summaryrefslogtreecommitdiffstats
path: root/mm/compaction.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/compaction.c')
-rw-r--r--mm/compaction.c3250
1 files changed, 3250 insertions, 0 deletions
diff --git a/mm/compaction.c b/mm/compaction.c
new file mode 100644
index 0000000000..38c8d216c6
--- /dev/null
+++ b/mm/compaction.c
@@ -0,0 +1,3250 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * linux/mm/compaction.c
+ *
+ * Memory compaction for the reduction of external fragmentation. Note that
+ * this heavily depends upon page migration to do all the real heavy
+ * lifting
+ *
+ * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
+ */
+#include <linux/cpu.h>
+#include <linux/swap.h>
+#include <linux/migrate.h>
+#include <linux/compaction.h>
+#include <linux/mm_inline.h>
+#include <linux/sched/signal.h>
+#include <linux/backing-dev.h>
+#include <linux/sysctl.h>
+#include <linux/sysfs.h>
+#include <linux/page-isolation.h>
+#include <linux/kasan.h>
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+#include <linux/page_owner.h>
+#include <linux/psi.h>
+#include "internal.h"
+
+#ifdef CONFIG_COMPACTION
+/*
+ * Fragmentation score check interval for proactive compaction purposes.
+ */
+#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
+
+static inline void count_compact_event(enum vm_event_item item)
+{
+ count_vm_event(item);
+}
+
+static inline void count_compact_events(enum vm_event_item item, long delta)
+{
+ count_vm_events(item, delta);
+}
+#else
+#define count_compact_event(item) do { } while (0)
+#define count_compact_events(item, delta) do { } while (0)
+#endif
+
+#if defined CONFIG_COMPACTION || defined CONFIG_CMA
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/compaction.h>
+
+#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
+#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
+
+/*
+ * Page order with-respect-to which proactive compaction
+ * calculates external fragmentation, which is used as
+ * the "fragmentation score" of a node/zone.
+ */
+#if defined CONFIG_TRANSPARENT_HUGEPAGE
+#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
+#elif defined CONFIG_HUGETLBFS
+#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
+#else
+#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
+#endif
+
+static unsigned long release_freepages(struct list_head *freelist)
+{
+ struct page *page, *next;
+ unsigned long high_pfn = 0;
+
+ list_for_each_entry_safe(page, next, freelist, lru) {
+ unsigned long pfn = page_to_pfn(page);
+ list_del(&page->lru);
+ __free_page(page);
+ if (pfn > high_pfn)
+ high_pfn = pfn;
+ }
+
+ return high_pfn;
+}
+
+static void split_map_pages(struct list_head *list)
+{
+ unsigned int i, order, nr_pages;
+ struct page *page, *next;
+ LIST_HEAD(tmp_list);
+
+ list_for_each_entry_safe(page, next, list, lru) {
+ list_del(&page->lru);
+
+ order = page_private(page);
+ nr_pages = 1 << order;
+
+ post_alloc_hook(page, order, __GFP_MOVABLE);
+ if (order)
+ split_page(page, order);
+
+ for (i = 0; i < nr_pages; i++) {
+ list_add(&page->lru, &tmp_list);
+ page++;
+ }
+ }
+
+ list_splice(&tmp_list, list);
+}
+
+#ifdef CONFIG_COMPACTION
+bool PageMovable(struct page *page)
+{
+ const struct movable_operations *mops;
+
+ VM_BUG_ON_PAGE(!PageLocked(page), page);
+ if (!__PageMovable(page))
+ return false;
+
+ mops = page_movable_ops(page);
+ if (mops)
+ return true;
+
+ return false;
+}
+
+void __SetPageMovable(struct page *page, const struct movable_operations *mops)
+{
+ VM_BUG_ON_PAGE(!PageLocked(page), page);
+ VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
+ page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
+}
+EXPORT_SYMBOL(__SetPageMovable);
+
+void __ClearPageMovable(struct page *page)
+{
+ VM_BUG_ON_PAGE(!PageMovable(page), page);
+ /*
+ * This page still has the type of a movable page, but it's
+ * actually not movable any more.
