summaryrefslogtreecommitdiffstats
path: root/fs/udf/super.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/udf/super.c')
-rw-r--r--fs/udf/super.c2509
1 files changed, 2509 insertions, 0 deletions
diff --git a/fs/udf/super.c b/fs/udf/super.c
new file mode 100644
index 0000000000..928a04d9d9
--- /dev/null
+++ b/fs/udf/super.c
@@ -0,0 +1,2509 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * super.c
+ *
+ * PURPOSE
+ * Super block routines for the OSTA-UDF(tm) filesystem.
+ *
+ * DESCRIPTION
+ * OSTA-UDF(tm) = Optical Storage Technology Association
+ * Universal Disk Format.
+ *
+ * This code is based on version 2.00 of the UDF specification,
+ * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
+ * http://www.osta.org/
+ * https://www.ecma.ch/
+ * https://www.iso.org/
+ *
+ * COPYRIGHT
+ * (C) 1998 Dave Boynton
+ * (C) 1998-2004 Ben Fennema
+ * (C) 2000 Stelias Computing Inc
+ *
+ * HISTORY
+ *
+ * 09/24/98 dgb changed to allow compiling outside of kernel, and
+ * added some debugging.
+ * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
+ * 10/16/98 attempting some multi-session support
+ * 10/17/98 added freespace count for "df"
+ * 11/11/98 gr added novrs option
+ * 11/26/98 dgb added fileset,anchor mount options
+ * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
+ * vol descs. rewrote option handling based on isofs
+ * 12/20/98 find the free space bitmap (if it exists)
+ */
+
+#include "udfdecl.h"
+
+#include <linux/blkdev.h>
+#include <linux/slab.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/parser.h>
+#include <linux/stat.h>
+#include <linux/cdrom.h>
+#include <linux/nls.h>
+#include <linux/vfs.h>
+#include <linux/vmalloc.h>
+#include <linux/errno.h>
+#include <linux/mount.h>
+#include <linux/seq_file.h>
+#include <linux/bitmap.h>
+#include <linux/crc-itu-t.h>
+#include <linux/log2.h>
+#include <asm/byteorder.h>
+#include <linux/iversion.h>
+
+#include "udf_sb.h"
+#include "udf_i.h"
+
+#include <linux/init.h>
+#include <linux/uaccess.h>
+
+enum {
+ VDS_POS_PRIMARY_VOL_DESC,
+ VDS_POS_UNALLOC_SPACE_DESC,
+ VDS_POS_LOGICAL_VOL_DESC,
+ VDS_POS_IMP_USE_VOL_DESC,
+ VDS_POS_LENGTH
+};
+
+#define VSD_FIRST_SECTOR_OFFSET 32768
+#define VSD_MAX_SECTOR_OFFSET 0x800000
+
+/*
+ * Maximum number of Terminating Descriptor / Logical Volume Integrity
+ * Descriptor redirections. The chosen numbers are arbitrary - just that we
+ * hopefully don't limit any real use of rewritten inode on write-once media
+ * but avoid looping for too long on corrupted media.
+ */
+#define UDF_MAX_TD_NESTING 64
+#define UDF_MAX_LVID_NESTING 1000
+
+enum { UDF_MAX_LINKS = 0xffff };
+/*
+ * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
+ * more but because the file space is described by a linked list of extents,
+ * each of which can have at most 1GB, the creation and handling of extents
+ * gets unusably slow beyond certain point...
+ */
+#define UDF_MAX_FILESIZE (1ULL << 42)
+
+/* These are the "meat" - everything else is stuffing */
+static int udf_fill_super(struct super_block *, void *, int);
+static void udf_put_super(struct super_block *);
+static int udf_sync_fs(struct super_block *, int);
+static int udf_remount_fs(struct super_block *, int *, char *);
+static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
+static void udf_open_lvid(struct super_block *);
+static void udf_close_lvid(struct super_block *);
+static unsigned int udf_count_free(struct super_block *);
+static int udf_statfs(struct dentry *, struct kstatfs *);
+static int udf_show_options(struct seq_file *, struct dentry *);
+
+struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
+{
+ struct logicalVolIntegrityDesc *lvid;
+ unsigned int partnum;
+ unsigned int offset;
+
+ if (!UDF_SB(sb)->s_lvid_bh)
+ return NULL;
+ lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
+ partnum = le32_to_cpu(lvid->numOfPartitions);
+ /* The offset is to skip freeSpaceTable and sizeTable arrays */
+ offset = partnum * 2 * sizeof(uint32_t);
+ return (struct logicalVolIntegrityDescImpUse *)
+ (((uint8_t *)(lvid + 1)) + offset);
+}
+
+/* UDF filesystem type */
+static struct dentry *udf_mount(struct file_system_type *fs_type,
+ int flags, const char *dev_name, void *data)
+{
+ return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
+}
+
+static struct file_system_type udf_fstype = {
+ .owner = THIS_MODULE,
+ .name = "udf",
+ .mount = udf_mount,
+ .kill_sb = kill_block_super,
+ .fs_flags = FS_REQUIRES_DEV,
+};
+MODULE_ALIAS_FS("udf");
+
+static struct kmem_cache *udf_inode_cachep;
+
+static struct inode *udf_alloc_inode(struct super_block *sb)
+{
+ struct udf_inode_info *ei;
+ ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
+ if (!ei)
+ return NULL;
+
+ ei->i_unique = 0;
+ ei->i_lenExtents = 0;
+ ei->i_lenStreams = 0;
+ ei->i_next_alloc_block = 0;
+ ei->i_next_alloc_goal = 0;
+ ei->i_strat4096 = 0;
+ ei->i_streamdir = 0;
+ ei->i_hidden = 0;
+ init_rwsem(&ei->i_data_sem);
+ ei->cached_extent.lstart = -1;
+ spin_lock_init(&ei->i_extent_cache_lock);
+ inode_set_iversion(&ei->vfs_inode, 1);
+
+ return &ei->vfs_inode;
+}
+
+static void udf_free_in_core_inode(struct inode *inode)
+{
+ kmem_cache_free(udf_inode_cachep, UDF_I(inode));
+}
+
+static void init_once(void *foo)
+{
+ struct udf_inode_info *ei = foo;
+
+ ei->i_data = NULL;
+ inode_init_once(&ei->vfs_inode);
+}
+
+static int __init init_inodecache(void)
+{
+ udf_inode_cachep = kmem_cache_create("udf_inode_cache",
+ sizeof(struct udf_inode_info),
+ 0, (SLAB_RECLAIM_ACCOUNT |
+ SLAB_MEM_SPREAD |
+ SLAB_ACCOUNT),
+ init_once);
+ if (!udf_inode_cachep)
+ return -ENOMEM;
+ return 0;
+}
+
+static void destroy_inodecache(void)
+{
+ /*
+ * Make sure all delayed rcu free inodes are flushed before we
+ * destroy cache.
+ */
+ rcu_barrier();
+ kmem_cache_destroy(udf_inode_cachep);
+}
+
+/* Superblock operations */
+static const struct super_operations udf_sb_ops = {
+ .alloc_inode = udf_alloc_inode,
+ .free_inode = udf_free_in_core_inode,
+ .write_inode = udf_write_inode,
+ .evict_inode = udf_evict_inode,
+ .put_super = udf_put_super,
+ .sync_fs = udf_sync_fs,
+ .statfs = udf_statfs,
+ .remount_fs = udf_remount_fs,
+ .show_options = udf_show_options,
+};
+
+struct udf_options {
+ unsigned char novrs;
+ unsigned int blocksize;
+ unsigned int session;
+ unsigned int lastblock;
+ unsigned int anchor;
+ unsigned int flags;
+ umode_t umask;
+ kgid_t gid;
+ kuid_t uid;
+ umode_t fmode;
+ umode_t dmode;
+ struct nls_table *nls_map;
+};
+
+static int __init init_udf_fs(void)
+{
+ int err;
+
+ err = init_inodecache();
+ if (err)
+ goto out1;
+ err = register_filesystem(&udf_fstype);
+ if (err)
+ goto out;
+
+ return 0;
+
+out:
+ destroy_inodecache();
+
+out1:
+ return err;
+}
+
+static void __exit exit_udf_fs(void)
+{
+ unregister_filesystem(&udf_fstype);
+ destroy_inodecache();
+}
+
+static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+
+ sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
+ if (!sbi->s_partmaps) {
+ sbi->s_partitions = 0;
+ return -ENOMEM;
+ }
+
+ sbi->s_partitions = count;
+ return 0;
+}
+
+static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
+{
+ int i;
+ int nr_groups = bitmap->s_nr_groups;
+
+ for (i = 0; i < nr_groups; i++)
+ brelse(bitmap->s_block_bitmap[i]);
+
+ kvfree(bitmap);
+}
+
+static void udf_free_partition(struct udf_part_map *map)
+{
+ int i;
+ struct udf_meta_data *mdata;
+
+ if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
+ iput(map->s_uspace.s_table);
+ if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
+ udf_sb_free_bitmap(map->s_uspace.s_bitmap);
+ if (map->s_partition_type == UDF_SPARABLE_MAP15)
+ for (i = 0; i < 4; i++)
+ brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
+ else if (map->s_partition_type == UDF_METADATA_MAP25) {
+ mdata = &map->s_type_specific.s_metadata;
+ iput(mdata->s_metadata_fe);
+ mdata->s_metadata_fe = NULL;
+
+ iput(mdata->s_mirror_fe);
+ mdata->s_mirror_fe = NULL;
+
+ iput(mdata->s_bitmap_fe);
+ mdata->s_bitmap_fe = NULL;
+ }
+}
+
+static void udf_sb_free_partitions(struct super_block *sb)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ int i;
+
+ if (!sbi->s_partmaps)
+ return;
+ for (i = 0; i < sbi->s_partitions; i++)
+ udf_free_partition(&sbi->s_partmaps[i]);
+ kfree(sbi->s_partmaps);
+ sbi->s_partmaps = NULL;
+}
+
+static int udf_show_options(struct seq_file *seq, struct dentry *root)
+{
+ struct super_block *sb = root->d_sb;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+
+ if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
+ seq_puts(seq, ",nostrict");
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
+ seq_printf(seq, ",bs=%lu", sb->s_blocksize);
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
+ seq_puts(seq, ",unhide");
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
+ seq_puts(seq, ",undelete");
+ if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
+ seq_puts(seq, ",noadinicb");
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
+ seq_puts(seq, ",shortad");
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
+ seq_puts(seq, ",uid=forget");
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
+ seq_puts(seq, ",gid=forget");
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
+ seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
+ seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
+ if (sbi->s_umask != 0)
+ seq_printf(seq, ",umask=%ho", sbi->s_umask);
+ if (sbi->s_fmode != UDF_INVALID_MODE)
+ seq_printf(seq, ",mode=%ho", sbi->s_fmode);
+ if (sbi->s_dmode != UDF_INVALID_MODE)
+ seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
+ seq_printf(seq, ",session=%d", sbi->s_session);
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
+ seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
+ if (sbi->s_anchor != 0)
+ seq_printf(seq, ",anchor=%u", sbi->s_anchor);
+ if (sbi->s_nls_map)
+ seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
+ else
+ seq_puts(seq, ",iocharset=utf8");
+
+ return 0;
+}
+
+/*
+ * udf_parse_options
+ *
+ * PURPOSE
+ * Parse mount options.
