summaryrefslogtreecommitdiffstats
path: root/fs/super.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/super.c')
-rw-r--r--fs/super.c2141
1 files changed, 2141 insertions, 0 deletions
diff --git a/fs/super.c b/fs/super.c
new file mode 100644
index 0000000000..2d762ce67f
--- /dev/null
+++ b/fs/super.c
@@ -0,0 +1,2141 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * linux/fs/super.c
+ *
+ * Copyright (C) 1991, 1992 Linus Torvalds
+ *
+ * super.c contains code to handle: - mount structures
+ * - super-block tables
+ * - filesystem drivers list
+ * - mount system call
+ * - umount system call
+ * - ustat system call
+ *
+ * GK 2/5/95 - Changed to support mounting the root fs via NFS
+ *
+ * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
+ * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
+ * Added options to /proc/mounts:
+ * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
+ * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
+ * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
+ */
+
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/blkdev.h>
+#include <linux/mount.h>
+#include <linux/security.h>
+#include <linux/writeback.h> /* for the emergency remount stuff */
+#include <linux/idr.h>
+#include <linux/mutex.h>
+#include <linux/backing-dev.h>
+#include <linux/rculist_bl.h>
+#include <linux/fscrypt.h>
+#include <linux/fsnotify.h>
+#include <linux/lockdep.h>
+#include <linux/user_namespace.h>
+#include <linux/fs_context.h>
+#include <uapi/linux/mount.h>
+#include "internal.h"
+
+static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
+
+static LIST_HEAD(super_blocks);
+static DEFINE_SPINLOCK(sb_lock);
+
+static char *sb_writers_name[SB_FREEZE_LEVELS] = {
+ "sb_writers",
+ "sb_pagefaults",
+ "sb_internal",
+};
+
+static inline void __super_lock(struct super_block *sb, bool excl)
+{
+ if (excl)
+ down_write(&sb->s_umount);
+ else
+ down_read(&sb->s_umount);
+}
+
+static inline void super_unlock(struct super_block *sb, bool excl)
+{
+ if (excl)
+ up_write(&sb->s_umount);
+ else
+ up_read(&sb->s_umount);
+}
+
+static inline void __super_lock_excl(struct super_block *sb)
+{
+ __super_lock(sb, true);
+}
+
+static inline void super_unlock_excl(struct super_block *sb)
+{
+ super_unlock(sb, true);
+}
+
+static inline void super_unlock_shared(struct super_block *sb)
+{
+ super_unlock(sb, false);
+}
+
+static inline bool wait_born(struct super_block *sb)
+{
+ unsigned int flags;
+
+ /*
+ * Pairs with smp_store_release() in super_wake() and ensures
+ * that we see SB_BORN or SB_DYING after we're woken.
+ */
+ flags = smp_load_acquire(&sb->s_flags);
+ return flags & (SB_BORN | SB_DYING);
+}
+
+/**
+ * super_lock - wait for superblock to become ready and lock it
+ * @sb: superblock to wait for
+ * @excl: whether exclusive access is required
+ *
+ * If the superblock has neither passed through vfs_get_tree() or
+ * generic_shutdown_super() yet wait for it to happen. Either superblock
+ * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
+ * woken and we'll see SB_DYING.
+ *
+ * The caller must have acquired a temporary reference on @sb->s_count.
+ *
+ * Return: This returns true if SB_BORN was set, false if SB_DYING was
+ * set. The function acquires s_umount and returns with it held.
+ */
+static __must_check bool super_lock(struct super_block *sb, bool excl)
+{
+
+ lockdep_assert_not_held(&sb->s_umount);
+
+relock:
+ __super_lock(sb, excl);
+
+ /*
+ * Has gone through generic_shutdown_super() in the meantime.
+ * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
+ * grab a reference to this. Tell them so.
+ */
+ if (sb->s_flags & SB_DYING)
+ return false;
+
+ /* Has called ->get_tree() successfully. */
+ if (sb->s_flags & SB_BORN)
+ return true;
+
+ super_unlock(sb, excl);
+
+ /* wait until the superblock is ready or dying */
+ wait_var_event(&sb->s_flags, wait_born(sb));
+
+ /*
+ * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
+ * Just reacquire @sb->s_umount for the caller.
+ */
+ goto relock;
+}
+
+/* wait and acquire read-side of @sb->s_umount */
+static inline bool super_lock_shared(struct super_block *sb)
+{
+ return super_lock(sb, false);
+}
+
+/* wait and acquire write-side of @sb->s_umount */
+static inline bool super_lock_excl(struct super_block *sb)
+{
+ return super_lock(sb, true);
+}
+
+/* wake waiters */
+#define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
+static void super_wake(struct super_block *sb, unsigned int flag)
+{
+ WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
+ WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
+
+ /*
+ * Pairs with smp_load_acquire() in super_lock() to make sure
+ * all initializations in the superblock are seen by the user
+ * seeing SB_BORN sent.
+ */
+ smp_store_release(&sb->s_flags, sb->s_flags | flag);
+ /*
+ * Pairs with the barrier in prepare_to_wait_event() to make sure
+ * ___wait_var_event() either sees SB_BORN set or
+ * waitqueue_active() check in wake_up_var() sees the waiter.
+ */
+ smp_mb();
+ wake_up_var(&sb->s_flags);
+}
+
+/*
+ * One thing we have to be careful of with a per-sb shrinker is that we don't
+ * drop the last active reference to the superblock from within the shrinker.
+ * If that happens we could trigger unregistering the shrinker from within the
+ * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
+ * take a passive reference to the superblock to avoid this from occurring.
+ */
+static unsigned long super_cache_scan(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct super_block *sb;
+ long fs_objects = 0;
+ long total_objects;
+ long freed = 0;
+ long dentries;
+ long inodes;
+
+ sb = container_of(shrink, struct super_block, s_shrink);
+
+ /*
+ * Deadlock avoidance. We may hold various FS locks, and we don't want
+ * to recurse into the FS that called us in clear_inode() and friends..
+ */
+ if (!(sc->gfp_mask & __GFP_FS))
+ return SHRINK_STOP;
+
+ if (!super_trylock_shared(sb))
+ return SHRINK_STOP;
+
+ if (sb->s_op->nr_cached_objects)
+ fs_objects = sb->s_op->nr_cached_objects(sb, sc);
+
+ inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
+ dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
+ total_objects = dentries + inodes + fs_objects + 1;
+ if (!total_objects)
+ total_objects = 1;
+
+ /* proportion the scan between the caches */
+ dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
+ inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
+ fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
+
+ /*
+ * prune the dcache first as the icache is pinned by it, then
+ * prune the icache, followed by the filesystem specific caches
+ *
+ * Ensure that we always scan at least one object - memcg kmem
+ * accounting uses this to fully empty the caches.
+ */
+ sc->nr_to_scan = dentries + 1;
+ freed = prune_dcache_sb(sb, sc);
+ sc->nr_to_scan = inodes + 1;
+ freed += prune_icache_sb(sb, sc);
+
+ if (fs_objects) {
+ sc->nr_to_scan = fs_objects + 1;
+ freed += sb->s_op->free_cached_objects(sb, sc);
+ }
+
+ super_unlock_shared(sb);
+ return freed;
+}
+
+static unsigned long super_cache_count(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct super_block *sb;
+ long total_objects = 0;
+
+ sb = container_of(shrink, struct super_block, s_shrink);
+
+ /*
+ * We don't call super_trylock_shared() here as it is a scalability
+ * bottleneck, so we're exposed to partial setup state. The shrinker
+ * rwsem does not protect filesystem operations backing
+ * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
+ * change between super_cache_count and super_cache_scan, so we really
+ * don't need locks here.
+ *
+ * However, if we are currently mounting the superblock, the underlying
+ * filesystem might be in a state of partial construction and hence it
+ * is dangerous to access it. super_trylock_shared() uses a SB_BORN check
+ * to avoid this situation, so do the same here. The memory barrier is
+ * matched with the one in mount_fs() as we don't hold locks here.
