diff options
Diffstat (limited to '')
-rw-r--r-- | kernel/sched/sched.h | 3531 |
1 files changed, 3531 insertions, 0 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h new file mode 100644 index 0000000000..0484627240 --- /dev/null +++ b/kernel/sched/sched.h @@ -0,0 +1,3531 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Scheduler internal types and methods: + */ +#ifndef _KERNEL_SCHED_SCHED_H +#define _KERNEL_SCHED_SCHED_H + +#include <linux/sched/affinity.h> +#include <linux/sched/autogroup.h> +#include <linux/sched/cpufreq.h> +#include <linux/sched/deadline.h> +#include <linux/sched.h> +#include <linux/sched/loadavg.h> +#include <linux/sched/mm.h> +#include <linux/sched/rseq_api.h> +#include <linux/sched/signal.h> +#include <linux/sched/smt.h> +#include <linux/sched/stat.h> +#include <linux/sched/sysctl.h> +#include <linux/sched/task_flags.h> +#include <linux/sched/task.h> +#include <linux/sched/topology.h> + +#include <linux/atomic.h> +#include <linux/bitmap.h> +#include <linux/bug.h> +#include <linux/capability.h> +#include <linux/cgroup_api.h> +#include <linux/cgroup.h> +#include <linux/context_tracking.h> +#include <linux/cpufreq.h> +#include <linux/cpumask_api.h> +#include <linux/ctype.h> +#include <linux/file.h> +#include <linux/fs_api.h> +#include <linux/hrtimer_api.h> +#include <linux/interrupt.h> +#include <linux/irq_work.h> +#include <linux/jiffies.h> +#include <linux/kref_api.h> +#include <linux/kthread.h> +#include <linux/ktime_api.h> +#include <linux/lockdep_api.h> +#include <linux/lockdep.h> +#include <linux/minmax.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/mutex_api.h> +#include <linux/plist.h> +#include <linux/poll.h> +#include <linux/proc_fs.h> +#include <linux/profile.h> +#include <linux/psi.h> +#include <linux/rcupdate.h> +#include <linux/seq_file.h> +#include <linux/seqlock.h> +#include <linux/softirq.h> +#include <linux/spinlock_api.h> +#include <linux/static_key.h> +#include <linux/stop_machine.h> +#include <linux/syscalls_api.h> +#include <linux/syscalls.h> +#include <linux/tick.h> +#include <linux/topology.h> +#include <linux/types.h> +#include <linux/u64_stats_sync_api.h> +#include <linux/uaccess.h> +#include <linux/wait_api.h> +#include <linux/wait_bit.h> +#include <linux/workqueue_api.h> + +#include <trace/events/power.h> +#include <trace/events/sched.h> + +#include "../workqueue_internal.h" + +#ifdef CONFIG_CGROUP_SCHED +#include <linux/cgroup.h> +#include <linux/psi.h> +#endif + +#ifdef CONFIG_SCHED_DEBUG +# include <linux/static_key.h> +#endif + +#ifdef CONFIG_PARAVIRT +# include <asm/paravirt.h> +# include <asm/paravirt_api_clock.h> +#endif + +#include "cpupri.h" +#include "cpudeadline.h" + +#ifdef CONFIG_SCHED_DEBUG +# define SCHED_WARN_ON(x) WARN_ONCE(x, #x) +#else +# define SCHED_WARN_ON(x) ({ (void)(x), 0; }) +#endif + +struct rq; +struct cpuidle_state; + +/* task_struct::on_rq states: */ +#define TASK_ON_RQ_QUEUED 1 +#define TASK_ON_RQ_MIGRATING 2 + +extern __read_mostly int scheduler_running; + +extern unsigned long calc_load_update; +extern atomic_long_t calc_load_tasks; + +extern unsigned int sysctl_sched_child_runs_first; + +extern void calc_global_load_tick(struct rq *this_rq); +extern long calc_load_fold_active(struct rq *this_rq, long adjust); + +extern void call_trace_sched_update_nr_running(struct rq *rq, int count); + +extern unsigned int sysctl_sched_rt_period; +extern int sysctl_sched_rt_runtime; +extern int sched_rr_timeslice; + +/* + * Helpers for converting nanosecond timing to jiffy resolution + */ +#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) + +/* + * Increase resolution of nice-level calculations for 64-bit architectures. + * The extra resolution improves shares distribution and load balancing of + * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup + * hierarchies, especially on larger systems. This is not a user-visible change + * and does not change the user-interface for setting shares/weights. + * + * We increase resolution only if we have enough bits to allow this increased + * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit + * are pretty high and the returns do not justify the increased costs. + * + * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to + * increase coverage and consistency always enable it on 64-bit platforms. + */ +#ifdef CONFIG_64BIT +# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) +# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) +# define scale_load_down(w) \ +({ \ + unsigned long __w = (w); \ + if (__w) \ + __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ + __w; \ +}) +#else +# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) +# define scale_load(w) (w) +# define scale_load_down(w) (w) +#endif + +/* + * Task weight (visible to users) and its load (invisible to users) have + * independent resolution, but they should be well calibrated. We use + * scale_load() and scale_load_down(w) to convert between them. The + * following must be true: + * + * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD + * + */ +#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) + +/* + * Single value that decides SCHED_DEADLINE internal math precision. + * 10 -> just above 1us + * 9 -> just above 0.5us + */ +#define DL_SCALE 10 + +/* + * Single value that denotes runtime == period, ie unlimited time. + */ +#define RUNTIME_INF ((u64)~0ULL) + +static inline int idle_policy(int policy) +{ + return policy == SCHED_IDLE; +} +static inline int fair_policy(int policy) +{ + return policy == SCHED_NORMAL || policy == SCHED_BATCH; +} + +static inline int rt_policy(int policy) +{ + return policy == SCHED_FIFO || policy == SCHED_RR; +} + +static inline int dl_policy(int policy) +{ + return policy == SCHED_DEADLINE; +} +static inline bool valid_policy(int policy) +{ + return idle_policy(policy) || fair_policy(policy) || + rt_policy(policy) || dl_policy(policy); +} + +static inline int task_has_idle_policy(struct task_struct *p) +{ + return idle_policy(p->policy); +} + +static inline int task_has_rt_policy(struct task_struct *p) +{ + return rt_policy(p->policy); +} + +static inline int task_has_dl_policy(struct task_struct *p) +{ + return dl_policy(p->policy); +} + +#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) + +static inline void update_avg(u64 *avg, u64 sample) +{ + s64 diff = sample - *avg; + *avg += diff / 8; +} + +/* + * Shifting a value by an exponent greater *or equal* to the size of said value + * is UB; cap at size-1. + */ +#define shr_bound(val, shift) \ + (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) + +/* + * !! For sched_setattr_nocheck() (kernel) only !! + * + * This is actually gross. :( + * + * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE + * tasks, but still be able to sleep. We need this on platforms that cannot + * atomically change clock frequency. Remove once fast switching will be + * available on such platforms. + * + * SUGOV stands for SchedUtil GOVernor. + */ +#define SCHED_FLAG_SUGOV 0x10000000 + +#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) + +static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) +{ +#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL + return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); +#else + return false; +#endif +} + +/* + * Tells if entity @a should preempt entity @b. + */ +static inline bool dl_entity_preempt(const struct sched_dl_entity *a, + const struct sched_dl_entity *b) +{ + return dl_entity_is_special(a) || + dl_time_before(a->deadline, b->deadline); +} + +/* + * This is the priority-queue data structure of the RT scheduling class: + */ +struct rt_prio_array { + DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ + struct list_head queue[MAX_RT_PRIO]; +}; + +struct rt_bandwidth { + /* nests inside the rq lock: */ + raw_spinlock_t rt_runtime_lock; + ktime_t rt_period; + u64 rt_runtime; + struct hrtimer rt_period_timer; + unsigned int rt_period_active; +}; + +void __dl_clear_params(struct task_struct *p); + +static inline int dl_bandwidth_enabled(void) +{ + return sysctl_sched_rt_runtime >= 0; +} + +/* + * To keep the bandwidth of -deadline tasks under control + * we need some place where: + * - store the maximum -deadline bandwidth of each cpu; + * - cache the fraction of bandwidth that is currently allocated in + * each root domain; + * + * This is all done in the data structure below. It is similar to the + * one used for RT-throttling (rt_bandwidth), with the main difference + * that, since here we are only interested in admission control, we + * do not decrease any runtime while the group "executes", neither we + * need a timer to replenish it. + * + * With respect to SMP, bandwidth is given on a per root domain basis, + * meaning that: + * - bw (< 100%) is the deadline bandwidth of each CPU; + * - total_bw is the currently allocated bandwidth in each root domain; + */ +struct dl_bw { + raw_spinlock_t lock; + u64 bw; + u64 total_bw; +}; + +extern void init_dl_bw(struct dl_bw *dl_b); +extern int sched_dl_global_validate(void); +extern void sched_dl_do_global(void); +extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); +extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); +extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); +extern bool __checkparam_dl(const struct sched_attr *attr); +extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); +extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); +extern int dl_bw_check_overflow(int cpu); + +#ifdef CONFIG_CGROUP_SCHED + +struct cfs_rq; +struct rt_rq; + +extern struct list_head task_groups; + +struct cfs_bandwidth { +#ifdef CONFIG_CFS_BANDWIDTH + raw_spinlock_t lock; + ktime_t period; + u64 quota; + u64 runtime; + u64 burst; + u64 runtime_snap; + s64 hierarchical_quota; + + u8 idle; + u8 period_active; + u8 slack_started; + struct hrtimer period_timer; + struct hrtimer slack_timer; + struct list_head throttled_cfs_rq; + + /* Statistics: */ + int nr_periods; + int nr_throttled; + int nr_burst; + u64 throttled_time; + u64 burst_time; +#endif +}; + +/* Task group related information */ +struct task_group { + struct cgroup_subsys_state css; + +#ifdef CONFIG_FAIR_GROUP_SCHED + /* schedulable entities of this group on each CPU */ + struct sched_entity **se; + /* runqueue "owned" by this group on each CPU */ + struct cfs_rq **cfs_rq; + unsigned long shares; + + /* A positive value indicates that this is a SCHED_IDLE group. */ + int idle; + +#ifdef CONFIG_SMP + /* + * load_avg can be heavily contended at clock tick time, so put + * it in its own cacheline separated from the fields above which + * will also be accessed at each tick. + */ + atomic_long_t load_avg ____cacheline_aligned; +#endif +#endif + +#ifdef CONFIG_RT_GROUP_SCHED + struct sched_rt_entity **rt_se; + struct rt_rq **rt_rq; + + struct rt_bandwidth rt_bandwidth; +#endif + + struct rcu_head rcu; + struct list_head list; + + struct task_group *parent; + struct list_head siblings; + struct list_head children; + +#ifdef CONFIG_SCHED_AUTOGROUP + struct autogroup *autogroup; +#endif + + struct cfs_bandwidth cfs_bandwidth; + +#ifdef CONFIG_UCLAMP_TASK_GROUP + /* The two decimal precision [%] value requested from user-space */ + unsigned int uclamp_pct[UCLAMP_CNT]; + /* Clamp values requested for a task group */ + struct uclamp_se uclamp_req[UCLAMP_CNT]; + /* Effective clamp values used for a task group */ + struct uclamp_se uclamp[UCLAMP_CNT]; +#endif + +}; + +#ifdef CONFIG_FAIR_GROUP_SCHED +#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD + +/* + * A weight of 0 or 1 can cause arithmetics problems. + * A weight of a cfs_rq is the sum of weights of which entities + * are queued on this