diff options
Diffstat (limited to 'kernel/rcu/srcutree.c')
-rw-r--r-- | kernel/rcu/srcutree.c | 2006 |
1 files changed, 2006 insertions, 0 deletions
diff --git a/kernel/rcu/srcutree.c b/kernel/rcu/srcutree.c new file mode 100644 index 0000000000..25285893e4 --- /dev/null +++ b/kernel/rcu/srcutree.c @@ -0,0 +1,2006 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Sleepable Read-Copy Update mechanism for mutual exclusion. + * + * Copyright (C) IBM Corporation, 2006 + * Copyright (C) Fujitsu, 2012 + * + * Authors: Paul McKenney <paulmck@linux.ibm.com> + * Lai Jiangshan <laijs@cn.fujitsu.com> + * + * For detailed explanation of Read-Copy Update mechanism see - + * Documentation/RCU/ *.txt + * + */ + +#define pr_fmt(fmt) "rcu: " fmt + +#include <linux/export.h> +#include <linux/mutex.h> +#include <linux/percpu.h> +#include <linux/preempt.h> +#include <linux/rcupdate_wait.h> +#include <linux/sched.h> +#include <linux/smp.h> +#include <linux/delay.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/srcu.h> + +#include "rcu.h" +#include "rcu_segcblist.h" + +/* Holdoff in nanoseconds for auto-expediting. */ +#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) +static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; +module_param(exp_holdoff, ulong, 0444); + +/* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ +static ulong counter_wrap_check = (ULONG_MAX >> 2); +module_param(counter_wrap_check, ulong, 0444); + +/* + * Control conversion to SRCU_SIZE_BIG: + * 0: Don't convert at all. + * 1: Convert at init_srcu_struct() time. + * 2: Convert when rcutorture invokes srcu_torture_stats_print(). + * 3: Decide at boot time based on system shape (default). + * 0x1x: Convert when excessive contention encountered. + */ +#define SRCU_SIZING_NONE 0 +#define SRCU_SIZING_INIT 1 +#define SRCU_SIZING_TORTURE 2 +#define SRCU_SIZING_AUTO 3 +#define SRCU_SIZING_CONTEND 0x10 +#define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) +#define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) +#define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) +#define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) +#define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) +static int convert_to_big = SRCU_SIZING_AUTO; +module_param(convert_to_big, int, 0444); + +/* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ +static int big_cpu_lim __read_mostly = 128; +module_param(big_cpu_lim, int, 0444); + +/* Contention events per jiffy to initiate transition to big. */ +static int small_contention_lim __read_mostly = 100; +module_param(small_contention_lim, int, 0444); + +/* Early-boot callback-management, so early that no lock is required! */ +static LIST_HEAD(srcu_boot_list); +static bool __read_mostly srcu_init_done; + +static void srcu_invoke_callbacks(struct work_struct *work); +static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); +static void process_srcu(struct work_struct *work); +static void srcu_delay_timer(struct timer_list *t); + +/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ +#define spin_lock_rcu_node(p) \ +do { \ + spin_lock(&ACCESS_PRIVATE(p, lock)); \ + smp_mb__after_unlock_lock(); \ +} while (0) + +#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) + +#define spin_lock_irq_rcu_node(p) \ +do { \ + spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ + smp_mb__after_unlock_lock(); \ +} while (0) + +#define spin_unlock_irq_rcu_node(p) \ + spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) + +#define spin_lock_irqsave_rcu_node(p, flags) \ +do { \ + spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ + smp_mb__after_unlock_lock(); \ +} while (0) + +#define spin_trylock_irqsave_rcu_node(p, flags) \ +({ \ + bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ + \ + if (___locked) \ + smp_mb__after_unlock_lock(); \ + ___locked; \ +}) + +#define spin_unlock_irqrestore_rcu_node(p, flags) \ + spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ + +/* + * Initialize SRCU per-CPU data. Note that statically allocated + * srcu_struct structures might already have srcu_read_lock() and + * srcu_read_unlock() running against them. So if the is_static parameter + * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. + */ +static void init_srcu_struct_data(struct srcu_struct *ssp) +{ + int cpu; + struct srcu_data *sdp; + + /* + * Initialize the per-CPU srcu_data array, which feeds into the + * leaves of the srcu_node tree. + */ + WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != + ARRAY_SIZE(sdp->srcu_unlock_count)); + for_each_possible_cpu(cpu) { + sdp = per_cpu_ptr(ssp->sda, cpu); + spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); + rcu_segcblist_init(&sdp->srcu_cblist); + sdp->srcu_cblist_invoking = false; + sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq; + sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq; + sdp->mynode = NULL; + sdp->cpu = cpu; + INIT_WORK(&sdp->work, srcu_invoke_callbacks); + timer_setup(&sdp->delay_work, srcu_delay_timer, 0); + sdp->ssp = ssp; + } +} + +/* Invalid seq state, used during snp node initialization */ +#define SRCU_SNP_INIT_SEQ 0x2 + +/* + * Check whether sequence number corresponding to snp node, + * is invalid. + */ +static inline bool srcu_invl_snp_seq(unsigned long s) +{ + return s == SRCU_SNP_INIT_SEQ; +} + +/* + * Allocated and initialize SRCU combining tree. Returns @true if + * allocation succeeded and @false otherwise. + */ +static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) +{ + int cpu; + int i; + int level = 0; + int levelspread[RCU_NUM_LVLS]; + struct srcu_data *sdp; + struct srcu_node *snp; + struct srcu_node *snp_first; + + /* Initialize geometry if it has not already been initialized. */ + rcu_init_geometry(); + ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags); + if (!ssp->srcu_sup->node) + return false; + + /* Work out the overall tree geometry. */ + ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0]; + for (i = 1; i < rcu_num_lvls; i++) + ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1]; + rcu_init_levelspread(levelspread, num_rcu_lvl); + + /* Each pass through this loop initializes one srcu_node structure. */ + srcu_for_each_node_breadth_first(ssp, snp) { + spin_lock_init(&ACCESS_PRIVATE(snp, lock)); + WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != + ARRAY_SIZE(snp->srcu_data_have_cbs)); + for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { + snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; + snp->srcu_data_have_cbs[i] = 0; + } + snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; + snp->grplo = -1; + snp->grphi = -1; + if (snp == &ssp->srcu_sup->node[0]) { + /* Root node, special case. */ + snp->srcu_parent = NULL; + continue; + } + + /* Non-root node. */ + if (snp == ssp->srcu_sup->level[level + 1]) + level++; + snp->srcu_parent = ssp->srcu_sup->level[level - 1] + + (snp - ssp->srcu_sup->level[level]) / + levelspread[level - 1]; + } + + /* + * Initialize the per-CPU srcu_data array, which feeds into the + * leaves of the srcu_node tree. + */ + level = rcu_num_lvls - 1; + snp_first = ssp->srcu_sup->level[level]; + for_each_possible_cpu(cpu) { + sdp = per_cpu_ptr(ssp->sda, cpu); + sdp->mynode = &snp_first[cpu / levelspread[level]]; + for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { + if (snp->grplo < 0) + snp->grplo = cpu; + snp->grphi = cpu; + } + sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo); + } + smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); + return true; +} + +/* + * Initialize non-compile-time initialized fields, including the + * associated srcu_node and srcu_data structures. The is_static parameter + * tells us that ->sda has already been wired up to srcu_data. + */ +static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) +{ + if (!is_static) + ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL); + if (!ssp->srcu_sup) + return -ENOMEM; + if (!is_static) + spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); + ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL; + ssp->srcu_sup->node = NULL; + mutex_init(&ssp->srcu_sup->srcu_cb_mutex); + mutex_init(&ssp->srcu_sup->srcu_gp_mutex); + ssp->srcu_idx = 0; + ssp->srcu_sup->srcu_gp_seq = 0; + ssp->srcu_sup->srcu_barrier_seq = 0; + mutex_init(&ssp->srcu_sup->srcu_barrier_mutex); + atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0); + INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu); + ssp->srcu_sup->sda_is_static = is_static; + if (!is_static) + ssp->sda = alloc_percpu(struct srcu_data); + if (!ssp->sda) { + if (!is_static) + kfree(ssp->srcu_sup); + return -ENOMEM; + } + init_srcu_struct_data(ssp); + ssp->srcu_sup->srcu_gp_seq_needed_exp = 0; + ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns(); + if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { + if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) { + if (!ssp->srcu_sup->sda_is_static) { + free_percpu(ssp->sda); + ssp->sda = NULL; + kfree(ssp->srcu_sup); + return -ENOMEM; + } + } else { + WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG); + } + } + ssp->srcu_sup->srcu_ssp = ssp; + smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */ + return 0; +} + +#ifdef CONFIG_DEBUG_LOCK_ALLOC + +int __init_srcu_struct(struct srcu_struct *ssp, const char *name, + struct lock_class_key *key) +{ + /* Don't re-initialize a lock while it is held. */ + debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); + lockdep_init_map(&ssp->dep_map, name, key, 0); + return init_srcu_struct_fields(ssp, false); +} +EXPORT_SYMBOL_GPL(__init_srcu_struct); + +#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ + +/** + * init_srcu_struct - initialize a sleep-RCU structure + * @ssp: structure to initialize. + * + * Must invoke this on a given srcu_struct before passing that srcu_struct + * to any other function. Each srcu_struct represents a separate domain + * of SRCU protection. + */ +int init_srcu_struct(struct srcu_struct *ssp) +{ + return init_srcu_struct_fields(ssp, false); +} +EXPORT_SYMBOL_GPL(init_srcu_struct); + +#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ + +/* + * Initiate a transition to SRCU_SIZE_BIG with lock held. + */ +static void __srcu_transition_to_big(struct srcu_struct *ssp) +{ + lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); + smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC); +} + +/* + * Initiate an idempotent transition to SRCU_SIZE_BIG. + */ +static void srcu_transition_to_big(struct srcu_struct *ssp) +{ + unsigned long flags; + + /* Double-checked locking on ->srcu_size-state. */ + if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) + return; + spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); + if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) { + spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); + return; + } + __srcu_transition_to_big(ssp); + spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); +} + +/* + * Check to see if the just-encountered contention event justifies + * a transition to SRCU_SIZE_BIG. + */ +static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) +{ + unsigned long j; + + if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state) + return; + j = jiffies; + if (ssp->srcu_sup->srcu_size_jiffies != j) { + ssp->srcu_sup->srcu_size_jiffies = j; + ssp->srcu_sup->srcu_n_lock_retries = 0; + } + if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim) + return; + __srcu_transition_to_big(ssp); +} + +/* + * Acquire the specified srcu_data structure's ->lock, but check for + * excessive contention, which results in initiation of a transition + * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module + * parameter permits this. + */ +static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) +{ + struct srcu_struct *ssp = sdp->ssp; + + if (spin_trylock_irqsave_rcu_node(sdp, *flags)) + return; + spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); + spin_lock_irqsave_check_contention(ssp); + spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags); + spin_lock_irqsave_rcu_node(sdp, *flags); +} + +/* + * Acquire the specified srcu_struct structure's ->lock, but check for + * excessive contention, which results in initiation of a transition + * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module + * parameter permits this. + */ +static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) +{ + if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags)) + return; + spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); + spin_lock_irqsave_check_contention(ssp); +} + +/* + * First-use initialization of statically allocated srcu_struct + * structure. Wiring up the combining tree is more than can be + * done with compile-time initialization, so this check is added + * to each update-side SRCU primitive. Use ssp->lock, which -is- + * compile-time initialized, to resolve races involving multiple + * CPUs trying to garner first-use privileges. + */ +static void check_init_srcu_struct(struct srcu_struct *ssp) +{ + unsigned long flags; + + /* The smp_load_acquire() pairs with the smp_store_release(). */ + if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/ + return; /* Already initialized. */ + spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); + if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) { + spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); + return; + } + init_srcu_struct_fields(ssp, true); + spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); +} + +/* + * Returns approximate total of the readers' ->srcu_lock_count[] values + * for the rank of per-CPU counters specified by idx. + */ +static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) +{ + int cpu; + unsigned long sum = 0; + + for_each_possible_cpu(cpu) { + struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); + + sum += atomic_long_read(&cpuc->srcu_lock_count[idx]); + } + return sum; +} + +/* + * Returns approximate total of the readers' ->srcu_unlock_count[] values + * for the rank of per-CPU counters specified by idx. + */ +static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) +{ + int cpu; + unsigned long mask = 0; + unsigned long sum = 0; + + for_each_possible_cpu(cpu) { + struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); + + sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]); + if (IS_ENABLED(CONFIG_PROVE_RCU)) + mask = mask | READ_ONCE(cpuc->srcu_nmi_safety); + } + WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)), + "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp); + return sum; +} + +/* + * Return true if the number of pre-existing readers is determined to + * be zero. + */ +static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) +{ + unsigned long unlocks; + + unlocks = srcu_readers_unlock_idx(ssp, idx); + + /* + * Make sure that a lock is always counted if the corresponding + * unlock is counted. Needs to be a smp_mb() as the read side may + * contain a read from a variable that is written to before the + * synchronize_srcu() in the write side. In this case smp_mb()s + * A and B act like the store buffering pattern. + * + * This smp_mb() also pairs with smp_mb() C to prevent accesses + * after the synchronize_srcu() from being executed before the + * grace period ends. + */ + smp_mb(); /* A */ + + /* + * If the locks are the same as the unlocks, then there must have + * been no readers on this index at some point in this function. + * But there might be more readers, as a task might have read + * the current ->srcu_idx but not yet have incremented its CPU's + * ->srcu_lock_count[idx] counter. In fact, it is possible + * that most of the tasks have been preempted between fetching + * ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there + * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks + * in a system whose address space was fully populated with memory. + * Call this quantity Nt. + * + * So suppose that the updater is preempted at this point in the + * code for a long time. That now-preempted updater has already + * flipped ->srcu_idx (possibly during the preceding grace period), + * done an smp_mb() (again, possibly during the preceding grace + * period), and summed up the ->srcu_unlock_count[idx] counters. + * How many times can a given one of the aforementioned Nt tasks + * increment the old ->srcu_idx value's ->srcu_lock_count[idx] + * counter, in the absence of nesting? + * + * It can clearly do so once, given that it has already fetched + * the old value of ->srcu_idx and is just about to use that value + * to index its increment of ->srcu_lock_count[idx]. But as soon as + * it leaves that SRCU read-side critical section, it will increment + * ->srcu_unlock_count[idx], which must follow the updater's above + * read from that same value. Thus, as soon the reading task does + * an smp_mb() and a later fetch from ->srcu_idx, that task will be + * guaranteed to get the new index. Except that the increment of + * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the + * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock() + * is before the smp_mb(). Thus, that task might not see the new + * value of ->srcu_idx until the -second- __srcu_read_lock(), + * which in turn means that this task might well increment + * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice, + * not just once. + * + * However, it is important to note that a given smp_mb() takes + * effect not just for the task executing it, but also for any + * later task running on that same CPU. + * + * That