+ */
+ page->mapping = (void *)PAGE_MAPPING_MOVABLE;
+}
+EXPORT_SYMBOL(__ClearPageMovable);
+
+/* Do not skip compaction more than 64 times */
+#define COMPACT_MAX_DEFER_SHIFT 6
+
+/*
+ * Compaction is deferred when compaction fails to result in a page
+ * allocation success. 1 << compact_defer_shift, compactions are skipped up
+ * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
+ */
+static void defer_compaction(struct zone *zone, int order)
+{
+ zone->compact_considered = 0;
+ zone->compact_defer_shift++;
+
+ if (order < zone->compact_order_failed)
+ zone->compact_order_failed = order;
+
+ if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
+ zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
+
+ trace_mm_compaction_defer_compaction(zone, order);
+}
+
+/* Returns true if compaction should be skipped this time */
+static bool compaction_deferred(struct zone *zone, int order)
+{
+ unsigned long defer_limit = 1UL << zone->compact_defer_shift;
+
+ if (order < zone->compact_order_failed)
+ return false;
+
+ /* Avoid possible overflow */
+ if (++zone->compact_considered >= defer_limit) {
+ zone->compact_considered = defer_limit;
+ return false;
+ }
+
+ trace_mm_compaction_deferred(zone, order);
+
+ return true;
+}
+
+/*
+ * Update defer tracking counters after successful compaction of given order,
+ * which means an allocation either succeeded (alloc_success == true) or is
+ * expected to succeed.
+ */
+void compaction_defer_reset(struct zone *zone, int order,
+ bool alloc_success)
+{
+ if (alloc_success) {
+ zone->compact_considered = 0;
+ zone->compact_defer_shift = 0;
+ }
+ if (order >= zone->compact_order_failed)
+ zone->compact_order_failed = order + 1;
+
+ trace_mm_compaction_defer_reset(zone, order);
+}
+
+/* Returns true if restarting compaction after many failures */
+static bool compaction_restarting(struct zone *zone, int order)
+{
+ if (order < zone->compact_order_failed)
+ return false;
+
+ return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
+ zone->compact_considered >= 1UL << zone->compact_defer_shift;
+}
+
+/* Returns true if the pageblock should be scanned for pages to isolate. */
+static inline bool isolation_suitable(struct compact_control *cc,
+ struct page *page)
+{
+ if (cc->ignore_skip_hint)
+ return true;
+
+ return !get_pageblock_skip(page);
+}
+
+static void reset_cached_positions(struct zone *zone)
+{
+ zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
+ zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
+ zone->compact_cached_free_pfn =
+ pageblock_start_pfn(zone_end_pfn(zone) - 1);
+}
+
+#ifdef CONFIG_SPARSEMEM
+/*
+ * If the PFN falls into an offline section, return the start PFN of the
+ * next online section. If the PFN falls into an online section or if
+ * there is no next online section, return 0.
+ */
+static unsigned long skip_offline_sections(unsigned long start_pfn)
+{
+ unsigned long start_nr = pfn_to_section_nr(start_pfn);
+
+ if (online_section_nr(start_nr))
+ return 0;
+
+ while (++start_nr <= __highest_present_section_nr) {
+ if (online_section_nr(start_nr))
+ return section_nr_to_pfn(start_nr);
+ }
+
+ return 0;
+}
+
+/*
+ * If the PFN falls into an offline section, return the end PFN of the
+ * next online section in reverse. If the PFN falls into an online section
+ * or if there is no next online section in reverse, return 0.
+ */
+static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
+{
+ unsigned long start_nr = pfn_to_section_nr(start_pfn);
+
+ if (!start_nr || online_section_nr(start_nr))
+ return 0;
+
+ while (start_nr-- > 0) {
+ if (online_section_nr(start_nr))
+ return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
+ }
+
+ return 0;
+}
+#else
+static unsigned long skip_offline_sections(unsigned long start_pfn)
+{
+ return 0;
+}
+
+static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
+{
+ return 0;
+}
+#endif
+
+/*
+ * Compound pages of >= pageblock_order should consistently be skipped until
+ * released. It is always pointless to compact pages of such order (if they are
+ * migratable), and the pageblocks they occupy cannot contain any free pages.