cfs_rq, so a weight of a entity should not be + * too large, so as the shares value of a task group. + * (The default weight is 1024 - so there's no practical + * limitation from this.) + */ +#define MIN_SHARES (1UL << 1) +#define MAX_SHARES (1UL << 18) +#endif + +typedef int (*tg_visitor)(struct task_group *, void *); + +extern int walk_tg_tree_from(struct task_group *from, + tg_visitor down, tg_visitor up, void *data); + +/* + * Iterate the full tree, calling @down when first entering a node and @up when + * leaving it for the final time. + * + * Caller must hold rcu_lock or sufficient equivalent. + */ +static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) +{ + return walk_tg_tree_from(&root_task_group, down, up, data); +} + +extern int tg_nop(struct task_group *tg, void *data); + +extern void free_fair_sched_group(struct task_group *tg); +extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); +extern void online_fair_sched_group(struct task_group *tg); +extern void unregister_fair_sched_group(struct task_group *tg); +extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, + struct sched_entity *se, int cpu, + struct sched_entity *parent); +extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); + +extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); +extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); +extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); +extern bool cfs_task_bw_constrained(struct task_struct *p); + +extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, + struct sched_rt_entity *rt_se, int cpu, + struct sched_rt_entity *parent); +extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); +extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); +extern long sched_group_rt_runtime(struct task_group *tg); +extern long sched_group_rt_period(struct task_group *tg); +extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); + +extern struct task_group *sched_create_group(struct task_group *parent); +extern void sched_online_group(struct task_group *tg, + struct task_group *parent); +extern void sched_destroy_group(struct task_group *tg); +extern void sched_release_group(struct task_group *tg); + +extern void sched_move_task(struct task_struct *tsk); + +#ifdef CONFIG_FAIR_GROUP_SCHED +extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); + +extern int sched_group_set_idle(struct task_group *tg, long idle); + +#ifdef CONFIG_SMP +extern void set_task_rq_fair(struct sched_entity *se, + struct cfs_rq *prev, struct cfs_rq *next); +#else /* !CONFIG_SMP */ +static inline void set_task_rq_fair(struct sched_entity *se, + struct cfs_rq *prev, struct cfs_rq *next) { } +#endif /* CONFIG_SMP */ +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +#else /* CONFIG_CGROUP_SCHED */ + +struct cfs_bandwidth { }; +static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } + +#endif /* CONFIG_CGROUP_SCHED */ + +extern void unregister_rt_sched_group(struct task_group *tg); +extern void free_rt_sched_group(struct task_group *tg); +extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); + +/* + * u64_u32_load/u64_u32_store + * + * Use a copy of a u64 value to protect against data race. This is only + * applicable for 32-bits architectures. + */ +#ifdef CONFIG_64BIT +# define u64_u32_load_copy(var, copy) var +# define u64_u32_store_copy(var, copy, val) (var = val) +#else +# define u64_u32_load_copy(var, copy) \ +({ \ + u64 __val, __val_copy; \ + do { \ + __val_copy = copy; \ + /* \ + * paired with u64_u32_store_copy(), ordering access \ + * to var and copy. \ + */ \ + smp_rmb(); \ + __val = var; \ + } while (__val != __val_copy); \ + __val; \ +}) +# define u64_u32_store_copy(var, copy, val) \ +do { \ + typeof(val) __val = (val); \ + var = __val; \ + /* \ + * paired with u64_u32_load_copy(), ordering access to var and \ + * copy. \ + */ \ + smp_wmb(); \ + copy = __val; \ +} while (0) +#endif +# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) +# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) + +/* CFS-related fields in a runqueue */ +struct cfs_rq { + struct load_weight load; + unsigned int nr_running; + unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ + unsigned int idle_nr_running; /* SCHED_IDLE */ + unsigned int idle_h_nr_running; /* SCHED_IDLE */ + + s64 avg_vruntime; + u64 avg_load; + + u64 exec_clock; + u64 min_vruntime; +#ifdef CONFIG_SCHED_CORE + unsigned int forceidle_seq; + u64 min_vruntime_fi; +#endif + +#ifndef CONFIG_64BIT + u64 min_vruntime_copy; +#endif + + struct rb_root_cached tasks_timeline; + + /* + * 'curr' points to currently running entity on this cfs_rq. + * It is set to NULL otherwise (i.e when none are currently running). + */ + struct sched_entity *curr; + struct sched_entity *next; + +#ifdef CONFIG_SCHED_DEBUG + unsigned int nr_spread_over; +#endif + +#ifdef CONFIG_SMP + /* + * CFS load tracking + */ + struct sched_avg avg; +#ifndef CONFIG_64BIT + u64 last_update_time_copy; +#endif + struct { + raw_spinlock_t lock ____cacheline_aligned; + int nr; + unsigned long load_avg; + unsigned long util_avg; + unsigned long runnable_avg; + } removed; + +#ifdef CONFIG_FAIR_GROUP_SCHED + unsigned long tg_load_avg_contrib; + long propagate; + long prop_runnable_sum; + + /* + * h_load = weight * f(tg) + * + * Where f(tg) is the recursive weight fraction assigned to + * this group. + */ + unsigned long h_load; + u64 last_h_load_update; + struct sched_entity *h_load_next; +#endif /* CONFIG_FAIR_GROUP_SCHED */ +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_FAIR_GROUP_SCHED + struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ + + /* + * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in + * a hierarchy). Non-leaf lrqs hold other higher schedulable entities + * (like users, containers etc.) + * + * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. + * This list is used during load balance. + */ + int on_list; + struct list_head leaf_cfs_rq_list; + struct task_group *tg; /* group that "owns" this runqueue */ + + /* Locally cached copy of our task_group's idle value */ + int idle; + +#ifdef CONFIG_CFS_BANDWIDTH + int runtime_enabled; + s64 runtime_remaining; + + u64 throttled_pelt_idle; +#ifndef CONFIG_64BIT + u64 throttled_pelt_idle_copy; +#endif + u64 throttled_clock; + u64 throttled_clock_pelt; + u64 throttled_clock_pelt_time; + u64 throttled_clock_self; + u64 throttled_clock_self_time; + int throttled; + int throttle_count; + struct list_head throttled_list; +#ifdef CONFIG_SMP + struct list_head throttled_csd_list; +#endif +#endif /* CONFIG_CFS_BANDWIDTH */ +#endif /* CONFIG_FAIR_GROUP_SCHED */ +}; + +static inline int rt_bandwidth_enabled(void) +{ + return sysctl_sched_rt_runtime >= 0; +} + +/* RT IPI pull logic requires IRQ_WORK */ +#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) +# define HAVE_RT_PUSH_IPI +#endif + +/* Real-Time classes' related field in a runqueue: */ +struct rt_rq { + struct rt_prio_array active; + unsigned int rt_nr_running; + unsigned int rr_nr_running; +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED + struct { + int curr; /* highest queued rt task prio */ +#ifdef CONFIG_SMP + int next; /* next highest */ +#endif + } highest_prio; +#endif +#ifdef CONFIG_SMP + unsigned int rt_nr_migratory; + unsigned int rt_nr_total; + int overloaded; + struct plist_head pushable_tasks; + +#endif /* CONFIG_SMP */ + int rt_queued; + + int rt_throttled; + u64 rt_time; + u64 rt_runtime; + /* Nests inside the rq lock: */ + raw_spinlock_t rt_runtime_lock; + +#ifdef CONFIG_RT_GROUP_SCHED + unsigned int rt_nr_boosted; + + struct rq *rq; + struct task_group *tg; +#endif +}; + +static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) +{ + return rt_rq->rt_queued && rt_rq->rt_nr_running; +} + +/* Deadline class' related fields in a runqueue */ +struct dl_rq { + /* runqueue is an rbtree, ordered by deadline */ + struct rb_root_cached root; + + unsigned int dl_nr_running; + +#ifdef CONFIG_SMP + /* + * Deadline values of the currently executing and the + * earliest ready task on this rq. Caching these facilitates + * the decision whether or not a ready but not running task + * should migrate somewhere else. + */ + struct { + u64 curr; + u64 next; + } earliest_dl; + + unsigned int dl_nr_migratory; + int overloaded; + + /* + * Tasks on this rq that can be pushed away. They are kept in + * an rb-tree, ordered by tasks' deadlines, with caching + * of the leftmost (earliest deadline) element. + */ + struct rb_root_cached pushable_dl_tasks_root; +#else + struct dl_bw dl_bw; +#endif + /* + * "Active utilization" for this runqueue: increased when a + * task wakes up (becomes TASK_RUNNING) and decreased when a + * task blocks + */ + u64 running_bw; + + /* + * Utilization of the tasks "assigned" to this runqueue (including + * the tasks that are in runqueue and the tasks that executed on this + * CPU and blocked). Increased when a task moves to this runqueue, and + * decreased when the task moves away (migrates, changes scheduling + * policy, or terminates). + * This is needed to compute the "inactive utilization" for the + * runqueue (inactive utilization = this_bw - running_bw). + */ + u64 this_bw; + u64 extra_bw; + + /* + * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM + * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). + */ + u64 max_bw; + + /* + * Inverse of the fraction of CPU utilization that can be reclaimed + * by the GRUB algorithm. + */ + u64 bw_ratio; +}; + +#ifdef CONFIG_FAIR_GROUP_SCHED +/* An entity is a task if it doesn't "own" a runqueue */ +#define entity_is_task(se) (!se->my_q) + +static inline void se_update_runnable(struct sched_entity *se) +{ + if (!entity_is_task(se)) + se->runnable_weight = se->my_q->h_nr_running; +} + +static inline long se_runnable(struct sched_entity *se) +{ + if (entity_is_task(se)) + return !!se->on_rq; + else + return se->runnable_weight; +} + +#else +#define entity_is_task(se) 1 + +static inline void se_update_runnable(struct sched_entity *se) {} + +static inline long se_runnable(struct sched_entity *se) +{ + return !!se->on_rq; +} +#endif + +#ifdef CONFIG_SMP +/* + * XXX we want to get rid of these helpers and use the full load resolution. + */ +static inline long se_weight(struct sched_entity *se) +{ + return scale_load_down(se->load.weight); +} + + +static inline bool sched_asym_prefer(int a, int b) +{ + return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); +} + +struct perf_domain { + struct em_perf_domain *em_pd; + struct perf_domain *next; + struct rcu_head rcu; +}; + +/* Scheduling group status flags */ +#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ +#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ + +/* + * We add the notion of a root-domain which will be used to define per-domain + * variables. Each exclusive cpuset essentially defines an island domain by + * fully partitioning the member CPUs from any other cpuset. Whenever a new + * exclusive cpuset is created, we also create and attach a new root-domain + * object. + * + */ +struct root_domain { + atomic_t refcount; + atomic_t rto_count; + struct rcu_head rcu; + cpumask_var_t span; + cpumask_var_t online; + + /* + * Indicate pullable load on at least one CPU, e.g: + * - More than one runnable task + * - Running task is misfit + */ + int overload; + + /* Indicate one or more cpus over-utilized (tipping point) */ + int overutilized; + + /* + * The bit corresponding to a CPU gets set here if such CPU has more + * than one runnable -deadline task (as it is below for RT tasks). + */ + cpumask_var_t dlo_mask; + atomic_t dlo_count; + struct dl_bw dl_bw; + struct cpudl cpudl; + + /* + * Indicate whether a root_domain's dl_bw has been