+ */
+ if (!(sb->s_flags & SB_BORN))
+ return 0;
+ smp_rmb();
+
+ if (sb->s_op && sb->s_op->nr_cached_objects)
+ total_objects = sb->s_op->nr_cached_objects(sb, sc);
+
+ total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
+ total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
+
+ if (!total_objects)
+ return SHRINK_EMPTY;
+
+ total_objects = vfs_pressure_ratio(total_objects);
+ return total_objects;
+}
+
+static void destroy_super_work(struct work_struct *work)
+{
+ struct super_block *s = container_of(work, struct super_block,
+ destroy_work);
+ int i;
+
+ for (i = 0; i < SB_FREEZE_LEVELS; i++)
+ percpu_free_rwsem(&s->s_writers.rw_sem[i]);
+ kfree(s);
+}
+
+static void destroy_super_rcu(struct rcu_head *head)
+{
+ struct super_block *s = container_of(head, struct super_block, rcu);
+ INIT_WORK(&s->destroy_work, destroy_super_work);
+ schedule_work(&s->destroy_work);
+}
+
+/* Free a superblock that has never been seen by anyone */
+static void destroy_unused_super(struct super_block *s)
+{
+ if (!s)
+ return;
+ super_unlock_excl(s);
+ list_lru_destroy(&s->s_dentry_lru);
+ list_lru_destroy(&s->s_inode_lru);
+ security_sb_free(s);
+ put_user_ns(s->s_user_ns);
+ kfree(s->s_subtype);
+ free_prealloced_shrinker(&s->s_shrink);
+ /* no delays needed */
+ destroy_super_work(&s->destroy_work);
+}
+
+/**
+ * alloc_super - create new superblock
+ * @type: filesystem type superblock should belong to
+ * @flags: the mount flags
+ * @user_ns: User namespace for the super_block
+ *
+ * Allocates and initializes a new &struct super_block. alloc_super()
+ * returns a pointer new superblock or %NULL if allocation had failed.
+ */
+static struct super_block *alloc_super(struct file_system_type *type, int flags,
+ struct user_namespace *user_ns)
+{
+ struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
+ static const struct super_operations default_op;
+ int i;
+
+ if (!s)
+ return NULL;
+
+ INIT_LIST_HEAD(&s->s_mounts);
+ s->s_user_ns = get_user_ns(user_ns);
+ init_rwsem(&s->s_umount);
+ lockdep_set_class(&s->s_umount, &type->s_umount_key);
+ /*
+ * sget() can have s_umount recursion.
+ *
+ * When it cannot find a suitable sb, it allocates a new
+ * one (this one), and tries again to find a suitable old
+ * one.
+ *
+ * In case that succeeds, it will acquire the s_umount
+ * lock of the old one. Since these are clearly distrinct
+ * locks, and this object isn't exposed yet, there's no
+ * risk of deadlocks.
+ *
+ * Annotate this by putting this lock in a different
+ * subclass.
+ */
+ down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
+
+ if (security_sb_alloc(s))
+ goto fail;
+
+ for (i = 0; i < SB_FREEZE_LEVELS; i++) {
+ if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
+ sb_writers_name[i],
+ &type->s_writers_key[i]))
+ goto fail;
+ }
+ s->s_bdi = &noop_backing_dev_info;
+ s->s_flags = flags;
+ if (s->s_user_ns != &init_user_ns)
+ s->s_iflags |= SB_I_NODEV;
+ INIT_HLIST_NODE(&s->s_instances);
+ INIT_HLIST_BL_HEAD(&s->s_roots);
+ mutex_init(&s->s_sync_lock);
+ INIT_LIST_HEAD(&s->s_inodes);
+ spin_lock_init(&s->s_inode_list_lock);
+ INIT_LIST_HEAD(&s->s_inodes_wb);
+ spin_lock_init(&s->s_inode_wblist_lock);
+
+ s->s_count = 1;
+ atomic_set(&s->s_active, 1);
+ mutex_init(&s->s_vfs_rename_mutex);
+ lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
+ init_rwsem(&s->s_dquot.dqio_sem);
+ s->s_maxbytes = MAX_NON_LFS;
+ s->s_op = &default_op;
+ s->s_time_gran = 1000000000;
+ s->s_time_min = TIME64_MIN;
+ s->s_time_max = TIME64_MAX;
+
+ s->s_shrink.seeks = DEFAULT_SEEKS;
+ s->s_shrink.scan_objects = super_cache_scan;
+ s->s_shrink.count_objects = super_cache_count;
+ s->s_shrink.batch = 1024;
+ s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
+ if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
+ goto fail;
+ if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
+ goto fail;
+ if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
+ goto fail;
+ return s;
+
+fail:
+ destroy_unused_super(s);
+ return NULL;
+}
+
+/* Superblock refcounting */
+
+/*
+ * Drop a superblock's refcount. The caller must hold sb_lock.
+ */
+static void __put_super(struct super_block *s)
+{
+ if (!--s->s_count) {
+ list_del_init(&s->s_list);
+ WARN_ON(s->s_dentry_lru.node);
+ WARN_ON(s->s_inode_lru.node);
+ WARN_ON(!list_empty(&s->s_mounts));
+ security_sb_free(s);
+ put_user_ns(s->s_user_ns);
+ kfree(s->s_subtype);
+ call_rcu(&s->rcu, destroy_super_rcu);
+ }
+}
+
+/**
+ * put_super - drop a temporary reference to superblock
+ * @sb: superblock in question
+ *
+ * Drops a temporary reference, frees superblock if there's no
+ * references left.
+ */
+void put_super(struct super_block *sb)
+{
+ spin_lock(&sb_lock);
+ __put_super(sb);
+ spin_unlock(&sb_lock);
+}
+
+static void kill_super_notify(struct super_block *sb)
+{
+ lockdep_assert_not_held(&sb->s_umount);
+
+ /* already notified earlier */
+ if (sb->s_flags & SB_DEAD)
+ return;
+
+ /*
+ * Remove it from @fs_supers so it isn't found by new
+ * sget{_fc}() walkers anymore. Any concurrent mounter still
+ * managing to grab a temporary reference is guaranteed to
+ * already see SB_DYING and will wait until we notify them about
+ * SB_DEAD.
+ */
+ spin_lock(&sb_lock);
+ hlist_del_init(&sb->s_instances);
+ spin_unlock(&sb_lock);
+
+ /*
+ * Let concurrent mounts know that this thing is really dead.
+ * We don't need @sb->s_umount here as every concurrent caller
+ * will see SB_DYING and either discard the superblock or wait
+ * for SB_DEAD.
+ */
+ super_wake(sb, SB_DEAD);
+}
+
+/**
+ * deactivate_locked_super - drop an active reference to superblock
+ * @s: superblock to deactivate
+ *
+ * Drops an active reference to superblock, converting it into a temporary
+ * one if there is no other active references left. In that case we
+ * tell fs driver to shut it down and drop the temporary reference we
+ * had just acquired.
+ *
+ * Caller holds exclusive lock on superblock; that lock is released.
+ */
+void deactivate_locked_super(struct super_block *s)
+{
+ struct file_system_type *fs = s->s_type;
+ if (atomic_dec_and_test(&s->s_active)) {
+ unregister_shrinker(&s->s_shrink);
+ fs->kill_sb(s);
+
+ kill_super_notify(s);
+
+ /*
+ * Since list_lru_destroy() may sleep, we cannot call it from
+ * put_super(), where we hold the sb_lock. Therefore we destroy
+ * the lru lists right now.
+ */
+ list_lru_destroy(&s->s_dentry_lru);
+ list_lru_destroy(&s->s_inode_lru);
+
+ put_filesystem(fs);
+ put_super(s);
+ } else {
+ super_unlock_excl(s);
+ }
+}
+
+EXPORT_SYMBOL(deactivate_locked_super);
+
+/**
+ * deactivate_super - drop an active reference to superblock
+ * @s: superblock to deactivate
+ *
+ * Variant of deactivate_locked_super(), except that superblock is *not*
+ * locked by caller. If we are going to drop the final active reference,
+ * lock will be acquired prior to that.
+ */
+void deactivate_super(struct super_block *s)
+{
+ if (!atomic_add_unless(&s->s_active, -1, 1)) {
+ __super_lock_excl(s);
+ deactivate_locked_super(s);
+ }
+}
+
+EXPORT_SYMBOL(deactivate_super);
+
+/**
+ * grab_super - acquire an active reference
+ * @s: reference we are trying to make active
+ *
+ * Tries to acquire an active reference. grab_super() is used when we
+ * had just found a superblock in super_blocks or fs_type->fs_supers
+ * and want to turn it into a full-blown active reference. grab_super()
+ * is called with sb_lock held and drops it. Returns 1 in case of
+ * success, 0 if we had failed (superblock contents was already dead or
+ * dying when grab_super() had been called). Note that this is only
+ * called for superblocks not in rundown mode (== ones still on ->fs_supers
+ * of their type), so increment of ->s_count is OK here.