+ */
+static bool pageblock_skip_persistent(struct page *page)
+{
+ if (!PageCompound(page))
+ return false;
+
+ page = compound_head(page);
+
+ if (compound_order(page) >= pageblock_order)
+ return true;
+
+ return false;
+}
+
+static bool
+__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
+ bool check_target)
+{
+ struct page *page = pfn_to_online_page(pfn);
+ struct page *block_page;
+ struct page *end_page;
+ unsigned long block_pfn;
+
+ if (!page)
+ return false;
+ if (zone != page_zone(page))
+ return false;
+ if (pageblock_skip_persistent(page))
+ return false;
+
+ /*
+ * If skip is already cleared do no further checking once the
+ * restart points have been set.
+ */
+ if (check_source && check_target && !get_pageblock_skip(page))
+ return true;
+
+ /*
+ * If clearing skip for the target scanner, do not select a
+ * non-movable pageblock as the starting point.
+ */
+ if (!check_source && check_target &&
+ get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
+ return false;
+
+ /* Ensure the start of the pageblock or zone is online and valid */
+ block_pfn = pageblock_start_pfn(pfn);
+ block_pfn = max(block_pfn, zone->zone_start_pfn);
+ block_page = pfn_to_online_page(block_pfn);
+ if (block_page) {
+ page = block_page;
+ pfn = block_pfn;
+ }
+
+ /* Ensure the end of the pageblock or zone is online and valid */
+ block_pfn = pageblock_end_pfn(pfn) - 1;
+ block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
+ end_page = pfn_to_online_page(block_pfn);
+ if (!end_page)
+ return false;
+
+ /*
+ * Only clear the hint if a sample indicates there is either a
+ * free page or an LRU page in the block. One or other condition
+ * is necessary for the block to be a migration source/target.
+ */
+ do {
+ if (check_source && PageLRU(page)) {
+ clear_pageblock_skip(page);
+ return true;
+ }
+
+ if (check_target && PageBuddy(page)) {
+ clear_pageblock_skip(page);
+ return true;
+ }
+
+ page += (1 << PAGE_ALLOC_COSTLY_ORDER);
+ } while (page <= end_page);
+
+ return false;
+}
+
+/*
+ * This function is called to clear all cached information on pageblocks that
+ * should be skipped for page isolation when the migrate and free page scanner
+ * meet.
+ */
+static void __reset_isolation_suitable(struct zone *zone)
+{
+ unsigned long migrate_pfn = zone->zone_start_pfn;
+ unsigned long free_pfn = zone_end_pfn(zone) - 1;
+ unsigned long reset_migrate = free_pfn;
+ unsigned long reset_free = migrate_pfn;
+ bool source_set = false;
+ bool free_set = false;
+
+ if (!zone->compact_blockskip_flush)
+ return;
+
+ zone->compact_blockskip_flush = false;
+
+ /*
+ * Walk the zone and update pageblock skip information. Source looks
+ * for PageLRU while target looks for PageBuddy. When the scanner
+ * is found, both PageBuddy and PageLRU are checked as the pageblock
+ * is suitable as both source and target.
+ */
+ for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
+ free_pfn -= pageblock_nr_pages) {
+ cond_resched();
+
+ /* Update the migrate PFN */
+ if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
+ migrate_pfn < reset_migrate) {
+ source_set = true;
+ reset_migrate = migrate_pfn;
+ zone->compact_init_migrate_pfn = reset_migrate;
+ zone->compact_cached_migrate_pfn[0] = reset_migrate;
+ zone->compact_cached_migrate_pfn[1] = reset_migrate;
+ }
+
+ /* Update the free PFN */
+ if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
+ free_pfn > reset_free) {
+ free_set = true;
+ reset_free = free_pfn;
+ zone->compact_init_free_pfn = reset_free;
+ zone->compact_cached_free_pfn = reset_free;
+ }
+ }
+
+ /* Leave no distance if no suitable block was reset */
+ if (reset_migrate >= reset_free) {
+ zone->compact_cached_migrate_pfn[0] = migrate_pfn;
+ zone->compact_cached_migrate_pfn[1] = migrate_pfn;
+ zone->compact_cached_free_pfn = free_pfn;
+ }
+}
+
+void reset_isolation_suitable(pg_data_t *pgdat)
+{
+ int zoneid;
+
+ for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+ struct zone *zone = &pgdat->node_zones[zoneid];
+ if (!populated_zone(zone))
+ continue;
+
+ /* Only flush if a full compaction finished recently */
+ if (zone->compact_blockskip_flush)
+ __reset_isolation_suitable(zone);
+ }
+}
+
+/*
+ * Sets the pageblock skip bit if it was clear. Note that this is a hint as
+ * locks are not required for read/writers. Returns true if it was already set.
