddr = f2fs_data_blkaddr(&dn); + is_hole = !__is_valid_data_blkaddr(blkaddr); + if (!is_hole && + !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { + err = -EFSCORRUPTED; + f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); + goto sync_out; + } + + /* use out-place-update for direct IO under LFS mode */ + if (map->m_may_create && + (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) { + if (unlikely(f2fs_cp_error(sbi))) { + err = -EIO; + goto sync_out; + } + + switch (flag) { + case F2FS_GET_BLOCK_PRE_AIO: + if (blkaddr == NULL_ADDR) { + prealloc++; + last_ofs_in_node = dn.ofs_in_node; + } + break; + case F2FS_GET_BLOCK_PRE_DIO: + case F2FS_GET_BLOCK_DIO: + err = __allocate_data_block(&dn, map->m_seg_type); + if (err) + goto sync_out; + if (flag == F2FS_GET_BLOCK_PRE_DIO) + file_need_truncate(inode); + set_inode_flag(inode, FI_APPEND_WRITE); + break; + default: + WARN_ON_ONCE(1); + err = -EIO; + goto sync_out; + } + + blkaddr = dn.data_blkaddr; + if (is_hole) + map->m_flags |= F2FS_MAP_NEW; + } else if (is_hole) { + if (f2fs_compressed_file(inode) && + f2fs_sanity_check_cluster(&dn) && + (flag != F2FS_GET_BLOCK_FIEMAP || + IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { + err = -EFSCORRUPTED; + f2fs_handle_error(sbi, + ERROR_CORRUPTED_CLUSTER); + goto sync_out; + } + + switch (flag) { + case F2FS_GET_BLOCK_PRECACHE: + goto sync_out; + case F2FS_GET_BLOCK_BMAP: + map->m_pblk = 0; + goto sync_out; + case F2FS_GET_BLOCK_FIEMAP: + if (blkaddr == NULL_ADDR) { + if (map->m_next_pgofs) + *map->m_next_pgofs = pgofs + 1; + goto sync_out; + } + break; + default: + /* for defragment case */ + if (map->m_next_pgofs) + *map->m_next_pgofs = pgofs + 1; + goto sync_out; + } + } + + if (flag == F2FS_GET_BLOCK_PRE_AIO) + goto skip; + + if (map->m_multidev_dio) + bidx = f2fs_target_device_index(sbi, blkaddr); + + if (map->m_len == 0) { + /* reserved delalloc block should be mapped for fiemap. */ + if (blkaddr == NEW_ADDR) + map->m_flags |= F2FS_MAP_DELALLOC; + map->m_flags |= F2FS_MAP_MAPPED; + + map->m_pblk = blkaddr; + map->m_len = 1; + + if (map->m_multidev_dio) + map->m_bdev = FDEV(bidx).bdev; + } else if ((map->m_pblk != NEW_ADDR && + blkaddr == (map->m_pblk + ofs)) || + (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || + flag == F2FS_GET_BLOCK_PRE_DIO) { + if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) + goto sync_out; + ofs++; + map->m_len++; + } else { + goto sync_out; + } + +skip: + dn.ofs_in_node++; + pgofs++; + + /* preallocate blocks in batch for one dnode page */ + if (flag == F2FS_GET_BLOCK_PRE_AIO && + (pgofs == end || dn.ofs_in_node == end_offset)) { + + dn.ofs_in_node = ofs_in_node; + err = f2fs_reserve_new_blocks(&dn, prealloc); + if (err) + goto sync_out; + + map->m_len += dn.ofs_in_node - ofs_in_node; + if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { + err = -ENOSPC; + goto sync_out; + } + dn.ofs_in_node = end_offset; + } + + if (pgofs >= end) + goto sync_out; + else if (dn.ofs_in_node < end_offset) + goto next_block; + + if (flag == F2FS_GET_BLOCK_PRECACHE) { + if (map->m_flags & F2FS_MAP_MAPPED) { + unsigned int ofs = start_pgofs - map->m_lblk; + + f2fs_update_read_extent_cache_range(&dn, + start_pgofs, map->m_pblk + ofs, + map->m_len - ofs); + } + } + + f2fs_put_dnode(&dn); + + if (map->m_may_create) { + f2fs_map_unlock(sbi, flag); + f2fs_balance_fs(sbi, dn.node_changed); + } + goto next_dnode; + +sync_out: + + if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { + /* + * for hardware encryption, but to avoid potential issue + * in future + */ + f2fs_wait_on_block_writeback_range(inode, + map->m_pblk, map->m_len); + + if (map->m_multidev_dio) { + block_t blk_addr = map->m_pblk; + + bidx = f2fs_target_device_index(sbi, map->m_pblk); + + map->m_bdev = FDEV(bidx).bdev; + map->m_pblk -= FDEV(bidx).start_blk; + + if (map->m_may_create) + f2fs_update_device_state(sbi, inode->i_ino, + blk_addr, map->m_len); + + f2fs_bug_on(sbi, blk_addr + map->m_len > + FDEV(bidx).end_blk + 1); + } + } + + if (flag == F2FS_GET_BLOCK_PRECACHE) { + if (map->m_flags & F2FS_MAP_MAPPED) { + unsigned int ofs = start_pgofs - map->m_lblk; + + f2fs_update_read_extent_cache_range(&dn, + start_pgofs, map->m_pblk + ofs, + map->m_len - ofs); + } + if (map->m_next_extent) + *map->m_next_extent = pgofs + 1; + } + f2fs_put_dnode(&dn); +unlock_out: + if (map->m_may_create) { + f2fs_map_unlock(sbi, flag); + f2fs_balance_fs(sbi, dn.node_changed); + } +out: + trace_f2fs_map_blocks(inode, map, flag, err); + return err; +} + +bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) +{ + struct f2fs_map_blocks map; + block_t last_lblk; + int err; + + if (pos + len > i_size_read(inode)) + return false; + + map.m_lblk = F2FS_BYTES_TO_BLK(pos); + map.m_next_pgofs = NULL; + map.m_next_extent = NULL; + map.m_seg_type = NO_CHECK_TYPE; + map.m_may_create = false; + last_lblk = F2FS_BLK_ALIGN(pos + len); + + while (map.m_lblk < last_lblk) { + map.m_len = last_lblk - map.m_lblk; + err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); + if (err || map.m_len == 0) + return false; + map.m_lblk += map.m_len; + } + return true; +} + +static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) +{ + return (bytes >> inode->i_blkbits); +} + +static inline u64 blks_to_bytes(struct inode *inode, u64 blks) +{ + return (blks << inode->i_blkbits); +} + +static int f2fs_xattr_fiemap(struct inode *inode, + struct fiemap_extent_info *fieinfo) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + struct page *page; + struct node_info ni; + __u64 phys = 0, len; + __u32 flags; + nid_t xnid = F2FS_I(inode)->i_xattr_nid; + int err = 0; + + if (f2fs_has_inline_xattr(inode)) { + int offset; + + page = f2fs_grab_cache_page(NODE_MAPPING(sbi), + inode->i_ino, false); + if (!page) + return -ENOMEM; + + err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); + if (err) { + f2fs_put_page(page, 1); + return err; + } + + phys = blks_to_bytes(inode, ni.blk_addr); + offset = offsetof(struct f2fs_inode, i_addr) + + sizeof(__le32) * (DEF_ADDRS_PER_INODE - + get_inline_xattr_addrs(inode)); + + phys += offset; + len = inline_xattr_size(inode); + + f2fs_put_page(page, 1); + + flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; + + if (!xnid) + flags |= FIEMAP_EXTENT_LAST; + + err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); + trace_f2fs_fiemap(inode, 0, phys, len, flags, err); + if (err) + return err; + } + + if (xnid) { + page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); + if (!page) + return -ENOMEM; + + err = f2fs_get_node_info(sbi, xnid, &ni, false); + if (err) { + f2fs_put_page(page, 1); + return err; + } + + phys = blks_to_bytes(inode, ni.blk_addr); + len = inode->i_sb->s_blocksize; + + f2fs_put_page(page, 1); + + flags = FIEMAP_EXTENT_LAST; + } + + if (phys) { + err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); + trace_f2fs_fiemap(inode, 0, phys, len, flags, err); + } + + return (err < 0 ? err : 0); +} + +static loff_t max_inode_blocks(struct inode *inode) +{ + loff_t result = ADDRS_PER_INODE(inode); + loff_t leaf_count = ADDRS_PER_BLOCK(inode); + + /* two direct node blocks */ + result += (leaf_count * 2); + + /* two indirect node blocks */ + leaf_count *= NIDS_PER_BLOCK; + result += (leaf_count * 2); + + /* one double indirect node block */ + leaf_count *= NIDS_PER_BLOCK; + result += leaf_count; + + return result; +} + +int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, + u64 start, u64 len) +{ + struct f2fs_map_blocks map; + sector_t start_blk, last_blk; + pgoff_t next_pgofs; + u64 logical = 0, phys = 0, size = 0; + u32 flags = 0; + int ret = 0; + bool compr_cluster = false, compr_appended; + unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; + unsigned int count_in_cluster = 0; + loff_t maxbytes; + + if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { + ret = f2fs_precache_extents(inode); + if (ret) + return ret; + } + + ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); + if (ret) + return ret; + + inode_lock(inode); + + maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; + if (start > maxbytes) { + ret = -EFBIG; + goto out; + } + + if (len > maxbytes || (maxbytes - len) < start) + len = maxbytes - start; + + if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { + ret = f2fs_xattr_fiemap(inode, fieinfo); + goto out; + } + + if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { + ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); + if (ret != -EAGAIN) + goto out; + } + + if (bytes_to_blks(inode, len) == 0) + len = blks_to_bytes(inode, 1); + + start_blk = bytes_to_blks(inode, start); + last_blk = bytes_to_blks(inode, start + len - 1); + +next: + memset(&map, 0, sizeof(map)); + map.m_lblk = start_blk; + map.m_len = bytes_to_blks(inode, len); + map.m_next_pgofs = &next_pgofs; + map.m_seg_type = NO_CHECK_TYPE; + + if (compr_cluster) { + map.m_lblk += 1; + map.m_len = cluster_size - count_in_cluster; + } + + ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); + if (ret) + goto out; + + /* HOLE */ + if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { + start_blk = next_pgofs; + + if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, + max_inode_blocks(inode))) + goto prep_next; + + flags |= FIEMAP_EXTENT_LAST; + } + + compr_appended = false; + /* In a case of compressed cluster, append this to the last extent */ + if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || + !(map.m_flags & F2FS_MAP_FLAGS))) { + compr_appended = true; + goto skip_fill; + } + + if (size) { + flags |= FIEMAP_EXTENT_MERGED; + if (IS_ENCRYPTED(inode)) + flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; + + ret = fiemap_fill_next_extent(fieinfo, logical, + phys, size, flags); + trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); + if (ret) + goto out; + size = 0; + } + + if (start_blk > last_blk) + goto out; + +skip_fill: + if (map.m_pblk == COMPRESS_ADDR) { + compr_cluster = true; + count_in_cluster = 1; + } else if (compr_appended) { + unsigned int appended_blks = cluster_size - + count_in_cluster + 1; + size += blks_to_bytes(inode, appended_blks); + start_blk += appended_blks; + compr_cluster = false; + } else { + logical = blks_to_bytes(inode, start_blk); + phys = __is_valid_data_blkaddr(map.m_pblk) ? + blks_to_bytes(inode, map.m_pblk) : 0; + size = blks_to_bytes(inode, map.m_len); + flags = 0; + + if (compr_cluster) { + flags = FIEMAP_EXTENT_ENCODED; + count_in_cluster += map.m_len; + if (count_in_cluster == cluster_size) { + compr_cluster = false; + size += blks_to_bytes(inode, 1); + } + } else if (map.m_flags & F2FS_MAP_DELALLOC) { + flags = FIEMAP_EXTENT_UNWRITTEN; + } + + start_blk += bytes_to_blks(inode, size); + } + +prep_next: + cond_resched(); + if (fatal_signal_pending(current)) + ret = -EINTR; + else + goto next; +out: + if (ret == 1) + ret = 0; + + inode_unlock(inode); + return ret; +} + +static inline loff_t f2fs_readpage_limit(struct inode *inode) +{ + if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) + return inode->i_sb->s_maxbytes; + + return i_size_read(inode); +} + +static int f2fs_read_single_page(struct inode *inode, struct page *page, + unsigned nr_pages, + struct f2fs_map_blocks *map, + struct bio **bio_ret, + sector_t *last_block_in_bio, + bool is_readahead) +{ + struct bio *bio = *bio_ret; + const unsigned blocksize = blks_to_bytes(inode, 1); + sector_t block_in_file; + sector_t last_block; + sector_t last_block_in_file; + sector_t block_nr; + int ret = 0; + + block_in_file = (sector_t)page_index(page); + last_block = block_in_file + nr_pages; + last_block_in_file = bytes_to_blks(inode, + f2fs_readpage_limit(inode) + blocksize - 1); + if (last_block > last_block_in_file) + last_block = last_block_in_file; + + /* just zeroing out page which is beyond EOF */ + if (block_in_file >= last_block) + goto zero_out; + /* + * Map blocks using the previous result first. + */ + if ((map->m_flags & F2FS_MAP_MAPPED) && + block_in_file > map->m_lblk && + block_in_file < (map->m_lblk + map->m_len)) + goto got_it; + + /* + * Then do more f2fs_map_blocks() calls until we are + * done with this page. + */ + map->m_lblk = block_in_file; + map->m_len = last_block - block_in_file; + + ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); + if (ret) + goto out; +got_it: + if ((map->m_flags & F2FS_MAP_MAPPED)) { + block_nr = map->m_pblk + block_in_file - map->m_lblk; + SetPageMappedToDisk(page); + + if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, + DATA_GENERIC_ENHANCE_READ)) { + ret = -EFSCORRUPTED; + f2fs_handle_error(F2FS_I_SB(inode), + ERROR_INVALID_BLKADDR); + goto out; + } + } else { +zero_out: + zero_user_segment(page, 0, PAGE_SIZE); + if (f2fs_need_verity(inode, page->index) && + !fsverity_verify_page(page)) { + ret = -EIO; + goto out; + } + if (!PageUptodate(page)) + SetPageUptodate(page); + unlock_page(page); + goto out; + } + + /* + * This page will go to BIO. Do we need to send this + * BIO off first? + */ + if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, + *last_block_in_bio, block_nr) || + !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { +submit_and_realloc: + f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); + bio = NULL; + } + if (bio == NULL) { + bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, + is_readahead ? REQ_RAHEAD : 0, page->index, + false); + if (IS_ERR(bio)) { + ret = PTR_ERR(bio); + bio = NULL; + goto out; + } + } + + /* + * If the page is under writeback, we need to wait for + * its completion to see the correct decrypted data. + */ + f2fs_wait_on_block_writeback(inode, block_nr); + + if (bio_add_page(bio, page, blocksize, 0) < blocksize) + goto submit_and_realloc; + + inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); + f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, + F2FS_BLKSIZE); + *last_block_in_bio = block_nr; +out: + *bio_ret = bio; + return ret; +} + +#ifdef CONFIG_F2FS_FS_COMPRESSION +int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, + unsigned nr_pages, sector_t *last_block_in_bio, + bool is_readahead, bool for_write) +{ + struct dnode_of_data dn; + struct inode *inode = cc->inode; + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + struct bio *bio = *bio_ret; + unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; + sector_t last_block_in_file; + const unsigned blocksize = blks_to_bytes(inode, 1); + struct decompress_io_ctx *dic = NULL; + struct extent_info ei = {}; + bool from_dnode = true; + int i; + int ret = 0; + + f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); + + last_block_in_file = bytes_to_blks(inode, + f2fs_readpage_limit(inode) + blocksize - 1); + + /* get rid of pages beyond EOF */ + for (i = 0; i < cc->cluster_size; i++) { + struct page *page = cc->rpages[i]; + + if (!page) + continue; + if ((sector_t)page->index >= last_block_in_file) { + zero_user_segment(page, 0, PAGE_SIZE); + if (!PageUptodate(page)) + SetPageUptodate(page); + } else if (!PageUptodate(page)) { + continue; + } + unlock_page(page); + if (for_write) + put_page(page); + cc->rpages[i] = NULL; + cc->nr_rpages--; + } + + /* we are done since all pages are beyond EOF */ + if (f2fs_cluster_is_empty(cc)) + goto out; + + if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) + from_dnode = false; + + if (!from_dnode) + goto skip_reading_dnode; + + set_new_dnode(&dn, inode, NULL, NULL, 0); + ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); + if (ret) + goto out; + + if (unlikely(f2fs_cp_error(sbi))) { + ret = -EIO; + goto out_put_dnode; + } + f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); + +skip_reading_dnode: + for (i = 1; i < cc->cluster_size; i++) { + block_t blkaddr; + + blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, + dn.ofs_in_node + i) : + ei.blk + i - 1; + + if (!