diff options
Diffstat (limited to '')
-rw-r--r-- | fs/verity/verify.c | 364 |
1 files changed, 364 insertions, 0 deletions
diff --git a/fs/verity/verify.c b/fs/verity/verify.c new file mode 100644 index 0000000000..904ccd7e8e --- /dev/null +++ b/fs/verity/verify.c @@ -0,0 +1,364 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Data verification functions, i.e. hooks for ->readahead() + * + * Copyright 2019 Google LLC + */ + +#include "fsverity_private.h" + +#include <crypto/hash.h> +#include <linux/bio.h> + +static struct workqueue_struct *fsverity_read_workqueue; + +/* + * Returns true if the hash block with index @hblock_idx in the tree, located in + * @hpage, has already been verified. + */ +static bool is_hash_block_verified(struct fsverity_info *vi, struct page *hpage, + unsigned long hblock_idx) +{ + bool verified; + unsigned int blocks_per_page; + unsigned int i; + + /* + * When the Merkle tree block size and page size are the same, then the + * ->hash_block_verified bitmap isn't allocated, and we use PG_checked + * to directly indicate whether the page's block has been verified. + * + * Using PG_checked also guarantees that we re-verify hash pages that + * get evicted and re-instantiated from the backing storage, as new + * pages always start out with PG_checked cleared. + */ + if (!vi->hash_block_verified) + return PageChecked(hpage); + + /* + * When the Merkle tree block size and page size differ, we use a bitmap + * to indicate whether each hash block has been verified. + * + * However, we still need to ensure that hash pages that get evicted and + * re-instantiated from the backing storage are re-verified. To do + * this, we use PG_checked again, but now it doesn't really mean + * "checked". Instead, now it just serves as an indicator for whether + * the hash page is newly instantiated or not. + * + * The first thread that sees PG_checked=0 must clear the corresponding + * bitmap bits, then set PG_checked=1. This requires a spinlock. To + * avoid having to take this spinlock in the common case of + * PG_checked=1, we start with an opportunistic lockless read. + */ + if (PageChecked(hpage)) { + /* + * A read memory barrier is needed here to give ACQUIRE + * semantics to the above PageChecked() test. + */ + smp_rmb(); + return test_bit(hblock_idx, vi->hash_block_verified); + } + spin_lock(&vi->hash_page_init_lock); + if (PageChecked(hpage)) { + verified = test_bit(hblock_idx, vi->hash_block_verified); + } else { + blocks_per_page = vi->tree_params.blocks_per_page; + hblock_idx = round_down(hblock_idx, blocks_per_page); + for (i = 0; i < blocks_per_page; i++) + clear_bit(hblock_idx + i, vi->hash_block_verified); + /* + * A write memory barrier is needed here to give RELEASE + * semantics to the below SetPageChecked() operation. + */ + smp_wmb(); + SetPageChecked(hpage); + verified = false; + } + spin_unlock(&vi->hash_page_init_lock); + return verified; +} + +/* + * Verify a single data block against the file's Merkle tree. + * + * In principle, we need to verify the entire path to the root node. However, + * for efficiency the filesystem may cache the hash blocks. Therefore we need + * only ascend the tree until an already-verified hash block is seen, and then + * verify the path to that block. + * + * Return: %true if the data block is valid, else %false. + */ +static bool +verify_data_block(struct inode *inode, struct fsverity_info *vi, + const void *data, u64 data_pos, unsigned long max_ra_pages) +{ + const struct merkle_tree_params *params = &vi->tree_params; + const unsigned int hsize = params->digest_size; + int level; + u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE]; + const u8 *want_hash; + u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE]; + /* The hash blocks that are traversed, indexed by level */ + struct { + /* Page containing the hash block */ + struct page *page; + /* Mapped address of the hash block (will be within @page) */ + const void *addr; + /* Index of the hash block in the tree overall */ + unsigned long index; + /* Byte offset of the wanted hash relative to @addr */ + unsigned int hoffset; + } hblocks[FS_VERITY_MAX_LEVELS]; + /* + * The index of the previous level's block within that level; also the + * index of that block's hash within the current level. + */ + u64 hidx = data_pos >> params->log_blocksize; + + /* Up to 1 + FS_VERITY_MAX_LEVELS pages may be mapped at once */ + BUILD_BUG_ON(1 + FS_VERITY_MAX_LEVELS > KM_MAX_IDX); + + if (unlikely(data_pos >= inode->i_size)) { + /* + * This can happen in the data page spanning EOF when the Merkle + * tree block size is less than the page size. The Merkle tree + * doesn't cover data blocks fully past EOF. But the entire + * page spanning EOF can be visible to userspace via a mmap, and + * any part past EOF should be all zeroes. Therefore, we need + * to verify that any data blocks fully past EOF are all zeroes. + */ + if (memchr_inv(data, 0, params->block_size)) { + fsverity_err(inode, + "FILE CORRUPTED! Data past EOF is not zeroed"); + return false; + } + return true; + } + + /* + * Starting at the leaf level, ascend the tree saving hash blocks along + * the way until we find a hash block that has already been verified, or + * until we reach the root. + */ + for (level = 0; level < params->num_levels; level++) { + unsigned long next_hidx; + unsigned long hblock_idx; + pgoff_t hpage_idx; + unsigned int hblock_offset_in_page; + unsigned int hoffset; + struct page *hpage; + const void *haddr; + + /* + * The index of the block in the current level; also the index + * of that block's hash within the next level. + */ + next_hidx = hidx >> params->log_arity; + + /* Index of the hash block in the tree overall */ + hblock_idx = params->level_start[level] + next_hidx; + + /* Index of the hash page in the tree overall */ + hpage_idx = hblock_idx >> params->log_blocks_per_page; + + /* Byte offset of the hash block within the page */ + hblock_offset_in_page = + (hblock_idx << params->log_blocksize) & ~PAGE_MASK; + + /* Byte offset of the hash within the block */ + hoffset = (hidx << params->log_digestsize) & + (params->block_size - 1); + + hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, + hpage_idx, level == 0 ? min(max_ra_pages, + params->tree_pages - hpage_idx) : 0); + if (IS_ERR(hpage)) { + fsverity_err(inode, + "Error %ld reading Merkle tree page %lu", + PTR_ERR(hpage), hpage_idx); + goto error; + } + haddr = kmap_local_page(hpage) + hblock_offset_in_page; + if (is_hash_block_verified(vi, hpage, hblock_idx)) { + memcpy(_want_hash, haddr + hoffset, hsize); + want_hash = _want_hash; + kunmap_local(haddr); + put_page(hpage); + goto descend; + } + hblocks[level].page = hpage; + hblocks[level].addr = haddr; + hblocks[level].index = hblock_idx; + hblocks[level].hoffset = hoffset; + hidx = next_hidx; + } + + want_hash = vi->root_hash; +descend: + /* Descend the tree verifying hash blocks. */ + for (; level > 0; level--) { + struct page *hpage = hblocks[level - 1].page; + const void *haddr = hblocks[level - 1].addr; + unsigned long hblock_idx = hblocks[level - 1].index; + unsigned int hoffset = hblocks[level - 1].hoffset; + + if (fsverity_hash_block(params, inode, haddr, real_hash) != 0) + goto error; + if (memcmp(want_hash, real_hash, hsize) != 0) + goto corrupted; + /* + * Mark the hash block as verified. This must be atomic and + * idempotent, as the same hash block might be verified by + * multiple threads concurrently. + */ + if (vi->hash_block_verified) + set_bit(hblock_idx, vi->hash_block_verified); + else + SetPageChecked(hpage); + memcpy(_want_hash, haddr + hoffset, hsize); + want_hash = _want_hash; + kunmap_local(haddr); + put_page(hpage); + } + + /* Finally, verify the data block. */ + if (fsverity_hash_block(params, inode, data, real_hash) != 0) + goto error; + if (memcmp(want_hash, real_hash, hsize) != 0) + goto corrupted; + return true; + +corrupted: + fsverity_err(inode, + "FILE CORRUPTED! pos=%llu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN", + data_pos, level - 1, + params->hash_alg->name, hsize, want_hash, + params->hash_alg->name, hsize, real_hash); +error: + for (; level > 0; level--) { + kunmap_local(hblocks[level - 1].addr); + put_page(hblocks[level - 1].page); + } + return false; +} + +static bool +verify_data_blocks(struct folio *data_folio, size_t len, size_t offset, + unsigned long max_ra_pages) +{ + struct inode *inode = data_folio->mapping->host; + struct fsverity_info *vi = inode->i_verity_info; + const unsigned int block_size = vi->tree_params.block_size; + u64 pos = (u64)data_folio->index << PAGE_SHIFT; + + if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offset, block_size))) + return false; + if (WARN_ON_ONCE(!folio_test_locked(data_folio) || + folio_test_uptodate(data_folio))) + return false; + do { + void *data; + bool valid; + + data = kmap_local_folio(data_folio, offset); + valid = verify_data_block(inode, vi, data, pos + offset, + max_ra_pages); + kunmap_local(data); + if (!valid) + return false; + offset += block_size; + len -= block_size; + } while (len); + return true; +} + +/** + * fsverity_verify_blocks() - verify data in a folio + * @folio: the folio containing the data to verify + * @len: the length of the data to verify in the folio + * @offset: the offset of the data to verify in the folio + * + * Verify data that has just been read from a verity file. The data must be + * located in a pagecache folio that is still locked and not yet uptodate. The + * length and offset of the data must be Merkle tree block size aligned. + * + * Return: %true if the data is valid, else %false. + */ +bool fsverity_verify_blocks(struct folio *folio, size_t len, size_t offset) +{ + return verify_data_blocks(folio, len, offset, 0); +} +EXPORT_SYMBOL_GPL(fsverity_verify_blocks); + +#ifdef CONFIG_BLOCK +/** + * fsverity_verify_bio() - verify a 'read' bio that has just completed + * @bio: the bio to verify + * + * Verify the bio's data against the file's Merkle tree. All bio data segments + * must be aligned to the file's Merkle tree block size. If any data fails + * verification, then bio->bi_status is set to an error status. + * + * This is a helper function for use by the ->readahead() method of filesystems + * that issue bios to read data directly into the page cache. Filesystems that + * populate the page cache without issuing bios (e.g. non block-based + * filesystems) must instead call fsverity_verify_page() directly on each page. + * All filesystems must also call fsverity_verify_page() on holes. + */ +void fsverity_verify_bio(struct bio *bio) +{ + struct folio_iter fi; + unsigned long max_ra_pages = 0; + + if (bio->bi_opf & REQ_RAHEAD) { + /* + * If this bio is for data readahead, then we also do readahead + * of the first (largest) level of the Merkle tree. Namely, + * when a Merkle tree page is read, we also try to piggy-back on + * some additional pages -- up to 1/4 the number of data pages. + * + * This improves sequential read performance, as it greatly + * reduces the number of I/O requests made to the Merkle tree. + */ + max_ra_pages = bio->bi_iter.bi_size >> (PAGE_SHIFT + 2); + } + + bio_for_each_folio_all(fi, bio) { + if (!verify_data_blocks(fi.folio, fi.length, fi.offset, + max_ra_pages)) { + bio->bi_status = BLK_STS_IOERR; + break; + } + } +} +EXPORT_SYMBOL_GPL(fsverity_verify_bio); +#endif /* CONFIG_BLOCK */ + +/** + * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue + * @work: the work to enqueue + * + * Enqueue verification work for asynchronous processing. + */ +void fsverity_enqueue_verify_work(struct work_struct *work) +{ + queue_work(fsverity_read_workqueue, work); +} +EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work); + +void __init fsverity_init_workqueue(void) +{ + /* + * Use a high-priority workqueue to prioritize verification work, which + * blocks reads from completing, over regular application tasks. + * + * For performance reasons, don't use an unbound workqueue. Using an + * unbound workqueue for crypto operations causes excessive scheduler + * latency on ARM64. + */ + fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue", + WQ_HIGHPRI, + num_online_cpus()); + if (!fsverity_read_workqueue) + panic("failed to allocate fsverity_read_queue"); +} |