+ */
+static bool test_and_set_skip(struct compact_control *cc, struct page *page)
+{
+ bool skip;
+
+ /* Do not update if skip hint is being ignored */
+ if (cc->ignore_skip_hint)
+ return false;
+
+ skip = get_pageblock_skip(page);
+ if (!skip && !cc->no_set_skip_hint)
+ set_pageblock_skip(page);
+
+ return skip;
+}
+
+static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
+{
+ struct zone *zone = cc->zone;
+
+ /* Set for isolation rather than compaction */
+ if (cc->no_set_skip_hint)
+ return;
+
+ pfn = pageblock_end_pfn(pfn);
+
+ /* Update where async and sync compaction should restart */
+ if (pfn > zone->compact_cached_migrate_pfn[0])
+ zone->compact_cached_migrate_pfn[0] = pfn;
+ if (cc->mode != MIGRATE_ASYNC &&
+ pfn > zone->compact_cached_migrate_pfn[1])
+ zone->compact_cached_migrate_pfn[1] = pfn;
+}
+
+/*
+ * If no pages were isolated then mark this pageblock to be skipped in the
+ * future. The information is later cleared by __reset_isolation_suitable().
+ */
+static void update_pageblock_skip(struct compact_control *cc,
+ struct page *page, unsigned long pfn)
+{
+ struct zone *zone = cc->zone;
+
+ if (cc->no_set_skip_hint)
+ return;
+
+ set_pageblock_skip(page);
+
+ if (pfn < zone->compact_cached_free_pfn)
+ zone->compact_cached_free_pfn = pfn;
+}
+#else
+static inline bool isolation_suitable(struct compact_control *cc,
+ struct page *page)
+{
+ return true;
+}
+
+static inline bool pageblock_skip_persistent(struct page *page)
+{
+ return false;
+}
+
+static inline void update_pageblock_skip(struct compact_control *cc,
+ struct page *page, unsigned long pfn)
+{
+}
+
+static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
+{
+}
+
+static bool test_and_set_skip(struct compact_control *cc, struct page *page)
+{
+ return false;
+}
+#endif /* CONFIG_COMPACTION */
+
+/*
+ * Compaction requires the taking of some coarse locks that are potentially
+ * very heavily contended. For async compaction, trylock and record if the
+ * lock is contended. The lock will still be acquired but compaction will
+ * abort when the current block is finished regardless of success rate.
+ * Sync compaction acquires the lock.
+ *
+ * Always returns true which makes it easier to track lock state in callers.
+ */
+static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
+ struct compact_control *cc)
+ __acquires(lock)
+{
+ /* Track if the lock is contended in async mode */
+ if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
+ if (spin_trylock_irqsave(lock, *flags))
+ return true;
+
+ cc->contended = true;
+ }
+
+ spin_lock_irqsave(lock, *flags);
+ return true;
+}
+
+/*
+ * Compaction requires the taking of some coarse locks that are potentially
+ * very heavily contended. The lock should be periodically unlocked to avoid
+ * having disabled IRQs for a long time, even when there is nobody waiting on
+ * the lock. It might also be that allowing the IRQs will result in
+ * need_resched() becoming true. If scheduling is needed, compaction schedules.
+ * Either compaction type will also abort if a fatal signal is pending.
+ * In either case if the lock was locked, it is dropped and not regained.
+ *
+ * Returns true if compaction should abort due to fatal signal pending.
+ * Returns false when compaction can continue.