+ */
+static int grab_super(struct super_block *s) __releases(sb_lock)
+{
+ bool born;
+
+ s->s_count++;
+ spin_unlock(&sb_lock);
+ born = super_lock_excl(s);
+ if (born && atomic_inc_not_zero(&s->s_active)) {
+ put_super(s);
+ return 1;
+ }
+ super_unlock_excl(s);
+ put_super(s);
+ return 0;
+}
+
+static inline bool wait_dead(struct super_block *sb)
+{
+ unsigned int flags;
+
+ /*
+ * Pairs with memory barrier in super_wake() and ensures
+ * that we see SB_DEAD after we're woken.
+ */
+ flags = smp_load_acquire(&sb->s_flags);
+ return flags & SB_DEAD;
+}
+
+/**
+ * grab_super_dead - acquire an active reference to a superblock
+ * @sb: superblock to acquire
+ *
+ * Acquire a temporary reference on a superblock and try to trade it for
+ * an active reference. This is used in sget{_fc}() to wait for a
+ * superblock to either become SB_BORN or for it to pass through
+ * sb->kill() and be marked as SB_DEAD.
+ *
+ * Return: This returns true if an active reference could be acquired,
+ * false if not.
+ */
+static bool grab_super_dead(struct super_block *sb)
+{
+
+ sb->s_count++;
+ if (grab_super(sb)) {
+ put_super(sb);
+ lockdep_assert_held(&sb->s_umount);
+ return true;
+ }
+ wait_var_event(&sb->s_flags, wait_dead(sb));
+ lockdep_assert_not_held(&sb->s_umount);
+ put_super(sb);
+ return false;
+}
+
+/*
+ * super_trylock_shared - try to grab ->s_umount shared
+ * @sb: reference we are trying to grab
+ *
+ * Try to prevent fs shutdown. This is used in places where we
+ * cannot take an active reference but we need to ensure that the
+ * filesystem is not shut down while we are working on it. It returns
+ * false if we cannot acquire s_umount or if we lose the race and
+ * filesystem already got into shutdown, and returns true with the s_umount
+ * lock held in read mode in case of success. On successful return,
+ * the caller must drop the s_umount lock when done.
+ *
+ * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
+ * The reason why it's safe is that we are OK with doing trylock instead
+ * of down_read(). There's a couple of places that are OK with that, but
+ * it's very much not a general-purpose interface.
+ */
+bool super_trylock_shared(struct super_block *sb)
+{
+ if (down_read_trylock(&sb->s_umount)) {
+ if (!(sb->s_flags & SB_DYING) && sb->s_root &&
+ (sb->s_flags & SB_BORN))
+ return true;
+ super_unlock_shared(sb);
+ }
+
+ return false;
+}
+
+/**
+ * retire_super - prevents superblock from being reused
+ * @sb: superblock to retire
+ *
+ * The function marks superblock to be ignored in superblock test, which
+ * prevents it from being reused for any new mounts. If the superblock has
+ * a private bdi, it also unregisters it, but doesn't reduce the refcount
+ * of the superblock to prevent potential races. The refcount is reduced
+ * by generic_shutdown_super(). The function can not be called
+ * concurrently with generic_shutdown_super(). It is safe to call the
+ * function multiple times, subsequent calls have no effect.
+ *
+ * The marker will affect the re-use only for block-device-based
+ * superblocks. Other superblocks will still get marked if this function
+ * is used, but that will not affect their reusability.
+ */
+void retire_super(struct super_block *sb)
+{
+ WARN_ON(!sb->s_bdev);
+ __super_lock_excl(sb);
+ if (sb->s_iflags & SB_I_PERSB_BDI) {
+ bdi_unregister(sb->s_bdi);
+ sb->s_iflags &= ~SB_I_PERSB_BDI;
+ }
+ sb->s_iflags |= SB_I_RETIRED;
+ super_unlock_excl(sb);
+}
+EXPORT_SYMBOL(retire_super);
+
+/**
+ * generic_shutdown_super - common helper for ->kill_sb()
+ * @sb: superblock to kill
+ *
+ * generic_shutdown_super() does all fs-independent work on superblock
+ * shutdown. Typical ->kill_sb() should pick all fs-specific objects
+ * that need destruction out of superblock, call generic_shutdown_super()
+ * and release aforementioned objects. Note: dentries and inodes _are_
+ * taken care of and do not need specific handling.
+ *
+ * Upon calling this function, the filesystem may no longer alter or
+ * rearrange the set of dentries belonging to this super_block, nor may it
+ * change the attachments of dentries to inodes.
+ */
+void generic_shutdown_super(struct super_block *sb)
+{
+ const struct super_operations *sop = sb->s_op;
+
+ if (sb->s_root) {
+ shrink_dcache_for_umount(sb);
+ sync_filesystem(sb);
+ sb->s_flags &= ~SB_ACTIVE;
+
+ cgroup_writeback_umount();
+
+ /* Evict all inodes with zero refcount. */
+ evict_inodes(sb);
+
+ /*
+ * Clean up and evict any inodes that still have references due
+ * to fsnotify or the security policy.
+ */
+ fsnotify_sb_delete(sb);
+ security_sb_delete(sb);
+
+ /*
+ * Now that all potentially-encrypted inodes have been evicted,
+ * the fscrypt keyring can be destroyed.
+ */
+ fscrypt_destroy_keyring(sb);
+
+ if (sb->s_dio_done_wq) {
+ destroy_workqueue(sb->s_dio_done_wq);
+ sb->s_dio_done_wq = NULL;
+ }
+
+ if (sop->put_super)
+ sop->put_super(sb);
+
+ if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
+ "VFS: Busy inodes after unmount of %s (%s)",
+ sb->s_id, sb->s_type->name)) {
+ /*
+ * Adding a proper bailout path here would be hard, but
+ * we can at least make it more likely that a later
+ * iput_final() or such crashes cleanly.
+ */
+ struct inode *inode;
+
+ spin_lock(&sb->s_inode_list_lock);
+ list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
+ inode->i_op = VFS_PTR_POISON;
+ inode->i_sb = VFS_PTR_POISON;
+ inode->i_mapping = VFS_PTR_POISON;
+ }
+ spin_unlock(&sb->s_inode_list_lock);
+ }
+ }
+ /*
+ * Broadcast to everyone that grabbed a temporary reference to this
+ * superblock before we removed it from @fs_supers that the superblock
+ * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
+ * discard this superblock and treat it as dead.
+ *
+ * We leave the superblock on @fs_supers so it can be found by
+ * sget{_fc}() until we passed sb->kill_sb().
+ */
+ super_wake(sb, SB_DYING);
+ super_unlock_excl(sb);
+ if (sb->s_bdi != &noop_backing_dev_info) {
+ if (sb->s_iflags & SB_I_PERSB_BDI)
+ bdi_unregister(sb->s_bdi);
+ bdi_put(sb->s_bdi);
+ sb->s_bdi = &noop_backing_dev_info;
+ }
+}
+
+EXPORT_SYMBOL(generic_shutdown_super);
+
+bool mount_capable(struct fs_context *fc)
+{
+ if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
+ return capable(CAP_SYS_ADMIN);
+ else
+ return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
+}
+
+/**
+ * sget_fc - Find or create a superblock
+ * @fc: Filesystem context.
+ * @test: Comparison callback
+ * @set: Setup callback
+ *
+ * Create a new superblock or find an existing one.
+ *
+ * The @test callback is used to find a matching existing superblock.
+ * Whether or not the requested parameters in @fc are taken into account
+ * is specific to the @test callback that is used. They may even be
+ * completely ignored.
+ *
+ * If an extant superblock is matched, it will be returned unless:
+ *
+ * (1) the namespace the filesystem context @fc and the extant
+ * superblock's namespace differ
+ *
+ * (2) the filesystem context @fc has requested that reusing an extant
+ * superblock is not allowed
+ *
+ * In both cases EBUSY will be returned.