is, there can be almost Nt + Nc further increments of + * ->srcu_lock_count[idx] for the old index, where Nc is the number + * of CPUs. But this is OK because the size of the task_struct + * structure limits the value of Nt and current systems limit Nc + * to a few thousand. + * + * OK, but what about nesting? This does impose a limit on + * nesting of half of the size of the task_struct structure + * (measured in bytes), which should be sufficient. A late 2022 + * TREE01 rcutorture run reported this size to be no less than + * 9408 bytes, allowing up to 4704 levels of nesting, which is + * comfortably beyond excessive. Especially on 64-bit systems, + * which are unlikely to be configured with an address space fully + * populated with memory, at least not anytime soon. + */ + return srcu_readers_lock_idx(ssp, idx) == unlocks; +} + +/** + * srcu_readers_active - returns true if there are readers. and false + * otherwise + * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). + * + * Note that this is not an atomic primitive, and can therefore suffer + * severe errors when invoked on an active srcu_struct. That said, it + * can be useful as an error check at cleanup time. + */ +static bool srcu_readers_active(struct srcu_struct *ssp) +{ + int cpu; + unsigned long sum = 0; + + for_each_possible_cpu(cpu) { + struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); + + sum += atomic_long_read(&cpuc->srcu_lock_count[0]); + sum += atomic_long_read(&cpuc->srcu_lock_count[1]); + sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]); + sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]); + } + return sum; +} + +/* + * We use an adaptive strategy for synchronize_srcu() and especially for + * synchronize_srcu_expedited(). We spin for a fixed time period + * (defined below, boot time configurable) to allow SRCU readers to exit + * their read-side critical sections. If there are still some readers + * after one jiffy, we repeatedly block for one jiffy time periods. + * The blocking time is increased as the grace-period age increases, + * with max blocking time capped at 10 jiffies. + */ +#define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 + +static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; +module_param(srcu_retry_check_delay, ulong, 0444); + +#define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. +#define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. + +#define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase + // no-delay instances. +#define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase + // no-delay instances. + +#define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) +#define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) +#define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) +// per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto +// one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() +// called from process_srcu(). +#define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ + (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) + +// Maximum per-GP-phase consecutive no-delay instances. +#define SRCU_DEFAULT_MAX_NODELAY_PHASE \ + SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ + SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ + SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) + +static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; +module_param(srcu_max_nodelay_phase, ulong, 0444); + +// Maximum consecutive no-delay instances. +#define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ + SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) + +static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; +module_param(srcu_max_nodelay, ulong, 0444); + +/* + * Return grace-period delay, zero if there are expedited grace + * periods pending, SRCU_INTERVAL otherwise. + */ +static unsigned long srcu_get_delay(struct srcu_struct *ssp) +{ + unsigned long gpstart; + unsigned long j; + unsigned long jbase = SRCU_INTERVAL; + struct srcu_usage *sup = ssp->srcu_sup; + + if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) + jbase = 0; + if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) { + j = jiffies - 1; + gpstart = READ_ONCE(sup->srcu_gp_start); + if (time_after(j, gpstart)) + jbase += j - gpstart; + if (!jbase) { + WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1); + if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) + jbase = 1; + } + } + return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; +} + +/** + * cleanup_srcu_struct - deconstruct a sleep-RCU structure + * @ssp: structure to clean up. + * + * Must invoke this after you are finished using a given srcu_struct that + * was initialized via init_srcu_struct(), else you leak memory. + */ +void cleanup_srcu_struct(struct srcu_struct *ssp) +{ + int cpu; + struct srcu_usage *sup = ssp->srcu_sup; + + if (WARN_ON(!srcu_get_delay(ssp))) + return; /* Just leak it! */ + if (WARN_ON(srcu_readers_active(ssp))) + return; /* Just leak it! */ + flush_delayed_work(&sup->work); + for_each_possible_cpu(cpu) { + struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); + + del_timer_sync(&sdp->delay_work); + flush_work(&sdp->work); + if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) + return; /* Forgot srcu_barrier(), so just leak it! */ + } + if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) || + WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) || + WARN_ON(srcu_readers_active(ssp))) { + pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", + __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)), + rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed); + return; /* Caller forgot to stop doing call_srcu()? */ + } + kfree(sup->node); + sup->node = NULL; + sup->srcu_size_state = SRCU_SIZE_SMALL; + if (!sup->sda_is_static) { + free_percpu(ssp->sda); + ssp->sda = NULL; + kfree(sup); + ssp->srcu_sup = NULL; + } +} +EXPORT_SYMBOL_GPL(cleanup_srcu_struct); + +#ifdef CONFIG_PROVE_RCU +/* + * Check for consistent NMI safety. + */ +void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe) +{ + int nmi_safe_mask = 1 << nmi_safe; + int old_nmi_safe_mask; + struct srcu_data *sdp; + + /* NMI-unsafe use in NMI is a bad sign */ + WARN_ON_ONCE(!nmi_safe && in_nmi()); + sdp = raw_cpu_ptr(ssp->sda); + old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety); + if (!old_nmi_safe_mask) { + WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask); + return; + } + WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask); +} +EXPORT_SYMBOL_GPL(srcu_check_nmi_safety); +#endif /* CONFIG_PROVE_RCU */ + +/* + * Counts the new reader in the appropriate per-CPU element of the + * srcu_struct. + * Returns an index that must be passed to the matching srcu_read_unlock(). + */ +int __srcu_read_lock(struct srcu_struct *ssp) +{ + int idx; + + idx = READ_ONCE(ssp->srcu_idx) & 0x1; + this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter); + smp_mb(); /* B */ /* Avoid leaking the critical section. */ + return idx; +} +EXPORT_SYMBOL_GPL(__srcu_read_lock); + +/* + * Removes the count for the old reader from the appropriate per-CPU + * element of the srcu_struct. Note that this may well be a different + * CPU than that which was incremented by the corresponding srcu_read_lock(). + */ +void __srcu_read_unlock(struct srcu_struct *ssp, int idx) +{ + smp_mb(); /* C */ /* Avoid leaking the critical section. */ + this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter); +} +EXPORT_SYMBOL_GPL(__srcu_read_unlock); + +#ifdef CONFIG_NEED_SRCU_NMI_SAFE + +/* + * Counts the new reader in the appropriate per-CPU element of the + * srcu_struct, but in an NMI-safe manner using RMW atomics. + * Returns an index that must be passed to the matching srcu_read_unlock(). + */ +int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) +{ + int idx; + struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); + + idx = READ_ONCE(ssp->srcu_idx) & 0x1; + atomic_long_inc(&sdp->srcu_lock_count[idx]); + smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */ + return idx; +} +EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe); + +/* + * Removes the count for the old reader from the appropriate per-CPU + * element of the srcu_struct. Note that this may well be a different + * CPU than that which was incremented by the corresponding srcu_read_lock(). + */ +void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) +{ + struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); + + smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */ + atomic_long_inc(&sdp->srcu_unlock_count[idx]); +} +EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe); + +#endif // CONFIG_NEED_SRCU_NMI_SAFE + +/* + * Start an SRCU grace period. + */ +static