diff options
Diffstat (limited to 'kernel/trace/tracing_map.h')
-rw-r--r-- | kernel/trace/tracing_map.h | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/kernel/trace/tracing_map.h b/kernel/trace/tracing_map.h new file mode 100644 index 0000000000..99c37eeebc --- /dev/null +++ b/kernel/trace/tracing_map.h @@ -0,0 +1,284 @@ +// SPDX-License-Identifier: GPL-2.0 +#ifndef __TRACING_MAP_H +#define __TRACING_MAP_H + +#define TRACING_MAP_BITS_DEFAULT 11 +#define TRACING_MAP_BITS_MAX 17 +#define TRACING_MAP_BITS_MIN 7 + +#define TRACING_MAP_KEYS_MAX 3 +#define TRACING_MAP_VALS_MAX 3 +#define TRACING_MAP_FIELDS_MAX (TRACING_MAP_KEYS_MAX + \ + TRACING_MAP_VALS_MAX) +#define TRACING_MAP_VARS_MAX 16 +#define TRACING_MAP_SORT_KEYS_MAX 2 + +typedef int (*tracing_map_cmp_fn_t) (void *val_a, void *val_b); + +/* + * This is an overview of the tracing_map data structures and how they + * relate to the tracing_map API. The details of the algorithms + * aren't discussed here - this is just a general overview of the data + * structures and how they interact with the API. + * + * The central data structure of the tracing_map is an initially + * zeroed array of struct tracing_map_entry (stored in the map field + * of struct tracing_map). tracing_map_entry is a very simple data + * structure containing only two fields: a 32-bit unsigned 'key' + * variable and a pointer named 'val'. This array of struct + * tracing_map_entry is essentially a hash table which will be + * modified by a single function, tracing_map_insert(), but which can + * be traversed and read by a user at any time (though the user does + * this indirectly via an array of tracing_map_sort_entry - see the + * explanation of that data structure in the discussion of the + * sorting-related data structures below). + * + * The central function of the tracing_map API is + * tracing_map_insert(). tracing_map_insert() hashes the + * arbitrarily-sized key passed into it into a 32-bit unsigned key. + * It then uses this key, truncated to the array size, as an index + * into the array of tracing_map_entries. If the value of the 'key' + * field of the tracing_map_entry found at that location is 0, then + * that entry is considered to be free and can be claimed, by + * replacing the 0 in the 'key' field of the tracing_map_entry with + * the new 32-bit hashed key. Once claimed, that tracing_map_entry's + * 'val' field is then used to store a unique element which will be + * forever associated with that 32-bit hashed key in the + * tracing_map_entry. + * + * That unique element now in the tracing_map_entry's 'val' field is + * an instance of tracing_map_elt, where 'elt' in the latter part of + * that variable name is short for 'element'. The purpose of a + * tracing_map_elt is to hold values specific to the particular + * 32-bit hashed key it's associated with. Things such as the unique + * set of aggregated sums associated with the 32-bit hashed key, along + * with a copy of the full key associated with the entry, and which + * was used to produce the 32-bit hashed key. + * + * When tracing_map_create() is called to create the tracing map, the + * user specifies (indirectly via the map_bits param, the details are + * unimportant for this discussion) the maximum number of elements + * that the map can hold (stored in the max_elts field of struct + * tracing_map). This is the maximum possible number of + * tracing_map_entries in the tracing_map_entry array which can be + * 'claimed' as described in the above discussion, and therefore is + * also the maximum number of tracing_map_elts that can be associated + * with the tracing_map_entry array in the tracing_map. Because of + * the way the insertion algorithm works, the size of the allocated + * tracing_map_entry array is always twice the maximum number of + * elements (2 * max_elts). This value is stored in the map_size + * field of struct tracing_map. + * + * Because tracing_map_insert() needs to work