+ *
+ * If no match is made, a new superblock will be allocated and basic
+ * initialisation will be performed (s_type, s_fs_info and s_id will be
+ * set and the @set callback will be invoked), the superblock will be
+ * published and it will be returned in a partially constructed state
+ * with SB_BORN and SB_ACTIVE as yet unset.
+ *
+ * Return: On success, an extant or newly created superblock is
+ * returned. On failure an error pointer is returned.
+ */
+struct super_block *sget_fc(struct fs_context *fc,
+ int (*test)(struct super_block *, struct fs_context *),
+ int (*set)(struct super_block *, struct fs_context *))
+{
+ struct super_block *s = NULL;
+ struct super_block *old;
+ struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
+ int err;
+
+retry:
+ spin_lock(&sb_lock);
+ if (test) {
+ hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
+ if (test(old, fc))
+ goto share_extant_sb;
+ }
+ }
+ if (!s) {
+ spin_unlock(&sb_lock);
+ s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
+ if (!s)
+ return ERR_PTR(-ENOMEM);
+ goto retry;
+ }
+
+ s->s_fs_info = fc->s_fs_info;
+ err = set(s, fc);
+ if (err) {
+ s->s_fs_info = NULL;
+ spin_unlock(&sb_lock);
+ destroy_unused_super(s);
+ return ERR_PTR(err);
+ }
+ fc->s_fs_info = NULL;
+ s->s_type = fc->fs_type;
+ s->s_iflags |= fc->s_iflags;
+ strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
+ /*
+ * Make the superblock visible on @super_blocks and @fs_supers.
+ * It's in a nascent state and users should wait on SB_BORN or
+ * SB_DYING to be set.
+ */
+ list_add_tail(&s->s_list, &super_blocks);
+ hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
+ spin_unlock(&sb_lock);
+ get_filesystem(s->s_type);
+ register_shrinker_prepared(&s->s_shrink);
+ return s;
+
+share_extant_sb:
+ if (user_ns != old->s_user_ns || fc->exclusive) {
+ spin_unlock(&sb_lock);
+ destroy_unused_super(s);
+ if (fc->exclusive)
+ warnfc(fc, "reusing existing filesystem not allowed");
+ else
+ warnfc(fc, "reusing existing filesystem in another namespace not allowed");
+ return ERR_PTR(-EBUSY);
+ }
+ if (!grab_super_dead(old))
+ goto retry;
+ destroy_unused_super(s);
+ return old;
+}
+EXPORT_SYMBOL(sget_fc);
+
+/**
+ * sget - find or create a superblock
+ * @type: filesystem type superblock should belong to
+ * @test: comparison callback
+ * @set: setup callback
+ * @flags: mount flags
+ * @data: argument to each of them
+ */
+struct super_block *sget(struct file_system_type *type,
+ int (*test)(struct super_block *,void *),
+ int (*set)(struct super_block *,void *),
+ int flags,
+ void *data)
+{
+ struct user_namespace *user_ns = current_user_ns();
+ struct super_block *s = NULL;
+ struct super_block *old;
+ int err;
+
+ /* We don't yet pass the user namespace of the parent
+ * mount through to here so always use &init_user_ns
+ * until that changes.
+ */
+ if (flags & SB_SUBMOUNT)
+ user_ns = &init_user_ns;
+
+retry:
+ spin_lock(&sb_lock);
+ if (test) {
+ hlist_for_each_entry(old, &type->fs_supers, s_instances) {
+ if (!test(old, data))
+ continue;
+ if (user_ns != old->s_user_ns) {
+ spin_unlock(&sb_lock);
+ destroy_unused_super(s);
+ return ERR_PTR(-EBUSY);
+ }
+ if (!grab_super_dead(old))
+ goto retry;
+ destroy_unused_super(s);
+ return old;
+ }
+ }
+ if (!s) {
+ spin_unlock(&sb_lock);
+ s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
+ if (!s)
+ return ERR_PTR(-ENOMEM);
+ goto retry;
+ }
+
+ err = set(s, data);
+ if (err) {
+ spin_unlock(&sb_lock);
+ destroy_unused_super(s);
+ return ERR_PTR(err);
+ }
+ s->s_type = type;
+ strscpy(s->s_id, type->name, sizeof(s->s_id));
+ list_add_tail(&s->s_list, &super_blocks);
+ hlist_add_head(&s->s_instances, &type->fs_supers);
+ spin_unlock(&sb_lock);
+ get_filesystem(type);
+ register_shrinker_prepared(&s->s_shrink);
+ return s;
+}
+EXPORT_SYMBOL(sget);
+
+void drop_super(struct super_block *sb)
+{
+ super_unlock_shared(sb);
+ put_super(sb);
+}
+
+EXPORT_SYMBOL(drop_super);
+
+void drop_super_exclusive(struct super_block *sb)
+{
+ super_unlock_excl(sb);
+ put_super(sb);
+}
+EXPORT_SYMBOL(drop_super_exclusive);
+
+static void __iterate_supers(void (*f)(struct super_block *))
+{
+ struct super_block *sb, *p = NULL;
+
+ spin_lock(&sb_lock);
+ list_for_each_entry(sb, &super_blocks, s_list) {
+ /* Pairs with memory marrier in super_wake(). */
+ if (smp_load_acquire(&sb->s_flags) & SB_DYING)
+ continue;
+ sb->s_count++;
+ spin_unlock(&sb_lock);
+
+ f(sb);
+
+ spin_lock(&sb_lock);
+ if (p)
+ __put_super(p);
+ p = sb;
+ }
+ if (p)
+ __put_super(p);
+ spin_unlock(&sb_lock);
+}
+/**
+ * iterate_supers - call function for all active superblocks
+ * @f: function to call
+ * @arg: argument to pass to it
+ *
+ * Scans the superblock list and calls given function, passing it
+ * locked superblock and given argument.
+ */
+void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
+{
+ struct super_block *sb, *p = NULL;
+
+ spin_lock(&sb_lock);
+ list_for_each_entry(sb, &super_blocks, s_list) {
+ bool born;
+
+ sb->s_count++;
+ spin_unlock(&sb_lock);
+
+ born = super_lock_shared(sb);
+ if (born && sb->s_root)
+ f(sb, arg);
+ super_unlock_shared(sb);
+
+ spin_lock(&sb_lock);
+ if (p)
+ __put_super(p);
+ p = sb;
+ }
+ if (p)
+ __put_super(p);
+ spin_unlock(&sb_lock);
+}
+
+/**
+ * iterate_supers_type - call function for superblocks of given type
+ * @type: fs type
+ * @f: function to call
+ * @arg: argument to pass to it
+ *
+ * Scans the superblock list and calls given function, passing it
+ * locked superblock and given argument.
+ */
+void iterate_supers_type(struct file_system_type *type,
+ void (*f)(struct super_block *, void *), void *arg)
+{
+ struct super_block *sb, *p = NULL;
+
+ spin_lock(&sb_lock);
+ hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
+ bool born;
+
+ sb->s_count++;
+ spin_unlock(&sb_lock);
+
+ born = super_lock_shared(sb);
+ if (born && sb->s_root)
+ f(sb, arg);
+ super_unlock_shared(sb);
+
+ spin_lock(&sb_lock);
+ if (p)
+ __put_super(p);
+ p = sb;
+ }
+ if (p)
+ __put_super(p);
+ spin_unlock(&sb_lock);
+}
+
+EXPORT_SYMBOL(iterate_supers_type);
+
+/**
+ * get_active_super - get an active reference to the superblock of a device
+ * @bdev: device to get the superblock for
+ *
+ * Scans the superblock list and finds the superblock of the file system
+ * mounted on the device given. Returns the superblock with an active
+ * reference or %NULL if none was found.
