diff options
Diffstat (limited to '')
-rw-r--r-- | fs/f2fs/node.c | 3453 |
1 files changed, 3453 insertions, 0 deletions
diff --git a/fs/f2fs/node.c b/fs/f2fs/node.c new file mode 100644 index 0000000000..9e00932770 --- /dev/null +++ b/fs/f2fs/node.c @@ -0,0 +1,3453 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * fs/f2fs/node.c + * + * Copyright (c) 2012 Samsung Electronics Co., Ltd. + * http://www.samsung.com/ + */ +#include <linux/fs.h> +#include <linux/f2fs_fs.h> +#include <linux/mpage.h> +#include <linux/sched/mm.h> +#include <linux/blkdev.h> +#include <linux/pagevec.h> +#include <linux/swap.h> + +#include "f2fs.h" +#include "node.h" +#include "segment.h" +#include "xattr.h" +#include "iostat.h" +#include <trace/events/f2fs.h> + +#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) + +static struct kmem_cache *nat_entry_slab; +static struct kmem_cache *free_nid_slab; +static struct kmem_cache *nat_entry_set_slab; +static struct kmem_cache *fsync_node_entry_slab; + +/* + * Check whether the given nid is within node id range. + */ +int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) +{ + if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { + set_sbi_flag(sbi, SBI_NEED_FSCK); + f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", + __func__, nid); + f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); + return -EFSCORRUPTED; + } + return 0; +} + +bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; + struct sysinfo val; + unsigned long avail_ram; + unsigned long mem_size = 0; + bool res = false; + + if (!nm_i) + return true; + + si_meminfo(&val); + + /* only uses low memory */ + avail_ram = val.totalram - val.totalhigh; + + /* + * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively + */ + if (type == FREE_NIDS) { + mem_size = (nm_i->nid_cnt[FREE_NID] * + sizeof(struct free_nid)) >> PAGE_SHIFT; + res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); + } else if (type == NAT_ENTRIES) { + mem_size = (nm_i->nat_cnt[TOTAL_NAT] * + sizeof(struct nat_entry)) >> PAGE_SHIFT; + res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); + if (excess_cached_nats(sbi)) + res = false; + } else if (type == DIRTY_DENTS) { + if (sbi->sb->s_bdi->wb.dirty_exceeded) + return false; + mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); + res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); + } else if (type == INO_ENTRIES) { + int i; + + for (i = 0; i < MAX_INO_ENTRY; i++) + mem_size += sbi->im[i].ino_num * + sizeof(struct ino_entry); + mem_size >>= PAGE_SHIFT; + res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); + } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { + enum extent_type etype = type == READ_EXTENT_CACHE ? + EX_READ : EX_BLOCK_AGE; + struct extent_tree_info *eti = &sbi->extent_tree[etype]; + + mem_size = (atomic_read(&eti->total_ext_tree) * + sizeof(struct extent_tree) + + atomic_read(&eti->total_ext_node) * + sizeof(struct extent_node)) >> PAGE_SHIFT; + res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); + } else if (type == DISCARD_CACHE) { + mem_size = (atomic_read(&dcc->discard_cmd_cnt) * + sizeof(struct discard_cmd)) >> PAGE_SHIFT; + res = mem_size < (avail_ram * nm_i->ram_thresh / 100); + } else if (type == COMPRESS_PAGE) { +#ifdef CONFIG_F2FS_FS_COMPRESSION + unsigned long free_ram = val.freeram; + + /* + * free memory is lower than watermark or cached page count + * exceed threshold, deny caching compress page. + */ + res = (free_ram > avail_ram * sbi->compress_watermark / 100) && + (COMPRESS_MAPPING(sbi)->nrpages < + free_ram * sbi->compress_percent / 100); +#else + res = false; +#endif + } else { + if (!sbi->sb->s_bdi->wb.dirty_exceeded) + return true; + } + return res; +} + +static void clear_node_page_dirty(struct page *page) +{ + if (PageDirty(page)) { + f2fs_clear_page_cache_dirty_tag(page); + clear_page_dirty_for_io(page); + dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); + } + ClearPageUptodate(page); +} + +static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) +{ + return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); +} + +static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) +{ + struct page *src_page; + struct page *dst_page; + pgoff_t dst_off; + void *src_addr; + void *dst_addr; + struct f2fs_nm_info *nm_i = NM_I(sbi); + + dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); + + /* get current nat block page with lock */ + src_page = get_current_nat_page(sbi, nid); + if (IS_ERR(src_page)) + return src_page; + dst_page = f2fs_grab_meta_page(sbi, dst_off); + f2fs_bug_on(sbi, PageDirty(src_page)); + + src_addr = page_address(src_page); + dst_addr = page_address(dst_page); + memcpy(dst_addr, src_addr, PAGE_SIZE); + set_page_dirty(dst_page); + f2fs_put_page(src_page, 1); + + set_to_next_nat(nm_i, nid); + + return dst_page; +} + +static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, + nid_t nid, bool no_fail) +{ + struct nat_entry *new; + + new = f2fs_kmem_cache_alloc(nat_entry_slab, + GFP_F2FS_ZERO, no_fail, sbi); + if (new) { + nat_set_nid(new, nid); + nat_reset_flag(new); + } + return new; +} + +static void __free_nat_entry(struct nat_entry *e) +{ + kmem_cache_free(nat_entry_slab, e); +} + +/* must be locked by nat_tree_lock */ +static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, + struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) +{ + if (no_fail) + f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); + else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) + return NULL; + + if (raw_ne) + node_info_from_raw_nat(&ne->ni, raw_ne); + + spin_lock(&nm_i->nat_list_lock); + list_add_tail(&ne->list, &nm_i->nat_entries); + spin_unlock(&nm_i->nat_list_lock); + + nm_i->nat_cnt[TOTAL_NAT]++; + nm_i->nat_cnt[RECLAIMABLE_NAT]++; + return ne; +} + +static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) +{ + struct nat_entry *ne; + + ne = radix_tree_lookup(&nm_i->nat_root, n); + + /* for recent accessed nat entry, move it to tail of lru list */ + if (ne && !get_nat_flag(ne, IS_DIRTY)) { + spin_lock(&nm_i->nat_list_lock); + if (!list_empty(&ne->list)) + list_move_tail(&ne->list, &nm_i->nat_entries); + spin_unlock(&nm_i->nat_list_lock); + } + + return ne; +} + +static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, + nid_t start, unsigned int nr, struct nat_entry **ep) +{ + return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); +} + +static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) +{ + radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); + nm_i->nat_cnt[TOTAL_NAT]--; + nm_i->nat_cnt[RECLAIMABLE_NAT]--; + __free_nat_entry(e); +} + +static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, + struct nat_entry *ne) +{ + nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); + struct nat_entry_set *head; + + head = radix_tree_lookup(&nm_i->nat_set_root, set); + if (!head) { + head = f2fs_kmem_cache_alloc(nat_entry_set_slab, + GFP_NOFS, true, NULL); + + INIT_LIST_HEAD(&head->entry_list); + INIT_LIST_HEAD(&head->set_list); + head->set = set; + head->entry_cnt = 0; + f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); + } + return head; +} + +static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, + struct nat_entry *ne) +{ + struct nat_entry_set *head; + bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; + + if (!new_ne) + head = __grab_nat_entry_set(nm_i, ne); + + /* + * update entry_cnt in below condition: + * 1. update NEW_ADDR to valid block address; + * 2. update old block address to new one; + */ + if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || + !get_nat_flag(ne, IS_DIRTY))) + head->entry_cnt++; + + set_nat_flag(ne, IS_PREALLOC, new_ne); + + if (get_nat_flag(ne, IS_DIRTY)) + goto refresh_list; + + nm_i->nat_cnt[DIRTY_NAT]++; + nm_i->nat_cnt[RECLAIMABLE_NAT]--; + set_nat_flag(ne, IS_DIRTY, true); +refresh_list: + spin_lock(&nm_i->nat_list_lock); + if (new_ne) + list_del_init(&ne->list); + else + list_move_tail(&ne->list, &head->entry_list); + spin_unlock(&nm_i->nat_list_lock); +} + +static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, + struct nat_entry_set *set, struct nat_entry *ne) +{ + spin_lock(&nm_i->nat_list_lock); + list_move_tail(&ne->list, &nm_i->nat_entries); + spin_unlock(&nm_i->nat_list_lock); + + set_nat_flag(ne, IS_DIRTY, false); + set->entry_cnt--; + nm_i->nat_cnt[DIRTY_NAT]--; + nm_i->nat_cnt[RECLAIMABLE_NAT]++; +} + +static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, + nid_t start, unsigned int nr, struct nat_entry_set **ep) +{ + return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, + start, nr); +} + +bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) +{ + return NODE_MAPPING(sbi) == page->mapping && + IS_DNODE(page) && is_cold_node(page); +} + +void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) +{ + spin_lock_init(&sbi->fsync_node_lock); + INIT_LIST_HEAD(&sbi->fsync_node_list); + sbi->fsync_seg_id = 0; + sbi->fsync_node_num = 0; +} + +static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, + struct page *page) +{ + struct fsync_node_entry *fn; + unsigned long flags; + unsigned int seq_id; + + fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, + GFP_NOFS, true, NULL); + + get_page(page); + fn->page = page; + INIT_LIST_HEAD(&fn->list); + + spin_lock_irqsave(&sbi->fsync_node_lock, flags); + list_add_tail(&fn->list, &sbi->fsync_node_list); + fn->seq_id = sbi->fsync_seg_id++; + seq_id = fn->seq_id; + sbi->fsync_node_num++; + spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); + + return seq_id; +} + +void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) +{ + struct fsync_node_entry *fn; + unsigned long flags; + + spin_lock_irqsave(&sbi->fsync_node_lock, flags); + list_for_each_entry(fn, &sbi->fsync_node_list, list) { + if (fn->page == page) { + list_del(&fn->list); + sbi->fsync_node_num--; + spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); + kmem_cache_free(fsync_node_entry_slab, fn); + put_page(page); + return; + } + } + spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); + f2fs_bug_on(sbi, 1); +} + +void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) +{ + unsigned long flags; + + spin_lock_irqsave(&sbi->fsync_node_lock, flags); + sbi->fsync_seg_id = 0; + spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); +} + +int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct nat_entry *e; + bool need = false; + + f2fs_down_read(&nm_i->nat_tree_lock); + e = __lookup_nat_cache(nm_i, nid); + if (e) { + if (!get_nat_flag(e, IS_CHECKPOINTED) && + !get_nat_flag(e, HAS_FSYNCED_INODE)) + need = true; + } + f2fs_up_read(&nm_i->nat_tree_lock); + return need; +} + +bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct nat_entry *e; + bool is_cp = true; + + f2fs_down_read(&nm_i->nat_tree_lock); + e = __lookup_nat_cache(nm_i, nid); + if (e && !get_nat_flag(e, IS_CHECKPOINTED)) + is_cp = false; + f2fs_up_read(&nm_i->nat_tree_lock); + return is_cp; +} + +bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct nat_entry *e; + bool need_update = true; + + f2fs_down_read(&nm_i->nat_tree_lock); + e = __lookup_nat_cache(nm_i, ino); + if (e && get_nat_flag(e, HAS_LAST_FSYNC) && + (get_nat_flag(e, IS_CHECKPOINTED) || + get_nat_flag(e, HAS_FSYNCED_INODE))) + need_update = false; + f2fs_up_read(&nm_i->nat_tree_lock); + return need_update; +} + +/* must be locked by nat_tree_lock */ +static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, + struct f2fs_nat_entry *ne) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct nat_entry *new, *e; + + /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ + if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) + return; + + new = __alloc_nat_entry(sbi, nid, false); + if (!new) + return; + + f2fs_down_write(&nm_i->nat_tree_lock); + e = __lookup_nat_cache(nm_i, nid); + if (!e) + e = __init_nat_entry(nm_i, new, ne, false); + else + f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || + nat_get_blkaddr(e) != + le32_to_cpu(ne->block_addr) || + nat_get_version(e) != ne->version); + f2fs_up_write(&nm_i->nat_tree_lock); + if (e != new) + __free_nat_entry(new); +} + +static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, + block_t new_blkaddr, bool fsync_done) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct nat_entry *e; + struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); + + f2fs_down_write(&nm_i->nat_tree_lock); + e = __lookup_nat_cache(nm_i, ni->nid); + if (!e) { + e = __init_nat_entry(nm_i, new, NULL, true); + copy_node_info(&e->ni, ni); + f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); + } else if (new_blkaddr == NEW_ADDR) { + /* + * when nid is reallocated, + * previous nat entry can be remained in nat cache. + * So, reinitialize it with new information. + */ + copy_node_info(&e->ni, ni); + f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); + } + /* let's free early to reduce memory consumption */ + if (e != new) + __free_nat_entry(new); + + /* sanity check */ + f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); + f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && + new_blkaddr == NULL_ADDR); + f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && + new_blkaddr == NEW_ADDR); + f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && + new_blkaddr == NEW_ADDR); + + /* increment version no as node is removed */ + if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { + unsigned char version = nat_get_version(e); + + nat_set_version(e, inc_node_version(version)); + } + + /* change address */ + nat_set_blkaddr(e, new_blkaddr); + if (!__is_valid_data_blkaddr(new_blkaddr)) + set_nat_flag(e, IS_CHECKPOINTED, false); + __set_nat_cache_dirty(nm_i, e); + + /* update fsync_mark if its inode nat entry is still alive */ + if (ni->nid != ni->ino) + e = __lookup_nat_cache(nm_i, ni->ino); + if (e) { + if (fsync_done && ni->nid == ni->ino) + set_nat_flag(e, HAS_FSYNCED_INODE, true); + set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); + } + f2fs_up_write(&nm_i->nat_tree_lock); +} + +int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + int nr = nr_shrink; + + if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) + return 0; + + spin_lock(&nm_i->nat_list_lock); + while (nr_shrink) { + struct nat_entry *ne; + + if (list_empty(&nm_i->nat_entries)) + break; + + ne = list_first_entry(&nm_i->nat_entries, + struct nat_entry, list); + list_del(&ne->list); + spin_unlock(&nm_i->nat_list_lock); + + __del_from_nat_cache(nm_i, ne); + nr_shrink--; + + spin_lock(&nm_i->nat_list_lock); + } + spin_unlock(&nm_i->nat_list_lock); + + f2fs_up_write(&nm_i->nat_tree_lock); + return nr - nr_shrink; +} + +int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, + struct node_info *ni, bool checkpoint_context) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); + struct f2fs_journal *journal = curseg->journal; + nid_t start_nid = START_NID(nid); + struct f2fs_nat_block *nat_blk; + struct page *page = NULL; + struct f2fs_nat_entry ne; + struct nat_entry *e; + pgoff_t index; + block_t blkaddr; + int i; + + ni->nid = nid; +retry: + /* Check nat cache */ + f2fs_down_read(&nm_i->nat_tree_lock); + e = __lookup_nat_cache(nm_i, nid); + if (e) { + ni->ino = nat_get_ino(e); + ni->blk_addr = nat_get_blkaddr(e); + ni->version = nat_get_version(e); + f2fs_up_read(&nm_i->nat_tree_lock); + return 0; + } + + /* + * Check current segment summary by trying to grab journal_rwsem first. + * This sem is on the critical path on the checkpoint requiring the above + * nat_tree_lock. Therefore, we should retry, if we failed to grab here + * while not bothering checkpoint. + */ + if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { + down_read(&curseg->journal_rwsem); + } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || + !down_read_trylock(&curseg->journal_rwsem)) { + f2fs_up_read(&nm_i->nat_tree_lock); + goto retry; + } + + i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); + if (i >= 0) { + ne = nat_in_journal(journal, i); + node_info_from_raw_nat(ni, &ne); + } + up_read(&curseg->journal_rwsem); + if (i >= 0) { + f2fs_up_read(&nm_i->nat_tree_lock); + goto cache; + } + + /* Fill node_info from nat page */ + index = current_nat_addr(sbi, nid); + f2fs_up_read(&nm_i->nat_tree_lock); + + page = f2fs_get_meta_page(sbi, index); + if (IS_ERR(page)) + return PTR_ERR(page); + + nat_blk = (struct f2fs_nat_block *)page_address(page); + ne = nat_blk->entries[nid - start_nid]; + node_info_from_raw_nat(ni, &ne); + f2fs_put_page(page, 1); +cache: + blkaddr = le32_to_cpu(ne.block_addr); + if (__is_valid_data_blkaddr(blkaddr) && + !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) + return -EFAULT; + + /* cache nat entry */ + cache_nat_entry(sbi, nid, &ne); + return 0; +} + +/* + * readahead MAX_RA_NODE number of node pages. + */ +static void f2fs_ra_node_pages(struct page *parent, int start, int n) +{ + struct f2fs_sb_info *sbi = F2FS_P_SB(parent); + struct blk_plug plug; + int i, end; + nid_t nid; + + blk_start_plug(&plug); + + /* Then, try readahead for siblings of the desired node */ + end = start + n; + end = min(end, NIDS_PER_BLOCK); + for (i = start; i < end; i++) { + nid = get_nid(parent, i, false); + f2fs_ra_node_page(sbi, nid); + } + + blk_finish_plug(&plug); +} + +pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) +{ + const long direct_index = ADDRS_PER_INODE(dn->inode); + const long direct_blks = ADDRS_PER_BLOCK(dn->inode); + const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; + unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); + int cur_level = dn->cur_level; + int max_level = dn->max_level; + pgoff_t base = 0; + + if (!dn->max_level) + return pgofs + 1; + + while (max_level-- > cur_level) + skipped_unit *= NIDS_PER_BLOCK; + + switch (dn->max_level) { + case 3: + base += 2 * indirect_blks; + fallthrough; + case 2: + base += 2 * direct_blks; + fallthrough; + case 1: + base += direct_index; + break; + default: + f2fs_bug_on(F2FS_I_SB(dn->inode), 1); + } + + return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; +} + +/* + * The maximum depth is four. + * Offset[0] will have raw inode offset. + */ +static int get_node_path(struct inode *inode, long block, + int offset[4], unsigned int noffset[4]) +{ + const long direct_index = ADDRS_PER_INODE(inode); + const long direct_blks = ADDRS_PER_BLOCK(inode); + const long dptrs_per_blk = NIDS_PER_BLOCK; + const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; + const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; + int n = 0; + int level = 0; + + noffset[0] = 0; + + if (block < direct_index) { + offset[n] = block; + goto got; + } + block -= direct_index; + if (block < direct_blks) { + offset[n++] = NODE_DIR1_BLOCK; + noffset[n] = 1; + offset[n] = block; + level = 1; + goto got; + } + block -= direct_blks; + if (block < direct_blks) { + offset[n++] = NODE_DIR2_BLOCK; + noffset[n] = 2; + offset[n] = block; + level = 1; + goto got; + } + block -= direct_blks; + if (block < indirect_blks) { + offset[n++] = NODE_IND1_BLOCK; + noffset[n] = 3; + offset[n++] = block / direct_blks; + noffset[n] = 4 + offset[n - 1]; + offset[n] = block % direct_blks; + level = 2; + goto got; + } + block -= indirect_blks; + if (block < indirect_blks) { + offset[n++] = NODE_IND2_BLOCK; + noffset[n] = 4 + dptrs_per_blk; + offset[n++] = block / direct_blks; + noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; + offset[n] = block % direct_blks; + level = 2; + goto got; + } + block -= indirect_blks; + if (block < dindirect_blks) { + offset[n++] = NODE_DIND_BLOCK; + noffset[n] = 5 + (dptrs_per_blk * 2); + offset[n++] = block / indirect_blks; + noffset[n] = 6 + (dptrs_per_blk * 2) + + offset[n - 1] * (dptrs_per_blk + 1); + offset[n++] = (block / direct_blks) % dptrs_per_blk; + noffset[n] = 7 + (dptrs_per_blk * 2) + + offset[n - 2] * (dptrs_per_blk + 1) + + offset[n - 1]; + offset[n] = block % direct_blks; + level = 3; + goto got; + } else { + return -E2BIG; + } +got: + return level; +} + +/* + * Caller should call f2fs_put_dnode(dn). + * Also, it should grab and release a rwsem by calling f2fs_lock_op() and + * f2fs_unlock_op() only if mode is set with ALLOC_NODE. + */ +int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); + struct page *npage[4]; + struct page *parent = NULL; + int offset[4]; + unsigned int noffset[4]; + nid_t nids[4]; + int level, i = 0; + int err = 0; + + level = get_node_path(dn->inode, index, offset, noffset); + if (level < 0) + return level; + + nids[0] = dn->inode->i_ino; + npage[0] = dn->inode_page; + + if (!npage[0]) { + npage[0] = f2fs_get_node_page(sbi, nids[0]); + if (IS_ERR(npage[0])) + return PTR_ERR(npage[0]); + } + + /* if inline_data is set, should not report any block indices */ + if (f2fs_has_inline_data(dn->inode) && index) { + err = -ENOENT; + f2fs_put_page(npage[0], 1); + goto release_out; + } + + parent = npage[0]; + if (level != 0) + nids[1] = get_nid(parent, offset[0], true); + dn->inode_page = npage[0]; + dn->inode_page_locked = true; + + /* get indirect or direct nodes */ + for (i = 1; i <= level; i++) { + bool done = false; + + if (!nids[i] && mode == ALLOC_NODE) { + /* alloc new node */ + if (!f2fs_alloc_nid(sbi, &(nids[i]))) { + err = -ENOSPC; + goto release_pages; + } + + dn->nid = nids[i]; + npage[i] = f2fs_new_node_page(dn, noffset[i]); + if (IS_ERR(npage[i])) { + f2fs_alloc_nid_failed(sbi, nids[i]); + err = PTR_ERR(npage[i]); + goto release_pages; + } + + set_nid(parent, offset[i - 1], nids[i], i == 1); + f2fs_alloc_nid_done(sbi, nids[i]); + done = true; + } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { + npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); + if (IS_ERR(npage[i])) { + err = PTR_ERR(npage[i]); + goto release_pages; + } + done = true; + } + if (i == 1) { + dn->inode_page_locked = false; + unlock_page(parent); + } else { + f2fs_put_page(parent, 1); + } + + if (!done) { + npage[i] = f2fs_get_node_page(sbi, nids[i]); + if (IS_ERR(npage[i])) { + err = PTR_ERR(npage[i]); + f2fs_put_page(npage[0], 0); + goto release_out; + } + } + if (i < level) { + parent = npage[i]; + nids[i + 1] = get_nid(parent, offset[i], false); + } + } + dn->nid = nids[level]; + dn->ofs_in_node = offset[level]; + dn->node_page = npage[level]; + dn->data_blkaddr = f2fs_data_blkaddr(dn); + + if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && + f2fs_sb_has_readonly(sbi)) { + unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn); + block_t blkaddr; + + if (!c_len) + goto out; + + blkaddr = f2fs_data_blkaddr(dn); + if (blkaddr == COMPRESS_ADDR) + blkaddr = data_blkaddr(dn->inode, dn->node_page, + dn->ofs_in_node + 1); + + f2fs_update_read_extent_tree_range_compressed(dn->inode, + index, blkaddr, + F2FS_I(dn->inode)->i_cluster_size, + c_len); + } +out: + return 0; + +release_pages: + f2fs_put_page(parent, 1); + if (i > 1) + f2fs_put_page(npage[0], 0); +release_out: + dn->inode_page = NULL; + dn->node_page = NULL; + if (err == -ENOENT) { + dn->cur_level = i; + dn->max_level = level; + dn->ofs_in_node = offset[level]; + } + return err; +} + +static int truncate_node(struct dnode_of_data *dn) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); + struct node_info ni; + int err; + pgoff_t index; + + err = f2fs_get_node_info(sbi, dn->nid, &ni, false); + if (err) + return err; + + /* Deallocate node address */ + f2fs_invalidate_blocks(sbi, ni.blk_addr); + dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); + set_node_addr(sbi, &ni, NULL_ADDR, false); + + if (dn->nid == dn->inode->i_ino) { + f2fs_remove_orphan_inode(sbi, dn->nid); + dec_valid_inode_count(sbi); + f2fs_inode_synced(dn->inode); + } + + clear_node_page_dirty(dn->node_page); + set_sbi_flag(sbi, SBI_IS_DIRTY); + + index = dn->node_page->index; + f2fs_put_page(dn->node_page, 1); + + invalidate_mapping_pages(NODE_MAPPING(sbi), + index, index); + + dn->node_page = NULL; + trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); + + return 0; +} + +static int truncate_dnode(struct dnode_of_data *dn) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); + struct page *page; + int err; + + if (dn->nid == 0) + return 1; + + /* get direct node */ + page = f2fs_get_node_page(sbi, dn->nid); + if (PTR_ERR(page) == -ENOENT) + return 1; + else if (IS_ERR(page)) + return PTR_ERR(page); + + if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) { + f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u", + dn->inode->i_ino, dn->nid, ino_of_node(page)); + set_sbi_flag(sbi, SBI_NEED_FSCK); + f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE); + f2fs_put_page(page, 1); + return -EFSCORRUPTED; + } + + /* Make dnode_of_data for parameter */ + dn->node_page = page; + dn->ofs_in_node = 0; + f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); + err = truncate_node(dn); + if (err) { + f2fs_put_page(page, 1); + return err; + } + + return 1; +} + +static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, + int ofs, int depth) +{ + struct dnode_of_data rdn = *dn; + struct page *page; + struct f2fs_node *rn; + nid_t child_nid; + unsigned int child_nofs; + int freed = 0; + int i, ret; + + if (dn->nid == 0) + return NIDS_PER_BLOCK + 1; + + trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); + + page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); + if (IS_ERR(page)) { + trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); + return PTR_ERR(page); + } + + f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); + + rn = F2FS_NODE(page); + if (depth < 3) { + for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { + child_nid = le32_to_cpu(rn->in.nid[i]); + if (child_nid == 0) + continue; + rdn.nid = child_nid; + ret = truncate_dnode(&rdn); + if (ret < 0) + goto out_err; + if (set_nid(page, i, 0, false)) + dn->node_changed = true; + } + } else { + child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; + for (i = ofs; i < NIDS_PER_BLOCK; i++) { + child_nid = le32_to_cpu(rn->in.nid[i]); + if (child_nid == 0) { + child_nofs += NIDS_PER_BLOCK + 1; + continue; + } + rdn.nid = child_nid; + ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); + if (ret == (NIDS_PER_BLOCK + 1)) { + if (set_nid(page, i, 0, false)) + dn->node_changed = true; + child_nofs += ret; + } else if (ret < 0 && ret != -ENOENT) { + goto out_err; + } + } + freed = child_nofs; + } + + if (!ofs) { + /* remove current indirect node */ + dn->node_page = page; + ret = truncate_node(dn); + if (ret) + goto out_err; + freed++; + } else { + f2fs_put_page(page, 1); + } + trace_f2fs_truncate_nodes_exit(dn->inode, freed); + return freed; + +out_err: + f2fs_put_page(page, 1); + trace_f2fs_truncate_nodes_exit(dn->inode, ret); + return ret; +} + +static int truncate_partial_nodes(struct dnode_of_data *dn, + struct f2fs_inode *ri, int *offset, int depth) +{ + struct page *pages[2]; + nid_t nid[3]; + nid_t child_nid; + int err = 0; + int i; + int idx = depth - 2; + + nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); + if (!nid[0]) + return 0; + + /* get indirect nodes in the path */ + for (i = 0; i < idx + 1; i++) { + /* reference count'll be increased */ + pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); + if (IS_ERR(pages[i])) { + err = PTR_ERR(pages[i]); + idx = i - 1; + goto fail; + } + nid[i + 1] = get_nid(pages[i], offset[i + 1], false); + } + + f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); + + /* free direct nodes linked to a partial indirect node */ + for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { + child_nid = get_nid(pages[idx], i, false); + if (!child_nid) + continue; + dn->nid = child_nid; + err = truncate_dnode(dn); + if (err < 0) + goto fail; + if (set_nid(pages[idx], i, 0, false)) + dn->node_changed = true; + } + + if (offset[idx + 1] == 0) { + dn->node_page = pages[idx]; + dn->nid = nid[idx]; + err = truncate_node(dn); + if (err) + goto fail; + } else { + f2fs_put_page(pages[idx], 1); + } + offset[idx]++; + offset[idx + 1] = 0; + idx--; +fail: + for (i = idx; i >= 0; i--) + f2fs_put_page(pages[i], 1); + + trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); + + return err; +} + +/* + * All the block addresses of data and nodes should be nullified. + */ +int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + int err = 0, cont = 1; + int level, offset[4], noffset[4]; + unsigned int nofs = 0; + struct f2fs_inode *ri; + struct dnode_of_data dn; + struct page *page; + + trace_f2fs_truncate_inode_blocks_enter(inode, from); + + level = get_node_path(inode, from, offset, noffset); + if (level < 0) { + trace_f2fs_truncate_inode_blocks_exit(inode, level); + return level; + } + + page = f2fs_get_node_page(sbi, inode->i_ino); + if (IS_ERR(page)) { + trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); + return PTR_ERR(page); + } + + set_new_dnode(&dn, inode, page, NULL, 0); + unlock_page(page); + + ri = F2FS_INODE(page); + switch (level) { + case 0: + case 1: + nofs = noffset[1]; + break; + case 2: + nofs = noffset[1]; + if (!offset[level - 1]) + goto skip_partial; + err = truncate_partial_nodes(&dn, ri, offset, level); + if (err < 0 && err != -ENOENT) + goto fail; + nofs += 1 + NIDS_PER_BLOCK; + break; + case 3: + nofs = 5 + 2 * NIDS_PER_BLOCK; + if (!offset[level - 1]) + goto skip_partial; + err = truncate_partial_nodes(&dn, ri, offset, level); + if (err < 0 && err != -ENOENT) + goto fail; + break; + default: + BUG(); + } + +skip_partial: + while (cont) { + dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); + switch (offset[0]) { + case NODE_DIR1_BLOCK: + case NODE_DIR2_BLOCK: + err = truncate_dnode(&dn); + break; + + case NODE_IND1_BLOCK: + case NODE_IND2_BLOCK: + err = truncate_nodes(&dn, nofs, offset[1], 2); + break; + + case NODE_DIND_BLOCK: + err = truncate_nodes(&dn, nofs, offset[1], 3); + cont = 0; + break; + + default: + BUG(); + } + if (err < 0 && err != -ENOENT) + goto fail; + if (offset[1] == 0 && + ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { + lock_page(page); + BUG_ON(page->mapping != NODE_MAPPING(sbi)); + f2fs_wait_on_page_writeback(page, NODE, true, true); + ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; + set_page_dirty(page); + unlock_page(page); + } + offset[1] = 0; + offset[0]++; + nofs += err; + } +fail: + f2fs_put_page(page, 0); + trace_f2fs_truncate_inode_blocks_exit(inode, err); + return err > 0 ? 