+ */
+static bool compact_unlock_should_abort(spinlock_t *lock,
+ unsigned long flags, bool *locked, struct compact_control *cc)
+{
+ if (*locked) {
+ spin_unlock_irqrestore(lock, flags);
+ *locked = false;
+ }
+
+ if (fatal_signal_pending(current)) {
+ cc->contended = true;
+ return true;
+ }
+
+ cond_resched();
+
+ return false;
+}
+
+/*
+ * Isolate free pages onto a private freelist. If @strict is true, will abort
+ * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
+ * (even though it may still end up isolating some pages).
+ */
+static unsigned long isolate_freepages_block(struct compact_control *cc,
+ unsigned long *start_pfn,
+ unsigned long end_pfn,
+ struct list_head *freelist,
+ unsigned int stride,
+ bool strict)
+{
+ int nr_scanned = 0, total_isolated = 0;
+ struct page *page;
+ unsigned long flags = 0;
+ bool locked = false;
+ unsigned long blockpfn = *start_pfn;
+ unsigned int order;
+
+ /* Strict mode is for isolation, speed is secondary */
+ if (strict)
+ stride = 1;
+
+ page = pfn_to_page(blockpfn);
+
+ /* Isolate free pages. */
+ for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
+ int isolated;
+
+ /*
+ * Periodically drop the lock (if held) regardless of its
+ * contention, to give chance to IRQs. Abort if fatal signal
+ * pending.
+ */
+ if (!(blockpfn % COMPACT_CLUSTER_MAX)
+ && compact_unlock_should_abort(&cc->zone->lock, flags,
+ &locked, cc))
+ break;
+
+ nr_scanned++;
+
+ /*
+ * For compound pages such as THP and hugetlbfs, we can save
+ * potentially a lot of iterations if we skip them at once.
+ * The check is racy, but we can consider only valid values
+ * and the only danger is skipping too much.
+ */
+ if (PageCompound(page)) {
+ const unsigned int order = compound_order(page);
+
+ if (likely(order <= MAX_ORDER)) {
+ blockpfn += (1UL << order) - 1;
+ page += (1UL << order) - 1;
+ nr_scanned += (1UL << order) - 1;
+ }
+ goto isolate_fail;
+ }
+
+ if (!PageBuddy(page))
+ goto isolate_fail;
+
+ /* If we already hold the lock, we can skip some rechecking. */
+ if (!locked) {
+ locked = compact_lock_irqsave(&cc->zone->lock,
+ &flags, cc);
+
+ /* Recheck this is a buddy page under lock */
+ if (!PageBuddy(page))
+ goto isolate_fail;
+ }
+
+ /* Found a free page, will break it into order-0 pages */
+ order = buddy_order(page);
+ isolated = __isolate_free_page(page, order);
+ if (!isolated)
+ break;
+ set_page_private(page, order);
+
+ nr_scanned += isolated - 1;
+ total_isolated += isolated;
+ cc->nr_freepages += isolated;
+ list_add_tail(&page->lru, freelist);
+
+ if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
+ blockpfn += isolated;
+ break;
+ }
+ /* Advance to the end of split page */
+ blockpfn += isolated - 1;
+ page += isolated - 1;
+ continue;
+
+isolate_fail:
+ if (strict)
+ break;
+
+ }
+
+ if (locked)
+ spin_unlock_irqrestore(&cc->zone->lock, flags);
+
+ /*
+ * There is a tiny chance that we have read bogus compound_order(),
+ * so be careful to not go outside of the pageblock.
+ */
+ if (unlikely(blockpfn > end_pfn))
+ blockpfn = end_pfn;
+
+ trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
+ nr_scanned, total_isolated);
+
+ /* Record how far we have got within the block */
+ *start_pfn = blockpfn;
+
+ /*
+ * If strict isolation is requested by CMA then check that all the
+ * pages requested were isolated. If there were any failures, 0 is
+ * returned and CMA will fail.
+ */
+ if (strict && blockpfn < end_pfn)
+ total_isolated = 0;
+
+ cc->total_free_scanned += nr_scanned;
+ if (total_isolated)
+ count_compact_events(COMPACTISOLATED, total_isolated);
+ return total_isolated;
+}
+
+/**
+ * isolate_freepages_range() - isolate free pages.