+ */
+struct super_block *get_active_super(struct block_device *bdev)
+{
+ struct super_block *sb;
+
+ if (!bdev)
+ return NULL;
+
+ spin_lock(&sb_lock);
+ list_for_each_entry(sb, &super_blocks, s_list) {
+ if (sb->s_bdev == bdev) {
+ if (!grab_super(sb))
+ return NULL;
+ super_unlock_excl(sb);
+ return sb;
+ }
+ }
+ spin_unlock(&sb_lock);
+ return NULL;
+}
+
+struct super_block *user_get_super(dev_t dev, bool excl)
+{
+ struct super_block *sb;
+
+ spin_lock(&sb_lock);
+ list_for_each_entry(sb, &super_blocks, s_list) {
+ if (sb->s_dev == dev) {
+ bool born;
+
+ sb->s_count++;
+ spin_unlock(&sb_lock);
+ /* still alive? */
+ born = super_lock(sb, excl);
+ if (born && sb->s_root)
+ return sb;
+ super_unlock(sb, excl);
+ /* nope, got unmounted */
+ spin_lock(&sb_lock);
+ __put_super(sb);
+ break;
+ }
+ }
+ spin_unlock(&sb_lock);
+ return NULL;
+}
+
+/**
+ * reconfigure_super - asks filesystem to change superblock parameters
+ * @fc: The superblock and configuration
+ *
+ * Alters the configuration parameters of a live superblock.
+ */
+int reconfigure_super(struct fs_context *fc)
+{
+ struct super_block *sb = fc->root->d_sb;
+ int retval;
+ bool remount_ro = false;
+ bool remount_rw = false;
+ bool force = fc->sb_flags & SB_FORCE;
+
+ if (fc->sb_flags_mask & ~MS_RMT_MASK)
+ return -EINVAL;
+ if (sb->s_writers.frozen != SB_UNFROZEN)
+ return -EBUSY;
+
+ retval = security_sb_remount(sb, fc->security);
+ if (retval)
+ return retval;
+
+ if (fc->sb_flags_mask & SB_RDONLY) {
+#ifdef CONFIG_BLOCK
+ if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
+ bdev_read_only(sb->s_bdev))
+ return -EACCES;
+#endif
+ remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
+ remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
+ }
+
+ if (remount_ro) {
+ if (!hlist_empty(&sb->s_pins)) {
+ super_unlock_excl(sb);
+ group_pin_kill(&sb->s_pins);
+ __super_lock_excl(sb);
+ if (!sb->s_root)
+ return 0;
+ if (sb->s_writers.frozen != SB_UNFROZEN)
+ return -EBUSY;
+ remount_ro = !sb_rdonly(sb);
+ }
+ }
+ shrink_dcache_sb(sb);
+
+ /* If we are reconfiguring to RDONLY and current sb is read/write,
+ * make sure there are no files open for writing.
+ */
+ if (remount_ro) {
+ if (force) {
+ sb_start_ro_state_change(sb);
+ } else {
+ retval = sb_prepare_remount_readonly(sb);
+ if (retval)
+ return retval;
+ }
+ } else if (remount_rw) {
+ /*
+ * Protect filesystem's reconfigure code from writes from
+ * userspace until reconfigure finishes.
+ */
+ sb_start_ro_state_change(sb);
+ }
+
+ if (fc->ops->reconfigure) {
+ retval = fc->ops->reconfigure(fc);
+ if (retval) {
+ if (!force)
+ goto cancel_readonly;
+ /* If forced remount, go ahead despite any errors */
+ WARN(1, "forced remount of a %s fs returned %i\n",
+ sb->s_type->name, retval);
+ }
+ }
+
+ WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
+ (fc->sb_flags & fc->sb_flags_mask)));
+ sb_end_ro_state_change(sb);
+
+ /*
+ * Some filesystems modify their metadata via some other path than the
+ * bdev buffer cache (eg. use a private mapping, or directories in
+ * pagecache, etc). Also file data modifications go via their own
+ * mappings. So If we try to mount readonly then copy the filesystem
+ * from bdev, we could get stale data, so invalidate it to give a best
+ * effort at coherency.
+ */
+ if (remount_ro && sb->s_bdev)
+ invalidate_bdev(sb->s_bdev);
+ return 0;
+
+cancel_readonly:
+ sb_end_ro_state_change(sb);
+ return retval;
+}
+
+static void do_emergency_remount_callback(struct super_block *sb)
+{
+ bool born = super_lock_excl(sb);
+
+ if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
+ struct fs_context *fc;
+
+ fc = fs_context_for_reconfigure(sb->s_root,
+ SB_RDONLY | SB_FORCE, SB_RDONLY);
+ if (!IS_ERR(fc)) {
+ if (parse_monolithic_mount_data(fc, NULL) == 0)
+ (void)reconfigure_super(fc);
+ put_fs_context(fc);
+ }
+ }
+ super_unlock_excl(sb);
+}
+
+static void do_emergency_remount(struct work_struct *work)
+{
+ __iterate_supers(do_emergency_remount_callback);
+ kfree(work);
+ printk("Emergency Remount complete\n");
+}
+
+void emergency_remount(void)
+{
+ struct work_struct *work;
+
+ work = kmalloc(sizeof(*work), GFP_ATOMIC);
+ if (work) {
+ INIT_WORK(work, do_emergency_remount);
+ schedule_work(work);
+ }
+}
+
+static void do_thaw_all_callback(struct super_block *sb)
+{
+ bool born = super_lock_excl(sb);
+
+ if (born && sb->s_root) {
+ if (IS_ENABLED(CONFIG_BLOCK))
+ while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
+ pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
+ thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
+ } else {
+ super_unlock_excl(sb);
+ }
+}
+
+static void do_thaw_all(struct work_struct *work)
+{
+ __iterate_supers(do_thaw_all_callback);
+ kfree(work);
+ printk(KERN_WARNING "Emergency Thaw complete\n");
+}
+
+/**
+ * emergency_thaw_all -- forcibly thaw every frozen filesystem
+ *
+ * Used for emergency unfreeze of all filesystems via SysRq
+ */
+void emergency_thaw_all(void)
+{
+ struct work_struct *work;
+
+ work = kmalloc(sizeof(*work), GFP_ATOMIC);
+ if (work) {
+ INIT_WORK(work, do_thaw_all);
+ schedule_work(work);
+ }
+}
+
+static DEFINE_IDA(unnamed_dev_ida);
+
+/**
+ * get_anon_bdev - Allocate a block device for filesystems which don't have one.
+ * @p: Pointer to a dev_t.
+ *
+ * Filesystems which don't use real block devices can call this function
+ * to allocate a virtual block device.
+ *
+ * Context: Any context. Frequently called while holding sb_lock.
+ * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
+ * or -ENOMEM if memory allocation failed.
+ */
+int get_anon_bdev(dev_t *p)
+{
+ int dev;
+
+ /*
+ * Many userspace utilities consider an FSID of 0 invalid.
+ * Always return at least 1 from get_anon_bdev.
