diff options
Diffstat (limited to 'fs/ntfs/aops.h')
-rw-r--r-- | fs/ntfs/aops.h | 88 |
1 files changed, 0 insertions, 88 deletions
diff --git a/fs/ntfs/aops.h b/fs/ntfs/aops.h deleted file mode 100644 index 8d0958a149..0000000000 --- a/fs/ntfs/aops.h +++ /dev/null @@ -1,88 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0-or-later */ -/* - * aops.h - Defines for NTFS kernel address space operations and page cache - * handling. Part of the Linux-NTFS project. - * - * Copyright (c) 2001-2004 Anton Altaparmakov - * Copyright (c) 2002 Richard Russon - */ - -#ifndef _LINUX_NTFS_AOPS_H -#define _LINUX_NTFS_AOPS_H - -#include <linux/mm.h> -#include <linux/highmem.h> -#include <linux/pagemap.h> -#include <linux/fs.h> - -#include "inode.h" - -/** - * ntfs_unmap_page - release a page that was mapped using ntfs_map_page() - * @page: the page to release - * - * Unpin, unmap and release a page that was obtained from ntfs_map_page(). - */ -static inline void ntfs_unmap_page(struct page *page) -{ - kunmap(page); - put_page(page); -} - -/** - * ntfs_map_page - map a page into accessible memory, reading it if necessary - * @mapping: address space for which to obtain the page - * @index: index into the page cache for @mapping of the page to map - * - * Read a page from the page cache of the address space @mapping at position - * @index, where @index is in units of PAGE_SIZE, and not in bytes. - * - * If the page is not in memory it is loaded from disk first using the - * read_folio method defined in the address space operations of @mapping - * and the page is added to the page cache of @mapping in the process. - * - * If the page belongs to an mst protected attribute and it is marked as such - * in its ntfs inode (NInoMstProtected()) the mst fixups are applied but no - * error checking is performed. This means the caller has to verify whether - * the ntfs record(s) contained in the page are valid or not using one of the - * ntfs_is_XXXX_record{,p}() macros, where XXXX is the record type you are - * expecting to see. (For details of the macros, see fs/ntfs/layout.h.) - * - * If the page is in high memory it is mapped into memory directly addressible - * by the kernel. - * - * Finally the page count is incremented, thus pinning the page into place. - * - * The above means that page_address(page) can be used on all pages obtained - * with ntfs_map_page() to get the kernel virtual address of the page. - * - * When finished with the page, the caller has to call ntfs_unmap_page() to - * unpin, unmap and release the page. - * - * Note this does not grant exclusive access. If such is desired, the caller - * must provide it independently of the ntfs_{un}map_page() calls by using - * a {rw_}semaphore or other means of serialization. A spin lock cannot be - * used as ntfs_map_page() can block. - * - * The unlocked and uptodate page is returned on success or an encoded error - * on failure. Caller has to test for error using the IS_ERR() macro on the - * return value. If that evaluates to 'true', the negative error code can be - * obtained using PTR_ERR() on the return value of ntfs_map_page(). - */ -static inline struct page *ntfs_map_page(struct address_space *mapping, - unsigned long index) -{ - struct page *page = read_mapping_page(mapping, index, NULL); - - if (!IS_ERR(page)) - kmap(page); - return page; -} - -#ifdef NTFS_RW - -extern void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs); - -#endif /* NTFS_RW */ - -#endif /* _LINUX_NTFS_AOPS_H */ |