__is_valid_data_blkaddr(blkaddr)) + break; + + if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { + ret = -EFAULT; + goto out_put_dnode; + } + cc->nr_cpages++; + + if (!from_dnode && i >= ei.c_len) + break; + } + + /* nothing to decompress */ + if (cc->nr_cpages == 0) { + ret = 0; + goto out_put_dnode; + } + + dic = f2fs_alloc_dic(cc); + if (IS_ERR(dic)) { + ret = PTR_ERR(dic); + goto out_put_dnode; + } + + for (i = 0; i < cc->nr_cpages; i++) { + struct page *page = dic->cpages[i]; + block_t blkaddr; + struct bio_post_read_ctx *ctx; + + blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, + dn.ofs_in_node + i + 1) : + ei.blk + i; + + f2fs_wait_on_block_writeback(inode, blkaddr); + + if (f2fs_load_compressed_page(sbi, page, blkaddr)) { + if (atomic_dec_and_test(&dic->remaining_pages)) { + f2fs_decompress_cluster(dic, true); + break; + } + continue; + } + + if (bio && (!page_is_mergeable(sbi, bio, + *last_block_in_bio, blkaddr) || + !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { +submit_and_realloc: + f2fs_submit_read_bio(sbi, bio, DATA); + bio = NULL; + } + + if (!bio) { + bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, + is_readahead ? REQ_RAHEAD : 0, + page->index, for_write); + if (IS_ERR(bio)) { + ret = PTR_ERR(bio); + f2fs_decompress_end_io(dic, ret, true); + f2fs_put_dnode(&dn); + *bio_ret = NULL; + return ret; + } + } + + if (bio_add_page(bio, page, blocksize, 0) < blocksize) + goto submit_and_realloc; + + ctx = get_post_read_ctx(bio); + ctx->enabled_steps |= STEP_DECOMPRESS; + refcount_inc(&dic->refcnt); + + inc_page_count(sbi, F2FS_RD_DATA); + f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); + *last_block_in_bio = blkaddr; + } + + if (from_dnode) + f2fs_put_dnode(&dn); + + *bio_ret = bio; + return 0; + +out_put_dnode: + if (from_dnode) + f2fs_put_dnode(&dn); +out: + for (i = 0; i < cc->cluster_size; i++) { + if (cc->rpages[i]) { + ClearPageUptodate(cc->rpages[i]); + unlock_page(cc->rpages[i]); + } + } + *bio_ret = bio; + return ret; +} +#endif + +/* + * This function was originally taken from fs/mpage.c, and customized for f2fs. + * Major change was from block_size == page_size in f2fs by default. + */ +static int f2fs_mpage_readpages(struct inode *inode, + struct readahead_control *rac, struct page *page) +{ + struct bio *bio = NULL; + sector_t last_block_in_bio = 0; + struct f2fs_map_blocks map; +#ifdef CONFIG_F2FS_FS_COMPRESSION + struct compress_ctx cc = { + .inode = inode, + .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, + .cluster_size = F2FS_I(inode)->i_cluster_size, + .cluster_idx = NULL_CLUSTER, + .rpages = NULL, + .cpages = NULL, + .nr_rpages = 0, + .nr_cpages = 0, + }; + pgoff_t nc_cluster_idx = NULL_CLUSTER; +#endif + unsigned nr_pages = rac ? readahead_count(rac) : 1; + unsigned max_nr_pages = nr_pages; + int ret = 0; + + map.m_pblk = 0; + map.m_lblk = 0; + map.m_len = 0; + map.m_flags = 0; + map.m_next_pgofs = NULL; + map.m_next_extent = NULL; + map.m_seg_type = NO_CHECK_TYPE; + map.m_may_create = false; + + for (; nr_pages; nr_pages--) { + if (rac) { + page = readahead_page(rac); + prefetchw(&page->flags); + } + +#ifdef CONFIG_F2FS_FS_COMPRESSION + if (f2fs_compressed_file(inode)) { + /* there are remained compressed pages, submit them */ + if (!f2fs_cluster_can_merge_page(&cc, page->index)) { + ret = f2fs_read_multi_pages(&cc, &bio, + max_nr_pages, + &last_block_in_bio, + rac != NULL, false); + f2fs_destroy_compress_ctx(&cc, false); + if (ret) + goto set_error_page; + } + if (cc.cluster_idx == NULL_CLUSTER) { + if (nc_cluster_idx == + page->index >> cc.log_cluster_size) { + goto read_single_page; + } + + ret = f2fs_is_compressed_cluster(inode, page->index); + if (ret < 0) + goto set_error_page; + else if (!ret) { + nc_cluster_idx = + page->index >> cc.log_cluster_size; + goto read_single_page; + } + + nc_cluster_idx = NULL_CLUSTER; + } + ret = f2fs_init_compress_ctx(&cc); + if (ret) + goto set_error_page; + + f2fs_compress_ctx_add_page(&cc, page); + + goto next_page; + } +read_single_page: +#endif + + ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, + &bio, &last_block_in_bio, rac); + if (ret) { +#ifdef CONFIG_F2FS_FS_COMPRESSION +set_error_page: +#endif + zero_user_segment(page, 0, PAGE_SIZE); + unlock_page(page); + } +#ifdef CONFIG_F2FS_FS_COMPRESSION +next_page: +#endif + if (rac) + put_page(page); + +#ifdef CONFIG_F2FS_FS_COMPRESSION + if (f2fs_compressed_file(inode)) { + /* last page */ + if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { + ret = f2fs_read_multi_pages(&cc, &bio, + max_nr_pages, + &last_block_in_bio, + rac != NULL, false); + f2fs_destroy_compress_ctx(&cc, false); + } + } +#endif + } + if (bio) + f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); + return ret; +} + +static int f2fs_read_data_folio(struct file *file, struct folio *folio) +{ + struct page *page = &folio->page; + struct inode *inode = page_file_mapping(page)->host; + int ret = -EAGAIN; + + trace_f2fs_readpage(page, DATA); + + if (!f2fs_is_compress_backend_ready(inode)) { + unlock_page(page); + return -EOPNOTSUPP; + } + + /* If the file has inline data, try to read it directly */ + if (f2fs_has_inline_data(inode)) + ret = f2fs_read_inline_data(inode, page); + if (ret == -EAGAIN) + ret = f2fs_mpage_readpages(inode, NULL, page); + return ret; +} + +static void f2fs_readahead(struct readahead_control *rac) +{ + struct inode *inode = rac->mapping->host; + + trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); + + if (!f2fs_is_compress_backend_ready(inode)) + return; + + /* If the file has inline data, skip readahead */ + if (f2fs_has_inline_data(inode)) + return; + + f2fs_mpage_readpages(inode, rac, NULL); +} + +int f2fs_encrypt_one_page(struct f2fs_io_info *fio) +{ + struct inode *inode = fio->page->mapping->host; + struct page *mpage, *page; + gfp_t gfp_flags = GFP_NOFS; + + if (!f2fs_encrypted_file(inode)) + return 0; + + page = fio->compressed_page ? fio->compressed_page : fio->page; + + if (fscrypt_inode_uses_inline_crypto(inode)) + return 0; + +retry_encrypt: + fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, + PAGE_SIZE, 0, gfp_flags); + if (IS_ERR(fio->encrypted_page)) { + /* flush pending IOs and wait for a while in the ENOMEM case */ + if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { + f2fs_flush_merged_writes(fio->sbi); + memalloc_retry_wait(GFP_NOFS); + gfp_flags |= __GFP_NOFAIL; + goto retry_encrypt; + } + return PTR_ERR(fio->encrypted_page); + } + + mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); + if (mpage) { + if (PageUptodate(mpage)) + memcpy(page_address(mpage), + page_address(fio->encrypted_page), PAGE_SIZE); + f2fs_put_page(mpage, 1); + } + return 0; +} + +static inline bool check_inplace_update_policy(struct inode *inode, + struct f2fs_io_info *fio) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + + if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && + is_inode_flag_set(inode, FI_OPU_WRITE)) + return false; + if (IS_F2FS_IPU_FORCE(sbi)) + return true; + if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) + return true; + if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) + return true; + if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && + utilization(sbi) > SM_I(sbi)->min_ipu_util) + return true; + + /* + * IPU for rewrite async pages + */ + if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && + !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) + return true; + + /* this is only set during fdatasync */ + if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) + return true; + + if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && + !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) + return true; + + return false; +} + +bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) +{ + /* swap file is migrating in aligned write mode */ + if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) + return false; + + if (f2fs_is_pinned_file(inode)) + return true; + + /* if this is cold file, we should overwrite to avoid fragmentation */ + if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) + return true; + + return check_inplace_update_policy(inode, fio); +} + +bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + + /* The below cases were checked when setting it. */ + if (f2fs_is_pinned_file(inode)) + return false; + if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) + return true; + if (f2fs_lfs_mode(sbi)) + return true; + if (S_ISDIR(inode->i_mode)) + return true; + if (IS_NOQUOTA(inode)) + return true; + if (f2fs_is_atomic_file(inode)) + return true; + + /* swap file is migrating in aligned write mode */ + if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) + return true; + + if (is_inode_flag_set(inode, FI_OPU_WRITE)) + return true; + + if (fio) { + if (page_private_gcing(fio->page)) + return true; + if (page_private_dummy(fio->page)) + return true; + if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && + f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) + return true; + } + return false; +} + +static inline bool need_inplace_update(struct f2fs_io_info *fio) +{ + struct inode *inode = fio->page->mapping->host; + + if (f2fs_should_update_outplace(inode, fio)) + return false; + + return f2fs_should_update_inplace(inode, fio); +} + +int f2fs_do_write_data_page(struct f2fs_io_info *fio) +{ + struct page *page = fio->page; + struct inode *inode = page->mapping->host; + struct dnode_of_data dn; + struct node_info ni; + bool ipu_force = false; + int err = 0; + + /* Use COW inode to make dnode_of_data for atomic write */ + if (f2fs_is_atomic_file(inode)) + set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); + else + set_new_dnode(&dn, inode, NULL, NULL, 0); + + if (need_inplace_update(fio) && + f2fs_lookup_read_extent_cache_block(inode, page->index, + &fio->old_blkaddr)) { + if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, + DATA_GENERIC_ENHANCE)) { + f2fs_handle_error(fio->sbi, + ERROR_INVALID_BLKADDR); + return -EFSCORRUPTED; + } + + ipu_force = true; + fio->need_lock = LOCK_DONE; + goto got_it; + } + + /* Deadlock due to between page->lock and f2fs_lock_op */ + if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) + return -EAGAIN; + + err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); + if (err) + goto out; + + fio->old_blkaddr = dn.data_blkaddr; + + /* This page is already truncated */ + if (fio->old_blkaddr == NULL_ADDR) { + ClearPageUptodate(page); + clear_page_private_gcing(page); + goto out_writepage; + } +got_it: + if (__is_valid_data_blkaddr(fio->old_blkaddr) && + !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, + DATA_GENERIC_ENHANCE)) { + err = -EFSCORRUPTED; + f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); + goto out_writepage; + } + + /* wait for GCed page writeback via META_MAPPING */ + if (fio->post_read) + f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); + + /* + * If current allocation needs SSR, + * it had better in-place writes for updated data. + */ + if (ipu_force || + (__is_valid_data_blkaddr(fio->old_blkaddr) && + need_inplace_update(fio))) { + err = f2fs_encrypt_one_page(fio); + if (err) + goto out_writepage; + + set_page_writeback(page); + f2fs_put_dnode(&dn); + if (fio->need_lock == LOCK_REQ) + f2fs_unlock_op(fio->sbi); + err = f2fs_inplace_write_data(fio); + if (err) { + if (fscrypt_inode_uses_fs_layer_crypto(inode)) + fscrypt_finalize_bounce_page(&fio->encrypted_page); + if (PageWriteback(page)) + end_page_writeback(page); + } else { + set_inode_flag(inode, FI_UPDATE_WRITE); + } + trace_f2fs_do_write_data_page(fio->page, IPU); + return err; + } + + if (fio->need_lock == LOCK_RETRY) { + if (!f2fs_trylock_op(fio->sbi)) { + err = -EAGAIN; + goto out_writepage; + } + fio->need_lock = LOCK_REQ; + } + + err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); + if (err) + goto out_writepage; + + fio->version = ni.version; + + err = f2fs_encrypt_one_page(fio); + if (err) + goto out_writepage; + + set_page_writeback(page); + + if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) + f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); + + /* LFS mode write path */ + f2fs_outplace_write_data(&dn, fio); + trace_f2fs_do_write_data_page(page, OPU); + set_inode_flag(inode, FI_APPEND_WRITE); + if (page->index == 0) + set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); +out_writepage: + f2fs_put_dnode(&dn); +out: + if (fio->need_lock == LOCK_REQ) + f2fs_unlock_op(fio->sbi); + return err; +} + +int f2fs_write_single_data_page(struct page *page, int *submitted, + struct bio **bio, + sector_t *last_block, + struct writeback_control *wbc, + enum iostat_type io_type, + int compr_blocks, + bool allow_balance) +{ + struct inode *inode = page->mapping->host; + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + loff_t i_size = i_size_read(inode); + const pgoff_t end_index = ((unsigned long long)i_size) + >> PAGE_SHIFT; + loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; + unsigned offset = 0; + bool need_balance_fs = false; + bool quota_inode = IS_NOQUOTA(inode); + int err = 0; + struct f2fs_io_info fio = { + .sbi = sbi, + .ino = inode->i_ino, + .type = DATA, + .op = REQ_OP_WRITE, + .op_flags = wbc_to_write_flags(wbc), + .old_blkaddr = NULL_ADDR, + .page = page, + .encrypted_page = NULL, + .submitted = 0, + .compr_blocks = compr_blocks, + .need_lock = LOCK_RETRY, + .post_read = f2fs_post_read_required(inode) ? 1 : 0, + .io_type = io_type, + .io_wbc = wbc, + .bio = bio, + .last_block = last_block, + }; + + trace_f2fs_writepage(page, DATA); + + /* we should bypass data pages to proceed the kworker jobs */ + if (unlikely(f2fs_cp_error(sbi))) { + mapping_set_error(page->mapping, -EIO); + /* + * don't drop any dirty dentry pages for keeping lastest + * directory structure. + */ + if (S_ISDIR(inode->i_mode) && + !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) + goto redirty_out; + + /* keep data pages in remount-ro mode */ + if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) + goto redirty_out; + goto out; + } + + if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) + goto redirty_out; + + if (page->index < end_index || + f2fs_verity_in_progress(inode) || + compr_blocks) + goto write; + + /* + * If the offset is out-of-range of file size, + * this page does not have to be written to disk. + */ + offset = i_size & (PAGE_SIZE - 1); + if ((page->index >= end_index + 1) || !offset) + goto out; + + zero_user_segment(page, offset, PAGE_SIZE); +write: + if (f2fs_is_drop_cache(inode)) + goto out; + + /* Dentry/quota blocks are controlled by checkpoint */ + if (S_ISDIR(inode->i_mode) || quota_inode) { + /* + * We need to wait for node_write to avoid block allocation during + * checkpoint. This can only happen to quota writes which can cause + * the below discard race condition. + */ + if (quota_inode) + f2fs_down_read(&sbi->node_write); + + fio.need_lock = LOCK_DONE; + err = f2fs_do_write_data_page(&fio); + + if (quota_inode) + f2fs_up_read(&sbi->node_write); + + goto done; + } + + if (!wbc->for_reclaim) + need_balance_fs = true; + else if (has_not_enough_free_secs(sbi, 0, 0)) + goto redirty_out; + else + set_inode_flag(inode, FI_HOT_DATA); + + err = -EAGAIN; + if (f2fs_has_inline_data(inode)) { + err = f2fs_write_inline_data(inode, page); + if (!err) + goto out; + } + + if (err == -EAGAIN) { + err = f2fs_do_write_data_page(&fio); + if (err == -EAGAIN) { + fio.need_lock = LOCK_REQ; + err = f2fs_do_write_data_page(&fio); + } + } + + if (err) { + file_set_keep_isize(inode); + } else { + spin_lock(&F2FS_I(inode)->i_size_lock); + if (F2FS_I(inode)->last_disk_size < psize) + F2FS_I(inode)->last_disk_size = psize; + spin_unlock(&F2FS_I(inode)->i_size_lock); + } + +done: + if (err && err != -ENOENT) + goto redirty_out; + +out: + inode_dec_dirty_pages(inode); + if (err) { + ClearPageUptodate(page); + clear_page_private_gcing(page); + } + + if (wbc->for_reclaim) { + f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); + clear_inode_flag(inode, FI_HOT_DATA); + f2fs_remove_dirty_inode(inode); + submitted = NULL; + } + unlock_page(page); + if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && + !F2FS_I(inode)->wb_task && allow_balance) + f2fs_balance_fs(sbi, need_balance_fs); + + if (unlikely(f2fs_cp_error(sbi))) { + f2fs_submit_merged_write(sbi, DATA); + if (bio && *bio) + f2fs_submit_merged_ipu_write(sbi, bio, NULL); + submitted = NULL; + } + + if (submitted) + *submitted = fio.submitted; + + return 0; + +redirty_out: + redirty_page_for_writepage(wbc, page); + /* + * pageout() in