checked or + * updated. It's monotonously increasing value. + * + * Also, some corner cases, like 'wrap around' is dangerous, but given + * that u64 is 'big enough'. So that shouldn't be a concern. + */ + u64 visit_gen; + +#ifdef HAVE_RT_PUSH_IPI + /* + * For IPI pull requests, loop across the rto_mask. + */ + struct irq_work rto_push_work; + raw_spinlock_t rto_lock; + /* These are only updated and read within rto_lock */ + int rto_loop; + int rto_cpu; + /* These atomics are updated outside of a lock */ + atomic_t rto_loop_next; + atomic_t rto_loop_start; +#endif + /* + * The "RT overload" flag: it gets set if a CPU has more than + * one runnable RT task. + */ + cpumask_var_t rto_mask; + struct cpupri cpupri; + + unsigned long max_cpu_capacity; + + /* + * NULL-terminated list of performance domains intersecting with the + * CPUs of the rd. Protected by RCU. + */ + struct perf_domain __rcu *pd; +}; + +extern void init_defrootdomain(void); +extern int sched_init_domains(const struct cpumask *cpu_map); +extern void rq_attach_root(struct rq *rq, struct root_domain *rd); +extern void sched_get_rd(struct root_domain *rd); +extern void sched_put_rd(struct root_domain *rd); + +#ifdef HAVE_RT_PUSH_IPI +extern void rto_push_irq_work_func(struct irq_work *work); +#endif +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_UCLAMP_TASK +/* + * struct uclamp_bucket - Utilization clamp bucket + * @value: utilization clamp value for tasks on this clamp bucket + * @tasks: number of RUNNABLE tasks on this clamp bucket + * + * Keep track of how many tasks are RUNNABLE for a given utilization + * clamp value. + */ +struct uclamp_bucket { + unsigned long value : bits_per(SCHED_CAPACITY_SCALE); + unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); +}; + +/* + * struct uclamp_rq - rq's utilization clamp + * @value: currently active clamp values for a rq + * @bucket: utilization clamp buckets affecting a rq + * + * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. + * A clamp value is affecting a rq when there is at least one task RUNNABLE + * (or actually running) with that value. + * + * There are up to UCLAMP_CNT possible different clamp values, currently there + * are only two: minimum utilization and maximum utilization. + * + * All utilization clamping values are MAX aggregated, since: + * - for util_min: we want to run the CPU at least at the max of the minimum + * utilization required by its currently RUNNABLE tasks. + * - for util_max: we want to allow the CPU to run up to the max of the + * maximum utilization allowed by its currently RUNNABLE tasks. + * + * Since on each system we expect only a limited number of different + * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track + * the metrics required to compute all the per-rq utilization clamp values. + */ +struct uclamp_rq { + unsigned int value; + struct uclamp_bucket bucket[UCLAMP_BUCKETS]; +}; + +DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); +#endif /* CONFIG_UCLAMP_TASK */ + +struct rq; +struct balance_callback { + struct balance_callback *next; + void (*func)(struct rq *rq); +}; + +/* + * This is the main, per-CPU runqueue data structure. + * + * Locking rule: those places that want to lock multiple runqueues + * (such as the load balancing or the thread migration code), lock + * acquire operations must be ordered by ascending &runqueue. + */ +struct rq { + /* runqueue lock: */ + raw_spinlock_t __lock; + + /* + * nr_running and cpu_load should be in the same cacheline because + * remote CPUs use both these fields when doing load calculation. + */ + unsigned int nr_running; +#ifdef CONFIG_NUMA_BALANCING + unsigned int nr_numa_running; + unsigned int nr_preferred_running; + unsigned int numa_migrate_on; +#endif +#ifdef CONFIG_NO_HZ_COMMON +#ifdef CONFIG_SMP + unsigned long last_blocked_load_update_tick; + unsigned int has_blocked_load; + call_single_data_t nohz_csd; +#endif /* CONFIG_SMP */ + unsigned int nohz_tick_stopped; + atomic_t nohz_flags; +#endif /* CONFIG_NO_HZ_COMMON */ + +#ifdef CONFIG_SMP + unsigned int ttwu_pending; +#endif + u64 nr_switches; + +#ifdef CONFIG_UCLAMP_TASK + /* Utilization clamp values based on CPU's RUNNABLE tasks */ + struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; + unsigned int uclamp_flags; +#define UCLAMP_FLAG_IDLE 0x01 +#endif + + struct cfs_rq cfs; + struct rt_rq rt; + struct dl_rq dl; + +#ifdef CONFIG_FAIR_GROUP_SCHED + /* list of leaf cfs_rq on this CPU: */ + struct list_head leaf_cfs_rq_list; + struct list_head *tmp_alone_branch; +#endif /* CONFIG_FAIR_GROUP_SCHED */ + + /* + * This is part of a global counter where only the total sum + * over all CPUs matters. A task can increase this counter on + * one CPU and if it got migrated afterwards it may decrease + * it on another CPU. Always updated under the runqueue lock: + */ + unsigned int nr_uninterruptible; + + struct task_struct __rcu *curr; + struct task_struct *idle; + struct task_struct *stop; + unsigned long next_balance; + struct mm_struct *prev_mm; + + unsigned int clock_update_flags; + u64 clock; + /* Ensure that all clocks are in the same cache line */ + u64 clock_task ____cacheline_aligned; + u64 clock_pelt; + unsigned long lost_idle_time; + u64 clock_pelt_idle; + u64 clock_idle; +#ifndef CONFIG_64BIT + u64 clock_pelt_idle_copy; + u64 clock_idle_copy; +#endif + + atomic_t nr_iowait; + +#ifdef CONFIG_SCHED_DEBUG + u64 last_seen_need_resched_ns; + int ticks_without_resched; +#endif + +#ifdef CONFIG_MEMBARRIER + int membarrier_state; +#endif + +#ifdef CONFIG_SMP + struct root_domain *rd; + struct sched_domain __rcu *sd; + + unsigned long cpu_capacity; + unsigned long cpu_capacity_orig; + + struct balance_callback *balance_callback; + + unsigned char nohz_idle_balance; + unsigned char idle_balance; + + unsigned long misfit_task_load; + + /* For active balancing */ + int active_balance; + int push_cpu; + struct cpu_stop_work active_balance_work; + + /* CPU of this runqueue: */ + int cpu; + int online; + + struct list_head cfs_tasks; + + struct sched_avg avg_rt; + struct sched_avg avg_dl; +#ifdef CONFIG_HAVE_SCHED_AVG_IRQ + struct sched_avg avg_irq; +#endif +#ifdef CONFIG_SCHED_THERMAL_PRESSURE + struct sched_avg avg_thermal; +#endif + u64 idle_stamp; + u64 avg_idle; + + unsigned long wake_stamp; + u64 wake_avg_idle; + + /* This is used to determine avg_idle's max value */ + u64 max_idle_balance_cost; + +#ifdef CONFIG_HOTPLUG_CPU + struct rcuwait hotplug_wait; +#endif +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + u64 prev_irq_time; +#endif +#ifdef CONFIG_PARAVIRT + u64 prev_steal_time; +#endif +#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING + u64 prev_steal_time_rq; +#endif + + /* calc_load related fields */ + unsigned long calc_load_update; + long calc_load_active; + +#ifdef CONFIG_SCHED_HRTICK +#ifdef CONFIG_SMP + call_single_data_t hrtick_csd; +#endif + struct hrtimer hrtick_timer; + ktime_t hrtick_time; +#endif + +#ifdef CONFIG_SCHEDSTATS + /* latency stats */ + struct sched_info rq_sched_info; + unsigned long long rq_cpu_time; + /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ + + /* sys_sched_yield() stats */ + unsigned int yld_count; + + /* schedule() stats */ + unsigned int sched_count; + unsigned int sched_goidle; + + /* try_to_wake_up() stats */ + unsigned int ttwu_count; + unsigned int ttwu_local; +#endif + +#ifdef CONFIG_CPU_IDLE + /* Must be inspected within a rcu lock section */ + struct cpuidle_state *idle_state; +#endif + +#ifdef CONFIG_SMP + unsigned int nr_pinned; +#endif + unsigned int push_busy; + struct cpu_stop_work push_work; + +#ifdef CONFIG_SCHED_CORE + /* per rq */ + struct rq *core; + struct task_struct *core_pick; + unsigned int core_enabled; + unsigned int core_sched_seq; + struct rb_root core_tree; + + /* shared state -- careful with sched_core_cpu_deactivate() */ + unsigned int core_task_seq; + unsigned int core_pick_seq; + unsigned long core_cookie; + unsigned int core_forceidle_count; + unsigned int core_forceidle_seq; + unsigned int core_forceidle_occupation; + u64 core_forceidle_start; +#endif + + /* Scratch cpumask to be temporarily used under rq_lock */ + cpumask_var_t scratch_mask; + +#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) + call_single_data_t cfsb_csd; + struct list_head cfsb_csd_list; +#endif +}; + +#ifdef CONFIG_FAIR_GROUP_SCHED + +/* CPU runqueue to which this cfs_rq is attached */ +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ + return cfs_rq->rq; +} + +#else + +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ + return container_of(cfs_rq, struct rq, cfs); +} +#endif + +static inline int cpu_of(struct rq *rq) +{ +#ifdef CONFIG_SMP + return rq->cpu; +#else + return 0; +#endif +} + +#define MDF_PUSH 0x01 + +static inline bool is_migration_disabled(struct task_struct *p) +{ +#ifdef CONFIG_SMP + return p->migration_disabled; +#else + return false; +#endif +} + +DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); + +#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) +#define this_rq() this_cpu_ptr(&runqueues) +#define task_rq(p) cpu_rq(task_cpu(p)) +#define cpu_curr(cpu) (cpu_rq(cpu)->curr) +#define raw_rq() raw_cpu_ptr(&runqueues) + +struct sched_group; +#ifdef CONFIG_SCHED_CORE +static inline struct cpumask *sched_group_span(struct sched_group *sg); + +DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); + +static inline bool sched_core_enabled(struct rq *rq) +{ + return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; +} + +static inline bool sched_core_disabled(void) +{ + return !static_branch_unlikely(&__sched_core_enabled); +} + +/* + * Be careful with this function; not for general use. The return value isn't + * stable unless you actually hold a relevant rq->__lock. + */ +static inline raw_spinlock_t *rq_lockp(struct rq *rq) +{ + if (sched_core_enabled(rq)) + return &rq->core->__lock; + + return &rq->__lock; +} + +static inline raw_spinlock_t *__rq_lockp(struct rq *rq) +{ + if (rq->core_enabled) + return &rq->core->__lock; + + return &rq->__lock; +} + +bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, + bool fi); +void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); + +/* + * Helpers to check if the CPU's core cookie matches with the task's cookie + * when core scheduling is enabled. + * A special case is that the task's cookie always matches with CPU's core + * cookie if the CPU is in an idle core. + */ +static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) +{ + /* Ignore cookie match if core scheduler is not enabled on the CPU. */ + if (!sched_core_enabled(rq)) + return true; + + return rq->core->core_cookie == p->core_cookie; +} + +static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) +{ + bool idle_core = true; + int cpu; + + /* Ignore cookie match if core scheduler is not enabled on the CPU. */ + if (!sched_core_enabled(rq)) + return true; + + for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { + if (!available_idle_cpu(cpu)) { + idle_core = false; + break; + } + } + + /* + * A CPU in an idle core is always the best choice for tasks with + * cookies. + */ + return idle_core || rq->core->core_cookie == p->core_cookie; +} + +static inline bool sched_group_cookie_match(struct rq *rq, + struct task_struct *p, + struct sched_group *group) +{ + int cpu; + + /* Ignore cookie match if core scheduler is not enabled on the CPU. */ + if (!sched_core_enabled(rq)) + return true; + + for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { + if (sched_core_cookie_match(cpu_rq(cpu), p)) + return true; + } + return false; +} + +static inline bool sched_core_enqueued(struct task_struct *p) +{ + return !RB_EMPTY_NODE(&p->core_node); +} + +extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); +extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); + +extern void sched_core_get(void); +extern void sched_core_put(void); + +#else /* !CONFIG_SCHED_CORE */ + +static inline bool sched_core_enabled(struct rq *rq) +{ + return false; +} + +static inline bool sched_core_disabled(void) +{ + return true; +} + +static inline raw_spinlock_t *rq_lockp(struct rq *rq) +{ + return &rq->__lock; +} + +static inline raw_spinlock_t *__rq_lockp(struct rq *rq) +{ + return &rq->__lock; +} + +static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) +{ + return true; +} + +static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) +{ + return true; +} + +static inline bool sched_group_cookie_match(struct rq *rq, + struct task_struct *p, + struct sched_group *group) +{ + return true; +} +#endif /* CONFIG_SCHED_CORE */ + +static inline void lockdep_assert_rq_held(struct rq *rq) +{ + lockdep_assert_held(__rq_lockp(rq)); +} + +extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); +extern bool raw_spin_rq_trylock(struct rq *rq); +extern void raw_spin_rq_unlock(struct rq *rq); + +static inline void raw_spin_rq_lock(struct rq *rq) +{ + raw_spin_rq_lock_nested(rq, 0); +} + +static inline void raw_spin_rq_lock_irq(struct rq *rq) +{ + local_irq_disable(); + raw_spin_rq_lock(rq); +} + +static inline void raw_spin_rq_unlock_irq(struct rq *rq) +{ + raw_spin_rq_unlock(rq); + local_irq_enable(); +} + +static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) +{ + unsigned long flags; + local_irq_save(flags); + raw_spin_rq_lock(rq); + return flags; +} + +static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) +{ + raw_spin_rq_unlock(rq); + local_irq_restore(flags); +} + +#define raw_spin_rq_lock_irqsave(rq, flags) \ +do { \ + flags = _raw_spin_rq_lock_irqsave(rq); \ +} while (0) + +#ifdef CONFIG_SCHED_SMT +extern void __update_idle_core(struct rq *rq); + +static inline void update_idle_core(struct rq *rq) +{ + if (static_branch_unlikely(&sched_smt_present)) + __update_idle_core(rq); +} + +#else +static inline void update_idle_core(struct rq *rq) { } +#endif + +#ifdef CONFIG_FAIR_GROUP_SCHED +static inline struct task_struct *task_of(struct sched_entity *se) +{ + SCHED_WARN_ON(!entity_is_task(se)); + return container_of(se, struct task_struct, se); +} + +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ + return p->se.cfs_rq; +} + +/* runqueue on which this entity is (to be) queued */ +static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) +{ + return se->cfs_rq; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ + return grp->my_q; +} + +#else + +#define task_of(_se) container_of(_se, struct task_struct, se) + +static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) +{ + return &task_rq(p)->cfs; +} + +static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) +{ + const struct task_struct *p = task_of(se); + struct rq *rq = task_rq(p); + + return &rq->cfs; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ + return NULL; +} +#endif + +extern void update_rq_clock(struct rq *rq); + +/* + * rq::clock_update_flags bits + * + * %RQCF_REQ_SKIP - will request skipping of clock update on the next + * call to __schedule(). This is an optimisation to avoid + * neighbouring rq clock updates. + * + * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is + * in effect and calls to update_rq_clock() are being ignored. + * + * %RQCF_UPDATED - is a debug flag that indicates whether a call has been + * made to update_rq_clock() since the last time rq::lock was pinned. + * + * If inside of __schedule(), clock_update_flags will have been + * shifted left (a left shift is a cheap operation for the fast path + * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, + * + * if (rq-clock_update_flags >= RQCF_UPDATED) + * + * to check if %RQCF_UPDATED is set. It'll never be shifted more than + * one position though, because the next rq_unpin_lock() will shift it + * back. + */ +#define RQCF_REQ_SKIP 0x01 +#define RQCF_ACT_SKIP 0x02 +#define RQCF_UPDATED 0x04 + +static inline void assert_clock_updated(struct rq *rq) +{ + /* + * The only reason for not seeing a clock update since the + * last rq_pin_lock() is if we're currently skipping updates. + */ + SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); +} + +static inline u64 rq_clock(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + assert_clock_updated(rq); + + return rq->clock; +} + +static inline u64 rq_clock_task(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + assert_clock_updated(rq); + + return rq->clock_task; +} + +/** + * By default the decay is the default pelt decay period. + * The decay shift can change the decay period in + * multiples of 32. + * Decay shift Decay period(ms) + * 0 32 + * 1 64 + * 2 128 + * 3 256 + * 4 512 + */ +extern int sched_thermal_decay_shift; + +static inline u64 rq_clock_thermal(struct rq *rq) +{ + return rq_clock_task(rq) >> sched_thermal_decay_shift; +} + +static inline void rq_clock_skip_update(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + rq->clock_update_flags |= RQCF_REQ_SKIP; +} + +/* + * See rt task throttling, which is the only time a skip + * request is canceled. + */ +static inline void rq_clock_cancel_skipupdate(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + rq->clock_update_flags &= ~RQCF_REQ_SKIP; +} + +/* + * During cpu offlining and rq wide unthrottling, we can trigger + * an update_rq_clock() for several cfs and rt runqueues (Typically + * when using list_for_each_entry_*) + * rq_clock_start_loop_update() can be called after updating the clock + * once and before iterating over the list to prevent multiple update. + * After the iterative traversal, we need to call rq_clock_stop_loop_update() + * to clear RQCF_ACT_SKIP of rq->clock_update_flags. + */ +static inline void rq_clock_start_loop_update(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP); + rq->clock_update_flags |= RQCF_ACT_SKIP; +} + +static inline void rq_clock_stop_loop_update(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + rq->clock_update_flags &= ~RQCF_ACT_SKIP; +} + +struct rq_flags { + unsigned long flags; + struct pin_cookie cookie; +#ifdef CONFIG_SCHED_DEBUG + /* + * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the + * current pin context is stashed here in case it needs to be + * restored in rq_repin_lock(). + */ + unsigned int clock_update_flags; +#endif +}; + +extern struct balance_callback balance_push_callback; + +/* + * Lockdep annotation that avoids accidental unlocks; it's like a + * sticky/continuous lockdep_assert_held(). + * + * This avoids code that has access to 'struct rq *rq' (basically everything in + * the scheduler) from accidentally unlocking the rq if they do not also have a + * copy of the (on-stack) 'struct rq_flags rf'. + * + * Also see Documentation/locking/lockdep-design.rst. + */ +static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) +{ + rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); + +#ifdef CONFIG_SCHED_DEBUG + rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); + rf->clock_update_flags = 0; +#ifdef CONFIG_SMP + SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); +#endif +#endif +} + +static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) +{ +#ifdef CONFIG_SCHED_DEBUG + if (rq->clock_update_flags > RQCF_ACT_SKIP) + rf->clock_update_flags = RQCF_UPDATED; +#endif + + lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); +} + +static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) +{ + lockdep_repin_lock(__rq_lockp(rq), rf->cookie); + +#ifdef CONFIG_SCHED_DEBUG + /* + * Restore the value we stashed in @rf for this pin context. + */ + rq->clock_update_flags |= rf->clock_update_flags; +#endif +} + +struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) + __acquires(rq->lock); + +struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) + __acquires(p->pi_lock) + __acquires(rq->lock); + +static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) + __releases(rq->lock) +{ + rq_unpin_lock(rq, rf); + raw_spin_rq_unlock(rq); +} + +static inline void +task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) + __releases(rq->lock) + __releases(p->pi_lock) +{ + rq_unpin_lock(rq, rf); + raw_spin_rq_unlock(rq); + raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); +} + +static inline void +rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) + __acquires(rq->lock) +{ + raw_spin_rq_lock_irqsave(rq, rf->flags); + rq_pin_lock(rq, rf); +} + +static inline void +rq_lock_irq(struct rq *rq, struct rq_flags *rf) + __acquires(rq->lock) +{ + raw_spin_rq_lock_irq(rq); + rq_pin_lock(rq, rf); +} + +static inline void +rq_lock(struct rq *rq, struct rq_flags *rf) + __acquires(rq->lock) +{ + raw_spin_rq_lock(rq); + rq_pin_lock(rq, rf); +} + +static inline void +rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) + __releases(rq->lock) +{ + rq_unpin_lock(rq, rf); + raw_spin_rq_unlock_irqrestore(rq, rf->flags); +} + +static inline void +rq_unlock_irq(struct rq *rq, struct rq_flags *rf) + __releases(rq->lock) +{ + rq_unpin_lock(rq, rf); + raw_spin_rq_unlock_irq(rq); +} + +static inline void +rq_unlock(struct rq *rq, struct rq_flags *rf) + __releases(rq->lock) +{ + rq_unpin_lock(rq, rf); + raw_spin_rq_unlock(rq); +} + +DEFINE_LOCK_GUARD_1(rq_lock, struct rq, + rq_lock(_T->lock, &_T->rf), + rq_unlock(_T->lock, &_T->rf), + struct rq_flags rf) + +DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, + rq_lock_irq(_T->lock, &_T->rf), + rq_unlock_irq(_T->lock, &_T->rf), + struct rq_flags rf) + +DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, + rq_lock_irqsave(_T->lock, &_T->rf), + rq_unlock_irqrestore(_T->lock, &_T->rf), + struct rq_flags rf) + +static inline struct rq * +this_rq_lock_irq(struct rq_flags *rf) + __acquires(rq->lock) +{ + struct rq *rq; + + local_irq_disable(); + rq = this_rq(); + rq_lock(rq, rf); + return rq; +} + +#ifdef CONFIG_NUMA +enum numa_topology_type { + NUMA_DIRECT, + NUMA_GLUELESS_MESH, + NUMA_BACKPLANE, +}; +extern enum numa_topology_type sched_numa_topology_type; +extern int sched_max_numa_distance; +extern bool find_numa_distance(int distance); +extern void sched_init_numa(int offline_node); +extern void sched_update_numa(int cpu, bool online); +extern void sched_domains_numa_masks_set(unsigned int cpu); +extern void sched_domains_numa_masks_clear(unsigned int cpu); +extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); +#else +static inline void sched_init_numa(int offline_node) { } +static inline void sched_update_numa(int cpu, bool online) { } +static inline void sched_domains_numa_masks_set(unsigned int cpu) { } +static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } +static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) +{ + return nr_cpu_ids; +} +#endif + +#ifdef CONFIG_NUMA_BALANCING +/* The regions in numa_faults array from task_struct */ +enum numa_faults_stats { + NUMA_MEM = 0, + NUMA_CPU, + NUMA_MEMBUF, + NUMA_CPUBUF +}; +extern void sched_setnuma(struct task_struct *p, int node); +extern int migrate_task_to(struct task_struct *p, int cpu); +extern int migrate_swap(struct task_struct *p, struct task_struct *t, + int cpu, int scpu); +extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); +#else +static inline void +init_numa_balancing(unsigned long clone_flags, struct task_struct *p) +{ +} +#endif /* CONFIG_NUMA_BALANCING */ + +#ifdef CONFIG_SMP + +static inline void +queue_balance_callback(struct rq *rq, + struct balance_callback *head, + void (*func)(struct rq *rq)) +{ + lockdep_assert_rq_held(rq); + + /* + * Don't (re)queue an already queued item; nor queue anything when + * balance_push() is