+ *
+ * DESCRIPTION
+ * The following mount options are supported:
+ *
+ * gid= Set the default group.
+ * umask= Set the default umask.
+ * mode= Set the default file permissions.
+ * dmode= Set the default directory permissions.
+ * uid= Set the default user.
+ * bs= Set the block size.
+ * unhide Show otherwise hidden files.
+ * undelete Show deleted files in lists.
+ * adinicb Embed data in the inode (default)
+ * noadinicb Don't embed data in the inode
+ * shortad Use short ad's
+ * longad Use long ad's (default)
+ * nostrict Unset strict conformance
+ * iocharset= Set the NLS character set
+ *
+ * The remaining are for debugging and disaster recovery:
+ *
+ * novrs Skip volume sequence recognition
+ *
+ * The following expect a offset from 0.
+ *
+ * session= Set the CDROM session (default= last session)
+ * anchor= Override standard anchor location. (default= 256)
+ * volume= Override the VolumeDesc location. (unused)
+ * partition= Override the PartitionDesc location. (unused)
+ * lastblock= Set the last block of the filesystem/
+ *
+ * The following expect a offset from the partition root.
+ *
+ * fileset= Override the fileset block location. (unused)
+ * rootdir= Override the root directory location. (unused)
+ * WARNING: overriding the rootdir to a non-directory may
+ * yield highly unpredictable results.
+ *
+ * PRE-CONDITIONS
+ * options Pointer to mount options string.
+ * uopts Pointer to mount options variable.
+ *
+ * POST-CONDITIONS
+ * <return> 1 Mount options parsed okay.
+ * <return> 0 Error parsing mount options.
+ *
+ * HISTORY
+ * July 1, 1997 - Andrew E. Mileski
+ * Written, tested, and released.
+ */
+
+enum {
+ Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
+ Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
+ Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
+ Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
+ Opt_rootdir, Opt_utf8, Opt_iocharset,
+ Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
+ Opt_fmode, Opt_dmode
+};
+
+static const match_table_t tokens = {
+ {Opt_novrs, "novrs"},
+ {Opt_nostrict, "nostrict"},
+ {Opt_bs, "bs=%u"},
+ {Opt_unhide, "unhide"},
+ {Opt_undelete, "undelete"},
+ {Opt_noadinicb, "noadinicb"},
+ {Opt_adinicb, "adinicb"},
+ {Opt_shortad, "shortad"},
+ {Opt_longad, "longad"},
+ {Opt_uforget, "uid=forget"},
+ {Opt_uignore, "uid=ignore"},
+ {Opt_gforget, "gid=forget"},
+ {Opt_gignore, "gid=ignore"},
+ {Opt_gid, "gid=%u"},
+ {Opt_uid, "uid=%u"},
+ {Opt_umask, "umask=%o"},
+ {Opt_session, "session=%u"},
+ {Opt_lastblock, "lastblock=%u"},
+ {Opt_anchor, "anchor=%u"},
+ {Opt_volume, "volume=%u"},
+ {Opt_partition, "partition=%u"},
+ {Opt_fileset, "fileset=%u"},
+ {Opt_rootdir, "rootdir=%u"},
+ {Opt_utf8, "utf8"},
+ {Opt_iocharset, "iocharset=%s"},
+ {Opt_fmode, "mode=%o"},
+ {Opt_dmode, "dmode=%o"},
+ {Opt_err, NULL}
+};
+
+static int udf_parse_options(char *options, struct udf_options *uopt,
+ bool remount)
+{
+ char *p;
+ int option;
+ unsigned int uv;
+
+ uopt->novrs = 0;
+ uopt->session = 0xFFFFFFFF;
+ uopt->lastblock = 0;
+ uopt->anchor = 0;
+
+ if (!options)
+ return 1;
+
+ while ((p = strsep(&options, ",")) != NULL) {
+ substring_t args[MAX_OPT_ARGS];
+ int token;
+ unsigned n;
+ if (!*p)
+ continue;
+
+ token = match_token(p, tokens, args);
+ switch (token) {
+ case Opt_novrs:
+ uopt->novrs = 1;
+ break;
+ case Opt_bs:
+ if (match_int(&args[0], &option))
+ return 0;
+ n = option;
+ if (n != 512 && n != 1024 && n != 2048 && n != 4096)
+ return 0;
+ uopt->blocksize = n;
+ uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
+ break;
+ case Opt_unhide:
+ uopt->flags |= (1 << UDF_FLAG_UNHIDE);
+ break;
+ case Opt_undelete:
+ uopt->flags |= (1 << UDF_FLAG_UNDELETE);
+ break;
+ case Opt_noadinicb:
+ uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
+ break;
+ case Opt_adinicb:
+ uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
+ break;
+ case Opt_shortad:
+ uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
+ break;
+ case Opt_longad:
+ uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
+ break;
+ case Opt_gid:
+ if (match_uint(args, &uv))
+ return 0;
+ uopt->gid = make_kgid(current_user_ns(), uv);
+ if (!gid_valid(uopt->gid))
+ return 0;
+ uopt->flags |= (1 << UDF_FLAG_GID_SET);
+ break;
+ case Opt_uid:
+ if (match_uint(args, &uv))
+ return 0;
+ uopt->uid = make_kuid(current_user_ns(), uv);
+ if (!uid_valid(uopt->uid))
+ return 0;
+ uopt->flags |= (1 << UDF_FLAG_UID_SET);
+ break;
+ case Opt_umask:
+ if (match_octal(args, &option))
+ return 0;
+ uopt->umask = option;
+ break;
+ case Opt_nostrict:
+ uopt->flags &= ~(1 << UDF_FLAG_STRICT);
+ break;
+ case Opt_session:
+ if (match_int(args, &option))
+ return 0;
+ uopt->session = option;
+ if (!remount)
+ uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
+ break;
+ case Opt_lastblock:
+ if (match_int(args, &option))
+ return 0;
+ uopt->lastblock = option;
+ if (!remount)
+ uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
+ break;
+ case Opt_anchor:
+ if (match_int(args, &option))
+ return 0;
+ uopt->anchor = option;
+ break;
+ case Opt_volume:
+ case Opt_partition:
+ case Opt_fileset:
+ case Opt_rootdir:
+ /* Ignored (never implemented properly) */
+ break;
+ case Opt_utf8:
+ if (!remount) {
+ unload_nls(uopt->nls_map);
+ uopt->nls_map = NULL;
+ }
+ break;
+ case Opt_iocharset:
+ if (!remount) {
+ unload_nls(uopt->nls_map);
+ uopt->nls_map = NULL;
+ }
+ /* When nls_map is not loaded then UTF-8 is used */
+ if (!remount && strcmp(args[0].from, "utf8") != 0) {
+ uopt->nls_map = load_nls(args[0].from);
+ if (!uopt->nls_map) {
+ pr_err("iocharset %s not found\n",
+ args[0].from);
+ return 0;
+ }
+ }
+ break;
+ case Opt_uforget:
+ uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
+ break;
+ case Opt_uignore:
+ case Opt_gignore:
+ /* These options are superseeded by uid=<number> */
+ break;
+ case Opt_gforget:
+ uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
+ break;
+ case Opt_fmode:
+ if (match_octal(args, &option))
+ return 0;
+ uopt->fmode = option & 0777;
+ break;
+ case Opt_dmode:
+ if (match_octal(args, &option))
+ return 0;
+ uopt->dmode = option & 0777;
+ break;
+ default:
+ pr_err("bad mount option \"%s\" or missing value\n", p);
+ return 0;
+ }
+ }
+ return 1;
+}
+
+static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
+{
+ struct udf_options uopt;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ int error = 0;
+
+ if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
+ return -EACCES;
+
+ sync_filesystem(sb);
+
+ uopt.flags = sbi->s_flags;
+ uopt.uid = sbi->s_uid;
+ uopt.gid = sbi->s_gid;
+ uopt.umask = sbi->s_umask;
+ uopt.fmode = sbi->s_fmode;
+ uopt.dmode = sbi->s_dmode;
+ uopt.nls_map = NULL;
+
+ if (!udf_parse_options(options, &uopt, true))
+ return -EINVAL;
+
+ write_lock(&sbi->s_cred_lock);
+ sbi->s_flags = uopt.flags;
+ sbi->s_uid = uopt.uid;
+ sbi->s_gid = uopt.gid;
+ sbi->s_umask = uopt.umask;
+ sbi->s_fmode = uopt.fmode;
+ sbi->s_dmode = uopt.dmode;
+ write_unlock(&sbi->s_cred_lock);
+
+ if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
+ goto out_unlock;
+
+ if (*flags & SB_RDONLY)
+ udf_close_lvid(sb);
+ else
+ udf_open_lvid(sb);
+
+out_unlock:
+ return error;
+}
+
+/*
+ * Check VSD descriptor. Returns -1 in case we are at the end of volume
+ * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
+ * we found one of NSR descriptors we are looking for.