+ */
+ dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
+ GFP_ATOMIC);
+ if (dev == -ENOSPC)
+ dev = -EMFILE;
+ if (dev < 0)
+ return dev;
+
+ *p = MKDEV(0, dev);
+ return 0;
+}
+EXPORT_SYMBOL(get_anon_bdev);
+
+void free_anon_bdev(dev_t dev)
+{
+ ida_free(&unnamed_dev_ida, MINOR(dev));
+}
+EXPORT_SYMBOL(free_anon_bdev);
+
+int set_anon_super(struct super_block *s, void *data)
+{
+ return get_anon_bdev(&s->s_dev);
+}
+EXPORT_SYMBOL(set_anon_super);
+
+void kill_anon_super(struct super_block *sb)
+{
+ dev_t dev = sb->s_dev;
+ generic_shutdown_super(sb);
+ kill_super_notify(sb);
+ free_anon_bdev(dev);
+}
+EXPORT_SYMBOL(kill_anon_super);
+
+void kill_litter_super(struct super_block *sb)
+{
+ if (sb->s_root)
+ d_genocide(sb->s_root);
+ kill_anon_super(sb);
+}
+EXPORT_SYMBOL(kill_litter_super);
+
+int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
+{
+ return set_anon_super(sb, NULL);
+}
+EXPORT_SYMBOL(set_anon_super_fc);
+
+static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
+{
+ return sb->s_fs_info == fc->s_fs_info;
+}
+
+static int test_single_super(struct super_block *s, struct fs_context *fc)
+{
+ return 1;
+}
+
+static int vfs_get_super(struct fs_context *fc,
+ int (*test)(struct super_block *, struct fs_context *),
+ int (*fill_super)(struct super_block *sb,
+ struct fs_context *fc))
+{
+ struct super_block *sb;
+ int err;
+
+ sb = sget_fc(fc, test, set_anon_super_fc);
+ if (IS_ERR(sb))
+ return PTR_ERR(sb);
+
+ if (!sb->s_root) {
+ err = fill_super(sb, fc);
+ if (err)
+ goto error;
+
+ sb->s_flags |= SB_ACTIVE;
+ }
+
+ fc->root = dget(sb->s_root);
+ return 0;
+
+error:
+ deactivate_locked_super(sb);
+ return err;
+}
+
+int get_tree_nodev(struct fs_context *fc,
+ int (*fill_super)(struct super_block *sb,
+ struct fs_context *fc))
+{
+ return vfs_get_super(fc, NULL, fill_super);
+}
+EXPORT_SYMBOL(get_tree_nodev);
+
+int get_tree_single(struct fs_context *fc,
+ int (*fill_super)(struct super_block *sb,
+ struct fs_context *fc))
+{
+ return vfs_get_super(fc, test_single_super, fill_super);
+}
+EXPORT_SYMBOL(get_tree_single);
+
+int get_tree_keyed(struct fs_context *fc,
+ int (*fill_super)(struct super_block *sb,
+ struct fs_context *fc),
+ void *key)
+{
+ fc->s_fs_info = key;
+ return vfs_get_super(fc, test_keyed_super, fill_super);
+}
+EXPORT_SYMBOL(get_tree_keyed);
+
+static int set_bdev_super(struct super_block *s, void *data)
+{
+ s->s_dev = *(dev_t *)data;
+ return 0;
+}
+
+static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
+{
+ return set_bdev_super(s, fc->sget_key);
+}
+
+static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
+{
+ return !(s->s_iflags & SB_I_RETIRED) &&
+ s->s_dev == *(dev_t *)fc->sget_key;
+}
+
+/**
+ * sget_dev - Find or create a superblock by device number
+ * @fc: Filesystem context.
+ * @dev: device number
+ *
+ * Find or create a superblock using the provided device number that
+ * will be stored in fc->sget_key.
+ *
+ * If an extant superblock is matched, then that will be returned with
+ * an elevated reference count that the caller must transfer or discard.
+ *
+ * If no match is made, a new superblock will be allocated and basic
+ * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
+ * be set). The superblock will be published and it will be returned in
+ * a partially constructed state with SB_BORN and SB_ACTIVE as yet
+ * unset.
+ *
+ * Return: an existing or newly created superblock on success, an error
+ * pointer on failure.
+ */
+struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
+{
+ fc->sget_key = &dev;
+ return sget_fc(fc, super_s_dev_test, super_s_dev_set);
+}
+EXPORT_SYMBOL(sget_dev);
+
+#ifdef CONFIG_BLOCK
+/*
+ * Lock a super block that the callers holds a reference to.
+ *
+ * The caller needs to ensure that the super_block isn't being freed while
+ * calling this function, e.g. by holding a lock over the call to this function
+ * and the place that clears the pointer to the superblock used by this function
+ * before freeing the superblock.
+ */
+static bool super_lock_shared_active(struct super_block *sb)
+{
+ bool born = super_lock_shared(sb);
+
+ if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
+ super_unlock_shared(sb);
+ return false;
+ }
+ return true;
+}
+
+static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
+{
+ struct super_block *sb = bdev->bd_holder;
+
+ /* bd_holder_lock ensures that the sb isn't freed */
+ lockdep_assert_held(&bdev->bd_holder_lock);
+
+ if (!super_lock_shared_active(sb))
+ return;
+
+ if (!surprise)
+ sync_filesystem(sb);
+ shrink_dcache_sb(sb);
+ invalidate_inodes(sb);
+ if (sb->s_op->shutdown)
+ sb->s_op->shutdown(sb);
+
+ super_unlock_shared(sb);
+}
+
+static void fs_bdev_sync(struct block_device *bdev)
+{
+ struct super_block *sb = bdev->bd_holder;
+
+ lockdep_assert_held(&bdev->bd_holder_lock);
+
+ if (!super_lock_shared_active(sb))
+ return;
+ sync_filesystem(sb);
+ super_unlock_shared(sb);
+}
+
+const struct blk_holder_ops fs_holder_ops = {
+ .mark_dead = fs_bdev_mark_dead,
+ .sync = fs_bdev_sync,
+};
+EXPORT_SYMBOL_GPL(fs_holder_ops);
+
+int setup_bdev_super(struct super_block *sb, int sb_flags,
+ struct fs_context *fc)
+{
+ blk_mode_t mode = sb_open_mode(sb_flags);
+ struct block_device *bdev;
+
+ bdev = blkdev_get_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
+ if (IS_ERR(bdev)) {
+ if (fc)
+ errorf(fc, "%s: Can't open blockdev", fc->source);
+ return PTR_ERR(bdev);
+ }
+
+ /*
+ * This really should be in blkdev_get_by_dev, but right now can't due
+ * to legacy issues that require us to allow opening a block device node
+ * writable from userspace even for a read-only block device.
+ */
+ if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
+ blkdev_put(bdev, sb);
+ return -EACCES;
+ }
+
+ /*
+ * Until SB_BORN flag is set, there can be no active superblock
+ * references and thus no filesystem freezing. get_active_super() will
+ * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
+ *
+ * It is enough to check bdev was not frozen before we set s_bdev.
+ */
+ mutex_lock(&bdev->bd_fsfreeze_mutex);
+ if (bdev->bd_fsfreeze_count > 0) {
+ mutex_unlock(&bdev->bd_fsfreeze_mutex);
+ if (fc)
+ warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
+ blkdev_put(bdev, sb);
+ return -EBUSY;
+ }
+ spin_lock(&sb_lock);
+ sb->s_bdev = bdev;
+ sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
+ if (bdev_stable_writes(bdev))
+ sb->s_iflags |= SB_I_STABLE_WRITES;
+ spin_unlock(&sb_lock);
+ mutex_unlock(&bdev->bd_fsfreeze_mutex);
+
+ snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
+ shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name,
+ sb->s_id);
+ sb_set_blocksize(sb, block_size(bdev));
+ return 0;
+}
+EXPORT_SYMBOL_GPL(setup_bdev_super);
+
+/**
+ * get_tree_bdev - Get a superblock based on a single block device
+ * @fc: The filesystem context holding the parameters
+ * @fill_super: Helper to initialise a new superblock
+ */
+int get_tree_bdev(struct fs_context *fc,
+ int (*fill_super)(struct super_block *,
+ struct fs_context *))
+{
+ struct super_block *s;
+ int error = 0;
+ dev_t dev;
+
+ if (!fc->source)
+ return invalf(fc, "No source specified");
+
+ error = lookup_bdev(fc->source, &dev);
+ if (error) {
+ errorf(fc, "%s: Can't lookup blockdev", fc->source);
+ return error;
+ }
+
+ fc->sb_flags |= SB_NOSEC;
+ s = sget_dev(fc, dev);
+ if (IS_ERR(s))
+ return PTR_ERR(s);
+
+ if (s->s_root) {
+ /* Don't summarily change the RO/RW state. */
+ if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
+ warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
+ deactivate_locked_super(s);
+ return -EBUSY;
+ }
+ } else {
+ /*
+ * We drop s_umount here because we need to open the bdev and
+ * bdev->open_mutex ranks above s_umount (blkdev_put() ->
+ * bdev_mark_dead()). It is safe because we have active sb
+ * reference and SB_BORN is not set yet.
+ */
+ super_unlock_excl(s);
+ error = setup_bdev_super(s, fc->sb_flags, fc);
+ __super_lock_excl(s);
+ if (!error)
+ error = fill_super(s, fc);
+ if (error) {
+ deactivate_locked_super(s);
+ return error;
+ }
+ s->s_flags |= SB_ACTIVE;
+ }
+
+ BUG_ON(fc->root);
+ fc->root = dget(s->s_root);
+ return 0;
+}
+EXPORT_SYMBOL(get_tree_bdev);
+
+static int test_bdev_super(struct super_block *s, void *data)
+{
+ return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
+}
+
+struct dentry *mount_bdev(struct file_system_type *fs_type,
+ int flags, const char *dev_name, void *data,
+ int (*fill_super)(struct super_block *, void *, int))
+{
+ struct super_block *s;
+ int error;
+ dev_t dev;
+
+ error = lookup_bdev(dev_name, &dev);
+ if (error)
+ return ERR_PTR(error);
+
+ flags |= SB_NOSEC;
+ s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
+ if (IS_ERR(s))
+ return ERR_CAST(s);
+
+ if (s->s_root) {
+ if ((flags ^ s->s_flags) & SB_RDONLY) {
+ deactivate_locked_super(s);
+ return ERR_PTR(-EBUSY);
+ }
+ } else {
+ /*
+ * We drop s_umount here because we need to open the bdev and
+ * bdev->open_mutex ranks above s_umount (blkdev_put() ->
+ * bdev_mark_dead()). It is safe because we have active sb
+ * reference and SB_BORN is not set yet.