from any context, + * including from within the memory allocation functions themselves, + * both the tracing_map_entry array and a pool of max_elts + * tracing_map_elts are pre-allocated before any call is made to + * tracing_map_insert(). + * + * The tracing_map_entry array is allocated as a single block by + * tracing_map_create(). + * + * Because the tracing_map_elts are much larger objects and can't + * generally be allocated together as a single large array without + * failure, they're allocated individually, by tracing_map_init(). + * + * The pool of tracing_map_elts are allocated by tracing_map_init() + * rather than by tracing_map_create() because at the time + * tracing_map_create() is called, there isn't enough information to + * create the tracing_map_elts. Specifically,the user first needs to + * tell the tracing_map implementation how many fields the + * tracing_map_elts contain, and which types of fields they are (key + * or sum). The user does this via the tracing_map_add_sum_field() + * and tracing_map_add_key_field() functions, following which the user + * calls tracing_map_init() to finish up the tracing map setup. The + * array holding the pointers which make up the pre-allocated pool of + * tracing_map_elts is allocated as a single block and is stored in + * the elts field of struct tracing_map. + * + * There is also a set of structures used for sorting that might + * benefit from some minimal explanation. + * + * struct tracing_map_sort_key is used to drive the sort at any given + * time. By 'any given time' we mean that a different + * tracing_map_sort_key will be used at different times depending on + * whether the sort currently being performed is a primary or a + * secondary sort. + * + * The sort key is very simple, consisting of the field index of the + * tracing_map_elt field to sort on (which the user saved when adding + * the field), and whether the sort should be done in an ascending or + * descending order. + * + * For the convenience of the sorting code, a tracing_map_sort_entry + * is created for each tracing_map_elt, again individually allocated + * to avoid failures that might be expected if allocated as a single + * large array of struct tracing_map_sort_entry. + * tracing_map_sort_entry instances are the objects expected by the + * various internal sorting functions, and are also what the user + * ultimately receives after calling tracing_map_sort_entries(). + * Because it doesn't make sense for users to access an unordered and + * sparsely populated tracing_map directly, the + * tracing_map_sort_entries() function is provided so that users can + * retrieve a sorted list of all existing elements. In addition to + * the associated tracing_map_elt 'elt' field contained within the + * tracing_map_sort_entry, which is the object of interest to the + * user, tracing_map_sort_entry objects contain a number of additional + * fields which are used for caching and internal purposes and can + * safely be ignored. +*/ + +struct tracing_map_field { + tracing_map_cmp_fn_t cmp_fn; + union { + atomic64_t sum; + unsigned int offset; + }; +}; + +struct tracing_map_elt { + struct tracing_map *map; + struct tracing_map_field *fields; + atomic64_t *vars; + bool *var_set; + void *key; + void *private_data; +}; + +struct tracing_map_entry { + u32 key; + struct tracing_map_elt *val; +}; + +struct tracing_map_sort_key { + unsigned int field_idx; + bool descending; +}; + +struct tracing_map_sort_entry { + void *key; + struct tracing_map_elt *elt; + bool elt_copied; + bool dup; +}; + +struct tracing_map_array { + unsigned int entries_per_page; + unsigned int entry_size_shift; + unsigned int entry_shift; + unsigned int entry_mask; + unsigned int n_pages; + void **pages; +}; + +#define TRACING_MAP_ARRAY_ELT(array, idx) \ + (array->pages[idx >> array->entry_shift] + \ + ((idx & array->entry_mask) << array->entry_size_shift)) + +#define TRACING_MAP_ENTRY(array, idx) \ + ((struct