MM translates EAGAIN, so calls handle_write_error() + * -> mapping_set_error() -> set_bit(AS_EIO, ...). + * file_write_and_wait_range() will see EIO error, which is critical + * to return value of fsync() followed by atomic_write failure to user. + */ + if (!err || wbc->for_reclaim) + return AOP_WRITEPAGE_ACTIVATE; + unlock_page(page); + return err; +} + +static int f2fs_write_data_page(struct page *page, + struct writeback_control *wbc) +{ +#ifdef CONFIG_F2FS_FS_COMPRESSION + struct inode *inode = page->mapping->host; + + if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) + goto out; + + if (f2fs_compressed_file(inode)) { + if (f2fs_is_compressed_cluster(inode, page->index)) { + redirty_page_for_writepage(wbc, page); + return AOP_WRITEPAGE_ACTIVATE; + } + } +out: +#endif + + return f2fs_write_single_data_page(page, NULL, NULL, NULL, + wbc, FS_DATA_IO, 0, true); +} + +/* + * This function was copied from write_cache_pages from mm/page-writeback.c. + * The major change is making write step of cold data page separately from + * warm/hot data page. + */ +static int f2fs_write_cache_pages(struct address_space *mapping, + struct writeback_control *wbc, + enum iostat_type io_type) +{ + int ret = 0; + int done = 0, retry = 0; + struct page *pages_local[F2FS_ONSTACK_PAGES]; + struct page **pages = pages_local; + struct folio_batch fbatch; + struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); + struct bio *bio = NULL; + sector_t last_block; +#ifdef CONFIG_F2FS_FS_COMPRESSION + struct inode *inode = mapping->host; + struct compress_ctx cc = { + .inode = inode, + .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, + .cluster_size = F2FS_I(inode)->i_cluster_size, + .cluster_idx = NULL_CLUSTER, + .rpages = NULL, + .nr_rpages = 0, + .cpages = NULL, + .valid_nr_cpages = 0, + .rbuf = NULL, + .cbuf = NULL, + .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, + .private = NULL, + }; +#endif + int nr_folios, p, idx; + int nr_pages; + unsigned int max_pages = F2FS_ONSTACK_PAGES; + pgoff_t index; + pgoff_t end; /* Inclusive */ + pgoff_t done_index; + int range_whole = 0; + xa_mark_t tag; + int nwritten = 0; + int submitted = 0; + int i; + +#ifdef CONFIG_F2FS_FS_COMPRESSION + if (f2fs_compressed_file(inode) && + 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) { + pages = f2fs_kzalloc(sbi, sizeof(struct page *) << + cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL); + max_pages = 1 << cc.log_cluster_size; + } +#endif + + folio_batch_init(&fbatch); + + if (get_dirty_pages(mapping->host) <= + SM_I(F2FS_M_SB(mapping))->min_hot_blocks) + set_inode_flag(mapping->host, FI_HOT_DATA); + else + clear_inode_flag(mapping->host, FI_HOT_DATA); + + if (wbc->range_cyclic) { + index = mapping->writeback_index; /* prev offset */ + end = -1; + } else { + index = wbc->range_start >> PAGE_SHIFT; + end = wbc->range_end >> PAGE_SHIFT; + if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) + range_whole = 1; + } + if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) + tag = PAGECACHE_TAG_TOWRITE; + else + tag = PAGECACHE_TAG_DIRTY; +retry: + retry = 0; + if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) + tag_pages_for_writeback(mapping, index, end); + done_index = index; + while (!done && !retry && (index <= end)) { + nr_pages = 0; +again: + nr_folios = filemap_get_folios_tag(mapping, &index, end, + tag, &fbatch); + if (nr_folios == 0) { + if (nr_pages) + goto write; + break; + } + + for (i = 0; i < nr_folios; i++) { + struct folio *folio = fbatch.folios[i]; + + idx = 0; + p = folio_nr_pages(folio); +add_more: + pages[nr_pages] = folio_page(folio, idx); + folio_get(folio); + if (++nr_pages == max_pages) { + index = folio->index + idx + 1; + folio_batch_release(&fbatch); + goto write; + } + if (++idx < p) + goto add_more; + } + folio_batch_release(&fbatch); + goto again; +write: + for (i = 0; i < nr_pages; i++) { + struct page *page = pages[i]; + struct folio *folio = page_folio(page); + bool need_readd; +readd: + need_readd = false; +#ifdef CONFIG_F2FS_FS_COMPRESSION + if (f2fs_compressed_file(inode)) { + void *fsdata = NULL; + struct page *pagep; + int ret2; + + ret = f2fs_init_compress_ctx(&cc); + if (ret) { + done = 1; + break; + } + + if (!f2fs_cluster_can_merge_page(&cc, + folio->index)) { + ret = f2fs_write_multi_pages(&cc, + &submitted, wbc, io_type); + if (!ret) + need_readd = true; + goto result; + } + + if (unlikely(f2fs_cp_error(sbi))) + goto lock_folio; + + if (!f2fs_cluster_is_empty(&cc)) + goto lock_folio; + + if (f2fs_all_cluster_page_ready(&cc, + pages, i, nr_pages, true)) + goto lock_folio; + + ret2 = f2fs_prepare_compress_overwrite( + inode, &pagep, + folio->index, &fsdata); + if (ret2 < 0) { + ret = ret2; + done = 1; + break; + } else if (ret2 && + (!f2fs_compress_write_end(inode, + fsdata, folio->index, 1) || + !f2fs_all_cluster_page_ready(&cc, + pages, i, nr_pages, + false))) { + retry = 1; + break; + } + } +#endif + /* give a priority to WB_SYNC threads */ + if (atomic_read(&sbi->wb_sync_req[DATA]) && + wbc->sync_mode == WB_SYNC_NONE) { + done = 1; + break; + } +#ifdef CONFIG_F2FS_FS_COMPRESSION +lock_folio: +#endif + done_index = folio->index; +retry_write: + folio_lock(folio); + + if (unlikely(folio->mapping != mapping)) { +continue_unlock: + folio_unlock(folio); + continue; + } + + if (!folio_test_dirty(folio)) { + /* someone wrote it for us */ + goto continue_unlock; + } + + if (folio_test_writeback(folio)) { + if (wbc->sync_mode == WB_SYNC_NONE) + goto continue_unlock; + f2fs_wait_on_page_writeback(&folio->page, DATA, true, true); + } + + if (!folio_clear_dirty_for_io(folio)) + goto continue_unlock; + +#ifdef CONFIG_F2FS_FS_COMPRESSION + if (f2fs_compressed_file(inode)) { + folio_get(folio); + f2fs_compress_ctx_add_page(&cc, &folio->page); + continue; + } +#endif + ret = f2fs_write_single_data_page(&folio->page, + &submitted, &bio, &last_block, + wbc, io_type, 0, true); + if (ret == AOP_WRITEPAGE_ACTIVATE) + folio_unlock(folio); +#ifdef CONFIG_F2FS_FS_COMPRESSION +result: +#endif + nwritten += submitted; + wbc->nr_to_write -= submitted; + + if (unlikely(ret)) { + /* + * keep nr_to_write, since vfs uses this to + * get # of written pages. + */ + if (ret == AOP_WRITEPAGE_ACTIVATE) { + ret = 0; + goto next; + } else if (ret == -EAGAIN) { + ret = 0; + if (wbc->sync_mode == WB_SYNC_ALL) { + f2fs_io_schedule_timeout( + DEFAULT_IO_TIMEOUT); + goto retry_write; + } + goto next; + } + done_index = folio_next_index(folio); + done = 1; + break; + } + + if (wbc->nr_to_write <= 0 && + wbc->sync_mode == WB_SYNC_NONE) { + done = 1; + break; + } +next: + if (need_readd) + goto readd; + } + release_pages(pages, nr_pages); + cond_resched(); + } +#ifdef CONFIG_F2FS_FS_COMPRESSION + /* flush remained pages in compress cluster */ + if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { + ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); + nwritten += submitted; + wbc->nr_to_write -= submitted; + if (ret) { + done = 1; + retry = 0; + } + } + if (f2fs_compressed_file(inode)) + f2fs_destroy_compress_ctx(&cc, false); +#endif + if (retry) { + index = 0; + end = -1; + goto retry; + } + if (wbc->range_cyclic && !done) + done_index = 0; + if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) + mapping->writeback_index = done_index; + + if (nwritten) + f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, + NULL, 0, DATA); + /* submit cached bio of IPU write */ + if (bio) + f2fs_submit_merged_ipu_write(sbi, &bio, NULL); + +#ifdef CONFIG_F2FS_FS_COMPRESSION + if (pages != pages_local) + kfree(pages); +#endif + + return ret; +} + +static inline bool __should_serialize_io(struct inode *inode, + struct writeback_control *wbc) +{ + /* to avoid deadlock in path of data flush */ + if (F2FS_I(inode)->wb_task) + return false; + + if (!S_ISREG(inode->i_mode)) + return false; + if (IS_NOQUOTA(inode)) + return false; + + if (f2fs_need_compress_data(inode)) + return true; + if (wbc->sync_mode != WB_SYNC_ALL) + return true; + if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) + return