+ */
+ super_unlock_excl(s);
+ error = setup_bdev_super(s, flags, NULL);
+ __super_lock_excl(s);
+ if (!error)
+ error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
+ if (error) {
+ deactivate_locked_super(s);
+ return ERR_PTR(error);
+ }
+
+ s->s_flags |= SB_ACTIVE;
+ }
+
+ return dget(s->s_root);
+}
+EXPORT_SYMBOL(mount_bdev);
+
+void kill_block_super(struct super_block *sb)
+{
+ struct block_device *bdev = sb->s_bdev;
+
+ generic_shutdown_super(sb);
+ if (bdev) {
+ sync_blockdev(bdev);
+ blkdev_put(bdev, sb);
+ }
+}
+
+EXPORT_SYMBOL(kill_block_super);
+#endif
+
+struct dentry *mount_nodev(struct file_system_type *fs_type,
+ int flags, void *data,
+ int (*fill_super)(struct super_block *, void *, int))
+{
+ int error;
+ struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
+
+ if (IS_ERR(s))
+ return ERR_CAST(s);
+
+ error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
+ if (error) {
+ deactivate_locked_super(s);
+ return ERR_PTR(error);
+ }
+ s->s_flags |= SB_ACTIVE;
+ return dget(s->s_root);
+}
+EXPORT_SYMBOL(mount_nodev);
+
+int reconfigure_single(struct super_block *s,
+ int flags, void *data)
+{
+ struct fs_context *fc;
+ int ret;
+
+ /* The caller really need to be passing fc down into mount_single(),
+ * then a chunk of this can be removed. [Bollocks -- AV]
+ * Better yet, reconfiguration shouldn't happen, but rather the second
+ * mount should be rejected if the parameters are not compatible.
+ */
+ fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
+ if (IS_ERR(fc))
+ return PTR_ERR(fc);
+
+ ret = parse_monolithic_mount_data(fc, data);
+ if (ret < 0)
+ goto out;
+
+ ret = reconfigure_super(fc);
+out:
+ put_fs_context(fc);
+ return ret;
+}
+
+static int compare_single(struct super_block *s, void *p)
+{
+ return 1;
+}
+
+struct dentry *mount_single(struct file_system_type *fs_type,
+ int flags, void *data,
+ int (*fill_super)(struct super_block *, void *, int))
+{
+ struct super_block *s;
+ int error;
+
+ s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
+ if (IS_ERR(s))
+ return ERR_CAST(s);
+ if (!s->s_root) {
+ error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
+ if (!error)
+ s->s_flags |= SB_ACTIVE;
+ } else {
+ error = reconfigure_single(s, flags, data);
+ }
+ if (unlikely(error)) {
+ deactivate_locked_super(s);
+ return ERR_PTR(error);
+ }
+ return dget(s->s_root);
+}
+EXPORT_SYMBOL(mount_single);
+
+/**
+ * vfs_get_tree - Get the mountable root
+ * @fc: The superblock configuration context.
+ *
+ * The filesystem is invoked to get or create a superblock which can then later
+ * be used for mounting. The filesystem places a pointer to the root to be
+ * used for mounting in @fc->root.
+ */
+int vfs_get_tree(struct fs_context *fc)
+{
+ struct super_block *sb;
+ int error;
+
+ if (fc->root)
+ return -EBUSY;
+
+ /* Get the mountable root in fc->root, with a ref on the root and a ref
+ * on the superblock.
+ */
+ error = fc->ops->get_tree(fc);
+ if (error < 0)
+ return error;
+
+ if (!fc->root) {
+ pr_err("Filesystem %s get_tree() didn't set fc->root\n",
+ fc->fs_type->name);
+ /* We don't know what the locking state of the superblock is -
+ * if there is a superblock.
+ */
+ BUG();
+ }
+
+ sb = fc->root->d_sb;
+ WARN_ON(!sb->s_bdi);
+
+ /*
+ * super_wake() contains a memory barrier which also care of
+ * ordering for super_cache_count(). We place it before setting
+ * SB_BORN as the data dependency between the two functions is
+ * the superblock structure contents that we just set up, not
+ * the SB_BORN flag.
+ */
+ super_wake(sb, SB_BORN);
+
+ error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
+ if (unlikely(error)) {
+ fc_drop_locked(fc);
+ return error;
+ }
+
+ /*
+ * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
+ * but s_maxbytes was an unsigned long long for many releases. Throw
+ * this warning for a little while to try and catch filesystems that
+ * violate this rule.
+ */
+ WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
+ "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
+
+ return 0;
+}
+EXPORT_SYMBOL(vfs_get_tree);
+
+/*
+ * Setup private BDI for given superblock. It gets automatically cleaned up
+ * in generic_shutdown_super().
+ */
+int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
+{
+ struct backing_dev_info *bdi;
+ int err;
+ va_list args;
+
+ bdi = bdi_alloc(NUMA_NO_NODE);
+ if (!bdi)
+ return -ENOMEM;
+
+ va_start(args, fmt);
+ err = bdi_register_va(bdi, fmt, args);
+ va_end(args);
+ if (err) {
+ bdi_put(bdi);
+ return err;
+ }
+ WARN_ON(sb->s_bdi != &noop_backing_dev_info);
+ sb->s_bdi = bdi;
+ sb->s_iflags |= SB_I_PERSB_BDI;
+
+ return 0;
+}
+EXPORT_SYMBOL(super_setup_bdi_name);
+
+/*
+ * Setup private BDI for given superblock. I gets automatically cleaned up
+ * in generic_shutdown_super().
+ */
+int super_setup_bdi(struct super_block *sb)
+{
+ static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
+
+ return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
+ atomic_long_inc_return(&bdi_seq));
+}
+EXPORT_SYMBOL(super_setup_bdi);
+
+/**
+ * sb_wait_write - wait until all writers to given file system finish
+ * @sb: the super for which we wait
+ * @level: type of writers we wait for (normal vs page fault)
+ *
+ * This function waits until there are no writers of given type to given file
+ * system.
+ */
+static void sb_wait_write(struct super_block *sb, int level)
+{
+ percpu_down_write(sb->s_writers.rw_sem + level-1);
+}
+
+/*
+ * We are going to return to userspace and forget about these locks, the
+ * ownership goes to the caller of thaw_super() which does unlock().
+ */
+static void lockdep_sb_freeze_release(struct super_block *sb)
+{
+ int level;
+
+ for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
+ percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
+}
+
+/*
+ * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
+ */
+static void lockdep_sb_freeze_acquire(struct super_block *sb)
+{
+ int level;
+
+ for (level = 0; level < SB_FREEZE_LEVELS; ++level)
+ percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
+}
+
+static void sb_freeze_unlock(struct super_block *sb, int level)
+{
+ for (level--; level >= 0; level--)
+ percpu_up_write(sb->s_writers.rw_sem + level);
+}
+
+static int wait_for_partially_frozen(struct super_block *sb)
+{
+ int ret = 0;
+
+ do {
+ unsigned short old = sb->s_writers.frozen;
+
+ up_write(&sb->s_umount);
+ ret = wait_var_event_killable(&sb->s_writers.frozen,
+ sb->s_writers.frozen != old);
+ down_write(&sb->s_umount);
+ } while (ret == 0 &&
+ sb->s_writers.frozen != SB_UNFROZEN &&
+ sb->s_writers.frozen != SB_FREEZE_COMPLETE);
+
+ return ret;
+}
+
+/**
+ * freeze_super - lock the filesystem and force it into a consistent state
+ * @sb: the super to lock
+ * @who: context that wants to freeze
+ *
+ * Syncs the super to make sure the filesystem is consistent and calls the fs's
+ * freeze_fs. Subsequent calls to this without first thawing the fs may return
+ * -EBUSY.