+ */
+static int identify_vsd(const struct volStructDesc *vsd)
+{
+ int ret = 0;
+
+ if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
+ switch (vsd->structType) {
+ case 0:
+ udf_debug("ISO9660 Boot Record found\n");
+ break;
+ case 1:
+ udf_debug("ISO9660 Primary Volume Descriptor found\n");
+ break;
+ case 2:
+ udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
+ break;
+ case 3:
+ udf_debug("ISO9660 Volume Partition Descriptor found\n");
+ break;
+ case 255:
+ udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
+ break;
+ default:
+ udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
+ break;
+ }
+ } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
+ ; /* ret = 0 */
+ else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
+ ret = 1;
+ else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
+ ret = 1;
+ else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
+ ; /* ret = 0 */
+ else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
+ ; /* ret = 0 */
+ else {
+ /* TEA01 or invalid id : end of volume recognition area */
+ ret = -1;
+ }
+
+ return ret;
+}
+
+/*
+ * Check Volume Structure Descriptors (ECMA 167 2/9.1)
+ * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
+ * @return 1 if NSR02 or NSR03 found,
+ * -1 if first sector read error, 0 otherwise
+ */
+static int udf_check_vsd(struct super_block *sb)
+{
+ struct volStructDesc *vsd = NULL;
+ loff_t sector = VSD_FIRST_SECTOR_OFFSET;
+ int sectorsize;
+ struct buffer_head *bh = NULL;
+ int nsr = 0;
+ struct udf_sb_info *sbi;
+ loff_t session_offset;
+
+ sbi = UDF_SB(sb);
+ if (sb->s_blocksize < sizeof(struct volStructDesc))
+ sectorsize = sizeof(struct volStructDesc);
+ else
+ sectorsize = sb->s_blocksize;
+
+ session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
+ sector += session_offset;
+
+ udf_debug("Starting at sector %u (%lu byte sectors)\n",
+ (unsigned int)(sector >> sb->s_blocksize_bits),
+ sb->s_blocksize);
+ /* Process the sequence (if applicable). The hard limit on the sector
+ * offset is arbitrary, hopefully large enough so that all valid UDF
+ * filesystems will be recognised. There is no mention of an upper
+ * bound to the size of the volume recognition area in the standard.
+ * The limit will prevent the code to read all the sectors of a
+ * specially crafted image (like a bluray disc full of CD001 sectors),
+ * potentially causing minutes or even hours of uninterruptible I/O
+ * activity. This actually happened with uninitialised SSD partitions
+ * (all 0xFF) before the check for the limit and all valid IDs were
+ * added */
+ for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
+ /* Read a block */
+ bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
+ if (!bh)
+ break;
+
+ vsd = (struct volStructDesc *)(bh->b_data +
+ (sector & (sb->s_blocksize - 1)));
+ nsr = identify_vsd(vsd);
+ /* Found NSR or end? */
+ if (nsr) {
+ brelse(bh);
+ break;
+ }
+ /*
+ * Special handling for improperly formatted VRS (e.g., Win10)
+ * where components are separated by 2048 bytes even though
+ * sectors are 4K
+ */
+ if (sb->s_blocksize == 4096) {
+ nsr = identify_vsd(vsd + 1);
+ /* Ignore unknown IDs... */
+ if (nsr < 0)
+ nsr = 0;
+ }
+ brelse(bh);
+ }
+
+ if (nsr > 0)
+ return 1;
+ else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
+ return -1;
+ else
+ return 0;
+}
+
+static int udf_verify_domain_identifier(struct super_block *sb,
+ struct regid *ident, char *dname)
+{
+ struct domainIdentSuffix *suffix;
+
+ if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
+ udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
+ goto force_ro;
+ }
+ if (ident->flags & ENTITYID_FLAGS_DIRTY) {
+ udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
+ dname);
+ goto force_ro;
+ }
+ suffix = (struct domainIdentSuffix *)ident->identSuffix;
+ if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
+ (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
+ if (!sb_rdonly(sb)) {
+ udf_warn(sb, "Descriptor for %s marked write protected."
+ " Forcing read only mount.\n", dname);
+ }
+ goto force_ro;
+ }
+ return 0;
+
+force_ro:
+ if (!sb_rdonly(sb))
+ return -EACCES;
+ UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
+ return 0;
+}
+
+static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
+ struct kernel_lb_addr *root)
+{
+ int ret;
+
+ ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
+ if (ret < 0)
+ return ret;
+
+ *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
+ UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
+
+ udf_debug("Rootdir at block=%u, partition=%u\n",
+ root->logicalBlockNum, root->partitionReferenceNum);
+ return 0;
+}
+
+static int udf_find_fileset(struct super_block *sb,
+ struct kernel_lb_addr *fileset,
+ struct kernel_lb_addr *root)
+{
+ struct buffer_head *bh;
+ uint16_t ident;
+ int ret;
+
+ if (fileset->logicalBlockNum == 0xFFFFFFFF &&
+ fileset->partitionReferenceNum == 0xFFFF)
+ return -EINVAL;
+
+ bh = udf_read_ptagged(sb, fileset, 0, &ident);
+ if (!bh)
+ return -EIO;
+ if (ident != TAG_IDENT_FSD) {
+ brelse(bh);
+ return -EINVAL;
+ }
+
+ udf_debug("Fileset at block=%u, partition=%u\n",
+ fileset->logicalBlockNum, fileset->partitionReferenceNum);
+
+ UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
+ ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
+ brelse(bh);
+ return ret;
+}
+
+/*
+ * Load primary Volume Descriptor Sequence
+ *
+ * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
+ * should be tried.