0 : err; +} + +/* caller must lock inode page */ +int f2fs_truncate_xattr_node(struct inode *inode) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + nid_t nid = F2FS_I(inode)->i_xattr_nid; + struct dnode_of_data dn; + struct page *npage; + int err; + + if (!nid) + return 0; + + npage = f2fs_get_node_page(sbi, nid); + if (IS_ERR(npage)) + return PTR_ERR(npage); + + set_new_dnode(&dn, inode, NULL, npage, nid); + err = truncate_node(&dn); + if (err) { + f2fs_put_page(npage, 1); + return err; + } + + f2fs_i_xnid_write(inode, 0); + + return 0; +} + +/* + * Caller should grab and release a rwsem by calling f2fs_lock_op() and + * f2fs_unlock_op(). + */ +int f2fs_remove_inode_page(struct inode *inode) +{ + struct dnode_of_data dn; + int err; + + set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); + err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); + if (err) + return err; + + err = f2fs_truncate_xattr_node(inode); + if (err) { + f2fs_put_dnode(&dn); + return err; + } + + /* remove potential inline_data blocks */ + if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || + S_ISLNK(inode->i_mode)) + f2fs_truncate_data_blocks_range(&dn, 1); + + /* 0 is possible, after f2fs_new_inode() has failed */ + if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { + f2fs_put_dnode(&dn); + return -EIO; + } + + if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { + f2fs_warn(F2FS_I_SB(inode), + "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", + inode->i_ino, (unsigned long long)inode->i_blocks); + set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); + } + + /* will put inode & node pages */ + err = truncate_node(&dn); + if (err) { + f2fs_put_dnode(&dn); + return err; + } + return 0; +} + +struct page *f2fs_new_inode_page(struct inode *inode) +{ + struct dnode_of_data dn; + + /* allocate inode page for new inode */ + set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); + + /* caller should f2fs_put_page(page, 1); */ + return f2fs_new_node_page(&dn, 0); +} + +struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); + struct node_info new_ni; + struct page *page; + int err; + + if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) + return ERR_PTR(-EPERM); + + page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); + if (!page) + return ERR_PTR(-ENOMEM); + + if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) + goto fail; + +#ifdef CONFIG_F2FS_CHECK_FS + err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); + if (err) { + dec_valid_node_count(sbi, dn->inode, !ofs); + goto fail; + } + if (unlikely(new_ni.blk_addr != NULL_ADDR)) { + err = -EFSCORRUPTED; + set_sbi_flag(sbi, SBI_NEED_FSCK); + f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); + goto fail; + } +#endif + new_ni.nid = dn->nid; + new_ni.ino = dn->inode->i_ino; + new_ni.blk_addr = NULL_ADDR; + new_ni.flag = 0; + new_ni.version = 0; + set_node_addr(sbi, &new_ni, NEW_ADDR, false); + + f2fs_wait_on_page_writeback(page, NODE, true, true); + fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); + set_cold_node(page, S_ISDIR(dn->inode->i_mode)); + if (!PageUptodate(page)) + SetPageUptodate(page); + if (set_page_dirty(page)) + dn->node_changed = true; + + if (f2fs_has_xattr_block(ofs)) + f2fs_i_xnid_write(dn->inode, dn->nid); + + if (ofs == 0) + inc_valid_inode_count(sbi); + return page; + +fail: + clear_node_page_dirty(page); + f2fs_put_page(page, 1); + return ERR_PTR(err); +} + +/* + * Caller should do after getting the following values. + * 0: f2fs_put_page(page, 0) + * LOCKED_PAGE or error: f2fs_put_page(page, 1) + */ +static int read_node_page(struct page *page, blk_opf_t op_flags) +{ + struct f2fs_sb_info *sbi = F2FS_P_SB(page); + struct node_info ni; + struct f2fs_io_info fio = { + .sbi = sbi, + .type = NODE, + .op = REQ_OP_READ, + .op_flags = op_flags, + .page = page, + .encrypted_page = NULL, + }; + int err; + + if (PageUptodate(page)) { + if (!f2fs_inode_chksum_verify(sbi, page)) { + ClearPageUptodate(page); + return -EFSBADCRC; + } + return LOCKED_PAGE; + } + + err = f2fs_get_node_info(sbi, page->index, &ni, false); + if (err) + return err; + + /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ + if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { + ClearPageUptodate(page); + return -ENOENT; + } + + fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; + + err = f2fs_submit_page_bio(&fio); + + if (!err) + f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); + + return err; +} + +/* + * Readahead a node page + */ +void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) +{ + struct page *apage; + int err; + + if (!nid) + return; + if (f2fs_check_nid_range(sbi, nid)) + return; + + apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); + if (apage) + return; + + apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); + if (!apage) + return; + + err = read_node_page(apage, REQ_RAHEAD); + f2fs_put_page(apage, err ? 1 : 0); +} + +static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, + struct page *parent, int start) +{ + struct page *page; + int err; + + if (!nid) + return ERR_PTR(-ENOENT); + if (f2fs_check_nid_range(sbi, nid)) + return ERR_PTR(-EINVAL); +repeat: + page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); + if (!page) + return ERR_PTR(-ENOMEM); + + err = read_node_page(page, 0); + if (err < 0) { + goto out_put_err; + } else if (err == LOCKED_PAGE) { + err = 0; + goto page_hit; + } + + if (parent) + f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); + + lock_page(page); + + if (unlikely(page->mapping != NODE_MAPPING(sbi))) { + f2fs_put_page(page, 1); + goto repeat; + } + + if (unlikely(!PageUptodate(page))) { + err = -EIO; + goto out_err; + } + + if (!f2fs_inode_chksum_verify(sbi, page)) { + err = -EFSBADCRC; + goto out_err; + } +page_hit: + if (likely(nid == nid_of_node(page))) + return page; + + f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", + nid, nid_of_node(page), ino_of_node(page), + ofs_of_node(page), cpver_of_node(page), + next_blkaddr_of_node(page)); + set_sbi_flag(sbi, SBI_NEED_FSCK); + f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); + err = -EFSCORRUPTED; +out_err: + ClearPageUptodate(page); +out_put_err: + /* ENOENT comes from read_node_page which is not an error. */ + if (err != -ENOENT) + f2fs_handle_page_eio(sbi, page->index, NODE); + f2fs_put_page(page, 1); + return ERR_PTR(err); +} + +struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) +{ + return __get_node_page(sbi, nid, NULL, 0); +} + +struct page *f2fs_get_node_page_ra(struct page *parent, int start) +{ + struct f2fs_sb_info *sbi = F2FS_P_SB(parent); + nid_t nid = get_nid(parent, start, false); + + return __get_node_page(sbi, nid, parent, start); +} + +static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) +{ + struct inode *inode; + struct page *page; + int ret; + + /* should flush inline_data before evict_inode */ + inode = ilookup(sbi->sb, ino); + if (!inode) + return; + + page = f2fs_pagecache_get_page(inode->i_mapping, 0, + FGP_LOCK|FGP_NOWAIT, 0); + if (!page) + goto iput_out; + + if (!PageUptodate(page)) + goto page_out; + + if (!PageDirty(page)) + goto page_out; + + if (!clear_page_dirty_for_io(page)) + goto page_out; + + ret = f2fs_write_inline_data(inode, page); + inode_dec_dirty_pages(inode); + f2fs_remove_dirty_inode(inode); + if (ret) + set_page_dirty(page); +page_out: + f2fs_put_page(page, 1); +iput_out: + iput(inode); +} + +static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) +{ + pgoff_t index; + struct folio_batch fbatch; + struct page *last_page = NULL; + int nr_folios; + + folio_batch_init(&fbatch); + index = 0; + + while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, + (pgoff_t)-1, PAGECACHE_TAG_DIRTY, + &fbatch))) { + int i; + + for (i = 0; i < nr_folios; i++) { + struct page *page = &fbatch.folios[i]->page; + + if (unlikely(f2fs_cp_error(sbi))) { + f2fs_put_page(last_page, 0); + folio_batch_release(&fbatch); + return ERR_PTR(-EIO); + } + + if (!IS_DNODE(page) || !is_cold_node(page)) + continue; + if (ino_of_node(page) != ino) + continue; + + lock_page(page); + + if (unlikely(page->mapping != NODE_MAPPING(sbi))) { +continue_unlock: + unlock_page(page); + continue; + } + if (ino_of_node(page) != ino) + goto continue_unlock; + + if (!PageDirty(page)) { + /* someone wrote it for us */ + goto continue_unlock; + } + + if (last_page) + f2fs_put_page(last_page, 0); + + get_page(page); + last_page = page; + unlock_page(page); + } + folio_batch_release(&fbatch); + cond_resched(); + } + return last_page; +} + +static int __write_node_page(struct page *page, bool atomic, bool *submitted, + struct writeback_control *wbc, bool do_balance, + enum iostat_type io_type, unsigned int *seq_id) +{ + struct f2fs_sb_info *sbi = F2FS_P_SB(page); + nid_t nid; + struct node_info ni; + struct f2fs_io_info fio = { + .sbi = sbi, + .ino = ino_of_node(page), + .type = NODE, + .op = REQ_OP_WRITE, + .op_flags = wbc_to_write_flags(wbc), + .page = page, + .encrypted_page = NULL, + .submitted = 0, + .io_type = io_type, + .io_wbc = wbc, + }; + unsigned int seq; + + trace_f2fs_writepage(page, NODE); + + if (unlikely(f2fs_cp_error(sbi))) { + /* keep node pages in remount-ro mode */ + if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) + goto redirty_out; + ClearPageUptodate(page); + dec_page_count(sbi, F2FS_DIRTY_NODES); + unlock_page(page); + return 0; + } + + if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) + goto redirty_out; + + if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && + wbc->sync_mode == WB_SYNC_NONE && + IS_DNODE(page) && is_cold_node(page)) + goto redirty_out; + + /* get old block addr of this node page */ + nid = nid_of_node(page); + f2fs_bug_on(sbi, page->index != nid); + + if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) + goto redirty_out; + + if (wbc->for_reclaim) { + if (!f2fs_down_read_trylock(&sbi->node_write)) + goto redirty_out; + } else { + f2fs_down_read(&sbi->node_write); + } + + /* This page is already truncated */ + if (unlikely(ni.blk_addr == NULL_ADDR)) { + ClearPageUptodate(page); + dec_page_count(sbi, F2FS_DIRTY_NODES); + f2fs_up_read(&sbi->node_write); + unlock_page(page); + return 0; + } + + if (__is_valid_data_blkaddr(ni.blk_addr) && + !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, + DATA_GENERIC_ENHANCE)) { + f2fs_up_read(&sbi->node_write); + goto redirty_out; + } + + if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) + fio.op_flags |= REQ_PREFLUSH | REQ_FUA; + + /* should add to global list before clearing PAGECACHE status */ + if (f2fs_in_warm_node_list(sbi, page)) { + seq = f2fs_add_fsync_node_entry(sbi, page); + if (seq_id) + *seq_id = seq; + } + + set_page_writeback(page); + + fio.old_blkaddr = ni.blk_addr; + f2fs_do_write_node_page(nid, &fio); + set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); + dec_page_count(sbi, F2FS_DIRTY_NODES); + f2fs_up_read(&sbi->node_write); + + if (wbc->for_reclaim) { + f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); + submitted = NULL; + } + + unlock_page(page); + + if (unlikely(f2fs_cp_error(sbi))) { + f2fs_submit_merged_write(sbi, NODE); + submitted = NULL; + } + if (submitted) + *submitted = fio.submitted; + + if (do_balance) + f2fs_balance_fs(sbi, false); + return 0; + +redirty_out: + redirty_page_for_writepage(wbc, page); + return AOP_WRITEPAGE_ACTIVATE; +} + +int f2fs_move_node_page(struct page *node_page, int gc_type) +{ + int err = 0; + + if (gc_type == FG_GC) { + struct writeback_control wbc = { + .sync_mode = WB_SYNC_ALL, + .nr_to_write = 1, + .for_reclaim = 0, + }; + + f2fs_wait_on_page_writeback(node_page, NODE, true, true); + + set_page_dirty(node_page); + + if (!clear_page_dirty_for_io(node_page)) { + err = -EAGAIN; + goto out_page; + } + + if (__write_node_page(node_page, false, NULL, + &wbc, false, FS_GC_NODE_IO, NULL)) { + err = -EAGAIN; + unlock_page(node_page); + } + goto release_page; + } else { + /* set page dirty and write it */ + if (!PageWriteback(node_page)) + set_page_dirty(node_page); + } +out_page: + unlock_page(node_page); +release_page: + f2fs_put_page(node_page, 0); + return err; +} + +static int f2fs_write_node_page(struct page *page, + struct writeback_control *wbc) +{ + return __write_node_page(page, false, NULL, wbc, false, + FS_NODE_IO, NULL); +} + +int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, + struct writeback_control *wbc, bool atomic, + unsigned int *seq_id) +{ + pgoff_t index; + struct folio_batch fbatch; + int ret = 0; + struct page *last_page = NULL; + bool marked = false; + nid_t ino = inode->i_ino; + int nr_folios; + int nwritten = 0; + + if (atomic) { + last_page = last_fsync_dnode(sbi, ino); + if (IS_ERR_OR_NULL(last_page)) + return PTR_ERR_OR_ZERO(last_page); + } +retry: + folio_batch_init(&fbatch); + index = 0; + + while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, + (pgoff_t)-1, PAGECACHE_TAG_DIRTY, + &fbatch))) { + int i; + + for (i = 0; i < nr_folios; i++) { + struct page *page = &fbatch.folios[i]->page; + bool submitted = false; + + if (unlikely(f2fs_cp_error(sbi))) { + f2fs_put_page(last_page, 0); + folio_batch_release(&fbatch); + ret = -EIO; + goto out; + } + + if (!IS_DNODE(page) || !is_cold_node(page)) + continue; + if (ino_of_node(page) != ino) + continue; + + lock_page(page); + + if (unlikely(page->mapping != NODE_MAPPING(sbi))) { +continue_unlock: + unlock_page(page); + continue; + } + if (ino_of_node(page) != ino) + goto continue_unlock; + + if (!PageDirty(page) && page != last_page) { + /* someone wrote it for us */ + goto continue_unlock; + } + + f2fs_wait_on_page_writeback(page, NODE, true, true); + + set_fsync_mark(page, 0); + set_dentry_mark(page, 0); + + if (!atomic || page == last_page) { + set_fsync_mark(page, 1); + percpu_counter_inc(&sbi->rf_node_block_count); + if (IS_INODE(page)) { + if (is_inode_flag_set(inode, + FI_DIRTY_INODE)) + f2fs_update_inode(inode, page); + set_dentry_mark(page, + f2fs_need_dentry_mark(sbi, ino)); + } + /* may be written by other thread */ + if (!PageDirty(page)) + set_page_dirty(page); + } + + if (!clear_page_dirty_for_io(page)) + goto continue_unlock; + + ret = __write_node_page(page, atomic && + page == last_page, + &submitted, wbc, true, + FS_NODE_IO, seq_id); + if (ret) { + unlock_page(page); + f2fs_put_page(last_page, 0); + break; + } else if (submitted) { + nwritten++; + } + + if (page == last_page) { + f2fs_put_page(page, 0); + marked = true; + break; + } + } + folio_batch_release(&fbatch); + cond_resched(); + + if (ret || marked) + break; + } + if (!ret && atomic && !marked) { + f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", + ino, last_page->index); + lock_page(last_page); + f2fs_wait_on_page_writeback(last_page, NODE, true, true); + set_page_dirty(last_page); + unlock_page(last_page); + goto retry; + } +out: + if (nwritten) + f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); + return ret ? -EIO : 0; +} + +static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + bool clean; + + if (inode->i_ino != ino) + return 0; + + if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) + return 0; + + spin_lock(&sbi->inode_lock[DIRTY_META]); + clean = list_empty(&F2FS_I(inode)->gdirty_list); + spin_unlock(&sbi->inode_lock[DIRTY_META]); + + if (clean) + return 0; + + inode = igrab(inode); + if (!inode) + return 0; + return 1; +} + +static bool flush_dirty_inode(struct page *page) +{ + struct f2fs_sb_info *sbi = F2FS_P_SB(page); + struct inode *inode; + nid_t ino = ino_of_node(page); + + inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); + if (!inode) + return false; + + f2fs_update_inode(inode, page); + unlock_page(page); + + iput(inode); + return true; +} + +void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) +{ + pgoff_t index = 0; + struct folio_batch fbatch; + int nr_folios; + + folio_batch_init(&fbatch); + + while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, + (pgoff_t)-1, PAGECACHE_TAG_DIRTY, + &fbatch))) { + int i; + + for (i = 0; i < nr_folios; i++) { + struct page *page = &fbatch.folios[i]->page; + + if (!IS_DNODE(page)) + continue; + + lock_page(page); + + if (unlikely(page->mapping != NODE_MAPPING(sbi))) { +continue_unlock: + unlock_page(page); + continue; + } + + if (!PageDirty(page)) { + /* someone wrote it for us */ + goto continue_unlock; + } + + /* flush inline_data, if it's async context. */ + if (page_private_inline(page)) { + clear_page_private_inline(page); + unlock_page(page); + flush_inline_data(sbi, ino_of_node(page)); + continue; + } + unlock_page(page); + } + folio_batch_release(&fbatch); + cond_resched(); + } +} + +int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, + struct writeback_control *wbc, + bool do_balance, enum iostat_type io_type) +{ + pgoff_t index; + struct folio_batch fbatch; + int step = 0; + int nwritten = 0; + int ret = 0; + int nr_folios, done = 0; + + folio_batch_init(&fbatch); + +next_step: + index = 0; + + while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), + &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, + &fbatch))) { + int i; + + for (i = 0; i < nr_folios; i++) { + struct page *page = &fbatch.folios[i]->page; + bool submitted = false; + + /* give a priority to WB_SYNC threads */ + if (atomic_read(&sbi->wb_sync_req[NODE]) && + wbc->sync_mode == WB_SYNC_NONE) { + done = 1; + break; + } + + /* + * flushing sequence with step: + * 0. indirect nodes + * 1. dentry dnodes + * 2. file dnodes + */ + if (step == 0 && IS_DNODE(page)) + continue; + if (step == 1 && (!IS_DNODE(page) || + is_cold_node(page))) + continue; + if (step == 2 && (!IS_DNODE(page) || + !is_cold_node(page))) + continue; +lock_node: + if (wbc->sync_mode == WB_SYNC_ALL) + lock_page(page); + else if (!trylock_page(page)) + continue; + + if (unlikely(page->mapping != NODE_MAPPING(sbi))) { +continue_unlock: + unlock_page(page); + continue; + } + + if (!PageDirty(page)) { + /* someone wrote it for us */ + goto continue_unlock; + } + + /* flush inline_data/inode, if it's async context. */ + if (!do_balance) + goto write_node; + + /* flush inline_data */ + if (page_private_inline(page)) { + clear_page_private_inline(page); + unlock_page(page); + flush_inline_data(sbi, ino_of_node(page)); + goto lock_node; + } + + /* flush dirty inode */ + if (IS_INODE(page) && flush_dirty_inode(page)) + goto lock_node; +write_node: + f2fs_wait_on_page_writeback(page, NODE, true, true); + + if (!clear_page_dirty_for_io(page)) + goto continue_unlock; + + set_fsync_mark(page, 0); + set_dentry_mark(page, 0); + + ret = __write_node_page(page, false, &submitted, + wbc, do_balance, io_type, NULL); + if (ret) + unlock_page(page); + else if (submitted) + nwritten++; + + if (--wbc->nr_to_write == 0) + break; + } + folio_batch_release(&fbatch); + cond_resched(); + + if (wbc->nr_to_write == 0) { + step = 2; + break; + } + } + + if (step < 2) { + if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && + wbc->sync_mode == WB_SYNC_NONE && step == 1) + goto out; + step++; + goto next_step; + } +out: + if (nwritten) + f2fs_submit_merged_write(sbi, NODE); + + if (unlikely(f2fs_cp_error(sbi))) + return -EIO; + return ret; +} + +int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, + unsigned int seq_id) +{ + struct fsync_node_entry *fn; + struct page *page; + struct list_head *head = &sbi->fsync_node_list; + unsigned long flags; + unsigned int cur_seq_id = 0; + + while (seq_id && cur_seq_id < seq_id) { + spin_lock_irqsave(&sbi->fsync_node_lock, flags); + if (list_empty(head)) { + spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); + break; + } + fn = list_first_entry(head, struct fsync_node_entry, list); + if (fn->seq_id > seq_id) { + spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); + break; + } + cur_seq_id = fn->seq_id; + page = fn->page; + get_page(page); + spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); + + f2fs_wait_on_page_writeback(page, NODE, true, false); + + put_page(page); + } + + return filemap_check_errors(NODE_MAPPING(sbi)); +} + +static int f2fs_write_node_pages(struct address_space *mapping, + struct writeback_control *wbc) +{ + struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); + struct blk_plug plug; + long diff; + + if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) + goto skip_write; + + /* balancing f2fs's metadata in background */ + f2fs_balance_fs_bg(sbi, true); + + /* collect a number of dirty node pages and write together */ + if (wbc->sync_mode != WB_SYNC_ALL && + get_pages(sbi, F2FS_DIRTY_NODES) < + nr_pages_to_skip(sbi, NODE)) + goto skip_write; + + if (wbc->sync_mode == WB_SYNC_ALL) + atomic_inc(&sbi->wb_sync_req[NODE]); + else if (atomic_read(&sbi->wb_sync_req[NODE])) { + /* to avoid potential deadlock */ + if (current->plug) + blk_finish_plug(current->plug); + goto skip_write; + } + + trace_f2fs_writepages(mapping->host, wbc, NODE); + + diff = nr_pages_to_write(sbi, NODE, wbc); + blk_start_plug(&plug); + f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); + blk_finish_plug(&plug); + wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); + + if (wbc->sync_mode == WB_SYNC_ALL) + atomic_dec(&sbi->wb_sync_req[NODE]); + return 0; + +skip_write: + wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); + trace_f2fs_writepages(mapping->host, wbc, NODE); + return 0; +} + +static bool f2fs_dirty_node_folio(struct address_space *mapping, + struct folio *folio) +{ + trace_f2fs_set_page_dirty(&folio->page, NODE); + + if (!folio_test_uptodate(folio)) + folio_mark_uptodate(folio); +#ifdef CONFIG_F2FS_CHECK_FS + if (IS_INODE(&folio->page)) + f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); +#endif + if (filemap_dirty_folio(mapping, folio)) { + inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); + set_page_private_reference(&folio->page); + return true; + } + return false; +} + +/* + * Structure of the f2fs node operations + */ +const struct address_space_operations f2fs_node_aops = { + .writepage = f2fs_write_node_page, + .writepages = f2fs_write_node_pages, + .dirty_folio = f2fs_dirty_node_folio, + .invalidate_folio = f2fs_invalidate_folio, + .release_folio = f2fs_release_folio, + .migrate_folio = filemap_migrate_folio, +}; + +static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, + nid_t n) +{ + return radix_tree_lookup(&nm_i->free_nid_root, n); +} + +static int __insert_free_nid(struct f2fs_sb_info *sbi, + struct free_nid *i) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); + + if (err) + return err; + + nm_i->nid_cnt[FREE_NID]++; + list_add_tail(&i->list, &nm_i->free_nid_list); + return 0; +} + +static void __remove_free_nid(struct f2fs_sb_info *sbi, + struct free_nid *i, enum nid_state state) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + + f2fs_bug_on(sbi, state != i->state); + nm_i->nid_cnt[state]--; + if (state == FREE_NID) + list_del(&i->list); + radix_tree_delete(&nm_i->free_nid_root, i->nid); +} + +static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, + enum nid_state org_state, enum nid_state dst_state) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + + f2fs_bug_on(sbi, org_state != i->state); + i->state = dst_state; + nm_i->nid_cnt[org_state]--; + nm_i->nid_cnt[dst_state]++; + + switch (dst_state) { + case PREALLOC_NID: + list_del(&i->list); + break; + case FREE_NID: + list_add_tail(&i->list, &nm_i->free_nid_list); + break; + default: + BUG_ON(1); + } +} + +bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + unsigned int i; + bool ret = true; + + f2fs_down_read(&nm_i->nat_tree_lock); + for (i = 0; i < nm_i->nat_blocks; i++) { + if (!test_bit_le(i, nm_i->nat_block_bitmap)) { + ret = false; + break; + } + } + f2fs_up_read(&nm_i->nat_tree_lock); + + return ret; +} + +static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, + bool set, bool build) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); + unsigned int nid_ofs = nid - START_NID(nid); + + if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) + return; + + if (set) { + if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) + return; + __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); + nm_i->free_nid_count[nat_ofs]++; + } else { + if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) + return; + __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); + if (!build) + nm_i->free_nid_count[nat_ofs]--; + } +} + +/* return if the nid is recognized as free */ +static bool add_free_nid(struct f2fs_sb_info *sbi, + nid_t nid, bool build, bool update) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct free_nid *i, *e; + struct nat_entry *ne; + int err = -EINVAL; + bool ret = false; + + /* 0 nid should not be used */ + if (unlikely(nid == 0)) + return false; + + if (unlikely(f2fs_check_nid_range(sbi, nid))) + return false; + + i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); + i->nid = nid; + i->state = FREE_NID; + + radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); + + spin_lock(&nm_i->nid_list_lock); + + if (build) { + /* + * Thread A Thread B + * - f2fs_create + * - f2fs_new_inode + * - f2fs_alloc_nid + * - __insert_nid_to_list(PREALLOC_NID) + * - f2fs_balance_fs_bg + * - f2fs_build_free_nids + * - __f2fs_build_free_nids + * - scan_nat_page + * - add_free_nid + * - __lookup_nat_cache + * - f2fs_add_link + * - f2fs_init_inode_metadata + * - f2fs_new_inode_page + * - f2fs_new_node_page + * - set_node_addr + * - f2fs_alloc_nid_done + * - __remove_nid_from_list(PREALLOC_NID) + * - __insert_nid_to_list(FREE_NID) + */ + ne = __lookup_nat_cache(nm_i, nid); + if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || + nat_get_blkaddr(ne) != NULL_ADDR)) + goto err_out; + + e = __lookup_free_nid_list(nm_i, nid); + if (e) { + if (e->state == FREE_NID) + ret = true; + goto err_out; + } + } + ret = true; + err = __insert_free_nid(sbi, i); +err_out: + if (update) { + update_free_nid_bitmap(sbi, nid, ret, build); + if (!build) + nm_i->available_nids++; + } + spin_unlock(&nm_i->nid_list_lock); + radix_tree_preload_end(); + + if (err) + kmem_cache_free(free_nid_slab, i); + return ret; +} + +static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct free_nid *i; + bool need_free = false; + + spin_lock(&nm_i->nid_list_lock); + i = __lookup_free_nid_list(nm_i, nid); + if (i && i->state == FREE_NID) { + __remove_free_nid(sbi, i, FREE_NID); + need_free = true; + } + spin_unlock(&nm_i->nid_list_lock); + + if (need_free) + kmem_cache_free(free_nid_slab, i); +} + +static int scan_nat_page(struct f2fs_sb_info *sbi, + struct page *nat_page, nid_t start_nid) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct f2fs_nat_block *nat_blk = page_address(nat_page); + block_t blk_addr; + unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); + int i; + + __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); + + i = start_nid % NAT_ENTRY_PER_BLOCK; + + for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { + if (unlikely(start_nid >= nm_i->max_nid)) + break; + + blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); + + if (blk_addr == NEW_ADDR) + return -EFSCORRUPTED; + + if (blk_addr == NULL_ADDR) { + add_free_nid(sbi, start_nid, true, true); + } else { + spin_lock(&NM_I(sbi)->nid_list_lock); + update_free_nid_bitmap(sbi, start_nid, false, true); + spin_unlock(&NM_I(sbi)->nid_list_lock); + } + } + + return 0; +} + +static void scan_curseg_cache(struct f2fs_sb_info *sbi) +{ + struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); + struct f2fs_journal *journal = curseg->journal; + int i; + + down_read(&curseg->journal_rwsem); + for (i = 0; i < nats_in_cursum(journal); i++) { + block_t addr; + nid_t nid; + + addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); + nid = le32_to_cpu(nid_in_journal(journal, i)); + if (addr == NULL_ADDR) + add_free_nid(sbi, nid, true, false); + else + remove_free_nid(sbi, nid); + } + up_read(&curseg->journal_rwsem); +} + +static void scan_free_nid_bits(struct f2fs_sb_info *sbi) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + unsigned int i, idx; + nid_t nid; + + f2fs_down_read(&nm_i->nat_tree_lock); + + for (i = 0; i < nm_i->nat_blocks; i++) { + if (!test_bit_le(i, nm_i->nat_block_bitmap)) + continue; + if (!nm_i->free_nid_count[i]) + continue; + for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { + idx = find_next_bit_le(nm_i->free_nid_bitmap[i], + NAT_ENTRY_PER_BLOCK, idx); + if (idx >= NAT_ENTRY_PER_BLOCK) + break; + + nid = i * NAT_ENTRY_PER_BLOCK + idx; + add_free_nid(sbi, nid, true, false); + + if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) + goto out; + } + } +out: + scan_curseg_cache(sbi); + + f2fs_up_read(&nm_i->nat_tree_lock); +} + +static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, + bool sync, bool mount) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + int i = 0, ret; + nid_t nid = nm_i->next_scan_nid; + + if (unlikely(nid >= nm_i->max_nid)) + nid = 0; + + if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) + nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; + + /* Enough entries */ + if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) + return 0; + + if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) + return 0; + + if (!mount) { + /* try to find free nids in free_nid_bitmap */ + scan_free_nid_bits(sbi); + + if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) + return 0; + } + + /* readahead nat pages to be scanned */ + f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, + META_NAT, true); + + f2fs_down_read(&nm_i->nat_tree_lock); + + while (1) { + if (!test_bit_le(NAT_BLOCK_OFFSET(nid), + nm_i->nat_block_bitmap)) { + struct page *page = get_current_nat_page(sbi, nid); + + if (IS_ERR(page)) { + ret = PTR_ERR(page); + } else { + ret = scan_nat_page(sbi, page, nid); + f2fs_put_page(page, 1); + } + + if (ret) { + f2fs_up_read(&nm_i->nat_tree_lock); + + if (ret == -EFSCORRUPTED) { + f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); + set_sbi_flag(sbi, SBI_NEED_FSCK); + f2fs_handle_error(sbi, + ERROR_INCONSISTENT_NAT); + } + + return ret; + } + } + + nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); + if (unlikely(nid >= nm_i->max_nid)) + nid = 0; + + if (++i >= FREE_NID_PAGES) + break; + } + + /* go to the next free nat pages to find free nids abundantly */ + nm_i->next_scan_nid = nid; + + /* find free nids from current sum_pages */ + scan_curseg_cache(sbi); + + f2fs_up_read(&nm_i->nat_tree_lock); + + f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), + nm_i->ra_nid_pages, META_NAT, false); + + return 0; +} + +int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) +{ + int ret; + + mutex_lock(&NM_I(sbi)->build_lock); + ret = __f2fs_build_free_nids(sbi, sync, mount); + mutex_unlock(&NM_I(sbi)->build_lock); + + return ret; +} + +/* + * If this function returns success, caller can obtain a new nid + * from second parameter of this function. + * The returned nid could be used ino as well as nid when inode is created. + */ +bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct free_nid *i = NULL; +retry: + if (time_to_inject(sbi, FAULT_ALLOC_NID)) + return false; + + spin_lock(&nm_i->nid_list_lock); + + if (unlikely(nm_i->available_nids == 0)) { + spin_unlock(&nm_i->nid_list_lock); + return false; + } + + /* We should not use stale free nids created by f2fs_build_free_nids */ + if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { + f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); + i = list_first_entry(&nm_i->free_nid_list, + struct free_nid, list); + *nid = i->nid; + + __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); + nm_i->available_nids--; + + update_free_nid_bitmap(sbi, *nid, false, false); + + spin_unlock(&nm_i->nid_list_lock); + return true; + } + spin_unlock(&nm_i->nid_list_lock); + + /* Let's scan nat pages and its caches to get free nids */ + if (!f2fs_build_free_nids(sbi, true, false)) + goto retry; + return false; +} + +/* + * f2fs_alloc_nid() should be called prior to this function. + */ +void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct free_nid *i; + + spin_lock(&nm_i->nid_list_lock); + i = __lookup_free_nid_list(nm_i, nid); + f2fs_bug_on(sbi, !i); + __remove_free_nid(sbi, i, PREALLOC_NID); + spin_unlock(&nm_i->nid_list_lock); + + kmem_cache_free(free_nid_slab, i); +} + +/* + * f2fs_alloc_nid() should be called prior to this function. + */ +void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct free_nid *i; + bool need_free = false; + + if (!nid) + return; + + spin_lock(&nm_i->nid_list_lock); + i = __lookup_free_nid_list(nm_i, nid); + f2fs_bug_on(sbi, !i); + + if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { + __remove_free_nid(sbi, i, PREALLOC_NID); + need_free = true; + } else { + __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); + } + + nm_i->available_nids++; + + update_free_nid_bitmap(sbi, nid, true, false); + + spin_unlock(&nm_i->nid_list_lock); + + if (need_free) + kmem_cache_free(free_nid_slab, i); +} + +int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + int nr = nr_shrink; + + if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) + return 0; + + if (!mutex_trylock(&nm_i->build_lock)) + return 0; + + while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { + struct free_nid *i, *next; + unsigned int batch = SHRINK_NID_BATCH_SIZE; + + spin_lock(&nm_i->nid_list_lock); + list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { + if (!nr_shrink || !batch || + nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) + break; + __remove_free_nid(sbi, i, FREE_NID); + kmem_cache_free(free_nid_slab, i); + nr_shrink--; + batch--; + } + spin_unlock(&nm_i->nid_list_lock); + } + + mutex_unlock(&nm_i->build_lock); + + return nr - nr_shrink; +} + +int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) +{ + void *src_addr, *dst_addr; + size_t inline_size; + struct page *ipage; + struct f2fs_inode *ri; + + ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); + if (IS_ERR(ipage)) + return PTR_ERR(ipage); + + ri = F2FS_INODE(page); + if (ri->i_inline & F2FS_INLINE_XATTR) { + if (!f2fs_has_inline_xattr(inode)) { + set_inode_flag(inode, FI_INLINE_XATTR); + stat_inc_inline_xattr(inode); + } + } else { + if (f2fs_has_inline_xattr(inode)) { + stat_dec_inline_xattr(inode); + clear_inode_flag(inode, FI_INLINE_XATTR); + } + goto update_inode; + } + + dst_addr = inline_xattr_addr(inode, ipage); + src_addr = inline_xattr_addr(inode, page); + inline_size = inline_xattr_size(inode); + + f2fs_wait_on_page_writeback(ipage, NODE, true, true); + memcpy(dst_addr, src_addr, inline_size); +update_inode: + f2fs_update_inode(inode, ipage); + f2fs_put_page(ipage, 1); + return 0; +} + +int f2fs_recover_xattr_data(struct inode *inode, struct page *page) +{ + struct f2fs_sb_info *sbi = F2FS_I_SB(inode); + nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; + nid_t new_xnid; + struct dnode_of_data dn; + struct node_info ni; + struct page *xpage; + int err; + + if (!prev_xnid) + goto recover_xnid; + + /* 1: invalidate the previous xattr nid */ + err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); + if (err) + return err; + + f2fs_invalidate_blocks(sbi, ni.blk_addr); + dec_valid_node_count(sbi, inode, false); + set_node_addr(sbi, &ni, NULL_ADDR, false); + +recover_xnid: + /* 2: update xattr nid in inode */ + if (!f2fs_alloc_nid(sbi, &new_xnid)) + return -ENOSPC; + + set_new_dnode(&dn, inode, NULL, NULL, new_xnid); + xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); + if (IS_ERR(xpage)) { + f2fs_alloc_nid_failed(sbi, new_xnid); + return PTR_ERR(xpage); + } + + f2fs_alloc_nid_done(sbi, new_xnid); + f2fs_update_inode_page(inode); + + /* 3: update and set xattr node page dirty */ + if (page) { + memcpy(F2FS_NODE(xpage), F2FS_NODE(page), + VALID_XATTR_BLOCK_SIZE); + set_page_dirty(xpage); + } + f2fs_put_page(xpage, 1); + + return 0; +} + +int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) +{ + struct f2fs_inode *src, *dst; + nid_t ino = ino_of_node(page); + struct node_info old_ni, new_ni; + struct page *ipage; + int err; + + err = f2fs_get_node_info(sbi, ino, &old_ni, false); + if (err) + return err; + + if (unlikely(old_ni.blk_addr != NULL_ADDR)) + return -EINVAL; +retry: + ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); + if (!ipage) { + memalloc_retry_wait(GFP_NOFS); + goto retry; + } + + /* Should not use this inode from free nid list */ + remove_free_nid(sbi, ino); + + if (!PageUptodate(ipage)) + SetPageUptodate(ipage); + fill_node_footer(ipage, ino, ino, 0, true); + set_cold_node(ipage, false); + + src = F2FS_INODE(page); + dst = F2FS_INODE(ipage); + + memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); + dst->i_size = 0; + dst->i_blocks = cpu_to_le64(1); + dst->i_links = cpu_to_le32(1); + dst->i_xattr_nid = 0; + dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); + if (dst->i_inline & F2FS_EXTRA_ATTR) { + dst->i_extra_isize = src->i_extra_isize; + + if (f2fs_sb_has_flexible_inline_xattr(sbi) && + F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), + i_inline_xattr_size)) + dst->i_inline_xattr_size = src->i_inline_xattr_size; + + if (f2fs_sb_has_project_quota(sbi) && + F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), + i_projid)) + dst->i_projid = src->i_projid; + + if (f2fs_sb_has_inode_crtime(sbi) && + F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), + i_crtime_nsec)) { + dst->i_crtime = src->i_crtime; + dst->i_crtime_nsec = src->i_crtime_nsec; + } + } + + new_ni = old_ni; + new_ni.ino = ino; + + if (unlikely(inc_valid_node_count(sbi, NULL, true))) + WARN_ON(1); + set_node_addr(sbi, &new_ni, NEW_ADDR, false); + inc_valid_inode_count(sbi); + set_page_dirty(ipage); + f2fs_put_page(ipage, 1); + return 0; +} + +int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, + unsigned int segno, struct f2fs_summary_block *sum) +{ + struct f2fs_node *rn; + struct f2fs_summary *sum_entry; + block_t addr; + int i, idx, last_offset, nrpages; + + /* scan the node segment */ + last_offset = sbi->blocks_per_seg; + addr = START_BLOCK(sbi, segno); + sum_entry = &sum->entries[0]; + + for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { + nrpages = bio_max_segs(last_offset - i); + + /* readahead node pages */ + f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); + + for (idx = addr; idx < addr + nrpages; idx++) { + struct page *page = f2fs_get_tmp_page(sbi, idx); + + if (IS_ERR(page)) + return PTR_ERR(page); + + rn = F2FS_NODE(page); + sum_entry->nid = rn->footer.nid; + sum_entry->version = 0; + sum_entry->ofs_in_node = 0; + sum_entry++; + f2fs_put_page(page, 1); + } + + invalidate_mapping_pages(META_MAPPING(sbi), addr, + addr + nrpages); + } + return 0; +} + +static void remove_nats_in_journal(struct f2fs_sb_info *sbi) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); + struct f2fs_journal *journal = curseg->journal; + int i; + + down_write(&curseg->journal_rwsem); + for (i = 0; i < nats_in_cursum(journal); i++) { + struct nat_entry *ne; + struct f2fs_nat_entry raw_ne; + nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); + + if (f2fs_check_nid_range(sbi, nid)) + continue; + + raw_ne = nat_in_journal(journal, i); + + ne = __lookup_nat_cache(nm_i, nid); + if (!ne) { + ne = __alloc_nat_entry(sbi, nid, true); + __init_nat_entry(nm_i, ne, &raw_ne, true); + } + + /* + * if a free nat in journal has not been used after last + * checkpoint, we should remove it from available nids, + * since later we will add it again. + */ + if (!get_nat_flag(ne, IS_DIRTY) && + le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { + spin_lock(&nm_i->nid_list_lock); + nm_i->available_nids--; + spin_unlock(&nm_i->nid_list_lock); + } + + __set_nat_cache_dirty(nm_i, ne); + } + update_nats_in_cursum(journal, -i); + up_write(&curseg->journal_rwsem); +} + +static void __adjust_nat_entry_set(struct nat_entry_set *nes, + struct list_head *head, int max) +{ + struct nat_entry_set *cur; + + if (nes->entry_cnt >= max) + goto add_out; + + list_for_each_entry(cur, head, set_list) { + if (cur->entry_cnt >= nes->entry_cnt) { + list_add(&nes->set_list, cur->set_list.prev); + return; + } + } +add_out: + list_add_tail(&nes->set_list, head); +} + +static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, + unsigned int valid) +{ + if (valid == 0) { + __set_bit_le(nat_ofs, nm_i->empty_nat_bits); + __clear_bit_le(nat_ofs, nm_i->full_nat_bits); + return; + } + + __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); + if (valid == NAT_ENTRY_PER_BLOCK) + __set_bit_le(nat_ofs, nm_i->full_nat_bits); + else + __clear_bit_le(nat_ofs, nm_i->full_nat_bits); +} + +static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, + struct page *page) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; + struct f2fs_nat_block *nat_blk = page_address(page); + int valid = 0; + int i = 0; + + if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) + return; + + if (nat_index == 0) { + valid = 1; + i = 1; + } + for (; i < NAT_ENTRY_PER_BLOCK; i++) { + if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) + valid++; + } + + __update_nat_bits(nm_i, nat_index, valid); +} + +void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + unsigned int nat_ofs; + + f2fs_down_read(&nm_i->nat_tree_lock); + + for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { + unsigned int valid = 0, nid_ofs = 0; + + /* handle nid zero due to it should never be used */ + if (unlikely(nat_ofs == 0)) { + valid = 1; + nid_ofs = 1; + } + + for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { + if (!test_bit_le(nid_ofs, + nm_i->free_nid_bitmap[nat_ofs])) + valid++; + } + + __update_nat_bits(nm_i, nat_ofs, valid); + } + + f2fs_up_read(&nm_i->nat_tree_lock); +} + +static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, + struct nat_entry_set *set, struct cp_control *cpc) +{ + struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); + struct f2fs_journal *journal = curseg->journal; + nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; + bool to_journal = true; + struct f2fs_nat_block *nat_blk; + struct nat_entry *ne, *cur; + struct page *page = NULL; + + /* + * there are two steps to flush nat entries: + * #1, flush nat entries to journal in current hot data summary block. + * #2, flush nat entries to nat page. + */ + if ((cpc->reason & CP_UMOUNT) || + !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) + to_journal = false; + + if (to_journal) { + down_write(&curseg->journal_rwsem); + } else { + page = get_next_nat_page(sbi, start_nid); + if (IS_ERR(page)) + return PTR_ERR(page); + + nat_blk = page_address(page); + f2fs_bug_on(sbi, !nat_blk); + } + + /* flush dirty nats in nat entry set */ + list_for_each_entry_safe(ne, cur, &set->entry_list, list) { + struct f2fs_nat_entry *raw_ne; + nid_t nid = nat_get_nid(ne); + int offset; + + f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); + + if (to_journal) { + offset = f2fs_lookup_journal_in_cursum(journal, + NAT_JOURNAL, nid, 1); + f2fs_bug_on(sbi, offset < 0); + raw_ne = &nat_in_journal(journal, offset); + nid_in_journal(journal, offset) = cpu_to_le32(nid); + } else { + raw_ne = &nat_blk->entries[nid - start_nid]; + } + raw_nat_from_node_info(raw_ne, &ne->ni); + nat_reset_flag(ne); + __clear_nat_cache_dirty(NM_I(sbi), set, ne); + if (nat_get_blkaddr(ne) == NULL_ADDR) { + add_free_nid(sbi, nid, false, true); + } else { + spin_lock(&NM_I(sbi)->nid_list_lock); + update_free_nid_bitmap(sbi, nid, false, false); + spin_unlock(&NM_I(sbi)->nid_list_lock); + } + } + + if (to_journal) { + up_write(&curseg->journal_rwsem); + } else { + update_nat_bits(sbi, start_nid, page); + f2fs_put_page(page, 1); + } + + /* Allow dirty nats by node block allocation in write_begin */ + if (!set->entry_cnt) { + radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); + kmem_cache_free(nat_entry_set_slab, set); + } + return 0; +} + +/* + * This function is called during the checkpointing process. + */ +int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); + struct f2fs_journal *journal = curseg->journal; + struct nat_entry_set *setvec[NAT_VEC_SIZE]; + struct nat_entry_set *set, *tmp; + unsigned int found; + nid_t set_idx = 0; + LIST_HEAD(sets); + int err = 0; + + /* + * during unmount, let's flush nat_bits before checking + * nat_cnt[DIRTY_NAT]. + */ + if (cpc->reason & CP_UMOUNT) { + f2fs_down_write(&nm_i->nat_tree_lock); + remove_nats_in_journal(sbi); + f2fs_up_write(&nm_i->nat_tree_lock); + } + + if (!nm_i->nat_cnt[DIRTY_NAT]) + return 0; + + f2fs_down_write(&nm_i->nat_tree_lock); + + /* + * if there are no enough space in journal to store dirty nat + * entries, remove all entries from journal and merge them + * into nat entry set. + */ + if (cpc->reason & CP_UMOUNT || + !