active, see the comment with + * balance_push_callback. + */ + if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) + return; + + head->func = func; + head->next = rq->balance_callback; + rq->balance_callback = head; +} + +#define rcu_dereference_check_sched_domain(p) \ + rcu_dereference_check((p), \ + lockdep_is_held(&sched_domains_mutex)) + +/* + * The domain tree (rq->sd) is protected by RCU's quiescent state transition. + * See destroy_sched_domains: call_rcu for details. + * + * The domain tree of any CPU may only be accessed from within + * preempt-disabled sections. + */ +#define for_each_domain(cpu, __sd) \ + for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ + __sd; __sd = __sd->parent) + +/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ +#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | +static const unsigned int SD_SHARED_CHILD_MASK = +#include <linux/sched/sd_flags.h> +0; +#undef SD_FLAG + +/** + * highest_flag_domain - Return highest sched_domain containing flag. + * @cpu: The CPU whose highest level of sched domain is to + * be returned. + * @flag: The flag to check for the highest sched_domain + * for the given CPU. + * + * Returns the highest sched_domain of a CPU which contains @flag. If @flag has + * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. + */ +static inline struct sched_domain *highest_flag_domain(int cpu, int flag) +{ + struct sched_domain *sd, *hsd = NULL; + + for_each_domain(cpu, sd) { + if (sd->flags & flag) { + hsd = sd; + continue; + } + + /* + * Stop the search if @flag is known to be shared at lower + * levels. It will not be found further up. + */ + if (flag & SD_SHARED_CHILD_MASK) + break; + } + + return hsd; +} + +static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) +{ + struct sched_domain *sd; + + for_each_domain(cpu, sd) { + if (sd->flags & flag) + break; + } + + return sd; +} + +DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); +DECLARE_PER_CPU(int, sd_llc_size); +DECLARE_PER_CPU(int, sd_llc_id); +DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); +DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); +DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); +DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); +extern struct static_key_false sched_asym_cpucapacity; + +static __always_inline bool sched_asym_cpucap_active(void) +{ + return static_branch_unlikely(&sched_asym_cpucapacity); +} + +struct sched_group_capacity { + atomic_t ref; + /* + * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity + * for a single CPU. + */ + unsigned long capacity; + unsigned long min_capacity; /* Min per-CPU capacity in group */ + unsigned long max_capacity; /* Max per-CPU capacity in group */ + unsigned long next_update; + int imbalance; /* XXX unrelated to capacity but shared group state */ + +#ifdef CONFIG_SCHED_DEBUG + int id; +#endif + + unsigned long cpumask[]; /* Balance mask */ +}; + +struct sched_group { + struct sched_group *next; /* Must be a circular list */ + atomic_t ref; + + unsigned int group_weight; + unsigned int cores; + struct sched_group_capacity *sgc; + int asym_prefer_cpu; /* CPU of highest priority in group */ + int flags; + + /* + * The CPUs this group covers. + * + * NOTE: this field is variable length. (Allocated dynamically + * by attaching extra space to the end of the structure, + * depending on how many CPUs the kernel has booted up with) + */ + unsigned long cpumask[]; +}; + +static inline struct cpumask *sched_group_span(struct sched_group *sg) +{ + return to_cpumask(sg->cpumask); +} + +/* + * See build_balance_mask(). + */ +static inline struct cpumask *group_balance_mask(struct sched_group *sg) +{ + return to_cpumask(sg->sgc->cpumask); +} + +extern int group_balance_cpu(struct sched_group *sg); + +#ifdef CONFIG_SCHED_DEBUG +void update_sched_domain_debugfs(void); +void dirty_sched_domain_sysctl(int cpu); +#else +static inline void update_sched_domain_debugfs(void) +{ +} +static inline void dirty_sched_domain_sysctl(int cpu) +{ +} +#endif + +extern int sched_update_scaling(void); + +static inline const struct cpumask *task_user_cpus(struct task_struct *p) +{ + if (!p->user_cpus_ptr) + return cpu_possible_mask; /* &init_task.cpus_mask */ + return p->user_cpus_ptr; +} +#endif /* CONFIG_SMP */ + +#include "stats.h" + +#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) + +extern void __sched_core_account_forceidle(struct rq *rq); + +static inline void sched_core_account_forceidle(struct rq *rq) +{ + if (schedstat_enabled()) + __sched_core_account_forceidle(rq); +} + +extern void __sched_core_tick(struct rq *rq); + +static inline void sched_core_tick(struct rq *rq) +{ + if (sched_core_enabled(rq) && schedstat_enabled()) + __sched_core_tick(rq); +} + +#else + +static inline void sched_core_account_forceidle(struct rq *rq) {} + +static inline void sched_core_tick(struct rq *rq) {} + +#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ + +#ifdef CONFIG_CGROUP_SCHED + +/* + * Return the group to which this tasks belongs. + * + * We cannot use task_css() and friends because the cgroup subsystem + * changes that value before the cgroup_subsys::attach() method is called, + * therefore we cannot pin it and might observe the wrong value. + * + * The same is true for autogroup's p->signal->autogroup->tg, the autogroup + * core changes this before calling sched_move_task(). + * + * Instead we use a 'copy' which is updated from sched_move_task() while + * holding both task_struct::pi_lock and rq::lock. + */ +static inline struct task_group *task_group(struct task_struct *p) +{ + return p->sched_task_group; +} + +/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ +static inline void set_task_rq(struct task_struct *p, unsigned int cpu) +{ +#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) + struct task_group *tg = task_group(p); +#endif + +#ifdef CONFIG_FAIR_GROUP_SCHED + set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); + p->se.cfs_rq = tg->cfs_rq[cpu]; + p->se.parent = tg->se[cpu]; + p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; +#endif + +#ifdef CONFIG_RT_GROUP_SCHED + p->rt.rt_rq = tg->rt_rq[cpu]; + p->rt.parent = tg->rt_se[cpu]; +#endif +} + +#else /* CONFIG_CGROUP_SCHED */ + +static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } +static inline struct task_group *task_group(struct task_struct *p) +{ + return NULL; +} + +#endif /* CONFIG_CGROUP_SCHED */ + +static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) +{ + set_task_rq(p, cpu); +#ifdef CONFIG_SMP + /* + * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be + * successfully executed on another CPU. We must ensure that updates of + * per-task data have been completed by this moment. + */ + smp_wmb(); + WRITE_ONCE(task_thread_info(p)->cpu, cpu); + p->wake_cpu = cpu; +#endif +} + +/* + * Tunables that become constants when CONFIG_SCHED_DEBUG is off: + */ +#ifdef CONFIG_SCHED_DEBUG +# define const_debug __read_mostly +#else +# define const_debug const +#endif + +#define SCHED_FEAT(name, enabled) \ + __SCHED_FEAT_##name , + +enum { +#include "features.h" + __SCHED_FEAT_NR, +}; + +#undef SCHED_FEAT + +#ifdef CONFIG_SCHED_DEBUG + +/* + * To support run-time toggling of sched features, all the translation units + * (but core.c) reference the sysctl_sched_features defined in core.c. + */ +extern const_debug unsigned int sysctl_sched_features; + +#ifdef CONFIG_JUMP_LABEL +#define SCHED_FEAT(name, enabled) \ +static __always_inline bool static_branch_##name(struct static_key *key) \ +{ \ + return static_key_##enabled(key); \ +} + +#include "features.h" +#undef SCHED_FEAT + +extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; +#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) + +#else /* !CONFIG_JUMP_LABEL */ + +#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) + +#endif /* CONFIG_JUMP_LABEL */ + +#else /* !SCHED_DEBUG */ + +/* + * Each translation unit has its own copy of sysctl_sched_features to allow + * constants propagation at compile time and compiler optimization based on + * features default. + */ +#define SCHED_FEAT(name, enabled) \ + (1UL << __SCHED_FEAT_##name) * enabled | +static const_debug __maybe_unused unsigned int sysctl_sched_features = +#include "features.h" + 0; +#undef SCHED_FEAT + +#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) + +#endif /* SCHED_DEBUG */ + +extern struct static_key_false sched_numa_balancing; +extern struct static_key_false sched_schedstats; + +static inline u64 global_rt_period(void) +{ + return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; +} + +static inline u64 global_rt_runtime(void) +{ + if (sysctl_sched_rt_runtime < 0) + return RUNTIME_INF; + + return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; +} + +static inline int task_current(struct rq *rq, struct task_struct *p) +{ + return rq->curr == p; +} + +static inline int task_on_cpu(struct rq *rq, struct task_struct *p) +{ +#ifdef CONFIG_SMP + return p->on_cpu; +#else + return task_current(rq, p); +#endif +} + +static inline int task_on_rq_queued(struct task_struct *p) +{ + return p->on_rq == TASK_ON_RQ_QUEUED; +} + +static inline int task_on_rq_migrating(struct task_struct *p) +{ + return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; +} + +/* Wake flags. The first three directly map to some SD flag value */ +#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ +#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ +#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ + +#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ +#define WF_MIGRATED 0x20 /* Internal use, task got migrated */ +#define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ + +#ifdef CONFIG_SMP +static_assert(WF_EXEC == SD_BALANCE_EXEC); +static_assert(WF_FORK == SD_BALANCE_FORK); +static_assert(WF_TTWU == SD_BALANCE_WAKE); +#endif + +/* + * To aid in avoiding the subversion of "niceness" due to uneven distribution + * of tasks with abnormal "nice" values across CPUs the contribution that + * each task makes to its run queue's load is weighted according to its + * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a + * scaled version of the new time slice allocation that they receive on time + * slice expiry etc. + */ + +#define WEIGHT_IDLEPRIO 3 +#define WMULT_IDLEPRIO 1431655765 + +extern const int sched_prio_to_weight[40]; +extern const u32 sched_prio_to_wmult[40]; + +/* + * {de,en}queue flags: + * + * DEQUEUE_SLEEP - task is no longer runnable + * ENQUEUE_WAKEUP - task just became runnable + * + * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks + * are in a known state which allows modification. Such pairs + * should preserve as much state as possible. + * + * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location + * in the runqueue. + * + * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) + * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) + * ENQUEUE_MIGRATED - the task was migrated during wakeup + * + */ + +#define DEQUEUE_SLEEP 0x01 +#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ +#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ +#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ + +#define ENQUEUE_WAKEUP 0x01 +#define ENQUEUE_RESTORE 0x02 +#define ENQUEUE_MOVE 0x04 +#define ENQUEUE_NOCLOCK 0x08 + +#define ENQUEUE_HEAD 0x10 +#define ENQUEUE_REPLENISH 0x20 +#ifdef CONFIG_SMP +#define ENQUEUE_MIGRATED 0x40 +#else +#define ENQUEUE_MIGRATED 0x00 +#endif +#define ENQUEUE_INITIAL 0x80 + +#define RETRY_TASK ((void *)-1UL) + +struct affinity_context { + const struct cpumask *new_mask; + struct cpumask *user_mask; + unsigned int flags; +}; + +struct sched_class { + +#ifdef CONFIG_UCLAMP_TASK + int uclamp_enabled; +#endif + + void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); + void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); + void (*yield_task) (struct rq *rq); + bool (*yield_to_task)(struct rq *rq, struct task_struct *p); + + void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); + + struct task_struct *(*pick_next_task)(struct rq *rq); + + void (*put_prev_task)(struct rq *rq, struct task_struct *p); + void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); + +#ifdef CONFIG_SMP + int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); + int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); + + struct task_struct * (*pick_task)(struct rq *rq); + + void (*migrate_task_rq)(struct task_struct *p, int new_cpu); + + void (*task_woken)(struct rq *this_rq, struct task_struct *task); + + void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); + + void (*rq_online)(struct rq *rq); + void (*rq_offline)(struct rq *rq); + + struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); +#endif + + void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); + void (*task_fork)(struct task_struct *p); + void (*task_dead)(struct task_struct *p); + + /* + * The switched_from() call is allowed to drop rq->lock, therefore we + * cannot assume the switched_from/switched_to pair is serialized by + * rq->lock. They are however serialized by p->pi_lock. + */ + void (*switched_from)(struct rq *this_rq, struct task_struct *task); + void (*switched_to) (struct rq *this_rq, struct task_struct *task); + void (*prio_changed) (struct rq *this_rq, struct task_struct *task, + int oldprio); + + unsigned int (*get_rr_interval)(struct rq *rq, + struct task_struct *task); + + void (*update_curr)(struct rq *rq); + +#ifdef CONFIG_FAIR_GROUP_SCHED + void (*task_change_group)(struct task_struct *p); +#endif + +#ifdef CONFIG_SCHED_CORE + int (*task_is_throttled)(struct task_struct *p, int cpu); +#endif +}; + +static inline void put_prev_task(struct rq *rq, struct task_struct *prev) +{ + WARN_ON_ONCE(rq->curr != prev); + prev->sched_class->put_prev_task(rq, prev); +} + +static inline void set_next_task(struct rq *rq, struct task_struct *next) +{ + next->sched_class->set_next_task(rq, next, false); +} + + +/* + * Helper to define a sched_class instance; each one is placed in a separate + * section which is ordered by the linker script: + * + * include/asm-generic/vmlinux.lds.h + * + * *CAREFUL* they are laid out in *REVERSE* order!!! + * + * Also enforce alignment on the instance, not the type, to guarantee layout. + */ +#define DEFINE_SCHED_CLASS(name) \ +const struct sched_class name##_sched_class \ + __aligned(__alignof__(struct sched_class)) \ + __section("__" #name "_sched_class") + +/* Defined in include/asm-generic/vmlinux.lds.h */ +extern struct sched_class __sched_class_highest[]; +extern struct sched_class __sched_class_lowest[]; + +#define for_class_range(class, _from, _to) \ + for (class = (_from); class < (_to); class++) + +#define for_each_class(class) \ + for_class_range(class, __sched_class_highest, __sched_class_lowest) + +#define sched_class_above(_a, _b) ((_a) < (_b)) + +extern const struct sched_class stop_sched_class; +extern const struct sched_class dl_sched_class; +extern const struct sched_class rt_sched_class; +extern const struct sched_class fair_sched_class; +extern const struct sched_class idle_sched_class; + +static inline bool sched_stop_runnable(struct rq *rq) +{ + return rq->stop && task_on_rq_queued(rq->stop); +} + +static inline bool sched_dl_runnable(struct rq *rq) +{ + return rq->dl.dl_nr_running > 0; +} + +static inline bool sched_rt_runnable(struct rq *rq) +{ + return rq->rt.rt_queued > 0; +} + +static inline bool sched_fair_runnable(struct rq *rq) +{ + return rq->cfs.nr_running > 0; +} + +extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); +extern struct task_struct *pick_next_task_idle(struct rq *rq); + +#define SCA_CHECK 0x01 +#define SCA_MIGRATE_DISABLE 0x02 +#define SCA_MIGRATE_ENABLE 0x04 +#define SCA_USER 0x08 + +#ifdef CONFIG_SMP + +extern void update_group_capacity(struct sched_domain *sd, int cpu); + +extern void trigger_load_balance(struct rq *rq); + +extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); + +static inline struct task_struct *get_push_task(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + lockdep_assert_rq_held(rq); + + if (rq->push_busy) + return NULL; + + if (p->nr_cpus_allowed == 1) + return NULL; + + if (p->migration_disabled) + return NULL; + + rq->push_busy = true; + return get_task_struct(p); +} + +extern int push_cpu_stop(void *arg); + +#endif + +#ifdef CONFIG_CPU_IDLE +static inline void idle_set_state(struct rq *rq, + struct cpuidle_state *idle_state) +{ + rq->idle_state = idle_state; +} + +static inline struct cpuidle_state *idle_get_state(struct rq *rq) +{ + SCHED_WARN_ON(!rcu_read_lock_held()); + + return rq->idle_state; +} +#else +static inline void idle_set_state(struct rq *rq, + struct cpuidle_state *idle_state) +{ +} + +static inline struct cpuidle_state *idle_get_state(struct rq *rq) +{ + return NULL; +} +#endif + +extern void schedule_idle(void); +asmlinkage void schedule_user(void); + +extern void sysrq_sched_debug_show(void); +extern void sched_init_granularity(void); +extern void update_max_interval(void); + +extern void init_sched_dl_class(void); +extern void init_sched_rt_class(void); +extern void init_sched_fair_class(void); + +extern void reweight_task(struct task_struct *p, int prio); + +extern void resched_curr(struct rq *rq); +extern void resched_cpu(int cpu); + +extern struct rt_bandwidth def_rt_bandwidth; +extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); +extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); + +extern void init_dl_task_timer(struct sched_dl_entity *dl_se); +extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); + +#define BW_SHIFT 20 +#define BW_UNIT (1 << BW_SHIFT) +#define RATIO_SHIFT 8 +#define MAX_BW_BITS (64 - BW_SHIFT) +#define MAX_BW ((1ULL << MAX_BW_BITS) - 1) +unsigned long to_ratio(u64 period, u64 runtime); + +extern void init_entity_runnable_average(struct sched_entity *se); +extern void post_init_entity_util_avg(struct task_struct *p); + +#ifdef CONFIG_NO_HZ_FULL +extern bool sched_can_stop_tick(struct rq *rq); +extern int __init sched_tick_offload_init(void); + +/* + * Tick may be needed by tasks in the runqueue depending on their policy and + * requirements. If tick is needed, lets send the target an IPI to kick it out of + * nohz mode if necessary. + */ +static inline void sched_update_tick_dependency(struct rq *rq) +{ + int cpu = cpu_of(rq); + + if (!tick_nohz_full_cpu(cpu)) + return; + + if (sched_can_stop_tick(rq)) + tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); + else + tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); +} +#else +static inline int sched_tick_offload_init(void) { return 0; } +static inline void sched_update_tick_dependency(struct rq *rq) { } +#endif + +static inline void add_nr_running(struct rq *rq, unsigned count) +{ + unsigned prev_nr = rq->nr_running; + + rq->nr_running = prev_nr + count; + if (trace_sched_update_nr_running_tp_enabled()) { + call_trace_sched_update_nr_running(rq, count); + } + +#ifdef CONFIG_SMP + if (prev_nr < 2 && rq->nr_running >= 2) { + if (!READ_ONCE(rq->rd->overload)) + WRITE_ONCE(rq->rd->overload, 1); + } +#endif + + sched_update_tick_dependency(rq); +} + +static inline void sub_nr_running(struct rq *rq, unsigned count) +{ + rq->nr_running -= count; + if (trace_sched_update_nr_running_tp_enabled()) { + call_trace_sched_update_nr_running(rq, -count); + } + + /* Check if we still need preemption */ + sched_update_tick_dependency(rq); +} + +extern void activate_task(struct rq *rq, struct task_struct *p, int flags); +extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); + +extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); + +#ifdef CONFIG_PREEMPT_RT +#define SCHED_NR_MIGRATE_BREAK 8 +#else +#define SCHED_NR_MIGRATE_BREAK 32 +#endif + +extern const_debug unsigned int sysctl_sched_nr_migrate; +extern const_debug unsigned int sysctl_sched_migration_cost; + +extern unsigned int sysctl_sched_base_slice; + +#ifdef CONFIG_SCHED_DEBUG +extern int sysctl_resched_latency_warn_ms; +extern int sysctl_resched_latency_warn_once; + +extern unsigned int sysctl_sched_tunable_scaling; + +extern unsigned int sysctl_numa_balancing_scan_delay; +extern unsigned int sysctl_numa_balancing_scan_period_min; +extern unsigned int sysctl_numa_balancing_scan_period_max; +extern unsigned int sysctl_numa_balancing_scan_size; +extern unsigned int sysctl_numa_balancing_hot_threshold; +#endif + +#ifdef CONFIG_SCHED_HRTICK + +/* + * Use hrtick when: + * - enabled by features + * - hrtimer is actually high res + */ +static inline int hrtick_enabled(struct rq *rq) +{ + if (!cpu_active(cpu_of(rq))) + return 0; + return hrtimer_is_hres_active(&rq->hrtick_timer); +} + +static inline int hrtick_enabled_fair(struct rq *rq) +{ + if (!sched_feat(HRTICK)) + return 0; + return hrtick_enabled(rq); +} + +static inline int hrtick_enabled_dl(struct rq *rq) +{ + if (!sched_feat(HRTICK_DL)) + return 0; + return hrtick_enabled(rq); +} + +void hrtick_start(struct rq *rq, u64 delay); + +#else + +static inline int hrtick_enabled_fair(struct rq *rq) +{ + return 0; +} + +static inline int hrtick_enabled_dl(struct rq *rq) +{ + return 0; +} + +static inline int hrtick_enabled(struct rq *rq) +{ + return 0; +} + +#endif /* CONFIG_SCHED_HRTICK */ + +#ifndef arch_scale_freq_tick +static __always_inline +void arch_scale_freq_tick(void) +{ +} +#endif + +#ifndef arch_scale_freq_capacity +/** + * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. + * @cpu: the CPU in question. + * + * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. + * + * f_curr + * ------ * SCHED_CAPACITY_SCALE + * f_max + */ +static __always_inline +unsigned long arch_scale_freq_capacity(int cpu) +{ + return SCHED_CAPACITY_SCALE; +} +#endif + +#ifdef CONFIG_SCHED_DEBUG +/* + * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to + * acquire rq lock instead of rq_lock(). So at the end of these two functions + * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of + * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. + */ +static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) +{ + rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); + /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ +#ifdef CONFIG_SMP + rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); +#endif +} +#else +static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} +#endif + +#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ +__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ +static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ +{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ + _lock; return _t; } + +#ifdef CONFIG_SMP + +static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) +{ +#ifdef CONFIG_SCHED_CORE + /* + * In order to not have {0,2},{1,3} turn into into an AB-BA, + * order by core-id first and cpu-id second. + * + * Notably: + * + * double_rq_lock(0,3); will take core-0, core-1 lock + * double_rq_lock(1,2); will take core-1, core-0 lock + * + * when only cpu-id is considered. + */ + if (rq1->core->cpu < rq2->core->cpu) + return true; + if (rq1->core->cpu > rq2->core->cpu) + return false; + + /* + * __sched_core_flip() relies on SMT having cpu-id lock order. + */ +#endif + return rq1->cpu < rq2->cpu; +} + +extern void double_rq_lock(struct rq *rq1, struct rq *rq2); + +#ifdef CONFIG_PREEMPTION + +/* + * fair double_lock_balance: Safely acquires both rq->locks in a fair + * way at