+ */
+static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
+{
+ struct primaryVolDesc *pvoldesc;
+ uint8_t *outstr;
+ struct buffer_head *bh;
+ uint16_t ident;
+ int ret;
+ struct timestamp *ts;
+
+ outstr = kmalloc(128, GFP_NOFS);
+ if (!outstr)
+ return -ENOMEM;
+
+ bh = udf_read_tagged(sb, block, block, &ident);
+ if (!bh) {
+ ret = -EAGAIN;
+ goto out2;
+ }
+
+ if (ident != TAG_IDENT_PVD) {
+ ret = -EIO;
+ goto out_bh;
+ }
+
+ pvoldesc = (struct primaryVolDesc *)bh->b_data;
+
+ udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
+ pvoldesc->recordingDateAndTime);
+ ts = &pvoldesc->recordingDateAndTime;
+ udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
+ le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
+ ts->minute, le16_to_cpu(ts->typeAndTimezone));
+
+ ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
+ if (ret < 0) {
+ strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
+ pr_warn("incorrect volume identification, setting to "
+ "'InvalidName'\n");
+ } else {
+ strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
+ }
+ udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
+
+ ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
+ if (ret < 0) {
+ ret = 0;
+ goto out_bh;
+ }
+ outstr[ret] = 0;
+ udf_debug("volSetIdent[] = '%s'\n", outstr);
+
+ ret = 0;
+out_bh:
+ brelse(bh);
+out2:
+ kfree(outstr);
+ return ret;
+}
+
+struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
+ u32 meta_file_loc, u32 partition_ref)
+{
+ struct kernel_lb_addr addr;
+ struct inode *metadata_fe;
+
+ addr.logicalBlockNum = meta_file_loc;
+ addr.partitionReferenceNum = partition_ref;
+
+ metadata_fe = udf_iget_special(sb, &addr);
+
+ if (IS_ERR(metadata_fe)) {
+ udf_warn(sb, "metadata inode efe not found\n");
+ return metadata_fe;
+ }
+ if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
+ udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
+ iput(metadata_fe);
+ return ERR_PTR(-EIO);
+ }
+
+ return metadata_fe;
+}
+
+static int udf_load_metadata_files(struct super_block *sb, int partition,
+ int type1_index)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct udf_part_map *map;
+ struct udf_meta_data *mdata;
+ struct kernel_lb_addr addr;
+ struct inode *fe;
+
+ map = &sbi->s_partmaps[partition];
+ mdata = &map->s_type_specific.s_metadata;
+ mdata->s_phys_partition_ref = type1_index;
+
+ /* metadata address */
+ udf_debug("Metadata file location: block = %u part = %u\n",
+ mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
+
+ fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
+ mdata->s_phys_partition_ref);
+ if (IS_ERR(fe)) {
+ /* mirror file entry */
+ udf_debug("Mirror metadata file location: block = %u part = %u\n",
+ mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
+
+ fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
+ mdata->s_phys_partition_ref);
+
+ if (IS_ERR(fe)) {
+ udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
+ return PTR_ERR(fe);
+ }
+ mdata->s_mirror_fe = fe;
+ } else
+ mdata->s_metadata_fe = fe;
+
+
+ /*
+ * bitmap file entry
+ * Note:
+ * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
+ */
+ if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
+ addr.logicalBlockNum = mdata->s_bitmap_file_loc;
+ addr.partitionReferenceNum = mdata->s_phys_partition_ref;
+
+ udf_debug("Bitmap file location: block = %u part = %u\n",
+ addr.logicalBlockNum, addr.partitionReferenceNum);
+
+ fe = udf_iget_special(sb, &addr);
+ if (IS_ERR(fe)) {
+ if (sb_rdonly(sb))
+ udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
+ else {
+ udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
+ return PTR_ERR(fe);
+ }
+ } else
+ mdata->s_bitmap_fe = fe;
+ }
+
+ udf_debug("udf_load_metadata_files Ok\n");
+ return 0;
+}
+
+int udf_compute_nr_groups(struct super_block *sb, u32 partition)
+{
+ struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
+ return DIV_ROUND_UP(map->s_partition_len +
+ (sizeof(struct spaceBitmapDesc) << 3),
+ sb->s_blocksize * 8);
+}
+
+static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
+{
+ struct udf_bitmap *bitmap;
+ int nr_groups = udf_compute_nr_groups(sb, index);
+
+ bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
+ GFP_KERNEL);
+ if (!bitmap)
+ return NULL;
+
+ bitmap->s_nr_groups = nr_groups;
+ return bitmap;
+}
+
+static int check_partition_desc(struct super_block *sb,
+ struct partitionDesc *p,
+ struct udf_part_map *map)
+{
+ bool umap, utable, fmap, ftable;
+ struct partitionHeaderDesc *phd;
+
+ switch (le32_to_cpu(p->accessType)) {
+ case PD_ACCESS_TYPE_READ_ONLY:
+ case PD_ACCESS_TYPE_WRITE_ONCE:
+ case PD_ACCESS_TYPE_NONE:
+ goto force_ro;
+ }
+
+ /* No Partition Header Descriptor? */
+ if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
+ strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
+ goto force_ro;
+
+ phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
+ utable = phd->unallocSpaceTable.extLength;
+ umap = phd->unallocSpaceBitmap.extLength;
+ ftable = phd->freedSpaceTable.extLength;
+ fmap = phd->freedSpaceBitmap.extLength;
+
+ /* No allocation info? */
+ if (!utable && !umap && !ftable && !fmap)
+ goto force_ro;
+
+ /* We don't support blocks that require erasing before overwrite */
+ if (ftable || fmap)
+ goto force_ro;
+ /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
+ if (utable && umap)
+ goto force_ro;
+
+ if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
+ map->s_partition_type == UDF_VIRTUAL_MAP20 ||
+ map->s_partition_type == UDF_METADATA_MAP25)
+ goto force_ro;
+
+ return 0;
+force_ro:
+ if (!sb_rdonly(sb))
+ return -EACCES;
+ UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
+ return 0;
+}
+
+static int udf_fill_partdesc_info(struct super_block *sb,
+ struct partitionDesc *p, int p_index)
+{
+ struct udf_part_map *map;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct partitionHeaderDesc *phd;
+ int err;
+
+ map = &sbi->s_partmaps[p_index];
+
+ map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
+ map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
+
+ if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
+ map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
+ if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
+ map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
+ if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
+ map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
+ if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
+ map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
+
+ udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
+ p_index, map->s_partition_type,
+ map->s_partition_root, map->s_partition_len);
+
+ err = check_partition_desc(sb, p, map);
+ if (err)
+ return err;
+
+ /*
+ * Skip loading allocation info it we cannot ever write to the fs.
+ * This is a correctness thing as we may have decided to force ro mount
+ * to avoid allocation info we don't support.
+ */
+ if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
+ return 0;
+
+ phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
+ if (phd->unallocSpaceTable.extLength) {
+ struct kernel_lb_addr loc = {
+ .logicalBlockNum = le32_to_cpu(
+ phd->unallocSpaceTable.extPosition),
+ .partitionReferenceNum = p_index,
+ };
+ struct inode *inode;
+
+ inode = udf_iget_special(sb, &loc);
+ if (IS_ERR(inode)) {
+ udf_debug("cannot load unallocSpaceTable (part %d)\n",
+ p_index);
+ return PTR_ERR(inode);
+ }
+ map->s_uspace.s_table = inode;
+ map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
+ udf_debug("unallocSpaceTable (part %d) @ %lu\n",
+ p_index, map->s_uspace.s_table->i_ino);
+ }
+
+ if (phd->unallocSpaceBitmap.extLength) {
+ struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
+ if (!bitmap)
+ return -ENOMEM;
+ map->s_uspace.s_bitmap = bitmap;
+ bitmap->s_extPosition = le32_to_cpu(
+ phd->unallocSpaceBitmap.extPosition);
+ map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
+ udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
+ p_index, bitmap->s_extPosition);
+ }
+
+ return 0;
+}
+
+static void udf_find_vat_block(struct super_block *sb, int p_index,
+ int type1_index, sector_t start_block)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct udf_part_map *map = &sbi->s_partmaps[p_index];
+ sector_t vat_block;
+ struct kernel_lb_addr ino;
+ struct inode *inode;
+
+ /*
+ * VAT file entry is in the last recorded block. Some broken disks have
+ * it a few blocks before so try a bit harder...
+ */
+ ino.partitionReferenceNum = type1_index;
+ for (vat_block = start_block;
+ vat_block >= map->s_partition_root &&
+ vat_block >= start_block - 3; vat_block--) {
+ ino.logicalBlockNum = vat_block - map->s_partition_root;
+ inode = udf_iget_special(sb, &ino);
+ if (!IS_ERR(inode)) {
+ sbi->s_vat_inode = inode;
+ break;
+ }
+ }
+}
+
+static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct udf_part_map *map = &sbi->s_partmaps[p_index];
+ struct buffer_head *bh = NULL;
+ struct udf_inode_info *vati;
+ struct virtualAllocationTable20 *vat20;
+ sector_t blocks = sb_bdev_nr_blocks(sb);
+
+ udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
+ if (!sbi->s_vat_inode &&
+ sbi->s_last_block != blocks - 1) {
+ pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
+ (unsigned long)sbi->s_last_block,
+ (unsigned long)blocks - 1);
+ udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
+ }
+ if (!sbi->s_vat_inode)
+ return -EIO;
+
+ if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
+ map->s_type_specific.s_virtual.s_start_offset = 0;
+ map->s_type_specific.s_virtual.s_num_entries =
+ (sbi->s_vat_inode->i_size - 36) >> 2;
+ } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
+ vati = UDF_I(sbi->s_vat_inode);
+ if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
+ int err = 0;
+
+ bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
+ if (!bh) {
+ if (!err)
+ err = -EFSCORRUPTED;
+ return err;
+ }
+ vat20 = (struct virtualAllocationTable20 *)bh->b_data;
+ } else {
+ vat20 = (struct virtualAllocationTable20 *)
+ vati->i_data;
+ }
+
+ map->s_type_specific.s_virtual.s_start_offset =
+ le16_to_cpu(vat20->lengthHeader);
+ map->s_type_specific.s_virtual.s_num_entries =
+ (sbi->s_vat_inode->i_size -
+ map->s_type_specific.s_virtual.
+ s_start_offset) >> 2;
+ brelse(bh);
+ }
+ return 0;
+}
+
+/*
+ * Load partition descriptor block
+ *
+ * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
+ * sequence.
+ */
+static int udf_load_partdesc(struct super_block *sb, sector_t block)
+{
+ struct buffer_head *bh;
+ struct partitionDesc *p;
+ struct udf_part_map *map;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ int i, type1_idx;
+ uint16_t partitionNumber;
+ uint16_t ident;
+ int ret;
+
+ bh = udf_read_tagged(sb, block, block, &ident);
+ if (!bh)
+ return -EAGAIN;
+ if (ident != TAG_IDENT_PD) {
+ ret = 0;
+ goto out_bh;
+ }
+
+ p = (struct partitionDesc *)bh->b_data;
+ partitionNumber = le16_to_cpu(p->partitionNumber);
+
+ /* First scan for TYPE1 and SPARABLE partitions */
+ for (i = 0; i < sbi->s_partitions; i++) {
+ map = &sbi->s_partmaps[i];
+ udf_debug("Searching map: (%u == %u)\n",
+ map->s_partition_num, partitionNumber);
+ if (map->s_partition_num == partitionNumber &&
+ (map->s_partition_type == UDF_TYPE1_MAP15 ||
+ map->s_partition_type == UDF_SPARABLE_MAP15))
+ break;
+ }
+
+ if (i >= sbi->s_partitions) {
+ udf_debug("Partition (%u) not found in partition map\n",
+ partitionNumber);
+ ret = 0;
+ goto out_bh;
+ }
+
+ ret = udf_fill_partdesc_info(sb, p, i);
+ if (ret < 0)
+ goto out_bh;
+
+ /*
+ * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
+ * PHYSICAL partitions are already set up
+ */
+ type1_idx = i;
+ map = NULL; /* supress 'maybe used uninitialized' warning */
+ for (i = 0; i < sbi->s_partitions; i++) {
+ map = &sbi->s_partmaps[i];
+
+ if (map->s_partition_num == partitionNumber &&
+ (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
+ map->s_partition_type == UDF_VIRTUAL_MAP20 ||
+ map->s_partition_type == UDF_METADATA_MAP25))
+ break;
+ }
+
+ if (i >= sbi->s_partitions) {
+ ret = 0;
+ goto out_bh;
+ }
+
+ ret = udf_fill_partdesc_info(sb, p, i);
+ if (ret < 0)
+ goto out_bh;
+
+ if (map->s_partition_type == UDF_METADATA_MAP25) {
+ ret = udf_load_metadata_files(sb, i, type1_idx);
+ if (ret < 0) {
+ udf_err(sb, "error loading MetaData partition map %d\n",
+ i);
+ goto out_bh;
+ }
+ } else {
+ /*
+ * If we have a partition with virtual map, we don't handle
+ * writing to it (we overwrite blocks instead of relocating
+ * them).