+ *
+ * @who should be:
+ * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
+ * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
+ *
+ * The @who argument distinguishes between the kernel and userspace trying to
+ * freeze the filesystem. Although there cannot be multiple kernel freezes or
+ * multiple userspace freezes in effect at any given time, the kernel and
+ * userspace can both hold a filesystem frozen. The filesystem remains frozen
+ * until there are no kernel or userspace freezes in effect.
+ *
+ * During this function, sb->s_writers.frozen goes through these values:
+ *
+ * SB_UNFROZEN: File system is normal, all writes progress as usual.
+ *
+ * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
+ * writes should be blocked, though page faults are still allowed. We wait for
+ * all writes to complete and then proceed to the next stage.
+ *
+ * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
+ * but internal fs threads can still modify the filesystem (although they
+ * should not dirty new pages or inodes), writeback can run etc. After waiting
+ * for all running page faults we sync the filesystem which will clean all
+ * dirty pages and inodes (no new dirty pages or inodes can be created when
+ * sync is running).
+ *
+ * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
+ * modification are blocked (e.g. XFS preallocation truncation on inode
+ * reclaim). This is usually implemented by blocking new transactions for
+ * filesystems that have them and need this additional guard. After all
+ * internal writers are finished we call ->freeze_fs() to finish filesystem
+ * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
+ * mostly auxiliary for filesystems to verify they do not modify frozen fs.
+ *
+ * sb->s_writers.frozen is protected by sb->s_umount.
+ */
+int freeze_super(struct super_block *sb, enum freeze_holder who)
+{
+ int ret;
+
+ atomic_inc(&sb->s_active);
+ if (!super_lock_excl(sb))
+ WARN(1, "Dying superblock while freezing!");
+
+retry:
+ if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
+ if (sb->s_writers.freeze_holders & who) {
+ deactivate_locked_super(sb);
+ return -EBUSY;
+ }
+
+ WARN_ON(sb->s_writers.freeze_holders == 0);
+
+ /*
+ * Someone else already holds this type of freeze; share the
+ * freeze and assign the active ref to the freeze.
+ */
+ sb->s_writers.freeze_holders |= who;
+ super_unlock_excl(sb);
+ return 0;
+ }
+
+ if (sb->s_writers.frozen != SB_UNFROZEN) {
+ ret = wait_for_partially_frozen(sb);
+ if (ret) {
+ deactivate_locked_super(sb);
+ return ret;
+ }
+
+ goto retry;
+ }
+
+ if (!(sb->s_flags & SB_BORN)) {
+ super_unlock_excl(sb);
+ return 0; /* sic - it's "nothing to do" */
+ }
+
+ if (sb_rdonly(sb)) {
+ /* Nothing to do really... */
+ sb->s_writers.freeze_holders |= who;
+ sb->s_writers.frozen = SB_FREEZE_COMPLETE;
+ wake_up_var(&sb->s_writers.frozen);
+ super_unlock_excl(sb);
+ return 0;
+ }
+
+ sb->s_writers.frozen = SB_FREEZE_WRITE;
+ /* Release s_umount to preserve sb_start_write -> s_umount ordering */
+ super_unlock_excl(sb);
+ sb_wait_write(sb, SB_FREEZE_WRITE);
+ if (!super_lock_excl(sb))
+ WARN(1, "Dying superblock while freezing!");
+
+ /* Now we go and block page faults... */
+ sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
+ sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
+
+ /* All writers are done so after syncing there won't be dirty data */
+ ret = sync_filesystem(sb);
+ if (ret) {
+ sb->s_writers.frozen = SB_UNFROZEN;
+ sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
+ wake_up_var(&sb->s_writers.frozen);
+ deactivate_locked_super(sb);
+ return ret;
+ }
+
+ /* Now wait for internal filesystem counter */
+ sb->s_writers.frozen = SB_FREEZE_FS;
+ sb_wait_write(sb, SB_FREEZE_FS);
+
+ if (sb->s_op->freeze_fs) {
+ ret = sb->s_op->freeze_fs(sb);
+ if (ret) {
+ printk(KERN_ERR
+ "VFS:Filesystem freeze failed\n");
+ sb->s_writers.frozen = SB_UNFROZEN;
+ sb_freeze_unlock(sb, SB_FREEZE_FS);
+ wake_up_var(&sb->s_writers.frozen);
+ deactivate_locked_super(sb);
+ return ret;
+ }
+ }
+ /*
+ * For debugging purposes so that fs can warn if it sees write activity
+ * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
+ */
+ sb->s_writers.freeze_holders |= who;
+ sb->s_writers.frozen = SB_FREEZE_COMPLETE;
+ wake_up_var(&sb->s_writers.frozen);
+ lockdep_sb_freeze_release(sb);
+ super_unlock_excl(sb);
+ return 0;
+}
+EXPORT_SYMBOL(freeze_super);
+
+/*
+ * Undoes the effect of a freeze_super_locked call. If the filesystem is
+ * frozen both by userspace and the kernel, a thaw call from either source
+ * removes that state without releasing the other state or unlocking the
+ * filesystem.
+ */
+static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
+{
+ int error;
+
+ if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
+ if (!(sb->s_writers.freeze_holders & who)) {
+ super_unlock_excl(sb);
+ return -EINVAL;
+ }
+
+ /*
+ * Freeze is shared with someone else. Release our hold and
+ * drop the active ref that freeze_super assigned to the
+ * freezer.
+ */
+ if (sb->s_writers.freeze_holders & ~who) {
+ sb->s_writers.freeze_holders &= ~who;
+ deactivate_locked_super(sb);
+ return 0;
+ }
+ } else {
+ super_unlock_excl(sb);
+ return -EINVAL;
+ }
+
+ if (sb_rdonly(sb)) {
+ sb->s_writers.freeze_holders &= ~who;
+ sb->s_writers.frozen = SB_UNFROZEN;
+ wake_up_var(&sb->s_writers.frozen);
+ goto out;
+ }
+
+ lockdep_sb_freeze_acquire(sb);
+
+ if (sb->s_op->unfreeze_fs) {
+ error = sb->s_op->unfreeze_fs(sb);
+ if (error) {
+ printk(KERN_ERR "VFS:Filesystem thaw failed\n");
+ lockdep_sb_freeze_release(sb);
+ super_unlock_excl(sb);
+ return error;
+ }
+ }
+
+ sb->s_writers.freeze_holders &= ~who;
+ sb->s_writers.frozen = SB_UNFROZEN;
+ wake_up_var(&sb->s_writers.frozen);
+ sb_freeze_unlock(sb, SB_FREEZE_FS);
+out:
+ deactivate_locked_super(sb);
+ return 0;
+}
+
+/**
+ * thaw_super -- unlock filesystem
+ * @sb: the super to thaw
+ * @who: context that wants to freeze
+ *
+ * Unlocks the filesystem and marks it writeable again after freeze_super()
+ * if there are no remaining freezes on the filesystem.
+ *
+ * @who should be:
+ * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
+ * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
+ */
+int thaw_super(struct super_block *sb, enum freeze_holder who)
+{
+ if (!super_lock_excl(sb))
+ WARN(1, "Dying superblock while thawing!");
+ return thaw_super_locked(sb, who);
+}
+EXPORT_SYMBOL(thaw_super);
+
+/*
+ * Create workqueue for deferred direct IO completions. We allocate the
+ * workqueue when it's first needed. This avoids creating workqueue for
+ * filesystems that don't need it and also allows us to create the workqueue
+ * late enough so the we can include s_id in the name of the workqueue.
+ */
+int sb_init_dio_done_wq(struct super_block *sb)
+{
+ struct workqueue_struct *old;
+ struct workqueue_struct *wq = alloc_workqueue("dio/%s",
+ WQ_MEM_RECLAIM, 0,
+ sb->s_id);
+ if (!wq)
+ return -ENOMEM;
+ /*
+ * This has to be atomic as more DIOs can race to create the workqueue
+ */
+ old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
+ /* Someone created workqueue before us? Free ours... */
+ if (old)
+ destroy_workqueue(wq);
+ return 0;
+}