+ * @cc: Compaction control structure.
+ * @start_pfn: The first PFN to start isolating.
+ * @end_pfn: The one-past-last PFN.
+ *
+ * Non-free pages, invalid PFNs, or zone boundaries within the
+ * [start_pfn, end_pfn) range are considered errors, cause function to
+ * undo its actions and return zero.
+ *
+ * Otherwise, function returns one-past-the-last PFN of isolated page
+ * (which may be greater then end_pfn if end fell in a middle of
+ * a free page).
+ */
+unsigned long
+isolate_freepages_range(struct compact_control *cc,
+ unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
+ LIST_HEAD(freelist);
+
+ pfn = start_pfn;
+ block_start_pfn = pageblock_start_pfn(pfn);
+ if (block_start_pfn < cc->zone->zone_start_pfn)
+ block_start_pfn = cc->zone->zone_start_pfn;
+ block_end_pfn = pageblock_end_pfn(pfn);
+
+ for (; pfn < end_pfn; pfn += isolated,
+ block_start_pfn = block_end_pfn,
+ block_end_pfn += pageblock_nr_pages) {
+ /* Protect pfn from changing by isolate_freepages_block */
+ unsigned long isolate_start_pfn = pfn;
+
+ /*
+ * pfn could pass the block_end_pfn if isolated freepage
+ * is more than pageblock order. In this case, we adjust
+ * scanning range to right one.
+ */
+ if (pfn >= block_end_pfn) {
+ block_start_pfn = pageblock_start_pfn(pfn);
+ block_end_pfn = pageblock_end_pfn(pfn);
+ }
+
+ block_end_pfn = min(block_end_pfn, end_pfn);
+
+ if (!pageblock_pfn_to_page(block_start_pfn,
+ block_end_pfn, cc->zone))
+ break;
+
+ isolated = isolate_freepages_block(cc, &isolate_start_pfn,
+ block_end_pfn, &freelist, 0, true);
+
+ /*
+ * In strict mode, isolate_freepages_block() returns 0 if
+ * there are any holes in the block (ie. invalid PFNs or
+ * non-free pages).
+ */
+ if (!isolated)
+ break;
+
+ /*
+ * If we managed to isolate pages, it is always (1 << n) *
+ * pageblock_nr_pages for some non-negative n. (Max order
+ * page may span two pageblocks).
+ */
+ }
+
+ /* __isolate_free_page() does not map the pages */
+ split_map_pages(&freelist);
+
+ if (pfn < end_pfn) {
+ /* Loop terminated early, cleanup. */
+ release_freepages(&freelist);
+ return 0;
+ }
+
+ /* We don't use freelists for anything. */
+ return pfn;
+}
+
+/* Similar to reclaim, but different enough that they don't share logic */
+static bool too_many_isolated(struct compact_control *cc)
+{
+ pg_data_t *pgdat = cc->zone->zone_pgdat;
+ bool too_many;
+
+ unsigned long active, inactive, isolated;
+
+ inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
+ node_page_state(pgdat, NR_INACTIVE_ANON);
+ active = node_page_state(pgdat, NR_ACTIVE_FILE) +
+ node_page_state(pgdat, NR_ACTIVE_ANON);
+ isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
+ node_page_state(pgdat, NR_ISOLATED_ANON);
+
+ /*
+ * Allow GFP_NOFS to isolate past the limit set for regular
+ * compaction runs. This prevents an ABBA deadlock when other
+ * compactors have already isolated to the limit, but are
+ * blocked on filesystem locks held by the GFP_NOFS thread.
+ */
+ if (cc->gfp_mask & __GFP_FS) {
+ inactive >>= 3;
+ active >>= 3;
+ }
+
+ too_many = isolated > (inactive + active) / 2;
+ if (!too_many)
+ wake_throttle_isolated(pgdat);
+
+ return too_many;
+}
+
+/**
+ * isolate_migratepages_block() - isolate all migrate-able pages within
+ * a single pageblock
+ * @cc: Compaction control structure.
+ * @low_pfn: The first PFN to isolate
+ * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
+ * @mode: Isolation mode to be used.