+ */
+ if (!sb_rdonly(sb)) {
+ ret = -EACCES;
+ goto out_bh;
+ }
+ UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
+ ret = udf_load_vat(sb, i, type1_idx);
+ if (ret < 0)
+ goto out_bh;
+ }
+ ret = 0;
+out_bh:
+ /* In case loading failed, we handle cleanup in udf_fill_super */
+ brelse(bh);
+ return ret;
+}
+
+static int udf_load_sparable_map(struct super_block *sb,
+ struct udf_part_map *map,
+ struct sparablePartitionMap *spm)
+{
+ uint32_t loc;
+ uint16_t ident;
+ struct sparingTable *st;
+ struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
+ int i;
+ struct buffer_head *bh;
+
+ map->s_partition_type = UDF_SPARABLE_MAP15;
+ sdata->s_packet_len = le16_to_cpu(spm->packetLength);
+ if (!is_power_of_2(sdata->s_packet_len)) {
+ udf_err(sb, "error loading logical volume descriptor: "
+ "Invalid packet length %u\n",
+ (unsigned)sdata->s_packet_len);
+ return -EIO;
+ }
+ if (spm->numSparingTables > 4) {
+ udf_err(sb, "error loading logical volume descriptor: "
+ "Too many sparing tables (%d)\n",
+ (int)spm->numSparingTables);
+ return -EIO;
+ }
+ if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
+ udf_err(sb, "error loading logical volume descriptor: "
+ "Too big sparing table size (%u)\n",
+ le32_to_cpu(spm->sizeSparingTable));
+ return -EIO;
+ }
+
+ for (i = 0; i < spm->numSparingTables; i++) {
+ loc = le32_to_cpu(spm->locSparingTable[i]);
+ bh = udf_read_tagged(sb, loc, loc, &ident);
+ if (!bh)
+ continue;
+
+ st = (struct sparingTable *)bh->b_data;
+ if (ident != 0 ||
+ strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
+ strlen(UDF_ID_SPARING)) ||
+ sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
+ sb->s_blocksize) {
+ brelse(bh);
+ continue;
+ }
+
+ sdata->s_spar_map[i] = bh;
+ }
+ map->s_partition_func = udf_get_pblock_spar15;
+ return 0;
+}
+
+static int udf_load_logicalvol(struct super_block *sb, sector_t block,
+ struct kernel_lb_addr *fileset)
+{
+ struct logicalVolDesc *lvd;
+ int i, offset;
+ uint8_t type;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct genericPartitionMap *gpm;
+ uint16_t ident;
+ struct buffer_head *bh;
+ unsigned int table_len;
+ int ret;
+
+ bh = udf_read_tagged(sb, block, block, &ident);
+ if (!bh)
+ return -EAGAIN;
+ BUG_ON(ident != TAG_IDENT_LVD);
+ lvd = (struct logicalVolDesc *)bh->b_data;
+ table_len = le32_to_cpu(lvd->mapTableLength);
+ if (table_len > sb->s_blocksize - sizeof(*lvd)) {
+ udf_err(sb, "error loading logical volume descriptor: "
+ "Partition table too long (%u > %lu)\n", table_len,
+ sb->s_blocksize - sizeof(*lvd));
+ ret = -EIO;
+ goto out_bh;
+ }
+
+ ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
+ "logical volume");
+ if (ret)
+ goto out_bh;
+ ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
+ if (ret)
+ goto out_bh;
+
+ for (i = 0, offset = 0;
+ i < sbi->s_partitions && offset < table_len;
+ i++, offset += gpm->partitionMapLength) {
+ struct udf_part_map *map = &sbi->s_partmaps[i];
+ gpm = (struct genericPartitionMap *)
+ &(lvd->partitionMaps[offset]);
+ type = gpm->partitionMapType;
+ if (type == 1) {
+ struct genericPartitionMap1 *gpm1 =
+ (struct genericPartitionMap1 *)gpm;
+ map->s_partition_type = UDF_TYPE1_MAP15;
+ map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
+ map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
+ map->s_partition_func = NULL;
+ } else if (type == 2) {
+ struct udfPartitionMap2 *upm2 =
+ (struct udfPartitionMap2 *)gpm;
+ if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
+ strlen(UDF_ID_VIRTUAL))) {
+ u16 suf =
+ le16_to_cpu(((__le16 *)upm2->partIdent.
+ identSuffix)[0]);
+ if (suf < 0x0200) {
+ map->s_partition_type =
+ UDF_VIRTUAL_MAP15;
+ map->s_partition_func =
+ udf_get_pblock_virt15;
+ } else {
+ map->s_partition_type =
+ UDF_VIRTUAL_MAP20;
+ map->s_partition_func =
+ udf_get_pblock_virt20;
+ }
+ } else if (!strncmp(upm2->partIdent.ident,
+ UDF_ID_SPARABLE,
+ strlen(UDF_ID_SPARABLE))) {
+ ret = udf_load_sparable_map(sb, map,
+ (struct sparablePartitionMap *)gpm);
+ if (ret < 0)
+ goto out_bh;
+ } else if (!strncmp(upm2->partIdent.ident,
+ UDF_ID_METADATA,
+ strlen(UDF_ID_METADATA))) {
+ struct udf_meta_data *mdata =
+ &map->s_type_specific.s_metadata;
+ struct metadataPartitionMap *mdm =
+ (struct metadataPartitionMap *)
+ &(lvd->partitionMaps[offset]);
+ udf_debug("Parsing Logical vol part %d type %u id=%s\n",
+ i, type, UDF_ID_METADATA);
+
+ map->s_partition_type = UDF_METADATA_MAP25;
+ map->s_partition_func = udf_get_pblock_meta25;
+
+ mdata->s_meta_file_loc =
+ le32_to_cpu(mdm->metadataFileLoc);
+ mdata->s_mirror_file_loc =
+ le32_to_cpu(mdm->metadataMirrorFileLoc);
+ mdata->s_bitmap_file_loc =
+ le32_to_cpu(mdm->metadataBitmapFileLoc);
+ mdata->s_alloc_unit_size =
+ le32_to_cpu(mdm->allocUnitSize);
+ mdata->s_align_unit_size =
+ le16_to_cpu(mdm->alignUnitSize);
+ if (mdm->flags & 0x01)
+ mdata->s_flags |= MF_DUPLICATE_MD;
+
+ udf_debug("Metadata Ident suffix=0x%x\n",
+ le16_to_cpu(*(__le16 *)
+ mdm->partIdent.identSuffix));
+ udf_debug("Metadata part num=%u\n",
+ le16_to_cpu(mdm->partitionNum));
+ udf_debug("Metadata part alloc unit size=%u\n",
+ le32_to_cpu(mdm->allocUnitSize));
+ udf_debug("Metadata file loc=%u\n",
+ le32_to_cpu(mdm->metadataFileLoc));
+ udf_debug("Mirror file loc=%u\n",
+ le32_to_cpu(mdm->metadataMirrorFileLoc));
+ udf_debug("Bitmap file loc=%u\n",
+ le32_to_cpu(mdm->metadataBitmapFileLoc));
+ udf_debug("Flags: %d %u\n",
+ mdata->s_flags, mdm->flags);
+ } else {
+ udf_debug("Unknown ident: %s\n",
+ upm2->partIdent.ident);
+ continue;
+ }
+ map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
+ map->s_partition_num = le16_to_cpu(upm2->partitionNum);
+ }
+ udf_debug("Partition (%d:%u) type %u on volume %u\n",
+ i, map->s_partition_num, type, map->s_volumeseqnum);
+ }
+
+ if (fileset) {
+ struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
+
+ *fileset = lelb_to_cpu(la->extLocation);
+ udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
+ fileset->logicalBlockNum,
+ fileset->partitionReferenceNum);
+ }
+ if (lvd->integritySeqExt.extLength)
+ udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
+ ret = 0;
+
+ if (!sbi->s_lvid_bh) {
+ /* We can't generate unique IDs without a valid LVID */
+ if (sb_rdonly(sb)) {
+ UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
+ } else {
+ udf_warn(sb, "Damaged or missing LVID, forcing "
+ "readonly mount\n");
+ ret = -EACCES;
+ }
+ }
+out_bh:
+ brelse(bh);
+ return ret;
+}
+
+/*
+ * Find the prevailing Logical Volume Integrity Descriptor.