__has_cursum_space(journal, + nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) + remove_nats_in_journal(sbi); + + while ((found = __gang_lookup_nat_set(nm_i, + set_idx, NAT_VEC_SIZE, setvec))) { + unsigned idx; + + set_idx = setvec[found - 1]->set + 1; + for (idx = 0; idx < found; idx++) + __adjust_nat_entry_set(setvec[idx], &sets, + MAX_NAT_JENTRIES(journal)); + } + + /* flush dirty nats in nat entry set */ + list_for_each_entry_safe(set, tmp, &sets, set_list) { + err = __flush_nat_entry_set(sbi, set, cpc); + if (err) + break; + } + + f2fs_up_write(&nm_i->nat_tree_lock); + /* Allow dirty nats by node block allocation in write_begin */ + + return err; +} + +static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) +{ + struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); + struct f2fs_nm_info *nm_i = NM_I(sbi); + unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; + unsigned int i; + __u64 cp_ver = cur_cp_version(ckpt); + block_t nat_bits_addr; + + nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); + nm_i->nat_bits = f2fs_kvzalloc(sbi, + nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); + if (!nm_i->nat_bits) + return -ENOMEM; + + nm_i->full_nat_bits = nm_i->nat_bits + 8; + nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; + + if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) + return 0; + + nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - + nm_i->nat_bits_blocks; + for (i = 0; i < nm_i->nat_bits_blocks; i++) { + struct page *page; + + page = f2fs_get_meta_page(sbi, nat_bits_addr++); + if (IS_ERR(page)) + return PTR_ERR(page); + + memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), + page_address(page), F2FS_BLKSIZE); + f2fs_put_page(page, 1); + } + + cp_ver |= (cur_cp_crc(ckpt) << 32); + if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { + clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); + f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", + cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); + return 0; + } + + f2fs_notice(sbi, "Found nat_bits in checkpoint"); + return 0; +} + +static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + unsigned int i = 0; + nid_t nid, last_nid; + + if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) + return; + + for (i = 0; i < nm_i->nat_blocks; i++) { + i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); + if (i >= nm_i->nat_blocks) + break; + + __set_bit_le(i, nm_i->nat_block_bitmap); + + nid = i * NAT_ENTRY_PER_BLOCK; + last_nid = nid + NAT_ENTRY_PER_BLOCK; + + spin_lock(&NM_I(sbi)->nid_list_lock); + for (; nid < last_nid; nid++) + update_free_nid_bitmap(sbi, nid, true, true); + spin_unlock(&NM_I(sbi)->nid_list_lock); + } + + for (i = 0; i < nm_i->nat_blocks; i++) { + i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); + if (i >= nm_i->nat_blocks) + break; + + __set_bit_le(i, nm_i->nat_block_bitmap); + } +} + +static int init_node_manager(struct f2fs_sb_info *sbi) +{ + struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); + struct f2fs_nm_info *nm_i = NM_I(sbi); + unsigned char *version_bitmap; + unsigned int nat_segs; + int err; + + nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); + + /* segment_count_nat includes pair segment so divide to 2. */ + nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; + nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); + nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; + + /* not used nids: 0, node, meta, (and root counted as valid node) */ + nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - + F2FS_RESERVED_NODE_NUM; + nm_i->nid_cnt[FREE_NID] = 0; + nm_i->nid_cnt[PREALLOC_NID] = 0; + nm_i->ram_thresh = DEF_RAM_THRESHOLD; + nm_i->ra_nid_pages = DEF_RA_NID_PAGES; + nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; + nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; + + INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); + INIT_LIST_HEAD(&nm_i->free_nid_list); + INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); + INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); + INIT_LIST_HEAD(&nm_i->nat_entries); + spin_lock_init(&nm_i->nat_list_lock); + + mutex_init(&nm_i->build_lock); + spin_lock_init(&nm_i->nid_list_lock); + init_f2fs_rwsem(&nm_i->nat_tree_lock); + + nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); + nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); + version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); + nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, + GFP_KERNEL); + if (!nm_i->nat_bitmap) + return -ENOMEM; + + err = __get_nat_bitmaps(sbi); + if (err) + return err; + +#ifdef CONFIG_F2FS_CHECK_FS + nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, + GFP_KERNEL); + if (!nm_i->nat_bitmap_mir) + return -ENOMEM; +#endif + + return 0; +} + +static int init_free_nid_cache(struct f2fs_sb_info *sbi) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + int i; + + nm_i->free_nid_bitmap = + f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), + nm_i->nat_blocks), + GFP_KERNEL); + if (!nm_i->free_nid_bitmap) + return -ENOMEM; + + for (i = 0; i < nm_i->nat_blocks; i++) { + nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, + f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); + if (!nm_i->free_nid_bitmap[i]) + return -ENOMEM; + } + + nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, + GFP_KERNEL); + if (!nm_i->nat_block_bitmap) + return -ENOMEM; + + nm_i->free_nid_count = + f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), + nm_i->nat_blocks), + GFP_KERNEL); + if (!nm_i->free_nid_count) + return -ENOMEM; + return 0; +} + +int f2fs_build_node_manager(struct f2fs_sb_info *sbi) +{ + int err; + + sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), + GFP_KERNEL); + if (!sbi->nm_info) + return -ENOMEM; + + err = init_node_manager(sbi); + if (err) + return err; + + err = init_free_nid_cache(sbi); + if (err) + return err; + + /* load free nid status from nat_bits table */ + load_free_nid_bitmap(sbi); + + return f2fs_build_free_nids(sbi, true, true); +} + +void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct free_nid *i, *next_i; + void *vec[NAT_VEC_SIZE]; + struct nat_entry **natvec = (struct nat_entry **)vec; + struct nat_entry_set **setvec = (struct nat_entry_set **)vec; + nid_t nid = 0; + unsigned int found; + + if (!nm_i) + return; + + /* destroy free nid list */ + spin_lock(&nm_i->nid_list_lock); + list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { + __remove_free_nid(sbi, i, FREE_NID); + spin_unlock(&nm_i->nid_list_lock); + kmem_cache_free(free_nid_slab, i); + spin_lock(&nm_i->nid_list_lock); + } + f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); + f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); + f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); + spin_unlock(&nm_i->nid_list_lock); + + /* destroy nat cache */ + f2fs_down_write(&nm_i->nat_tree_lock); + while ((found = __gang_lookup_nat_cache(nm_i, + nid, NAT_VEC_SIZE, natvec))) { + unsigned idx; + + nid = nat_get_nid(natvec[found - 1]) + 1; + for (idx = 0; idx < found; idx++) { + spin_lock(&nm_i->nat_list_lock); + list_del(&natvec[idx]->list); + spin_unlock(&nm_i->nat_list_lock); + + __del_from_nat_cache(nm_i, natvec[idx]); + } + } + f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); + + /* destroy nat set cache */ + nid = 0; + memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE); + while ((found = __gang_lookup_nat_set(nm_i, + nid, NAT_VEC_SIZE, setvec))) { + unsigned idx; + + nid = setvec[found - 1]->set + 1; + for (idx = 0; idx < found; idx++) { + /* entry_cnt is not zero, when cp_error was occurred */ + f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); + radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); + kmem_cache_free(nat_entry_set_slab, setvec[idx]); + } + } + f2fs_up_write(&nm_i->nat_tree_lock); + + kvfree(nm_i->nat_block_bitmap); + if (nm_i->free_nid_bitmap) { + int i; + + for (i = 0; i < nm_i->nat_blocks; i++) + kvfree(nm_i->free_nid_bitmap[i]); + kvfree(nm_i->free_nid_bitmap); + } + kvfree(nm_i->free_nid_count); + + kvfree(nm_i->nat_bitmap); + kvfree(nm_i->nat_bits); +#ifdef CONFIG_F2FS_CHECK_FS + kvfree(nm_i->nat_bitmap_mir); +#endif + sbi->nm_info = NULL; + kfree(nm_i); +} + +int __init f2fs_create_node_manager_caches(void) +{ + nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", + sizeof(struct nat_entry)); + if (!nat_entry_slab) + goto fail; + + free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", + sizeof(struct free_nid)); + if (!free_nid_slab) + goto destroy_nat_entry; + + nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", + sizeof(struct nat_entry_set)); + if (!nat_entry_set_slab) + goto destroy_free_nid; + + fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", + sizeof(struct fsync_node_entry)); + if (!fsync_node_entry_slab) + goto destroy_nat_entry_set; + return 0; + +destroy_nat_entry_set: + kmem_cache_destroy(nat_entry_set_slab); +destroy_free_nid: + kmem_cache_destroy(free_nid_slab); +destroy_nat_entry: + kmem_cache_destroy(nat_entry_slab); +fail: + return -ENOMEM; +} + +void f2fs_destroy_node_manager_caches(void) +{ + kmem_cache_destroy(fsync_node_entry_slab); + kmem_cache_destroy(nat_entry_set_slab); + kmem_cache_destroy(free_nid_slab); + kmem_cache_destroy(nat_entry_slab); +} |