+ *
+ * Isolate all pages that can be migrated from the range specified by
+ * [low_pfn, end_pfn). The range is expected to be within same pageblock.
+ * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
+ * -ENOMEM in case we could not allocate a page, or 0.
+ * cc->migrate_pfn will contain the next pfn to scan.
+ *
+ * The pages are isolated on cc->migratepages list (not required to be empty),
+ * and cc->nr_migratepages is updated accordingly.
+ */
+static int
+isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
+ unsigned long end_pfn, isolate_mode_t mode)
+{
+ pg_data_t *pgdat = cc->zone->zone_pgdat;
+ unsigned long nr_scanned = 0, nr_isolated = 0;
+ struct lruvec *lruvec;
+ unsigned long flags = 0;
+ struct lruvec *locked = NULL;
+ struct folio *folio = NULL;
+ struct page *page = NULL, *valid_page = NULL;
+ struct address_space *mapping;
+ unsigned long start_pfn = low_pfn;
+ bool skip_on_failure = false;
+ unsigned long next_skip_pfn = 0;
+ bool skip_updated = false;
+ int ret = 0;
+
+ cc->migrate_pfn = low_pfn;
+
+ /*
+ * Ensure that there are not too many pages isolated from the LRU
+ * list by either parallel reclaimers or compaction. If there are,
+ * delay for some time until fewer pages are isolated
+ */
+ while (unlikely(too_many_isolated(cc))) {
+ /* stop isolation if there are still pages not migrated */
+ if (cc->nr_migratepages)
+ return -EAGAIN;
+
+ /* async migration should just abort */
+ if (cc->mode == MIGRATE_ASYNC)
+ return -EAGAIN;
+
+ reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
+
+ if (fatal_signal_pending(current))
+ return -EINTR;
+ }
+
+ cond_resched();
+
+ if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
+ skip_on_failure = true;
+ next_skip_pfn = block_end_pfn(low_pfn, cc->order);
+ }
+
+ /* Time to isolate some pages for migration */
+ for (; low_pfn < end_pfn; low_pfn++) {
+
+ if (skip_on_failure && low_pfn >= next_skip_pfn) {
+ /*
+ * We have isolated all migration candidates in the
+ * previous order-aligned block, and did not skip it due
+ * to failure. We should migrate the pages now and
+ * hopefully succeed compaction.
+ */
+ if (nr_isolated)
+ break;
+
+ /*
+ * We failed to isolate in the previous order-aligned
+ * block. Set the new boundary to the end of the
+ * current block. Note we can't simply increase
+ * next_skip_pfn by 1 << order, as low_pfn might have
+ * been incremented by a higher number due to skipping
+ * a compound or a high-order buddy page in the
+ * previous loop iteration.
+ */
+ next_skip_pfn = block_end_pfn(low_pfn, cc->order);
+ }
+
+ /*
+ * Periodically drop the lock (if held) regardless of its
+ * contention, to give chance to IRQs. Abort completely if
+ * a fatal signal is pending.
+ */
+ if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
+ if (locked) {
+ unlock_page_lruvec_irqrestore(locked, flags);
+ locked = NULL;
+ }
+
+ if (fatal_signal_pending(current)) {
+ cc->contended = true;
+ ret = -EINTR;
+
+ goto fatal_pending;
+ }
+
+ cond_resched();
+ }
+
+ nr_scanned++;
+
+ page = pfn_to_page(low_pfn);
+
+ /*
+ * Check if the pageblock has already been marked skipped.
+ * Only the first PFN is checked as the caller isolates
+ * COMPACT_CLUSTER_MAX at a time so the second call must
+ * not falsely conclude that the block should be skipped.
+ */
+ if (!valid_page && (pageblock_aligned(low_pfn) ||
+ low_pfn == cc->zone->zone_start_pfn)) {
+ if (!isolation_suitable(cc, page)) {
+ low_pfn = end_pfn;
+ folio = NULL;
+ goto isolate_abort;
+ }
+ valid_page = page;
+ }
+
+ if (PageHuge(page) && cc->alloc_contig) {
+ if (locked) {
+ unlock_page_lruvec_irqrestore(locked, flags);
+ locked = NULL;
+ }
+
+ ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
+
+ /*
+ * Fail isolation in case isolate_or_dissolve_huge_page()
+ * reports an error. In case of -ENOMEM, abort right away.