tracing_map_entry *)TRACING_MAP_ARRAY_ELT(array, idx)) + +#define TRACING_MAP_ELT(array, idx) \ + ((struct tracing_map_elt **)TRACING_MAP_ARRAY_ELT(array, idx)) + +struct tracing_map { + unsigned int key_size; + unsigned int map_bits; + unsigned int map_size; + unsigned int max_elts; + atomic_t next_elt; + struct tracing_map_array *elts; + struct tracing_map_array *map; + const struct tracing_map_ops *ops; + void *private_data; + struct tracing_map_field fields[TRACING_MAP_FIELDS_MAX]; + unsigned int n_fields; + int key_idx[TRACING_MAP_KEYS_MAX]; + unsigned int n_keys; + struct tracing_map_sort_key sort_key; + unsigned int n_vars; + atomic64_t hits; + atomic64_t drops; +}; + +/** + * struct tracing_map_ops - callbacks for tracing_map + * + * The methods in this structure define callback functions for various + * operations on a tracing_map or objects related to a tracing_map. + * + * For a detailed description of tracing_map_elt objects please see + * the overview of tracing_map data structures at the beginning of + * this file. + * + * All the methods below are optional. + * + * @elt_alloc: When a tracing_map_elt is allocated, this function, if + * defined, will be called and gives clients the opportunity to + * allocate additional data and attach it to the element + * (tracing_map_elt->private_data is meant for that purpose). + * Element allocation occurs before tracing begins, when the + * tracing_map_init() call is made by client code. + * + * @elt_free: When a tracing_map_elt is freed, this function is called + * and allows client-allocated per-element data to be freed. + * + * @elt_clear: This callback allows per-element client-defined data to + * be cleared, if applicable. + * + * @elt_init: This callback allows per-element client-defined data to + * be initialized when used i.e. when the element is actually + * claimed by tracing_map_insert() in the context of the map + * insertion. + */ +struct tracing_map_ops { + int (*elt_alloc)(struct tracing_map_elt *elt); + void (*elt_free)(struct tracing_map_elt *elt); + void (*elt_clear)(struct tracing_map_elt *elt); + void (*elt_init)(struct tracing_map_elt *elt); +}; + +extern struct tracing_map * +tracing_map_create(unsigned int map_bits, + unsigned int key_size, + const struct tracing_map_ops *ops, + void *private_data); +extern int tracing_map_init(struct tracing_map *map); + +extern int tracing_map_add_sum_field(struct tracing_map *map); +extern int tracing_map_add_var(struct tracing_map *map); +extern int tracing_map_add_key_field(struct tracing_map *map, + unsigned int offset, + tracing_map_cmp_fn_t cmp_fn); + +extern void tracing_map_destroy(struct tracing_map *map); +extern void tracing_map_clear(struct tracing_map *map); + +extern struct tracing_map_elt * +tracing_map_insert(struct tracing_map *map, void *key); +extern struct tracing_map_elt * +tracing_map_lookup(struct tracing_map *map, void *key); + +extern tracing_map_cmp_fn_t tracing_map_cmp_num(int field_size, + int field_is_signed); +extern int tracing_map_cmp_string(void *val_a, void *val_b); +extern int tracing_map_cmp_none(void *val_a, void *val_b); + +extern void tracing_map_update_sum(struct tracing_map_elt *elt, + unsigned int i, u64 n); +extern void tracing_map_set_var(struct tracing_map_elt *elt, + unsigned int i, u64 n); +extern bool tracing_map_var_set(struct tracing_map_elt *elt, unsigned int i); +extern u64 tracing_map_read_sum(struct tracing_map_elt *elt, unsigned int i); +extern u64 tracing_map_read_var(struct tracing_map_elt *elt, unsigned int i); +extern u64 tracing_map_read_var_once(struct tracing_map_elt *elt, unsigned int i); + +extern int +tracing_map_sort_entries(struct tracing_map *map, + struct tracing_map_sort_key *sort_keys, + unsigned int n_sort_keys, + struct tracing_map_sort_entry ***sort_entries); + +extern void +tracing_map_destroy_sort_entries(struct tracing_map_sort_entry **entries, + unsigned int n_entries); +#endif /* __TRACING_MAP_H */ |