the expense of forcing extra atomic operations in all + * invocations. This assures that the double_lock is acquired using the + * same underlying policy as the spinlock_t on this architecture, which + * reduces latency compared to the unfair variant below. However, it + * also adds more overhead and therefore may reduce throughput. + */ +static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) + __releases(this_rq->lock) + __acquires(busiest->lock) + __acquires(this_rq->lock) +{ + raw_spin_rq_unlock(this_rq); + double_rq_lock(this_rq, busiest); + + return 1; +} + +#else +/* + * Unfair double_lock_balance: Optimizes throughput at the expense of + * latency by eliminating extra atomic operations when the locks are + * already in proper order on entry. This favors lower CPU-ids and will + * grant the double lock to lower CPUs over higher ids under contention, + * regardless of entry order into the function. + */ +static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) + __releases(this_rq->lock) + __acquires(busiest->lock) + __acquires(this_rq->lock) +{ + if (__rq_lockp(this_rq) == __rq_lockp(busiest) || + likely(raw_spin_rq_trylock(busiest))) { + double_rq_clock_clear_update(this_rq, busiest); + return 0; + } + + if (rq_order_less(this_rq, busiest)) { + raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); + double_rq_clock_clear_update(this_rq, busiest); + return 0; + } + + raw_spin_rq_unlock(this_rq); + double_rq_lock(this_rq, busiest); + + return 1; +} + +#endif /* CONFIG_PREEMPTION */ + +/* + * double_lock_balance - lock the busiest runqueue, this_rq is locked already. + */ +static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) +{ + lockdep_assert_irqs_disabled(); + + return _double_lock_balance(this_rq, busiest); +} + +static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) + __releases(busiest->lock) +{ + if (__rq_lockp(this_rq) != __rq_lockp(busiest)) + raw_spin_rq_unlock(busiest); + lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); +} + +static inline void double_lock(spinlock_t *l1, spinlock_t *l2) +{ + if (l1 > l2) + swap(l1, l2); + + spin_lock(l1); + spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) +{ + if (l1 > l2) + swap(l1, l2); + + spin_lock_irq(l1); + spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) +{ + if (l1 > l2) + swap(l1, l2); + + raw_spin_lock(l1); + raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) +{ + raw_spin_unlock(l1); + raw_spin_unlock(l2); +} + +DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, + double_raw_lock(_T->lock, _T->lock2), + double_raw_unlock(_T->lock, _T->lock2)) + +/* + * double_rq_unlock - safely unlock two runqueues + * + * Note this does not restore interrupts like task_rq_unlock, + * you need to do so manually after calling. + */ +static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) + __releases(rq1->lock) + __releases(rq2->lock) +{ + if (__rq_lockp(rq1) != __rq_lockp(rq2)) + raw_spin_rq_unlock(rq2); + else + __release(rq2->lock); + raw_spin_rq_unlock(rq1); +} + +extern void set_rq_online (struct rq *rq); +extern void set_rq_offline(struct rq *rq); +extern bool sched_smp_initialized; + +#else /* CONFIG_SMP */ + +/* + * double_rq_lock - safely lock two runqueues + * + * Note this does not disable interrupts like task_rq_lock, + * you need to do so manually before calling. + */ +static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) + __acquires(rq1->lock) + __acquires(rq2->lock) +{ + WARN_ON_ONCE(!irqs_disabled()); + WARN_ON_ONCE(rq1 != rq2); + raw_spin_rq_lock(rq1); + __acquire(rq2->lock); /* Fake it out ;) */ + double_rq_clock_clear_update(rq1, rq2); +} + +/* + * double_rq_unlock - safely unlock two runqueues + * + * Note this does not restore interrupts like task_rq_unlock, + * you need to do so manually after calling. + */ +static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) + __releases(rq1->lock) + __releases(rq2->lock) +{ + WARN_ON_ONCE(rq1 != rq2); + raw_spin_rq_unlock(rq1); + __release(rq2->lock); +} + +#endif + +DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, + double_rq_lock(_T->lock, _T->lock2), + double_rq_unlock(_T->lock, _T->lock2)) + +extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); +extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); + +#ifdef CONFIG_SCHED_DEBUG +extern bool sched_debug_verbose; + +extern void print_cfs_stats(struct seq_file *m, int cpu); +extern void print_rt_stats(struct seq_file *m, int cpu); +extern void print_dl_stats(struct seq_file *m, int cpu); +extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); +extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); +extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); + +extern void resched_latency_warn(int cpu, u64 latency); +#ifdef CONFIG_NUMA_BALANCING +extern void +show_numa_stats(struct task_struct *p, struct seq_file *m); +extern void +print_numa_stats(struct seq_file *m, int node, unsigned long tsf, + unsigned long tpf, unsigned long gsf, unsigned long gpf); +#endif /* CONFIG_NUMA_BALANCING */ +#else +static inline void resched_latency_warn(int cpu, u64 latency) {} +#endif /* CONFIG_SCHED_DEBUG */ + +extern void init_cfs_rq(struct cfs_rq *cfs_rq); +extern void init_rt_rq(struct rt_rq *rt_rq); +extern void init_dl_rq(struct dl_rq *dl_rq); + +extern void cfs_bandwidth_usage_inc(void); +extern void cfs_bandwidth_usage_dec(void); + +#ifdef CONFIG_NO_HZ_COMMON +#define NOHZ_BALANCE_KICK_BIT 0 +#define NOHZ_STATS_KICK_BIT 1 +#define NOHZ_NEWILB_KICK_BIT 2 +#define NOHZ_NEXT_KICK_BIT 3 + +/* Run rebalance_domains() */ +#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) +/* Update blocked load */ +#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) +/* Update blocked load when entering idle */ +#define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) +/* Update nohz.next_balance */ +#define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) + +#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) + +#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) + +extern void nohz_balance_exit_idle(struct rq *rq); +#else +static inline void nohz_balance_exit_idle(struct rq *rq) { } +#endif + +#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) +extern void nohz_run_idle_balance(int cpu); +#else +static inline void nohz_run_idle_balance(int cpu) { } +#endif + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING +struct irqtime { + u64 total; + u64 tick_delta; + u64 irq_start_time; + struct u64_stats_sync sync; +}; + +DECLARE_PER_CPU(struct irqtime, cpu_irqtime); + +/* + * Returns the irqtime minus the softirq time computed by ksoftirqd. + * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime + * and never move forward. + */ +static inline u64 irq_time_read(int cpu) +{ + struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); + unsigned int seq; + u64 total; + + do { + seq = __u64_stats_fetch_begin(&irqtime->sync); + total = irqtime->total; + } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); + + return total; +} +#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ + +#ifdef CONFIG_CPU_FREQ +DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); + +/** + * cpufreq_update_util - Take a note about CPU utilization changes. + * @rq: Runqueue to carry out the update for. + * @flags: Update reason flags. + * + * This function is called by the scheduler on the CPU whose utilization is + * being updated. + * + * It can only be called from RCU-sched read-side critical sections. + * + * The way cpufreq is currently arranged requires it to evaluate the CPU + * performance state (frequency/voltage) on a regular basis to prevent it from + * being stuck in a completely inadequate performance level for too long. + * That is not guaranteed to happen if the updates are only triggered from CFS + * and DL, though, because they may not be coming in if only RT tasks are + * active all the time (or there are RT tasks only). + * + * As a workaround for that issue, this function is called periodically by the + * RT sched class to trigger extra cpufreq updates to prevent it from stalling, + * but that really is a band-aid. Going forward it should be replaced with + * solutions targeted more specifically at RT tasks. + */ +static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) +{ + struct update_util_data *data; + + data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, + cpu_of(rq))); + if (data) + data->func(data, rq_clock(rq), flags); +} +#else +static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} +#endif /* CONFIG_CPU_FREQ */ + +#ifdef arch_scale_freq_capacity +# ifndef arch_scale_freq_invariant +# define arch_scale_freq_invariant() true +# endif +#else +# define arch_scale_freq_invariant() false +#endif + +#ifdef CONFIG_SMP +static inline unsigned long capacity_orig_of(int cpu) +{ + return cpu_rq(cpu)->cpu_capacity_orig; +} + +/** + * enum cpu_util_type - CPU utilization type + * @FREQUENCY_UTIL: Utilization used to select frequency + * @ENERGY_UTIL: Utilization used during energy calculation + * + * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time + * need to be aggregated differently depending on the usage made of them. This + * enum is used within effective_cpu_util() to differentiate the types of + * utilization expected by the callers, and adjust the aggregation accordingly. + */ +enum cpu_util_type { + FREQUENCY_UTIL, + ENERGY_UTIL, +}; + +unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, + enum cpu_util_type type, + struct task_struct *p); + +/* + * Verify the fitness of task @p to run on @cpu taking into account the + * CPU original capacity and the runtime/deadline ratio of the task. + * + * The function will return true if the original capacity of @cpu is + * greater than or equal to task's deadline density right shifted by + * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. + */ +static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) +{ + unsigned long cap = arch_scale_cpu_capacity(cpu); + + return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); +} + +static inline unsigned long cpu_bw_dl(struct rq *rq) +{ + return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; +} + +static inline unsigned long cpu_util_dl(struct rq *rq) +{ + return READ_ONCE(rq->avg_dl.util_avg); +} + + +extern unsigned long cpu_util_cfs(int cpu); +extern unsigned long cpu_util_cfs_boost(int cpu); + +static inline unsigned long cpu_util_rt(struct rq *rq) +{ + return READ_ONCE(rq->avg_rt.util_avg); +} +#endif + +#ifdef CONFIG_UCLAMP_TASK +unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); + +static inline unsigned long uclamp_rq_get(struct rq *rq, + enum uclamp_id clamp_id) +{ + return READ_ONCE(rq->uclamp[clamp_id].value); +} + +static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, + unsigned int value) +{ + WRITE_ONCE(rq->uclamp[clamp_id].value, value); +} + +static inline bool uclamp_rq_is_idle(struct rq *rq) +{ + return rq->uclamp_flags & UCLAMP_FLAG_IDLE; +} + +/** + * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. + * @rq: The rq to clamp against. Must not be NULL. + * @util: The util value to clamp. + * @p: The task to clamp against. Can be NULL if you want to clamp + * against @rq only. + * + * Clamps the passed @util to the max(@rq, @p) effective uclamp values. + * + * If sched_uclamp_used static key is disabled, then just return the util + * without any clamping since uclamp aggregation at the rq level in the fast + * path is disabled, rendering this operation a NOP. + * + * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It + * will return the correct effective uclamp value of the task even if the + * static key is disabled. + */ +static __always_inline +unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, + struct task_struct *p) +{ + unsigned long min_util = 0; + unsigned long max_util = 0; + + if (!static_branch_likely(&sched_uclamp_used)) + return util; + + if (p) { + min_util = uclamp_eff_value(p, UCLAMP_MIN); + max_util = uclamp_eff_value(p, UCLAMP_MAX); + + /* + * Ignore last runnable task's max clamp, as this task will + * reset it. Similarly, no need to read the rq's min clamp. + */ + if (uclamp_rq_is_idle(rq)) + goto out; + } + + min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN)); + max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX)); +out: + /* + * Since CPU's {min,max}_util clamps are MAX aggregated considering + * RUNNABLE tasks with _different_ clamps, we can end up with an + * inversion. Fix it now when the clamps are applied. + */ + if (unlikely(min_util >= max_util)) + return min_util; + + return clamp(util, min_util, max_util); +} + +/* Is the rq being capped/throttled by uclamp_max? */ +static inline bool uclamp_rq_is_capped(struct rq *rq) +{ + unsigned long rq_util; + unsigned long max_util; + + if (!static_branch_likely(&sched_uclamp_used)) + return false; + + rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); + max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); + + return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; +} + +/* + * When uclamp is compiled in, the aggregation at rq level is 'turned off' + * by default in the fast path and only gets turned on once userspace performs + * an operation that requires it. + * + * Returns true if userspace opted-in to use uclamp and aggregation at rq level + * hence is active. + */ +static inline bool uclamp_is_used(void) +{ + return static_branch_likely(&sched_uclamp_used); +} +#else /* CONFIG_UCLAMP_TASK */ +static inline unsigned long uclamp_eff_value(struct task_struct *p, + enum uclamp_id clamp_id) +{ + if (clamp_id == UCLAMP_MIN) + return 0; + + return SCHED_CAPACITY_SCALE; +} + +static inline +unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, + struct task_struct *p) +{ + return util; +} + +static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } + +static inline bool uclamp_is_used(void) +{ + return false; +} + +static inline unsigned long uclamp_rq_get(struct rq *rq, + enum uclamp_id clamp_id) +{ + if (clamp_id == UCLAMP_MIN) + return 0; + + return SCHED_CAPACITY_SCALE; +} + +static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, + unsigned int value) +{ +} + +static inline bool uclamp_rq_is_idle(struct rq *rq) +{ + return false; +} +#endif /* CONFIG_UCLAMP_TASK */ + +#ifdef CONFIG_HAVE_SCHED_AVG_IRQ +static inline unsigned long cpu_util_irq(struct rq *rq) +{ + return rq->avg_irq.util_avg; +} + +static inline +unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) +{ + util *= (max - irq); + util /= max; + + return util; + +} +#else +static inline unsigned long cpu_util_irq(struct rq *rq) +{ + return 0; +} + +static inline +unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) +{ + return util; +} +#endif + +#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) + +#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) + +DECLARE_STATIC_KEY_FALSE(sched_energy_present); + +static inline bool sched_energy_enabled(void) +{ + return static_branch_unlikely(&sched_energy_present); +} + +#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ + +#define perf_domain_span(pd) NULL +static inline bool sched_energy_enabled(void) { return false; } + +#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ + +#ifdef CONFIG_MEMBARRIER +/* + * The scheduler provides memory barriers required by membarrier between: + * - prior user-space memory accesses and store to rq->membarrier_state, + * - store to rq->membarrier_state and following user-space memory accesses. + * In the same way it provides those guarantees around store to rq->curr. + */ +static inline void membarrier_switch_mm(struct rq *rq, + struct mm_struct *prev_mm, + struct mm_struct *next_mm) +{ + int membarrier_state; + + if (prev_mm == next_mm) + return; + + membarrier_state = atomic_read(&next_mm->membarrier_state); + if (READ_ONCE(rq->membarrier_state) == membarrier_state) + return; + + WRITE_ONCE(rq->membarrier_state, membarrier_state); +} +#else +static inline void membarrier_switch_mm(struct rq *rq, + struct mm_struct *prev_mm, + struct mm_struct *next_mm) +{ +} +#endif + +#ifdef CONFIG_SMP +static inline bool is_per_cpu_kthread(struct task_struct *p) +{ + if (!(p->flags & PF_KTHREAD)) + return false; + + if (p->nr_cpus_allowed != 1) + return false; + + return true; +} +#endif + +extern void swake_up_all_locked(struct swait_queue_head *q); +extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); + +extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); + +#ifdef CONFIG_PREEMPT_DYNAMIC +extern int preempt_dynamic_mode; +extern int sched_dynamic_mode(const char *str); +extern void sched_dynamic_update(int mode); +#endif + +static inline void update_current_exec_runtime(struct task_struct *curr, + u64 now, u64 delta_exec) +{ + curr->se.sum_exec_runtime += delta_exec; + account_group_exec_runtime(curr, delta_exec); + + curr->se.exec_start = now; + cgroup_account_cputime(curr, delta_exec); +} + +#ifdef CONFIG_SCHED_MM_CID + +#define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ +#define MM_CID_SCAN_DELAY 100 /* 100ms */ + +extern raw_spinlock_t cid_lock; +extern int use_cid_lock; + +extern void sched_mm_cid_migrate_from(struct task_struct *t); +extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); +extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); +extern void init_sched_mm_cid(struct task_struct *t); + +static inline void __mm_cid_put(struct mm_struct *mm, int cid) +{ + if (cid < 0) + return; + cpumask_clear_cpu(cid, mm_cidmask(mm)); +} + +/* + * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to + * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to + * be held to transition to other states. + * + * State transitions synchronized with cmpxchg or try_cmpxchg need to be + * consistent across cpus, which prevents use of this_cpu_cmpxchg. + */ +static inline void mm_cid_put_lazy(struct task_struct *t) +{ + struct mm_struct *mm = t->mm; + struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; + int cid; + + lockdep_assert_irqs_disabled(); + cid = __this_cpu_read(pcpu_cid->cid); + if (!mm_cid_is_lazy_put(cid) || + !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) + return; + __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); +} + +static inline int mm_cid_pcpu_unset(struct mm_struct *mm) +{ + struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; + int cid, res; + + lockdep_assert_irqs_disabled(); + cid = __this_cpu_read(pcpu_cid->cid); + for (;;) { + if (mm_cid_is_unset(cid)) + return MM_CID_UNSET; + /* + * Attempt transition from valid or lazy-put to unset. + */ + res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); + if (res == cid) + break; + cid = res; + } + return cid; +} + +static inline void mm_cid_put(struct mm_struct *mm) +{ + int cid; + + lockdep_assert_irqs_disabled(); + cid = mm_cid_pcpu_unset(mm); + if (cid == MM_CID_UNSET) + return; + __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); +} + +static inline int __mm_cid_try_get(struct mm_struct *mm) +{ + struct cpumask *cpumask; + int cid; + + cpumask = mm_cidmask(mm); + /* + * Retry finding first zero bit if the mask is temporarily + * filled. This only happens during concurrent remote-clear + * which owns a cid without holding a rq lock. + */ + for (;;) { + cid = cpumask_first_zero(cpumask); + if (cid < nr_cpu_ids) + break; + cpu_relax(); + } + if (cpumask_test_and_set_cpu(cid, cpumask)) + return -1; + return cid; +} + +/* + * Save a snapshot of the current runqueue time of this cpu + * with the per-cpu cid value, allowing to estimate how recently it was used. + */ +static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) +{ + struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); + + lockdep_assert_rq_held(rq); + WRITE_ONCE(pcpu_cid->time, rq->clock); +} + +static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm) +{ + int cid; + + /* + * All allocations (even those using the cid_lock) are lock-free. If + * use_cid_lock is set, hold the cid_lock to perform cid allocation to + * guarantee forward progress. + */ + if (!READ_ONCE(use_cid_lock)) { + cid = __mm_cid_try_get(mm); + if (cid >= 0) + goto end; + raw_spin_lock(&cid_lock); + } else { + raw_spin_lock(&cid_lock); + cid = __mm_cid_try_get(mm); + if (cid >= 0) + goto unlock; + } + + /* + * cid concurrently allocated. Retry while forcing following + * allocations to use the cid_lock to ensure forward progress. + */ + WRITE_ONCE(use_cid_lock, 1); + /* + * Set use_cid_lock before allocation. Only care about program order + * because this is only required for forward progress. + */ + barrier(); + /* + * Retry until it succeeds. It is guaranteed to eventually succeed once + * all newcoming allocations observe the use_cid_lock flag set. + */ + do { + cid = __mm_cid_try_get(mm); + cpu_relax(); + } while (cid < 0); + /* + * Allocate before clearing use_cid_lock. Only care about + * program order because this is for forward progress. + */ + barrier(); + WRITE_ONCE(use_cid_lock, 0); +unlock: + raw_spin_unlock(&cid_lock); +end: + mm_cid_snapshot_time(rq, mm); + return cid; +} + +static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm) +{ + struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; + struct cpumask *cpumask; + int cid; + + lockdep_assert_rq_held(rq); + cpumask = mm_cidmask(mm); + cid = __this_cpu_read(pcpu_cid->cid); + if (mm_cid_is_valid(cid)) { + mm_cid_snapshot_time(rq, mm); + return cid; + } + if (mm_cid_is_lazy_put(cid)) { + if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) + __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); + } + cid = __mm_cid_get(rq, mm); + __this_cpu_write(pcpu_cid->cid, cid); + return cid; +} + +static inline void switch_mm_cid(struct rq *rq, + struct task_struct *prev, + struct task_struct *next) +{ + /* + * Provide a memory barrier between rq->curr store and load of + * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. + * + * Should be adapted if context_switch() is modified. + */ + if (!next->mm) { // to kernel + /* + * user -> kernel transition does not guarantee a barrier, but + * we can use the fact that it performs an atomic operation in + * mmgrab(). + */ + if (prev->mm) // from user + smp_mb__after_mmgrab(); + /* + * kernel -> kernel transition does not change rq->curr->mm + * state. It stays NULL. + */ + } else { // to user + /* + * kernel -> user transition does not provide a barrier + * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. + * Provide it here. + */ + if (!prev->mm) // from kernel + smp_mb(); + /* + * user -> user transition guarantees a memory barrier through + * switch_mm() when current->mm changes. If current->mm is + * unchanged, no barrier is needed. + */ + } + if (prev->mm_cid_active) { + mm_cid_snapshot_time(rq, prev->mm); + mm_cid_put_lazy(prev); + prev->mm_cid = -1; + } + if (next->mm_cid_active) + next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm); +} + +#else +static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } +static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } +static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } +static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } +static inline void init_sched_mm_cid(struct task_struct *t) { } +#endif + +extern u64 avg_vruntime(struct cfs_rq *cfs_rq); +extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); + +#endif /* _KERNEL_SCHED_SCHED_H */ |