+ */
+static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
+{
+ struct buffer_head *bh, *final_bh;
+ uint16_t ident;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct logicalVolIntegrityDesc *lvid;
+ int indirections = 0;
+ u32 parts, impuselen;
+
+ while (++indirections <= UDF_MAX_LVID_NESTING) {
+ final_bh = NULL;
+ while (loc.extLength > 0 &&
+ (bh = udf_read_tagged(sb, loc.extLocation,
+ loc.extLocation, &ident))) {
+ if (ident != TAG_IDENT_LVID) {
+ brelse(bh);
+ break;
+ }
+
+ brelse(final_bh);
+ final_bh = bh;
+
+ loc.extLength -= sb->s_blocksize;
+ loc.extLocation++;
+ }
+
+ if (!final_bh)
+ return;
+
+ brelse(sbi->s_lvid_bh);
+ sbi->s_lvid_bh = final_bh;
+
+ lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
+ if (lvid->nextIntegrityExt.extLength == 0)
+ goto check;
+
+ loc = leea_to_cpu(lvid->nextIntegrityExt);
+ }
+
+ udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
+ UDF_MAX_LVID_NESTING);
+out_err:
+ brelse(sbi->s_lvid_bh);
+ sbi->s_lvid_bh = NULL;
+ return;
+check:
+ parts = le32_to_cpu(lvid->numOfPartitions);
+ impuselen = le32_to_cpu(lvid->lengthOfImpUse);
+ if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
+ sizeof(struct logicalVolIntegrityDesc) + impuselen +
+ 2 * parts * sizeof(u32) > sb->s_blocksize) {
+ udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
+ "ignoring.\n", parts, impuselen);
+ goto out_err;
+ }
+}
+
+/*
+ * Step for reallocation of table of partition descriptor sequence numbers.
+ * Must be power of 2.
+ */
+#define PART_DESC_ALLOC_STEP 32
+
+struct part_desc_seq_scan_data {
+ struct udf_vds_record rec;
+ u32 partnum;
+};
+
+struct desc_seq_scan_data {
+ struct udf_vds_record vds[VDS_POS_LENGTH];
+ unsigned int size_part_descs;
+ unsigned int num_part_descs;
+ struct part_desc_seq_scan_data *part_descs_loc;
+};
+
+static struct udf_vds_record *handle_partition_descriptor(
+ struct buffer_head *bh,
+ struct desc_seq_scan_data *data)
+{
+ struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
+ int partnum;
+ int i;
+
+ partnum = le16_to_cpu(desc->partitionNumber);
+ for (i = 0; i < data->num_part_descs; i++)
+ if (partnum == data->part_descs_loc[i].partnum)
+ return &(data->part_descs_loc[i].rec);
+ if (data->num_part_descs >= data->size_part_descs) {
+ struct part_desc_seq_scan_data *new_loc;
+ unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
+
+ new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
+ if (!new_loc)
+ return ERR_PTR(-ENOMEM);
+ memcpy(new_loc, data->part_descs_loc,
+ data->size_part_descs * sizeof(*new_loc));
+ kfree(data->part_descs_loc);
+ data->part_descs_loc = new_loc;
+ data->size_part_descs = new_size;
+ }
+ return &(data->part_descs_loc[data->num_part_descs++].rec);
+}
+
+
+static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
+ struct buffer_head *bh, struct desc_seq_scan_data *data)
+{
+ switch (ident) {
+ case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
+ return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
+ case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
+ return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
+ case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
+ return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
+ case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
+ return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
+ case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
+ return handle_partition_descriptor(bh, data);
+ }
+ return NULL;
+}
+
+/*
+ * Process a main/reserve volume descriptor sequence.
+ * @block First block of first extent of the sequence.
+ * @lastblock Lastblock of first extent of the sequence.
+ * @fileset There we store extent containing root fileset
+ *
+ * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
+ * sequence
+ */
+static noinline int udf_process_sequence(
+ struct super_block *sb,
+ sector_t block, sector_t lastblock,
+ struct kernel_lb_addr *fileset)
+{
+ struct buffer_head *bh = NULL;
+ struct udf_vds_record *curr;
+ struct generic_desc *gd;
+ struct volDescPtr *vdp;
+ bool done = false;
+ uint32_t vdsn;
+ uint16_t ident;
+ int ret;
+ unsigned int indirections = 0;
+ struct desc_seq_scan_data data;
+ unsigned int i;
+
+ memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
+ data.size_part_descs = PART_DESC_ALLOC_STEP;
+ data.num_part_descs = 0;
+ data.part_descs_loc = kcalloc(data.size_part_descs,
+ sizeof(*data.part_descs_loc),
+ GFP_KERNEL);
+ if (!data.part_descs_loc)
+ return -ENOMEM;
+
+ /*
+ * Read the main descriptor sequence and find which descriptors
+ * are in it.
+ */
+ for (; (!done && block <= lastblock); block++) {
+ bh = udf_read_tagged(sb, block, block, &ident);
+ if (!bh)
+ break;
+
+ /* Process each descriptor (ISO 13346 3/8.3-8.4) */
+ gd = (struct generic_desc *)bh->b_data;
+ vdsn = le32_to_cpu(gd->volDescSeqNum);
+ switch (ident) {
+ case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
+ if (++indirections > UDF_MAX_TD_NESTING) {
+ udf_err(sb, "too many Volume Descriptor "
+ "Pointers (max %u supported)\n",
+ UDF_MAX_TD_NESTING);
+ brelse(bh);
+ ret = -EIO;
+ goto out;
+ }
+
+ vdp = (struct volDescPtr *)bh->b_data;
+ block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
+ lastblock = le32_to_cpu(
+ vdp->nextVolDescSeqExt.extLength) >>
+ sb->s_blocksize_bits;
+ lastblock += block - 1;
+ /* For loop is going to increment 'block' again */
+ block--;
+ break;
+ case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
+ case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
+ case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
+ case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
+ case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
+ curr = get_volume_descriptor_record(ident, bh, &data);
+ if (IS_ERR(curr)) {
+ brelse(bh);
+ ret = PTR_ERR(curr);
+ goto out;
+ }
+ /* Descriptor we don't care about? */
+ if (!curr)
+ break;
+ if (vdsn >= curr->volDescSeqNum) {
+ curr->volDescSeqNum = vdsn;
+ curr->block = block;
+ }
+ break;
+ case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
+ done = true;
+ break;
+ }
+ brelse(bh);
+ }
+ /*
+ * Now read interesting descriptors again and process them
+ * in a suitable order
+ */
+ if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
+ udf_err(sb, "Primary Volume Descriptor not found!\n");
+ ret = -EAGAIN;
+ goto out;
+ }
+ ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
+ if (ret < 0)
+ goto out;
+
+ if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
+ ret = udf_load_logicalvol(sb,
+ data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
+ fileset);
+ if (ret < 0)
+ goto out;
+ }
+
+ /* Now handle prevailing Partition Descriptors */
+ for (i = 0; i < data.num_part_descs; i++) {
+ ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
+ if (ret < 0)
+ goto out;
+ }
+ ret = 0;
+out:
+ kfree(data.part_descs_loc);
+ return ret;
+}
+
+/*
+ * Load Volume Descriptor Sequence described by anchor in bh
+ *
+ * Returns <0 on error, 0 on success
+ */
+static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
+ struct kernel_lb_addr *fileset)
+{
+ struct anchorVolDescPtr *anchor;
+ sector_t main_s, main_e, reserve_s, reserve_e;
+ int ret;
+
+ anchor = (struct anchorVolDescPtr *)bh->b_data;
+
+ /* Locate the main sequence */
+ main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
+ main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
+ main_e = main_e >> sb->s_blocksize_bits;
+ main_e += main_s - 1;
+
+ /* Locate the reserve sequence */
+ reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
+ reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
+ reserve_e = reserve_e >> sb->s_blocksize_bits;
+ reserve_e += reserve_s - 1;
+
+ /* Process the main & reserve sequences */
+ /* responsible for finding the PartitionDesc(s) */
+ ret = udf_process_sequence(sb, main_s, main_e, fileset);
+ if (ret != -EAGAIN)
+ return ret;
+ udf_sb_free_partitions(sb);
+ ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
+ if (ret < 0) {
+ udf_sb_free_partitions(sb);
+ /* No sequence was OK, return -EIO */
+ if (ret == -EAGAIN)
+ ret = -EIO;
+ }
+ return ret;
+}
+
+/*
+ * Check whether there is an anchor block in the given block and
+ * load Volume Descriptor Sequence if so.
+ *
+ * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
+ * block
+ */
+static int udf_check_anchor_block(struct super_block *sb, sector_t block,
+ struct kernel_lb_addr *fileset)
+{
+ struct buffer_head *bh;
+ uint16_t ident;
+ int ret;
+
+ bh = udf_read_tagged(sb, block, block, &ident);
+ if (!bh)
+ return -EAGAIN;
+ if (ident != TAG_IDENT_AVDP) {
+ brelse(bh);
+ return -EAGAIN;
+ }
+ ret = udf_load_sequence(sb, bh, fileset);
+ brelse(bh);
+ return ret;
+}
+
+/*
+ * Search for an anchor volume descriptor pointer.
+ *
+ * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
+ * of anchors.
+ */
+static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
+ struct kernel_lb_addr *fileset)
+{
+ udf_pblk_t last[6];
+ int i;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ int last_count = 0;
+ int ret;
+
+ /* First try user provided anchor */
+ if (sbi->s_anchor) {
+ ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
+ if (ret != -EAGAIN)
+ return ret;
+ }
+ /*
+ * according to spec, anchor is in either:
+ * block 256
+ * lastblock-256
+ * lastblock
+ * however, if the disc isn't closed, it could be 512.