true; + return false; +} + +static int __f2fs_write_data_pages(struct address_space *mapping, + struct writeback_control *wbc, + enum iostat_type io_type) +{ + struct inode *inode = mapping->host; + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + struct blk_plug plug; + int ret; + bool locked = false; + + /* deal with chardevs and other special file */ + if (!mapping->a_ops->writepage) + return 0; + + /* skip writing if there is no dirty page in this inode */ + if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) + return 0; + + /* during POR, we don't need to trigger writepage at all. */ + if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) + goto skip_write; + + if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && + wbc->sync_mode == WB_SYNC_NONE && + get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && + f2fs_available_free_memory(sbi, DIRTY_DENTS)) + goto skip_write; + + /* skip writing in file defragment preparing stage */ + if (is_inode_flag_set(inode, FI_SKIP_WRITES)) + goto skip_write; + + trace_f2fs_writepages(mapping->host, wbc, DATA); + + /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ + if (wbc->sync_mode == WB_SYNC_ALL) + atomic_inc(&sbi->wb_sync_req[DATA]); + else if (atomic_read(&sbi->wb_sync_req[DATA])) { + /* to avoid potential deadlock */ + if (current->plug) + blk_finish_plug(current->plug); + goto skip_write; + } + + if (__should_serialize_io(inode, wbc)) { + mutex_lock(&sbi->writepages); + locked = true; + } + + blk_start_plug(&plug); + ret = f2fs_write_cache_pages(mapping, wbc, io_type); + blk_finish_plug(&plug); + + if (locked) + mutex_unlock(&sbi->writepages); + + if (wbc->sync_mode == WB_SYNC_ALL) + atomic_dec(&sbi->wb_sync_req[DATA]); + /* + * if some pages were truncated, we cannot guarantee its mapping->host + * to detect pending bios. + */ + + f2fs_remove_dirty_inode(inode); + return ret; + +skip_write: + wbc->pages_skipped += get_dirty_pages(inode); + trace_f2fs_writepages(mapping->host, wbc, DATA); + return 0; +} + +static int f2fs_write_data_pages(struct address_space *mapping, + struct writeback_control *wbc) +{ + struct inode *inode = mapping->host; + + return __f2fs_write_data_pages(mapping, wbc, + F2FS_I(inode)->cp_task == current ? + FS_CP_DATA_IO : FS_DATA_IO); +} + +void f2fs_write_failed(struct inode *inode, loff_t to) +{ + loff_t i_size = i_size_read(inode); + + if (IS_NOQUOTA(inode)) + return; + + /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ + if (to > i_size && !f2fs_verity_in_progress(inode)) { + f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); + filemap_invalidate_lock(inode->i_mapping); + + truncate_pagecache(inode, i_size); + f2fs_truncate_blocks(inode, i_size, true); + + filemap_invalidate_unlock(inode->i_mapping); + f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); + } +} + +static int prepare_write_begin(struct f2fs_sb_info *sbi, + struct page *page, loff_t pos, unsigned len, + block_t *blk_addr, bool *node_changed) +{ + struct inode *inode = page->mapping->host; + pgoff_t index = page->index; + struct dnode_of_data dn; + struct page *ipage; + bool locked = false; + int flag = F2FS_GET_BLOCK_PRE_AIO; + int err = 0; + + /* + * If a whole page is being written and we already preallocated all the + * blocks, then there is no need to get a block address now. + */ + if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) + return 0; + + /* f2fs_lock_op avoids race between write CP and convert_inline_page */ + if (f2fs_has_inline_data(inode)) { + if (pos + len > MAX_INLINE_DATA(inode)) + flag = F2FS_GET_BLOCK_DEFAULT; + f2fs_map_lock(sbi, flag); + locked = true; + } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { + f2fs_map_lock(sbi, flag); + locked = true; + } + +restart: + /* check inline_data */ + ipage = f2fs_get_node_page(sbi, inode->i_ino); + if (IS_ERR(ipage)) { + err = PTR_ERR(ipage); + goto unlock_out; + } + + set_new_dnode(&dn, inode, ipage, ipage, 0); + + if (f2fs_has_inline_data(inode)) { + if (pos + len <= MAX_INLINE_DATA(inode)) { + f2fs_do_read_inline_data(page, ipage); + set_inode_flag(inode, FI_DATA_EXIST); + if (inode->i_nlink) + set_page_private_inline(ipage); + goto out; + } + err = f2fs_convert_inline_page(&dn, page); + if (err || dn.data_blkaddr != NULL_ADDR) + goto out; + } + + if (!f2fs_lookup_read_extent_cache_block(inode, index, + &dn.data_blkaddr)) { + if (locked) { + err = f2fs_reserve_block(&dn, index); + goto out; + } + + /* hole case */ + err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); + if (!err && dn.data_blkaddr != NULL_ADDR) + goto out; + f2fs_put_dnode(&dn); + f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); + WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); + locked = true; + goto restart; + } +out: + if (!err) { + /* convert_inline_page can make node_changed */ + *blk_addr = dn.data_blkaddr; + *node_changed = dn.node_changed; + } + f2fs_put_dnode(&dn); +unlock_out: + if (locked) + f2fs_map_unlock(sbi, flag); + return err; +} + +static int __find_data_block(struct inode *inode, pgoff_t index, + block_t *blk_addr) +{ + struct dnode_of_data dn; + struct page *ipage; + int err = 0; + + ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); + if (IS_ERR(ipage)) + return PTR_ERR(ipage); + + set_new_dnode(&dn, inode, ipage, ipage, 0); + + if (!f2fs_lookup_read_extent_cache_block(inode, index, + &dn.data_blkaddr)) { + /* hole case */ + err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); + if (err) { + dn.data_blkaddr = NULL_ADDR; + err = 0; + } + } + *blk_addr = dn.data_blkaddr; + f2fs_put_dnode(&dn); + return err; +} + +static int __reserve_data_block(struct inode *inode, pgoff_t index, + block_t *blk_addr, bool *node_changed) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + struct dnode_of_data dn; + struct page *ipage; + int err = 0; + + f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); + + ipage = f2fs_get_node_page(sbi, inode->i_ino); + if (IS_ERR(ipage)) { + err = PTR_ERR(ipage); + goto unlock_out; + } + set_new_dnode(&dn, inode, ipage, ipage, 0); + + if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, + &dn.data_blkaddr)) + err = f2fs_reserve_block(&dn, index); + + *blk_addr = dn.data_blkaddr; + *node_changed = dn.node_changed; + f2fs_put_dnode(&dn); + +unlock_out: + f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); + return err; +} + +static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, + struct page *page, loff_t pos, unsigned int len, + block_t *blk_addr, bool *node_changed, bool *use_cow) +{ + struct inode *inode = page->mapping->host; + struct inode *cow_inode = F2FS_I(inode)->cow_inode; + pgoff_t index = page->index; + int err = 0; + block_t ori_blk_addr = NULL_ADDR; + + /* If pos is beyond the end of file, reserve a new block in COW inode */ + if ((pos & PAGE_MASK) >= i_size_read(inode)) + goto reserve_block; + + /* Look for the block in COW inode first */ + err = __find_data_block(cow_inode, index, blk_addr); + if (err) { + return err; + } else if (*blk_addr != NULL_ADDR) { + *use_cow = true; + return 0; + } + + if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) + goto reserve_block; + + /* Look for the block in the original inode */ + err = __find_data_block(inode, index, &ori_blk_addr); + if (err) + return err; + +reserve_block: + /* Finally, we should reserve a new block in COW inode for the update */ + err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); + if (err) + return err; + inc_atomic_write_cnt(inode); + + if (ori_blk_addr != NULL_ADDR) + *blk_addr = ori_blk_addr; + return 0; +} + +static int f2fs_write_begin(struct file *file, struct address_space *mapping, + loff_t pos, unsigned len, struct page **pagep, void **fsdata) +{ + struct inode *inode = mapping->host; + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + struct page *page = NULL; + pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; + bool need_balance = false; + bool use_cow = false; + block_t blkaddr = NULL_ADDR; + int err = 0; + + trace_f2fs_write_begin(inode, pos, len); + + if (!f2fs_is_checkpoint_ready(sbi)) { + err = -ENOSPC; + goto fail; + } + + /* + * We should check this at this moment to avoid deadlock on inode page + * and #0 page. The locking rule for inline_data conversion should be: + * lock_page(page #0) -> lock_page(inode_page) + */ + if (index != 0) { + err = f2fs_convert_inline_inode(inode); + if (err) + goto fail; + } + +#ifdef CONFIG_F2FS_FS_COMPRESSION + if (f2fs_compressed_file(inode)) { + int ret; + + *fsdata = NULL; + + if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) + goto repeat; + + ret = f2fs_prepare_compress_overwrite(inode, pagep, + index, fsdata); + if (ret < 0) { + err = ret; + goto fail; + } else if (ret) { + return 0; + } + } +#endif + +repeat: + /* + * Do not use grab_cache_page_write_begin() to avoid deadlock due to + * wait_for_stable_page. Will wait that below with our IO control. + */ + page = f2fs_pagecache_get_page(mapping, index, + FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); + if (!page) { + err = -ENOMEM; + goto fail; + } + + /* TODO: cluster can be compressed due to race with .writepage */ + + *pagep = page; + + if (f2fs_is_atomic_file(inode)) + err = prepare_atomic_write_begin(sbi, page, pos, len, + &blkaddr, &need_balance, &use_cow); + else + err = prepare_write_begin(sbi, page, pos, len, + &blkaddr, &need_balance); + if (err) + goto fail; + + if (need_balance && !IS_NOQUOTA(inode) && + has_not_enough_free_secs(sbi, 0, 0)) { + unlock_page(page); + f2fs_balance_fs(sbi, true); + lock_page(page); + if (page->mapping != mapping) { + /* The page got truncated from under us */ + f2fs_put_page(page, 1); + goto repeat; + } + } + + f2fs_wait_on_page_writeback(page, DATA, false, true); + + if (len == PAGE_SIZE || PageUptodate(page)) + return 0; + + if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && + !f2fs_verity_in_progress(inode)) { + zero_user_segment(page, len, PAGE_SIZE); + return 0; + } + + if (blkaddr == NEW_ADDR) { + zero_user_segment(page, 0, PAGE_SIZE); + SetPageUptodate(page); + } else { + if (!f2fs_is_valid_blkaddr(sbi, blkaddr, + DATA_GENERIC_ENHANCE_READ)) { + err = -EFSCORRUPTED; + f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); + goto fail; + } + err = f2fs_submit_page_read(use_cow ? + F2FS_I(inode)->cow_inode : inode, page, + blkaddr, 0, true); + if (err) + goto fail; + + lock_page(page); + if (unlikely(page->mapping != mapping)) { + f2fs_put_page(page, 1); + goto repeat; + } + if (unlikely(!PageUptodate(page))) { + err = -EIO; + goto fail; + } + } + return 0; + +fail: + f2fs_put_page(page, 1); + f2fs_write_failed(inode, pos + len); + return err; +} + +static int f2fs_write_end(struct file *file, + struct address_space *mapping, + loff_t pos, unsigned len, unsigned copied, + struct page *page, void *fsdata) +{ + struct inode *inode = page->mapping->host; + + trace_f2fs_write_end(inode, pos, len, copied); + + /* + * This should be come from len == PAGE_SIZE, and we expect copied + * should be PAGE_SIZE. Otherwise, we treat it with zero copied and + * let generic_perform_write() try to copy data again through copied=0. + */ + if (!PageUptodate(page)) { + if (unlikely(copied != len)) + copied = 0; + else + SetPageUptodate(page); + } + +#ifdef CONFIG_F2FS_FS_COMPRESSION + /* overwrite compressed file */ + if (f2fs_compressed_file(inode) && fsdata) { + f2fs_compress_write_end(inode, fsdata, page->index, copied); + f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); + + if (pos + copied > i_size_read(inode) && + !f2fs_verity_in_progress(inode)) + f2fs_i_size_write(inode, pos + copied); + return copied; + } +#endif + + if (!copied) + goto unlock_out; + + set_page_dirty(page); + + if (pos + copied > i_size_read(inode) && + !f2fs_verity_in_progress(inode)) { + f2fs_i_size_write(inode, pos + copied); + if (f2fs_is_atomic_file(inode)) + f2fs_i_size_write(F2FS_I(inode)->cow_inode, + pos + copied); + } +unlock_out: + f2fs_put_page(page, 1); + f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); + return copied; +} + +void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) +{ + struct inode *inode = folio->mapping->host; + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + + if (inode->i_ino >= F2FS_ROOT_INO(sbi) && + (offset || length != folio_size(folio))) + return; + + if (folio_test_dirty(folio)) { + if (inode->i_ino == F2FS_META_INO(sbi)) { + dec_page_count(sbi, F2FS_DIRTY_META); + } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { + dec_page_count(sbi, F2FS_DIRTY_NODES); + } else { + inode_dec_dirty_pages(inode); + f2fs_remove_dirty_inode(inode); + } + } + clear_page_private_all(&folio->page); +} + +bool f2fs_release_folio(struct folio *folio, gfp_t wait) +{ + /* If this is dirty folio, keep private data */ + if (folio_test_dirty(folio)) + return false; + + clear_page_private_all(&folio->page); + return true; +} + +static bool f2fs_dirty_data_folio(struct address_space *mapping, + struct folio *folio) +{ + struct inode *inode = mapping->host; + + trace_f2fs_set_page_dirty(&folio->page, DATA); + + if (!folio_test_uptodate(folio)) + folio_mark_uptodate(folio); + BUG_ON(folio_test_swapcache(folio)); + + if (filemap_dirty_folio(mapping, folio)) { + f2fs_update_dirty_folio(inode, folio); + return true; + } + return false; +} + + +static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) +{ +#ifdef CONFIG_F2FS_FS_COMPRESSION + struct dnode_of_data dn; + sector_t start_idx, blknr = 0; + int ret; + + start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); + + set_new_dnode(&dn, inode, NULL, NULL, 0); + ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); + if (ret) + return 0; + + if (dn.data_blkaddr != COMPRESS_ADDR) { + dn.ofs_in_node += block - start_idx; + blknr = f2fs_data_blkaddr(&dn); + if (!__is_valid_data_blkaddr(blknr)) + blknr = 0; + } + + f2fs_put_dnode(&dn); + return blknr; +#else + return 0; +#endif +} + + +static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) +{ + struct inode *inode = mapping->host; + sector_t blknr = 0; + + if (f2fs_has_inline_data(inode)) + goto out; + + /* make sure allocating whole blocks */ + if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) + filemap_write_and_wait(mapping); + + /* Block number less than F2FS MAX BLOCKS */ + if (unlikely(block >= max_file_blocks(inode))) + goto out; + + if (f2fs_compressed_file(inode)) { + blknr = f2fs_bmap_compress(inode, block); + } else { + struct f2fs_map_blocks map; + + memset(&map, 0, sizeof(map)); + map.m_lblk = block; + map.m_len = 1; + map.m_next_pgofs = NULL; + map.m_seg_type = NO_CHECK_TYPE; + + if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) + blknr = map.m_pblk; + } +out: + trace_f2fs_bmap(inode, block, blknr); + return blknr; +} + +#ifdef CONFIG_SWAP +static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, + unsigned int blkcnt) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + unsigned int blkofs; + unsigned int blk_per_sec = BLKS_PER_SEC(sbi); + unsigned int secidx = start_blk / blk_per_sec; + unsigned int end_sec = secidx + blkcnt / blk_per_sec; + int ret = 0; + + f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); + filemap_invalidate_lock(inode->i_mapping); + + set_inode_flag(inode, FI_ALIGNED_WRITE); + set_inode_flag(inode, FI_OPU_WRITE); + + for (; secidx < end_sec; secidx++) { + f2fs_down_write(&sbi->pin_sem); + + f2fs_lock_op(sbi); + f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); + f2fs_unlock_op(sbi); + + set_inode_flag(inode, FI_SKIP_WRITES); + + for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { + struct page *page; + unsigned int blkidx = secidx * blk_per_sec + blkofs; + + page = f2fs_get_lock_data_page(inode, blkidx, true); + if (IS_ERR(page)) { + f2fs_up_write(&sbi->pin_sem); + ret = PTR_ERR(page); + goto done; + } + + set_page_dirty(page); + f2fs_put_page(page, 1); + } + + clear_inode_flag(inode, FI_SKIP_WRITES); + + ret = filemap_fdatawrite(inode->i_mapping); + + f2fs_up_write(&sbi->pin_sem); + + if (ret) + break; + } + +done: + clear_inode_flag(inode, FI_SKIP_WRITES); + clear_inode_flag(inode, FI_OPU_WRITE); + clear_inode_flag(inode, FI_ALIGNED_WRITE); + + filemap_invalidate_unlock(inode->i_mapping); + f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); + + return