diff options
Diffstat (limited to '')
-rw-r--r-- | kernel/bpf/tnum.c | 214 |
1 files changed, 214 insertions, 0 deletions
diff --git a/kernel/bpf/tnum.c b/kernel/bpf/tnum.c new file mode 100644 index 0000000000..3d7127f439 --- /dev/null +++ b/kernel/bpf/tnum.c @@ -0,0 +1,214 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* tnum: tracked (or tristate) numbers + * + * A tnum tracks knowledge about the bits of a value. Each bit can be either + * known (0 or 1), or unknown (x). Arithmetic operations on tnums will + * propagate the unknown bits such that the tnum result represents all the + * possible results for possible values of the operands. + */ +#include <linux/kernel.h> +#include <linux/tnum.h> + +#define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m} +/* A completely unknown value */ +const struct tnum tnum_unknown = { .value = 0, .mask = -1 }; + +struct tnum tnum_const(u64 value) +{ + return TNUM(value, 0); +} + +struct tnum tnum_range(u64 min, u64 max) +{ + u64 chi = min ^ max, delta; + u8 bits = fls64(chi); + + /* special case, needed because 1ULL << 64 is undefined */ + if (bits > 63) + return tnum_unknown; + /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7. + * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return + * constant min (since min == max). + */ + delta = (1ULL << bits) - 1; + return TNUM(min & ~delta, delta); +} + +struct tnum tnum_lshift(struct tnum a, u8 shift) +{ + return TNUM(a.value << shift, a.mask << shift); +} + +struct tnum tnum_rshift(struct tnum a, u8 shift) +{ + return TNUM(a.value >> shift, a.mask >> shift); +} + +struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness) +{ + /* if a.value is negative, arithmetic shifting by minimum shift + * will have larger negative offset compared to more shifting. + * If a.value is nonnegative, arithmetic shifting by minimum shift + * will have larger positive offset compare to more shifting. + */ + if (insn_bitness == 32) + return TNUM((u32)(((s32)a.value) >> min_shift), + (u32)(((s32)a.mask) >> min_shift)); + else + return TNUM((s64)a.value >> min_shift, + (s64)a.mask >> min_shift); +} + +struct tnum tnum_add(struct tnum a, struct tnum b) +{ + u64 sm, sv, sigma, chi, mu; + + sm = a.mask + b.mask; + sv = a.value + b.value; + sigma = sm + sv; + chi = sigma ^ sv; + mu = chi | a.mask | b.mask; + return TNUM(sv & ~mu, mu); +} + +struct tnum tnum_sub(struct tnum a, struct tnum b) +{ + u64 dv, alpha, beta, chi, mu; + + dv = a.value - b.value; + alpha = dv + a.mask; + beta = dv - b.mask; + chi = alpha ^ beta; + mu = chi | a.mask | b.mask; + return TNUM(dv & ~mu, mu); +} + +struct tnum tnum_and(struct tnum a, struct tnum b) +{ + u64 alpha, beta, v; + + alpha = a.value | a.mask; + beta = b.value | b.mask; + v = a.value & b.value; + return TNUM(v, alpha & beta & ~v); +} + +struct tnum tnum_or(struct tnum a, struct tnum b) +{ + u64 v, mu; + + v = a.value | b.value; + mu = a.mask | b.mask; + return TNUM(v, mu & ~v); +} + +struct tnum tnum_xor(struct tnum a, struct tnum b) +{ + u64 v, mu; + + v = a.value ^ b.value; + mu = a.mask | b.mask; + return TNUM(v & ~mu, mu); +} + +/* Generate partial products by multiplying each bit in the multiplier (tnum a) + * with the multiplicand (tnum b), and add the partial products after + * appropriately bit-shifting them. Instead of directly performing tnum addition + * on the generated partial products, equivalenty, decompose each partial + * product into two tnums, consisting of the value-sum (acc_v) and the + * mask-sum (acc_m) and then perform tnum addition on them. The following paper + * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398. + */ +struct tnum tnum_mul(struct tnum a, struct tnum b) +{ + u64 acc_v = a.value * b.value; + struct tnum acc_m = TNUM(0, 0); + + while (a.value || a.mask) { + /* LSB of tnum a is a certain 1 */ + if (a.value & 1) + acc_m = tnum_add(acc_m, TNUM(0, b.mask)); + /* LSB of tnum a is uncertain */ + else if (a.mask & 1) + acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask)); + /* Note: no case for LSB is certain 0 */ + a = tnum_rshift(a, 1); + b = tnum_lshift(b, 1); + } + return tnum_add(TNUM(acc_v, 0), acc_m); +} + +/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has + * a 'known 0' - this will return a 'known 1' for that bit. + */ +struct tnum tnum_intersect(struct tnum a, struct tnum b) +{ + u64 v, mu; + + v = a.value | b.value; + mu = a.mask & b.mask; + return TNUM(v & ~mu, mu); +} + +struct tnum tnum_cast(struct tnum a, u8 size) +{ + a.value &= (1ULL << (size * 8)) - 1; + a.mask &= (1ULL << (size * 8)) - 1; + return a; +} + +bool tnum_is_aligned(struct tnum a, u64 size) +{ + if (!size) + return true; + return !((a.value | a.mask) & (size - 1)); +} + +bool tnum_in(struct tnum a, struct tnum b) +{ + if (b.mask & ~a.mask) + return false; + b.value &= ~a.mask; + return a.value == b.value; +} + +int tnum_strn(char *str, size_t size, struct tnum a) +{ + return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask); +} +EXPORT_SYMBOL_GPL(tnum_strn); + +int tnum_sbin(char *str, size_t size, struct tnum a) +{ + size_t n; + + for (n = 64; n; n--) { + if (n < size) { + if (a.mask & 1) + str[n - 1] = 'x'; + else if (a.value & 1) + str[n - 1] = '1'; + else + str[n - 1] = '0'; + } + a.mask >>= 1; + a.value >>= 1; + } + str[min(size - 1, (size_t)64)] = 0; + return 64; +} + +struct tnum tnum_subreg(struct tnum a) +{ + return tnum_cast(a, 4); +} + +struct tnum tnum_clear_subreg(struct tnum a) +{ + return tnum_lshift(tnum_rshift(a, 32), 32); +} + +struct tnum tnum_const_subreg(struct tnum a, u32 value) +{ + return tnum_or(tnum_clear_subreg(a), tnum_const(value)); +} |