void srcu_gp_start(struct srcu_struct *ssp) +{ + struct srcu_data *sdp; + int state; + + if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) + sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); + else + sdp = this_cpu_ptr(ssp->sda); + lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); + WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)); + spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ + rcu_segcblist_advance(&sdp->srcu_cblist, + rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); + WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); + spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ + WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies); + WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0); + smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ + rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq); + state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq); + WARN_ON_ONCE(state != SRCU_STATE_SCAN1); +} + + +static void srcu_delay_timer(struct timer_list *t) +{ + struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); + + queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); +} + +static void srcu_queue_delayed_work_on(struct srcu_data *sdp, + unsigned long delay) +{ + if (!delay) { + queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); + return; + } + + timer_reduce(&sdp->delay_work, jiffies + delay); +} + +/* + * Schedule callback invocation for the specified srcu_data structure, + * if possible, on the corresponding CPU. + */ +static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) +{ + srcu_queue_delayed_work_on(sdp, delay); +} + +/* + * Schedule callback invocation for all srcu_data structures associated + * with the specified srcu_node structure that have callbacks for the + * just-completed grace period, the one corresponding to idx. If possible, + * schedule this invocation on the corresponding CPUs. + */ +static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, + unsigned long mask, unsigned long delay) +{ + int cpu; + + for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { + if (!(mask & (1UL << (cpu - snp->grplo)))) + continue; + srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); + } +} + +/* + * Note the end of an SRCU grace period. Initiates callback invocation + * and starts a new grace period if needed. + * + * The ->srcu_cb_mutex acquisition does not protect any data, but + * instead prevents more than one grace period from starting while we + * are initiating callback invocation. This allows the ->srcu_have_cbs[] + * array to have a finite number of elements. + */ +static void srcu_gp_end(struct srcu_struct *ssp) +{ + unsigned long cbdelay = 1; + bool cbs; + bool last_lvl; + int cpu; + unsigned long flags; + unsigned long gpseq; + int idx; + unsigned long mask; + struct srcu_data *sdp; + unsigned long sgsne; + struct srcu_node *snp; + int ss_state; + struct srcu_usage *sup = ssp->srcu_sup; + + /* Prevent more than one additional grace period. */ + mutex_lock(&sup->srcu_cb_mutex); + + /* End the current grace period. */ + spin_lock_irq_rcu_node(sup); + idx = rcu_seq_state(sup->srcu_gp_seq); + WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); + if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) + cbdelay = 0; + + WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns()); + rcu_seq_end(&sup->srcu_gp_seq); + gpseq = rcu_seq_current(&sup->srcu_gp_seq); + if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq)) + WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq); + spin_unlock_irq_rcu_node(sup); + mutex_unlock(&sup->srcu_gp_mutex); + /* A new grace period can start at this point. But only one. */ + + /* Initiate callback invocation as needed. */ + ss_state = smp_load_acquire(&sup->srcu_size_state); + if (ss_state < SRCU_SIZE_WAIT_BARRIER) { + srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), + cbdelay); + } else { + idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); + srcu_for_each_node_breadth_first(ssp, snp) { + spin_lock_irq_rcu_node(snp); + cbs = false; + last_lvl = snp >= sup->level[rcu_num_lvls - 1]; + if (last_lvl) + cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; + snp->srcu_have_cbs[idx] = gpseq; + rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); + sgsne = snp->srcu_gp_seq_needed_exp; + if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) + WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); + if (ss_state < SRCU_SIZE_BIG) + mask = ~0; + else + mask = snp->srcu_data_have_cbs[idx]; + snp->srcu_data_have_cbs[idx] = 0; + spin_unlock_irq_rcu_node(snp); + if (cbs) + srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); + } + } + + /* Occasionally prevent srcu_data counter wrap. */ + if (!(gpseq & counter_wrap_check)) + for_each_possible_cpu(cpu) { + sdp = per_cpu_ptr(ssp->sda, cpu); + spin_lock_irqsave_rcu_node(sdp, flags); + if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) + sdp->srcu_gp_seq_needed = gpseq; + if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) + sdp->srcu_gp_seq_needed_exp = gpseq; + spin_unlock_irqrestore_rcu_node(sdp, flags); + } + + /* Callback initiation done, allow grace periods after next. */ + mutex_unlock(&sup->srcu_cb_mutex); + + /* Start a new grace period if needed. */ + spin_lock_irq_rcu_node(sup); + gpseq = rcu_seq_current(&sup->srcu_gp_seq); + if (!rcu_seq_state(gpseq) && + ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) { + srcu_gp_start(ssp); + spin_unlock_irq_rcu_node(sup); + srcu_reschedule(ssp, 0); + } else { + spin_unlock_irq_rcu_node(sup); + } + + /* Transition to big if needed. */ + if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { + if (ss_state == SRCU_SIZE_ALLOC) + init_srcu_struct_nodes(ssp, GFP_KERNEL); + else + smp_store_release(&sup->srcu_size_state, ss_state + 1); + } +} + +/* + * Funnel-locking scheme to scalably mediate many concurrent expedited + * grace-period requests. This function is invoked for the first known + * expedited request for a grace period that has already been requested, + * but without expediting. To start a completely new grace period, + * whether expedited or not, use srcu_funnel_gp_start() instead. + */ +static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, + unsigned long s) +{ + unsigned long flags; + unsigned long sgsne; + + if (snp) + for (; snp != NULL; snp = snp->srcu_parent) { + sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); + if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) || + (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) + return; + spin_lock_irqsave_rcu_node(snp, flags); + sgsne = snp->srcu_gp_seq_needed_exp; + if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { + spin_unlock_irqrestore_rcu_node(snp, flags); + return; + } + WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); + spin_unlock_irqrestore_rcu_node(snp, flags); + } + spin_lock_irqsave_ssp_contention(ssp, &flags); + if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s)) + WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s); + spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); +} + +/* + * Funnel-locking scheme to scalably mediate many concurrent grace-period + * requests. The winner has to do the work of actually starting grace + * period s. Losers must either ensure that their desired grace-period + * number is recorded on at least their leaf srcu_node structure, or they + * must take steps to invoke their own callbacks. + * + * Note that this function also does the work of srcu_funnel_exp_start(), + * in some cases by directly invoking it. + * + * The srcu read lock should be hold around this function. And s is a seq snap + * after holding that lock. + */ +static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, + unsigned long s, bool do_norm) +{ + unsigned long flags; + int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); + unsigned long sgsne; + struct srcu_node *snp; + struct srcu_node *snp_leaf; + unsigned long snp_seq; + struct srcu_usage *sup = ssp->srcu_sup; + + /* Ensure that snp node tree is fully initialized before traversing it */ + if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) + snp_leaf = NULL; + else + snp_leaf = sdp->mynode; + + if (snp_leaf) + /* Each pass through the loop does one level of the srcu_node tree. */ + for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { + if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf) + return; /* GP already done and CBs recorded. */ + spin_lock_irqsave_rcu_node(snp, flags); + snp_seq = snp->srcu_have_cbs[idx]; + if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { + if (snp == snp_leaf && snp_seq == s) + snp->srcu_data_have_cbs[idx] |= sdp->grpmask; + spin_unlock_irqrestore_rcu_node(snp, flags); + if (snp == snp_leaf && snp_seq != s) { + srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); + return; + } + if (!do_norm) + srcu_funnel_exp_start(ssp, snp, s); + return; + } + snp->srcu_have_cbs[idx] = s; + if (snp == snp_leaf) + snp->srcu_data_have_cbs[idx] |= sdp->grpmask; + sgsne = snp->srcu_gp_seq_needed_exp; + if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) + WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); + spin_unlock_irqrestore_rcu_node(snp, flags); + } + + /* Top of tree, must ensure the grace period will be started. */ + spin_lock_irqsave_ssp_contention(ssp, &flags); + if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) { + /* + * Record need for grace period s. Pair with load + * acquire setting up for initialization. + */ + smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/ + } + if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s)) + WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s); + + /* If grace period not already in progress, start it. */ + if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && + rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) { + WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed)); + srcu_gp_start(ssp); + + // And how can that list_add() in the "else" clause + // possibly be safe for concurrent execution? Well, + // it isn't. And it does not have to be. After all, it + // can only be executed during early boot when there is only + // the one boot CPU running with interrupts still disabled. + if (likely(srcu_init_done)) + queue_delayed_work(rcu_gp_wq, &sup->work, + !!srcu_get_delay(ssp)); + else if (list_empty(&sup->work.work.entry)) + list_add(&sup->work.work.entry, &srcu_boot_list); + } + spin_unlock_irqrestore_rcu_node(sup, flags); +} + +/* + * Wait until all readers counted by array index idx complete, but + * loop an additional time if there is an expedited grace period pending. + * The caller must ensure that ->srcu_idx is not changed while checking. + */ +static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) +{ + unsigned long curdelay; + + curdelay = !srcu_get_delay(ssp); + + for (;;) { + if (srcu_readers_active_idx_check(ssp, idx)) + return true; + if ((--trycount + curdelay) <= 0) + return false; + udelay(srcu_retry_check_delay); + } +} + +/* + * Increment the ->srcu_idx counter so that future SRCU readers will + * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows + * us to wait for pre-existing readers in a starvation-free manner. + */ +static void srcu_flip(struct srcu_struct *ssp) +{ + /* + * Because the flip of ->srcu_idx is executed only if the + * preceding call to srcu_readers_active_idx_check() found that + * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched + * and because that summing uses atomic_long_read(), there is + * ordering due to a control dependency between that summing and + * the WRITE_ONCE() in this call to srcu_flip(). This ordering + * ensures that if this updater saw a given reader's increment from + * __srcu_read_lock(), that reader was using a value of ->srcu_idx + * from before the previous call to srcu_flip(), which should be + * quite rare. This ordering thus helps forward progress because + * the grace period could otherwise be delayed by additional + * calls to __srcu_read_lock() using that old (soon to be new) + * value of ->srcu_idx. + * + * This sum-equality check and ordering also ensures that if + * a given call to __srcu_read_lock() uses the new value of + * ->srcu_idx, this updater's earlier scans cannot have seen + * that reader's increments, which is all to the good, because + * this grace period need not wait on that reader. After all, + * if those earlier scans had seen that reader, there would have + * been a sum mismatch and this code would not be reached. + * + * This means that the following smp_mb() is redundant, but + * it stays until either (1) Compilers learn about this sort of + * control dependency or (2) Some production workload running on + * a production system is unduly delayed by this slowpath smp_mb(). + */ + smp_mb(); /* E */ /* Pairs with B and C. */ + + WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter. + + /* + * Ensure that if the updater misses an __srcu_read_unlock() + * increment, that task's __srcu_read_lock() following its next + * __srcu_read_lock() or __srcu_read_unlock() will see the above + * counter update. Note that both this memory barrier and the + * one in srcu_readers_active_idx_check() provide the guarantee + * for __srcu_read_lock(). + */ + smp_mb(); /* D */ /* Pairs with C. */ +} + +/* + * If SRCU is likely idle, return true, otherwise return false. + * + * Note that it is OK for several current from-idle requests for a new + * grace period from idle to specify expediting because they will all end + * up requesting the same grace period anyhow. So no loss. + * + * Note also that if any CPU (including the current one) is still invoking + * callbacks, this function will nevertheless say "idle". This is not + * ideal, but the overhead of checking all CPUs' callback lists is even + * less ideal, especially on large systems. Furthermore, the wakeup + * can happen before the callback is fully removed, so we have no choice + * but to accept this type of error. + * + * This function is also subject to counter-wrap errors, but let's face + * it, if this function was preempted for enough time for the counters + * to wrap, it really doesn't matter whether or not we expedite the grace + * period. The extra overhead of a needlessly expedited grace period is + * negligible when amortized over that time period, and the extra latency + * of a needlessly non-expedited grace period is similarly negligible. + */ +static bool srcu_might_be_idle(struct srcu_struct *ssp) +{ + unsigned long curseq; + unsigned long flags; + struct srcu_data *sdp; + unsigned long t; + unsigned long tlast; + + check_init_srcu_struct(ssp); + /* If the local srcu_data structure has callbacks, not idle. */ + sdp = raw_cpu_ptr(ssp->sda); + spin_lock_irqsave_rcu_node(sdp, flags); + if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { + spin_unlock_irqrestore_rcu_node(sdp, flags); + return false; /* Callbacks already present, so not idle. */ + } + spin_unlock_irqrestore_rcu_node(sdp, flags); + + /* + * No local callbacks, so probabilistically probe global state. + * Exact information would require acquiring locks, which would + * kill scalability, hence the probabilistic nature of the probe. + */ + + /* First, see if enough time has passed since the last GP. */ + t = ktime_get_mono_fast_ns(); + tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end); + if (exp_holdoff == 0 || + time_in_range_open(t, tlast, tlast + exp_holdoff)) + return false; /* Too soon after last GP. */ + + /* Next, check for probable idleness. */ + curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); + smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ + if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed))) + return false; /* Grace period in progress, so not idle. */ + smp_mb(); /* Order ->srcu_gp_seq with prior access. */ + if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)) + return false; /* GP # changed, so not idle. */ + return true; /* With reasonable probability, idle! */ +} + +/* + * SRCU callback function to leak a callback. + */ +static void srcu_leak_callback(struct rcu_head *rhp) +{ +} + +/* + * Start an SRCU grace period, and also queue the callback if non-NULL. + */ +static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, + struct rcu_head *rhp, bool do_norm) +{ + unsigned long flags; + int idx; + bool needexp = false; + bool needgp = false; + unsigned long s; + struct srcu_data *sdp; + struct srcu_node *sdp_mynode; + int ss_state; + + check_init_srcu_struct(ssp); + /* + * While starting a new grace period, make sure we are in an + * SRCU read-side critical section so that the grace-period + * sequence number cannot wrap around in the meantime. + */ + idx = __srcu_read_lock_nmisafe(ssp); + ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state); + if (ss_state < SRCU_SIZE_WAIT_CALL) + sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); + else + sdp = raw_cpu_ptr(ssp->sda); + spin_lock_irqsave_sdp_contention(sdp, &flags); + if (rhp) + rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); + /* + * The snapshot for acceleration must be taken _before_ the read of the + * current gp sequence used for advancing, otherwise advancing may fail + * and acceleration may then fail too. + * + * This could happen if: + * + * 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the + * RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8). + * + * 2) The grace period for RCU_WAIT_TAIL is seen as started but not + * completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1. + * + * 3) This value is passed to rcu_segcblist_advance() which can't move + * any segment forward and fails. + * + * 4) srcu_gp_start_if_needed() still proceeds with callback acceleration. + * But then the call to rcu_seq_snap() observes the grace period for the + * RCU_WAIT_TAIL segment as completed and the subsequent one for the + * RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1) + * so it returns a snapshot of the next grace period, which is X + 12. + * + * 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the + * freshly enqueued callback in RCU_NEXT_TAIL can't move to + * RCU_NEXT_READY_TAIL which already has callbacks for a previous grace + * period (gp_num = X + 8). So acceleration fails. + */ + s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); + rcu_segcblist_advance(&sdp->srcu_cblist, + rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); + WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s) && rhp); + if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { + sdp->srcu_gp_seq_needed = s; + needgp = true; + } + if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { + sdp->srcu_gp_seq_needed_exp = s; + needexp = true; + } + spin_unlock_irqrestore_rcu_node(sdp, flags); + + /* Ensure that snp node tree is fully initialized before traversing it */ + if (ss_state < SRCU_SIZE_WAIT_BARRIER) + sdp_mynode = NULL; + else + sdp_mynode = sdp->mynode; + + if (needgp) + srcu_funnel_gp_start(ssp, sdp, s, do_norm); + else if (needexp) + srcu_funnel_exp_start(ssp, sdp_mynode, s); + __srcu_read_unlock_nmisafe(ssp, idx); + return s; +} + +/* + * Enqueue an SRCU callback on the srcu_data structure associated with + * the current CPU and the specified srcu_struct structure, initiating + * grace-period processing if it is not already running. + * + * Note that all CPUs must agree that the grace period extended beyond + * all pre-existing SRCU read-side critical section. On systems with + * more than one CPU, this means that when "func()" is invoked, each CPU + * is guaranteed to have executed a full memory barrier since the end of + * its last corresponding SRCU read-side critical section whose beginning + * preceded the call to call_srcu(). It also means that each CPU executing + * an SRCU read-side critical section that continues beyond the start of + * "func()" must have executed a memory barrier after the call_srcu() + * but before the beginning of that SRCU read-side critical section. + * Note that these guarantees include CPUs that are offline, idle, or + * executing in user mode, as well as CPUs that are executing in the kernel. + * + * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the + * resulting SRCU callback function "func()", then both CPU A and CPU + * B are guaranteed to execute a full memory barrier during the time + * interval between the call to call_srcu() and the invocation of "func()". + * This guarantee applies even if CPU A and CPU B are the same CPU (but + * again only if the system has more than one CPU). + * + * Of course, these guarantees apply only for invocations of call_srcu(), + * srcu_read_lock(), and srcu_read_unlock() that are all passed the same + * srcu_struct structure. + */ +static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, + rcu_callback_t func, bool do_norm) +{ + if (debug_rcu_head_queue(rhp)) { + /* Probable double call_srcu(), so leak the callback. */ + WRITE_ONCE(rhp->func, srcu_leak_callback); + WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); + return; + } + rhp->func = func; + (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); +} + +/** + * call_srcu() - Queue a callback for invocation after an SRCU grace period + * @ssp: srcu_struct in queue the callback + * @rhp: structure to be used for queueing the SRCU callback. + * @func: function to be invoked after the SRCU grace period + * + * The callback function will be invoked some time after a full SRCU + * grace period elapses, in other words after all pre-existing SRCU + * read-side critical sections have completed. However, the callback + * function might well execute concurrently with other SRCU read-side + * critical sections that started after call_srcu() was invoked. SRCU + * read-side critical sections are delimited by srcu_read_lock() and + * srcu_read_unlock(), and may be nested. + * + * The callback will be invoked from process context, but must nevertheless + * be fast and must not block. + */ +void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, + rcu_callback_t func) +{ + __call_srcu(ssp, rhp, func, true); +} +EXPORT_SYMBOL_GPL(call_srcu); + +/* + * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). + */ +static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) +{ + struct rcu_synchronize rcu; + + srcu_lock_sync(&ssp->dep_map); + + RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || + lock_is_held(&rcu_bh_lock_map) || + lock_is_held(&rcu_lock_map) || + lock_is_held(&rcu_sched_lock_map), + "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); + + if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) + return; + might_sleep(); + check_init_srcu_struct(ssp); + init_completion(&rcu.completion); + init_rcu_head_on_stack(&rcu.head); + __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); + wait_for_completion(&rcu.completion); + destroy_rcu_head_on_stack(&rcu.head); + + /* + * Make sure that later code is ordered after the SRCU grace + * period. This pairs with the spin_lock_irq_rcu_node() + * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed + * because the current CPU might have been totally uninvolved with + * (and thus unordered against) that grace period. + */ + smp_mb(); +} + +/** + * synchronize_srcu_expedited - Brute-force SRCU grace period + * @ssp: srcu_struct with which to synchronize. + * + * Wait for an SRCU grace period to elapse, but be more aggressive about + * spinning rather than blocking when waiting. + * + * Note that synchronize_srcu_expedited() has the same deadlock and + * memory-ordering properties as does synchronize_srcu(). + */ +void synchronize_srcu_expedited(struct srcu_struct *ssp) +{ + __synchronize_srcu(ssp, rcu_gp_is_normal()); +} +EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); + +/** + * synchronize_srcu - wait for prior SRCU read-side critical-section completion + * @ssp: srcu_struct with which to synchronize. + * + * Wait for the count to drain to zero of both indexes. To avoid the + * possible starvation of synchronize_srcu(), it waits for the count of + * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, + * and then flip the srcu_idx and wait for the count of the other index. + * + * Can block; must be called from process context. + * + * Note that it is illegal to call synchronize_srcu() from the corresponding + * SRCU read-side critical section; doing so will result in deadlock. + * However, it is perfectly legal to call synchronize_srcu() on one + * srcu_struct from some other srcu_struct's read-side critical section, + * as long as the resulting graph of srcu_structs is acyclic. + * + * There are memory-ordering constraints implied by synchronize_srcu(). + * On systems with more than one CPU, when synchronize_srcu() returns, + * each CPU is guaranteed to have executed a full memory barrier since + * the end of its last corresponding SRCU read-side critical section + * whose beginning preceded the call to synchronize_srcu(). In addition, + * each CPU having an SRCU read-side critical section that extends beyond + * the return from synchronize_srcu() is guaranteed to have executed a + * full memory barrier after the beginning of synchronize_srcu() and before + * the beginning of that SRCU read-side critical section. Note that these + * guarantees include CPUs that are offline, idle, or executing in user mode, + * as well as CPUs that are executing in the kernel. + * + * Furthermore, if CPU A invoked synchronize_srcu(), which returned + * to its caller on CPU B, then both CPU A and CPU B are guaranteed + * to have executed a full memory barrier during the execution of + * synchronize_srcu(). This guarantee applies even if CPU A and CPU B + * are the same CPU, but again only if the system has more than one CPU. + * + * Of course, these memory-ordering guarantees apply only when + * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are + * passed the same srcu_struct structure. + * + * Implementation of these memory-ordering guarantees is similar to + * that of synchronize_rcu(). + * + * If SRCU is likely idle, expedite the first request. This semantic + * was provided by Classic SRCU, and is relied upon by its users, so TREE + * SRCU must also provide it. Note that detecting idleness is heuristic + * and subject to both false positives