+ */
+ ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
+ if (ret != -EAGAIN)
+ return ret;
+ /*
+ * The trouble is which block is the last one. Drives often misreport
+ * this so we try various possibilities.
+ */
+ last[last_count++] = *lastblock;
+ if (*lastblock >= 1)
+ last[last_count++] = *lastblock - 1;
+ last[last_count++] = *lastblock + 1;
+ if (*lastblock >= 2)
+ last[last_count++] = *lastblock - 2;
+ if (*lastblock >= 150)
+ last[last_count++] = *lastblock - 150;
+ if (*lastblock >= 152)
+ last[last_count++] = *lastblock - 152;
+
+ for (i = 0; i < last_count; i++) {
+ if (last[i] >= sb_bdev_nr_blocks(sb))
+ continue;
+ ret = udf_check_anchor_block(sb, last[i], fileset);
+ if (ret != -EAGAIN) {
+ if (!ret)
+ *lastblock = last[i];
+ return ret;
+ }
+ if (last[i] < 256)
+ continue;
+ ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
+ if (ret != -EAGAIN) {
+ if (!ret)
+ *lastblock = last[i];
+ return ret;
+ }
+ }
+
+ /* Finally try block 512 in case media is open */
+ return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
+}
+
+/*
+ * Check Volume Structure Descriptor, find Anchor block and load Volume
+ * Descriptor Sequence.
+ *
+ * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
+ * block was not found.
+ */
+static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
+ int silent, struct kernel_lb_addr *fileset)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ int nsr = 0;
+ int ret;
+
+ if (!sb_set_blocksize(sb, uopt->blocksize)) {
+ if (!silent)
+ udf_warn(sb, "Bad block size\n");
+ return -EINVAL;
+ }
+ sbi->s_last_block = uopt->lastblock;
+ if (!uopt->novrs) {
+ /* Check that it is NSR02 compliant */
+ nsr = udf_check_vsd(sb);
+ if (!nsr) {
+ if (!silent)
+ udf_warn(sb, "No VRS found\n");
+ return -EINVAL;
+ }
+ if (nsr == -1)
+ udf_debug("Failed to read sector at offset %d. "
+ "Assuming open disc. Skipping validity "
+ "check\n", VSD_FIRST_SECTOR_OFFSET);
+ if (!sbi->s_last_block)
+ sbi->s_last_block = udf_get_last_block(sb);
+ } else {
+ udf_debug("Validity check skipped because of novrs option\n");
+ }
+
+ /* Look for anchor block and load Volume Descriptor Sequence */
+ sbi->s_anchor = uopt->anchor;
+ ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
+ if (ret < 0) {
+ if (!silent && ret == -EAGAIN)
+ udf_warn(sb, "No anchor found\n");
+ return ret;
+ }
+ return 0;
+}
+
+static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
+{
+ struct timespec64 ts;
+
+ ktime_get_real_ts64(&ts);
+ udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
+ lvid->descTag.descCRC = cpu_to_le16(
+ crc_itu_t(0, (char *)lvid + sizeof(struct tag),
+ le16_to_cpu(lvid->descTag.descCRCLength)));
+ lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
+}
+
+static void udf_open_lvid(struct super_block *sb)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct buffer_head *bh = sbi->s_lvid_bh;
+ struct logicalVolIntegrityDesc *lvid;
+ struct logicalVolIntegrityDescImpUse *lvidiu;
+
+ if (!bh)
+ return;
+ lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
+ lvidiu = udf_sb_lvidiu(sb);
+ if (!lvidiu)
+ return;
+
+ mutex_lock(&sbi->s_alloc_mutex);
+ lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
+ lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
+ if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
+ lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
+ else
+ UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
+
+ udf_finalize_lvid(lvid);
+ mark_buffer_dirty(bh);
+ sbi->s_lvid_dirty = 0;
+ mutex_unlock(&sbi->s_alloc_mutex);
+ /* Make opening of filesystem visible on the media immediately */
+ sync_dirty_buffer(bh);
+}
+
+static void udf_close_lvid(struct super_block *sb)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct buffer_head *bh = sbi->s_lvid_bh;
+ struct logicalVolIntegrityDesc *lvid;
+ struct logicalVolIntegrityDescImpUse *lvidiu;
+
+ if (!bh)
+ return;
+ lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
+ lvidiu = udf_sb_lvidiu(sb);
+ if (!lvidiu)
+ return;
+
+ mutex_lock(&sbi->s_alloc_mutex);
+ lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
+ lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
+ if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
+ lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
+ if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
+ lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
+ if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
+ lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
+ if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
+ lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
+
+ /*
+ * We set buffer uptodate unconditionally here to avoid spurious
+ * warnings from mark_buffer_dirty() when previous EIO has marked
+ * the buffer as !uptodate
+ */
+ set_buffer_uptodate(bh);
+ udf_finalize_lvid(lvid);
+ mark_buffer_dirty(bh);
+ sbi->s_lvid_dirty = 0;
+ mutex_unlock(&sbi->s_alloc_mutex);
+ /* Make closing of filesystem visible on the media immediately */
+ sync_dirty_buffer(bh);
+}
+
+u64 lvid_get_unique_id(struct super_block *sb)
+{
+ struct buffer_head *bh;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct logicalVolIntegrityDesc *lvid;
+ struct logicalVolHeaderDesc *lvhd;
+ u64 uniqueID;
+ u64 ret;
+
+ bh = sbi->s_lvid_bh;
+ if (!bh)
+ return 0;
+
+ lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
+ lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
+
+ mutex_lock(&sbi->s_alloc_mutex);
+ ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
+ if (!(++uniqueID & 0xFFFFFFFF))
+ uniqueID += 16;
+ lvhd->uniqueID = cpu_to_le64(uniqueID);
+ udf_updated_lvid(sb);
+ mutex_unlock(&sbi->s_alloc_mutex);
+
+ return ret;
+}
+
+static int udf_fill_super(struct super_block *sb, void *options, int silent)
+{
+ int ret = -EINVAL;
+ struct inode *inode = NULL;
+ struct udf_options uopt;
+ struct kernel_lb_addr rootdir, fileset;
+ struct udf_sb_info *sbi;
+ bool lvid_open = false;
+
+ uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
+ /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
+ uopt.uid = make_kuid(current_user_ns(), overflowuid);
+ uopt.gid = make_kgid(current_user_ns(), overflowgid);
+ uopt.umask = 0;
+ uopt.fmode = UDF_INVALID_MODE;
+ uopt.dmode = UDF_INVALID_MODE;
+ uopt.nls_map = NULL;
+
+ sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
+ if (!sbi)
+ return -ENOMEM;
+
+ sb->s_fs_info = sbi;
+
+ mutex_init(&sbi->s_alloc_mutex);
+
+ if (!udf_parse_options((char *)options, &uopt, false))
+ goto parse_options_failure;
+
+ fileset.logicalBlockNum = 0xFFFFFFFF;
+ fileset.partitionReferenceNum = 0xFFFF;
+
+ sbi->s_flags = uopt.flags;
+ sbi->s_uid = uopt.uid;
+ sbi->s_gid = uopt.gid;
+ sbi->s_umask = uopt.umask;
+ sbi->s_fmode = uopt.fmode;
+ sbi->s_dmode = uopt.dmode;
+ sbi->s_nls_map = uopt.nls_map;
+ rwlock_init(&sbi->s_cred_lock);
+
+ if (uopt.session == 0xFFFFFFFF)
+ sbi->s_session = udf_get_last_session(sb);
+ else
+ sbi->s_session = uopt.session;
+
+ udf_debug("Multi-session=%d\n", sbi->s_session);
+
+ /* Fill in the rest of the superblock */
+ sb->s_op = &udf_sb_ops;
+ sb->s_export_op = &udf_export_ops;
+
+ sb->s_magic = UDF_SUPER_MAGIC;
+ sb->s_time_gran = 1000;
+
+ if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
+ ret = udf_load_vrs(sb, &uopt, silent, &fileset);
+ } else {
+ uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
+ while (uopt.blocksize <= 4096) {
+ ret = udf_load_vrs(sb, &uopt, silent, &fileset);
+ if (ret < 0) {
+ if (!silent && ret != -EACCES) {
+ pr_notice("Scanning with blocksize %u failed\n",
+ uopt.blocksize);
+ }
+ brelse(sbi->s_lvid_bh);
+ sbi->s_lvid_bh = NULL;
+ /*
+ * EACCES is special - we want to propagate to
+ * upper layers that we cannot handle RW mount.