ret; +} + +static int check_swap_activate(struct swap_info_struct *sis, + struct file *swap_file, sector_t *span) +{ + struct address_space *mapping = swap_file->f_mapping; + struct inode *inode = mapping->host; + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + sector_t cur_lblock; + sector_t last_lblock; + sector_t pblock; + sector_t lowest_pblock = -1; + sector_t highest_pblock = 0; + int nr_extents = 0; + unsigned long nr_pblocks; + unsigned int blks_per_sec = BLKS_PER_SEC(sbi); + unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; + unsigned int not_aligned = 0; + int ret = 0; + + /* + * Map all the blocks into the extent list. This code doesn't try + * to be very smart. + */ + cur_lblock = 0; + last_lblock = bytes_to_blks(inode, i_size_read(inode)); + + while (cur_lblock < last_lblock && cur_lblock < sis->max) { + struct f2fs_map_blocks map; +retry: + cond_resched(); + + memset(&map, 0, sizeof(map)); + map.m_lblk = cur_lblock; + map.m_len = last_lblock - cur_lblock; + map.m_next_pgofs = NULL; + map.m_next_extent = NULL; + map.m_seg_type = NO_CHECK_TYPE; + map.m_may_create = false; + + ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); + if (ret) + goto out; + + /* hole */ + if (!(map.m_flags & F2FS_MAP_FLAGS)) { + f2fs_err(sbi, "Swapfile has holes"); + ret = -EINVAL; + goto out; + } + + pblock = map.m_pblk; + nr_pblocks = map.m_len; + + if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || + nr_pblocks & sec_blks_mask) { + not_aligned++; + + nr_pblocks = roundup(nr_pblocks, blks_per_sec); + if (cur_lblock + nr_pblocks > sis->max) + nr_pblocks -= blks_per_sec; + + if (!nr_pblocks) { + /* this extent is last one */ + nr_pblocks = map.m_len; + f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); + goto next; + } + + ret = f2fs_migrate_blocks(inode, cur_lblock, + nr_pblocks); + if (ret) + goto out; + goto retry; + } +next: + if (cur_lblock + nr_pblocks >= sis->max) + nr_pblocks = sis->max - cur_lblock; + + if (cur_lblock) { /* exclude the header page */ + if (pblock < lowest_pblock) + lowest_pblock = pblock; + if (pblock + nr_pblocks - 1 > highest_pblock) + highest_pblock = pblock + nr_pblocks - 1; + } + + /* + * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks + */ + ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); + if (ret < 0) + goto out; + nr_extents += ret; + cur_lblock += nr_pblocks; + } + ret = nr_extents; + *span = 1 + highest_pblock - lowest_pblock; + if (cur_lblock == 0) + cur_lblock = 1; /* force Empty message */ + sis->max = cur_lblock; + sis->pages = cur_lblock - 1; + sis->highest_bit = cur_lblock - 1; +out: + if (not_aligned) + f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", + not_aligned, blks_per_sec * F2FS_BLKSIZE); + return ret; +} + +static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, + sector_t *span) +{ + struct inode *inode = file_inode(file); + int ret; + + if (!S_ISREG(inode->i_mode)) + return -EINVAL; + + if (f2fs_readonly(F2FS_I_SB(inode)->sb)) + return -EROFS; + + if (f2fs_lfs_mode(F2FS_I_SB(inode))) { + f2fs_err(F2FS_I_SB(inode), + "Swapfile not supported in LFS mode"); + return -EINVAL; + } + + ret = f2fs_convert_inline_inode(inode); + if (ret) + return ret; + + if (!f2fs_disable_compressed_file(inode)) + return -EINVAL; + + f2fs_precache_extents(inode); + + ret = check_swap_activate(sis, file, span); + if (ret < 0) + return ret; + + stat_inc_swapfile_inode(inode); + set_inode_flag(inode, FI_PIN_FILE); + f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); + return ret; +} + +static void f2fs_swap_deactivate(struct file *file) +{ + struct inode *inode = file_inode(file); + + stat_dec_swapfile_inode(inode); + clear_inode_flag(inode, FI_PIN_FILE); +} +#else +static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, + sector_t *span) +{ + return -EOPNOTSUPP; +} + +static void f2fs_swap_deactivate(struct file *file) +{ +} +#endif + +const struct address_space_operations f2fs_dblock_aops = { + .read_folio = f2fs_read_data_folio, + .readahead = f2fs_readahead, + .writepage = f2fs_write_data_page, + .writepages = f2fs_write_data_pages, + .write_begin = f2fs_write_begin, + .write_end = f2fs_write_end, + .dirty_folio = f2fs_dirty_data_folio, + .migrate_folio = filemap_migrate_folio, + .invalidate_folio = f2fs_invalidate_folio, + .release_folio = f2fs_release_folio, + .bmap = f2fs_bmap, + .swap_activate = f2fs_swap_activate, + .swap_deactivate = f2fs_swap_deactivate, +}; + +void f2fs_clear_page_cache_dirty_tag(struct page *page) +{ + struct address_space *mapping = page_mapping(page); + unsigned long flags; + + xa_lock_irqsave(&mapping->i_pages, flags); + __xa_clear_mark(&mapping->i_pages, page_index(page), + PAGECACHE_TAG_DIRTY); + xa_unlock_irqrestore(&mapping->i_pages, flags); +} + +int __init f2fs_init_post_read_processing(void) +{ + bio_post_read_ctx_cache = + kmem_cache_create("f2fs_bio_post_read_ctx", + sizeof(struct bio_post_read_ctx), 0, 0, NULL); + if (!bio_post_read_ctx_cache) + goto fail; + bio_post_read_ctx_pool = + mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, + bio_post_read_ctx_cache); + if (!bio_post_read_ctx_pool) + goto fail_free_cache; + return 0; + +fail_free_cache: + kmem_cache_destroy(bio_post_read_ctx_cache); +fail: + return -ENOMEM; +} + +void f2fs_destroy_post_read_processing(void) +{ + mempool_destroy(bio_post_read_ctx_pool); + kmem_cache_destroy(bio_post_read_ctx_cache); +} + +int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) +{ + if (!f2fs_sb_has_encrypt(sbi) && + !f2fs_sb_has_verity(sbi) && + !f2fs_sb_has_compression(sbi)) + return 0; + + sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", + WQ_UNBOUND | WQ_HIGHPRI, + num_online_cpus()); + return sbi->post_read_wq ? 0 : -ENOMEM; +} + +void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) +{ + if (sbi->post_read_wq) + destroy_workqueue(sbi->post_read_wq); +} + +int __init f2fs_init_bio_entry_cache(void) +{ + bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", + sizeof(struct bio_entry)); + return bio_entry_slab ? 0 : -ENOMEM; +} + +void f2fs_destroy_bio_entry_cache(void) +{ + kmem_cache_destroy(bio_entry_slab); +} + +static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, + unsigned int flags, struct iomap *iomap, + struct iomap *srcmap) +{ + struct f2fs_map_blocks map = {}; + pgoff_t next_pgofs = 0; + int err; + + map.m_lblk = bytes_to_blks(inode, offset); + map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; + map.m_next_pgofs = &next_pgofs; + map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); + if (flags & IOMAP_WRITE) + map.m_may_create = true; + + err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); + if (err) + return err; + + iomap->offset = blks_to_bytes(inode, map.m_lblk); + + /* + * When inline encryption is enabled, sometimes I/O to an encrypted file + * has to be broken up to guarantee DUN contiguity. Handle this by + * limiting the length of the mapping returned. + */ + map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); + + /* + * We should never see delalloc or compressed extents here based on + * prior flushing and checks. + */ + if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) + return -EINVAL; + if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) + return -EINVAL; + + if (map.m_pblk != NULL_ADDR) { + iomap->length = blks_to_bytes(inode, map.m_len); + iomap->type = IOMAP_MAPPED; + iomap->flags |= IOMAP_F_MERGED; + iomap->bdev = map.m_bdev; + iomap->addr = blks_to_bytes(inode, map.m_pblk); + } else { + if (flags & IOMAP_WRITE) + return -ENOTBLK; + iomap->length = blks_to_bytes(inode, next_pgofs) - + iomap->offset; + iomap->type = IOMAP_HOLE; + iomap->addr = IOMAP_NULL_ADDR; + } + + if (map.m_flags & F2FS_MAP_NEW) + iomap->flags |= IOMAP_F_NEW; + if ((inode->i_state & I_DIRTY_DATASYNC) || + offset + length > i_size_read(inode)) + iomap->flags |= IOMAP_F_DIRTY; + + return 0; +} + +const struct iomap_ops f2fs_iomap_ops = { + .iomap_begin = f2fs_iomap_begin, +}; |