and negatives. + */ +void synchronize_srcu(struct srcu_struct *ssp) +{ + if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) + synchronize_srcu_expedited(ssp); + else + __synchronize_srcu(ssp, true); +} +EXPORT_SYMBOL_GPL(synchronize_srcu); + +/** + * get_state_synchronize_srcu - Provide an end-of-grace-period cookie + * @ssp: srcu_struct to provide cookie for. + * + * This function returns a cookie that can be passed to + * poll_state_synchronize_srcu(), which will return true if a full grace + * period has elapsed in the meantime. It is the caller's responsibility + * to make sure that grace period happens, for example, by invoking + * call_srcu() after return from get_state_synchronize_srcu(). + */ +unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) +{ + // Any prior manipulation of SRCU-protected data must happen + // before the load from ->srcu_gp_seq. + smp_mb(); + return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); +} +EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); + +/** + * start_poll_synchronize_srcu - Provide cookie and start grace period + * @ssp: srcu_struct to provide cookie for. + * + * This function returns a cookie that can be passed to + * poll_state_synchronize_srcu(), which will return true if a full grace + * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), + * this function also ensures that any needed SRCU grace period will be + * started. This convenience does come at a cost in terms of CPU overhead. + */ +unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) +{ + return srcu_gp_start_if_needed(ssp, NULL, true); +} +EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); + +/** + * poll_state_synchronize_srcu - Has cookie's grace period ended? + * @ssp: srcu_struct to provide cookie for. + * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). + * + * This function takes the cookie that was returned from either + * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and + * returns @true if an SRCU grace period elapsed since the time that the + * cookie was created. + * + * Because cookies are finite in size, wrapping/overflow is possible. + * This is more pronounced on 32-bit systems where cookies are 32 bits, + * where in theory wrapping could happen in about 14 hours assuming + * 25-microsecond expedited SRCU grace periods. However, a more likely + * overflow lower bound is on the order of 24 days in the case of + * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit + * system requires geologic timespans, as in more than seven million years + * even for expedited SRCU grace periods. + * + * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems + * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses + * a 16-bit cookie, which rcutorture routinely wraps in a matter of a + * few minutes. If this proves to be a problem, this counter will be + * expanded to the same size as for Tree SRCU. + */ +bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) +{ + if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie)) + return false; + // Ensure that the end of the SRCU grace period happens before + // any subsequent code that the caller might execute. + smp_mb(); // ^^^ + return true; +} +EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); + +/* + * Callback function for srcu_barrier() use. + */ +static void srcu_barrier_cb(struct rcu_head *rhp) +{ + struct srcu_data *sdp; + struct srcu_struct *ssp; + + sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); + ssp = sdp->ssp; + if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) + complete(&ssp->srcu_sup->srcu_barrier_completion); +} + +/* + * Enqueue an srcu_barrier() callback on the specified srcu_data + * structure's ->cblist. but only if that ->cblist already has at least one + * callback enqueued. Note that if a CPU already has callbacks enqueue, + * it must have already registered the need for a future grace period, + * so all we need do is enqueue a callback that will use the same grace + * period as the last callback already in the queue. + */ +static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) +{ + spin_lock_irq_rcu_node(sdp); + atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt); + sdp->srcu_barrier_head.func = srcu_barrier_cb; + debug_rcu_head_queue(&sdp->srcu_barrier_head); + if (!rcu_segcblist_entrain(&sdp->srcu_cblist, + &sdp->srcu_barrier_head)) { + debug_rcu_head_unqueue(&sdp->srcu_barrier_head); + atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt); + } + spin_unlock_irq_rcu_node(sdp); +} + +/** + * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. + * @ssp: srcu_struct on which to wait for in-flight callbacks. + */ +void srcu_barrier(struct srcu_struct *ssp) +{ + int cpu; + int idx; + unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq); + + check_init_srcu_struct(ssp); + mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex); + if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) { + smp_mb(); /* Force ordering following return. */ + mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); + return; /* Someone else did our work for us. */ + } + rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq); + init_completion(&ssp->srcu_sup->srcu_barrier_completion); + + /* Initial count prevents reaching zero until all CBs are posted. */ + atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1); + + idx = __srcu_read_lock_nmisafe(ssp); + if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) + srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); + else + for_each_possible_cpu(cpu) + srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); + __srcu_read_unlock_nmisafe(ssp, idx); + + /* Remove the initial count, at which point reaching zero can happen. */ + if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) + complete(&ssp->srcu_sup->srcu_barrier_completion); + wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion); + + rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq); + mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); +} +EXPORT_SYMBOL_GPL(srcu_barrier); + +/** + * srcu_batches_completed - return batches completed. + * @ssp: srcu_struct on which to report batch completion. + * + * Report the number of batches, correlated with, but not necessarily + * precisely the same as, the number of grace periods that have elapsed. + */ +unsigned long srcu_batches_completed(struct srcu_struct *ssp) +{ + return READ_ONCE(ssp->srcu_idx); +} +EXPORT_SYMBOL_GPL(srcu_batches_completed); + +/* + * Core SRCU state machine. Push state bits of ->srcu_gp_seq + * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has + * completed in that state. + */ +static void srcu_advance_state(struct srcu_struct *ssp) +{ + int idx; + + mutex_lock(&ssp->srcu_sup->srcu_gp_mutex); + + /* + * Because readers might be delayed for an extended period after + * fetching ->srcu_idx for their index, at any point in time there + * might well be readers using both idx=0 and idx=1. We therefore + * need to wait for readers to clear from both index values before + * invoking a callback. + * + * The load-acquire ensures that we see the accesses performed + * by the prior grace period. + */ + idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */ + if (idx == SRCU_STATE_IDLE) { + spin_lock_irq_rcu_node(ssp->srcu_sup); + if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { + WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)); + spin_unlock_irq_rcu_node(ssp->srcu_sup); + mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); + return; + } + idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)); + if (idx == SRCU_STATE_IDLE) + srcu_gp_start(ssp); + spin_unlock_irq_rcu_node(ssp->srcu_sup); + if (idx != SRCU_STATE_IDLE) { + mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); + return; /* Someone else started the grace period. */ + } + } + + if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) { + idx = 1 ^ (ssp->srcu_idx & 1); + if (!try_check_zero(ssp, idx, 1)) { + mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); + return; /* readers present, retry later. */ + } + srcu_flip(ssp); + spin_lock_irq_rcu_node(ssp->srcu_sup); + rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2); + ssp->srcu_sup->srcu_n_exp_nodelay = 0; + spin_unlock_irq_rcu_node(ssp->srcu_sup); + } + + if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) { + + /* + * SRCU read-side critical sections are normally short, + * so check at least twice in quick succession after a flip. + */ + idx = 1 ^ (ssp->srcu_idx & 1); + if (!try_check_zero(ssp, idx, 2)) { + mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); + return; /* readers present, retry later. */ + } + ssp->srcu_sup->srcu_n_exp_nodelay = 0; + srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ + } +} + +/* + * Invoke a limited number of SRCU callbacks that have passed through + * their grace period. If there are more to do, SRCU will reschedule + * the workqueue. Note that needed memory barriers have been executed + * in this task's context by srcu_readers_active_idx_check(). + */ +static void srcu_invoke_callbacks(struct work_struct *work) +{ + long len; + bool more; + struct rcu_cblist ready_cbs; + struct rcu_head *rhp; + struct srcu_data *sdp; + struct srcu_struct *ssp; + + sdp = container_of(work, struct srcu_data, work); + + ssp = sdp->ssp; + rcu_cblist_init(&ready_cbs); + spin_lock_irq_rcu_node(sdp); + WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); + rcu_segcblist_advance(&sdp->srcu_cblist, + rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); + if (sdp->srcu_cblist_invoking || + !