+ */
+ if (ret == -EACCES)
+ break;
+ } else
+ break;
+
+ uopt.blocksize <<= 1;
+ }
+ }
+ if (ret < 0) {
+ if (ret == -EAGAIN) {
+ udf_warn(sb, "No partition found (1)\n");
+ ret = -EINVAL;
+ }
+ goto error_out;
+ }
+
+ udf_debug("Lastblock=%u\n", sbi->s_last_block);
+
+ if (sbi->s_lvid_bh) {
+ struct logicalVolIntegrityDescImpUse *lvidiu =
+ udf_sb_lvidiu(sb);
+ uint16_t minUDFReadRev;
+ uint16_t minUDFWriteRev;
+
+ if (!lvidiu) {
+ ret = -EINVAL;
+ goto error_out;
+ }
+ minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
+ minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
+ if (minUDFReadRev > UDF_MAX_READ_VERSION) {
+ udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
+ minUDFReadRev,
+ UDF_MAX_READ_VERSION);
+ ret = -EINVAL;
+ goto error_out;
+ } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
+ if (!sb_rdonly(sb)) {
+ ret = -EACCES;
+ goto error_out;
+ }
+ UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
+ }
+
+ sbi->s_udfrev = minUDFWriteRev;
+
+ if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
+ UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
+ if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
+ UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
+ }
+
+ if (!sbi->s_partitions) {
+ udf_warn(sb, "No partition found (2)\n");
+ ret = -EINVAL;
+ goto error_out;
+ }
+
+ if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
+ UDF_PART_FLAG_READ_ONLY) {
+ if (!sb_rdonly(sb)) {
+ ret = -EACCES;
+ goto error_out;
+ }
+ UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
+ }
+
+ ret = udf_find_fileset(sb, &fileset, &rootdir);
+ if (ret < 0) {
+ udf_warn(sb, "No fileset found\n");
+ goto error_out;
+ }
+
+ if (!silent) {
+ struct timestamp ts;
+ udf_time_to_disk_stamp(&ts, sbi->s_record_time);
+ udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
+ sbi->s_volume_ident,
+ le16_to_cpu(ts.year), ts.month, ts.day,
+ ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
+ }
+ if (!sb_rdonly(sb)) {
+ udf_open_lvid(sb);
+ lvid_open = true;
+ }
+
+ /* Assign the root inode */
+ /* assign inodes by physical block number */
+ /* perhaps it's not extensible enough, but for now ... */
+ inode = udf_iget(sb, &rootdir);
+ if (IS_ERR(inode)) {
+ udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
+ rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
+ ret = PTR_ERR(inode);
+ goto error_out;
+ }
+
+ /* Allocate a dentry for the root inode */
+ sb->s_root = d_make_root(inode);
+ if (!sb->s_root) {
+ udf_err(sb, "Couldn't allocate root dentry\n");
+ ret = -ENOMEM;
+ goto error_out;
+ }
+ sb->s_maxbytes = UDF_MAX_FILESIZE;
+ sb->s_max_links = UDF_MAX_LINKS;
+ return 0;
+
+error_out:
+ iput(sbi->s_vat_inode);
+parse_options_failure:
+ unload_nls(uopt.nls_map);
+ if (lvid_open)
+ udf_close_lvid(sb);
+ brelse(sbi->s_lvid_bh);
+ udf_sb_free_partitions(sb);
+ kfree(sbi);
+ sb->s_fs_info = NULL;
+
+ return ret;
+}
+
+void _udf_err(struct super_block *sb, const char *function,
+ const char *fmt, ...)
+{
+ struct va_format vaf;
+ va_list args;
+
+ va_start(args, fmt);
+
+ vaf.fmt = fmt;
+ vaf.va = &args;
+
+ pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
+
+ va_end(args);
+}
+
+void _udf_warn(struct super_block *sb, const char *function,
+ const char *fmt, ...)
+{
+ struct va_format vaf;
+ va_list args;
+
+ va_start(args, fmt);
+
+ vaf.fmt = fmt;
+ vaf.va = &args;
+
+ pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
+
+ va_end(args);
+}
+
+static void udf_put_super(struct super_block *sb)
+{
+ struct udf_sb_info *sbi;
+
+ sbi = UDF_SB(sb);
+
+ iput(sbi->s_vat_inode);
+ unload_nls(sbi->s_nls_map);
+ if (!sb_rdonly(sb))
+ udf_close_lvid(sb);
+ brelse(sbi->s_lvid_bh);
+ udf_sb_free_partitions(sb);
+ mutex_destroy(&sbi->s_alloc_mutex);
+ kfree(sb->s_fs_info);
+ sb->s_fs_info = NULL;
+}
+
+static int udf_sync_fs(struct super_block *sb, int wait)
+{
+ struct udf_sb_info *sbi = UDF_SB(sb);
+
+ mutex_lock(&sbi->s_alloc_mutex);
+ if (sbi->s_lvid_dirty) {
+ struct buffer_head *bh = sbi->s_lvid_bh;
+ struct logicalVolIntegrityDesc *lvid;
+
+ lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
+ udf_finalize_lvid(lvid);
+
+ /*
+ * Blockdevice will be synced later so we don't have to submit
+ * the buffer for IO
+ */
+ mark_buffer_dirty(bh);
+ sbi->s_lvid_dirty = 0;
+ }
+ mutex_unlock(&sbi->s_alloc_mutex);
+
+ return 0;
+}
+
+static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
+{
+ struct super_block *sb = dentry->d_sb;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct logicalVolIntegrityDescImpUse *lvidiu;
+ u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
+
+ lvidiu = udf_sb_lvidiu(sb);
+ buf->f_type = UDF_SUPER_MAGIC;
+ buf->f_bsize = sb->s_blocksize;
+ buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
+ buf->f_bfree = udf_count_free(sb);
+ buf->f_bavail = buf->f_bfree;
+ /*
+ * Let's pretend each free block is also a free 'inode' since UDF does
+ * not have separate preallocated table of inodes.
+ */
+ buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
+ le32_to_cpu(lvidiu->numDirs)) : 0)
+ + buf->f_bfree;
+ buf->f_ffree = buf->f_bfree;
+ buf->f_namelen = UDF_NAME_LEN;
+ buf->f_fsid = u64_to_fsid(id);
+
+ return 0;
+}
+
+static unsigned int udf_count_free_bitmap(struct super_block *sb,
+ struct udf_bitmap *bitmap)
+{
+ struct buffer_head *bh = NULL;
+ unsigned int accum = 0;
+ int index;
+ udf_pblk_t block = 0, newblock;
+ struct kernel_lb_addr loc;
+ uint32_t bytes;
+ uint8_t *ptr;
+ uint16_t ident;
+ struct spaceBitmapDesc *bm;
+
+ loc.logicalBlockNum = bitmap->s_extPosition;
+ loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
+ bh = udf_read_ptagged(sb, &loc, 0, &ident);
+
+ if (!bh) {
+ udf_err(sb, "udf_count_free failed\n");
+ goto out;
+ } else if (ident != TAG_IDENT_SBD) {
+ brelse(bh);
+ udf_err(sb, "udf_count_free failed\n");
+ goto out;
+ }
+
+ bm = (struct spaceBitmapDesc *)bh->b_data;
+ bytes = le32_to_cpu(bm->numOfBytes);
+ index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
+ ptr = (uint8_t *)bh->b_data;
+
+ while (bytes > 0) {
+ u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
+ accum += bitmap_weight((const unsigned long *)(ptr + index),
+ cur_bytes * 8);
+ bytes -= cur_bytes;
+ if (bytes) {
+ brelse(bh);
+ newblock = udf_get_lb_pblock(sb, &loc, ++block);
+ bh = sb_bread(sb, newblock);
+ if (!bh) {
+ udf_debug("read failed\n");
+ goto out;
+ }
+ index = 0;
+ ptr = (uint8_t *)bh->b_data;
+ }
+ }
+ brelse(bh);
+out:
+ return accum;
+}
+
+static unsigned int udf_count_free_table(struct super_block *sb,
+ struct inode *table)
+{
+ unsigned int accum = 0;
+ uint32_t elen;
+ struct kernel_lb_addr eloc;
+ struct extent_position epos;
+
+ mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
+ epos.block = UDF_I(table)->i_location;
+ epos.offset = sizeof(struct unallocSpaceEntry);
+ epos.bh = NULL;
+
+ while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
+ accum += (elen >> table->i_sb->s_blocksize_bits);
+
+ brelse(epos.bh);
+ mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
+
+ return accum;
+}
+
+static unsigned int udf_count_free(struct super_block *sb)
+{
+ unsigned int accum = 0;
+ struct udf_sb_info *sbi = UDF_SB(sb);
+ struct udf_part_map *map;
+ unsigned int part = sbi->s_partition;
+ int ptype = sbi->s_partmaps[part].s_partition_type;
+
+ if (ptype == UDF_METADATA_MAP25) {
+ part = sbi->s_partmaps[part].s_type_specific.s_metadata.
+ s_phys_partition_ref;
+ } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
+ /*
+ * Filesystems with VAT are append-only and we cannot write to
+ * them. Let's just report 0 here.
+ */
+ return 0;
+ }
+
+ if (sbi->s_lvid_bh) {
+ struct logicalVolIntegrityDesc *lvid =
+ (struct logicalVolIntegrityDesc *)
+ sbi->s_lvid_bh->b_data;
+ if (le32_to_cpu(lvid->numOfPartitions) > part) {
+ accum = le32_to_cpu(
+ lvid->freeSpaceTable[part]);
+ if (accum == 0xFFFFFFFF)
+ accum = 0;
+ }
+ }
+
+ if (accum)
+ return accum;
+
+ map = &sbi->s_partmaps[part];
+ if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
+ accum += udf_count_free_bitmap(sb,
+ map->s_uspace.s_bitmap);
+ }
+ if (accum)
+ return accum;
+
+ if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
+ accum += udf_count_free_table(sb,
+ map->s_uspace.s_table);
+ }
+ return accum;
+}
+
+MODULE_AUTHOR("Ben Fennema");
+MODULE_DESCRIPTION("Universal Disk Format Filesystem");
+MODULE_LICENSE("GPL");
+module_init(init_udf_fs)
+module_exit(exit_udf_fs)