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { + spin_unlock_irq_rcu_node(sdp); + return; /* Someone else on the job or nothing to do. */ + } + + /* We are on the job! Extract and invoke ready callbacks. */ + sdp->srcu_cblist_invoking = true; + rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); + len = ready_cbs.len; + spin_unlock_irq_rcu_node(sdp); + rhp = rcu_cblist_dequeue(&ready_cbs); + for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { + debug_rcu_head_unqueue(rhp); + local_bh_disable(); + rhp->func(rhp); + local_bh_enable(); + } + WARN_ON_ONCE(ready_cbs.len); + + /* + * Update counts, accelerate new callbacks, and if needed, + * schedule another round of callback invocation. + */ + spin_lock_irq_rcu_node(sdp); + rcu_segcblist_add_len(&sdp->srcu_cblist, -len); + sdp->srcu_cblist_invoking = false; + more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); + spin_unlock_irq_rcu_node(sdp); + if (more) + srcu_schedule_cbs_sdp(sdp, 0); +} + +/* + * Finished one round of SRCU grace period. Start another if there are + * more SRCU callbacks queued, otherwise put SRCU into not-running state. + */ +static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) +{ + bool pushgp = true; + + spin_lock_irq_rcu_node(ssp->srcu_sup); + if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { + if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) { + /* All requests fulfilled, time to go idle. */ + pushgp = false; + } + } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) { + /* Outstanding request and no GP. Start one. */ + srcu_gp_start(ssp); + } + spin_unlock_irq_rcu_node(ssp->srcu_sup); + + if (pushgp) + queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay); +} + +/* + * This is the work-queue function that handles SRCU grace periods. + */ +static void process_srcu(struct work_struct *work) +{ + unsigned long curdelay; + unsigned long j; + struct srcu_struct *ssp; + struct srcu_usage *sup; + + sup = container_of(work, struct srcu_usage, work.work); + ssp = sup->srcu_ssp; + + srcu_advance_state(ssp); + curdelay = srcu_get_delay(ssp); + if (curdelay) { + WRITE_ONCE(sup->reschedule_count, 0); + } else { + j = jiffies; + if (READ_ONCE(sup->reschedule_jiffies) == j) { + WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1); + if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay) + curdelay = 1; + } else { + WRITE_ONCE(sup->reschedule_count, 1); + WRITE_ONCE(sup->reschedule_jiffies, j); + } + } + srcu_reschedule(ssp, curdelay); +} + +void srcutorture_get_gp_data(enum rcutorture_type test_type, + struct srcu_struct *ssp, int *flags, + unsigned long *gp_seq) +{ + if (test_type != SRCU_FLAVOR) + return; + *flags = 0; + *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); +} +EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); + +static const char * const srcu_size_state_name[] = { + "SRCU_SIZE_SMALL", + "SRCU_SIZE_ALLOC", + "SRCU_SIZE_WAIT_BARRIER", + "SRCU_SIZE_WAIT_CALL", + "SRCU_SIZE_WAIT_CBS1", + "SRCU_SIZE_WAIT_CBS2", + "SRCU_SIZE_WAIT_CBS3", + "SRCU_SIZE_WAIT_CBS4", + "SRCU_SIZE_BIG", + "SRCU_SIZE_???", +}; + +void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) +{ + int cpu; + int idx; + unsigned long s0 = 0, s1 = 0; + int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state); + int ss_state_idx = ss_state; + + idx = ssp->srcu_idx & 0x1; + if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) + ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; + pr_alert("%s%s Tree SRCU g%ld state %d (%s)", + tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state, + srcu_size_state_name[ss_state_idx]); + if (!ssp->sda) { + // Called after cleanup_srcu_struct(), perhaps. + pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); + } else { + pr_cont(" per-CPU(idx=%d):", idx); + for_each_possible_cpu(cpu) { + unsigned long l0, l1; + unsigned long u0, u1; + long c0, c1; + struct srcu_data *sdp; + + sdp = per_cpu_ptr(ssp->sda, cpu); + u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx])); + u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx])); + + /* + * Make sure that a lock is always counted if the corresponding + * unlock is counted. + */ + smp_rmb(); + + l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx])); + l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx])); + + c0 = l0 - u0; + c1 = l1 - u1; + pr_cont(" %d(%ld,%ld %c)", + cpu, c0, c1, + "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); + s0 += c0; + s1 += c1; + } + pr_cont(" T(%ld,%ld)\n", s0, s1); + } + if (SRCU_SIZING_IS_TORTURE()) + srcu_transition_to_big(ssp); +} +EXPORT_SYMBOL_GPL(srcu_torture_stats_print); + +static int __init srcu_bootup_announce(void) +{ + pr_info("Hierarchical SRCU implementation.\n"); + if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) + pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); + if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) + pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); + if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) + pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); + pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); + return 0; +} +early_initcall(srcu_bootup_announce); + +void __init srcu_init(void) +{ + struct srcu_usage *sup; + + /* Decide on srcu_struct-size strategy. */ + if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { + if (nr_cpu_ids >= big_cpu_lim) { + convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. + pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); + } else { + convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; + pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); + } + } + + /* + * Once that is set, call_srcu() can follow the normal path and + * queue delayed work. This must follow RCU workqueues creation + * and timers initialization. + */ + srcu_init_done = true; + while (!list_empty(&srcu_boot_list)) { + sup = list_first_entry(&srcu_boot_list, struct srcu_usage, + work.work.entry); + list_del_init(&sup->work.work.entry); + if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && + sup->srcu_size_state == SRCU_SIZE_SMALL) + sup->srcu_size_state = SRCU_SIZE_ALLOC; + queue_work(rcu_gp_wq, &sup->work.work); + } +} + +#ifdef CONFIG_MODULES + +/* Initialize any global-scope srcu_struct structures used by this module. */ +static int srcu_module_coming(struct module *mod) +{ + int i; + struct srcu_struct *ssp; + struct srcu_struct **sspp = mod->srcu_struct_ptrs; + + for (i = 0; i < mod->num_srcu_structs; i++) { + ssp = *(sspp++); + ssp->sda = alloc_percpu(struct srcu_data); + if (WARN_ON_ONCE(!ssp->sda)) + return -ENOMEM; + } + return 0; +} + +/* Clean up any global-scope srcu_struct structures used by this module. */ +static void srcu_module_going(struct module *mod) +{ + int i; + struct srcu_struct *ssp; + struct srcu_struct **sspp = mod->srcu_struct_ptrs; + + for (i = 0; i < mod->num_srcu_structs; i++) { + ssp = *(sspp++); + if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) && + !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static)) + cleanup_srcu_struct(ssp); + if (!WARN_ON(srcu_readers_active(ssp))) + free_percpu(ssp->sda); + } +} + +/* Handle one module, either coming or going. */ +static int srcu_module_notify(struct notifier_block *self, + unsigned long val, void *data) +{ + struct module *mod = data; + int ret = 0; + + switch (val) { + case MODULE_STATE_COMING: + ret = srcu_module_coming(mod); + break; + case MODULE_STATE_GOING: + srcu_module_going(mod); + break; + default: + break; + } + return ret; +} + +static struct notifier_block srcu_module_nb = { + .notifier_call = srcu_module_notify, + .priority = 0, +}; + +static __init int init_srcu_module_notifier(void) +{ + int ret; + + ret = register_module_notifier(&srcu_module_nb); + if (ret) + pr_warn("Failed to register srcu module notifier\n"); + return ret; +} +late_initcall(init_srcu_module_notifier); + +#endif /* #ifdef CONFIG_MODULES */ |