+ */
+ if (ret < 0) {
+ /* Do not report -EBUSY down the chain */
+ if (ret == -EBUSY)
+ ret = 0;
+ low_pfn += compound_nr(page) - 1;
+ nr_scanned += compound_nr(page) - 1;
+ goto isolate_fail;
+ }
+
+ if (PageHuge(page)) {
+ /*
+ * Hugepage was successfully isolated and placed
+ * on the cc->migratepages list.
+ */
+ folio = page_folio(page);
+ low_pfn += folio_nr_pages(folio) - 1;
+ goto isolate_success_no_list;
+ }
+
+ /*
+ * Ok, the hugepage was dissolved. Now these pages are
+ * Buddy and cannot be re-allocated because they are
+ * isolated. Fall-through as the check below handles
+ * Buddy pages.
+ */
+ }
+
+ /*
+ * Skip if free. We read page order here without zone lock
+ * which is generally unsafe, but the race window is small and
+ * the worst thing that can happen is that we skip some
+ * potential isolation targets.
+ */
+ if (PageBuddy(page)) {
+ unsigned long freepage_order = buddy_order_unsafe(page);
+
+ /*
+ * Without lock, we cannot be sure that what we got is
+ * a valid page order. Consider only values in the
+ * valid order range to prevent low_pfn overflow.
+ */
+ if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
+ low_pfn += (1UL << freepage_order) - 1;
+ nr_scanned += (1UL << freepage_order) - 1;
+ }
+ continue;
+ }
+
+ /*
+ * Regardless of being on LRU, compound pages such as THP and
+ * hugetlbfs are not to be compacted unless we are attempting
+ * an allocation much larger than the huge page size (eg CMA).
+ * We can potentially save a lot of iterations if we skip them
+ * at once. The check is racy, but we can consider only valid
+ * values and the only danger is skipping too much.
+ */
+ if (PageCompound(page) && !cc->alloc_contig) {
+ const unsigned int order = compound_order(page);
+
+ if (likely(order <= MAX_ORDER)) {
+ low_pfn += (1UL << order) - 1;
+ nr_scanned += (1UL << order) - 1;
+ }
+ goto isolate_fail;
+ }
+
+ /*
+ * Check may be lockless but that's ok as we recheck later.
+ * It's possible to migrate LRU and non-lru movable pages.
+ * Skip any other type of page
+ */
+ if (!PageLRU(page)) {
+ /*
+ * __PageMovable can return false positive so we need
+ * to verify it under page_lock.
+ */
+ if (unlikely(__PageMovable(page)) &&
+ !PageIsolated(page)) {
+ if (locked) {
+ unlock_page_lruvec_irqrestore(locked, flags);
+ locked = NULL;
+ }
+
+ if (isolate_movable_page(page, mode)) {
+ folio = page_folio(page);
+ goto isolate_success;
+ }
+ }
+
+ goto isolate_fail;
+ }
+
+ /*
+ * Be careful not to clear PageLRU until after we're
+ * sure the page is not being freed elsewhere -- the
+ * page release code relies on it.
+ */
+ folio = folio_get_nontail_page(page);
+ if (unlikely(!folio))
+ goto isolate_fail;
+
+ /*
+ * Migration will fail if an anonymous page is pinned in memory,
+ * so avoid taking lru_lock and isolating it unnecessarily in an
+ * admittedly racy check.
+ */
+ mapping = folio_mapping(folio);
+ if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
+ goto isolate_fail_put;
+
+ /*
+ * Only allow to migrate anonymous pages in GFP_NOFS context
+ * because those do not depend on fs locks.
+ */
+ if (!(cc->gfp_mask & __GFP_FS) && mapping)
+ goto isolate_fail_put;
+
+ /* Only take pages on LRU: a check now makes later tests safe */
+ if (!folio_test_lru(folio))
+ goto isolate_fail_put;
+
+ /* Compaction might skip unevictable pages but CMA takes them */
+ if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
+ goto isolate_fail_put;
+
+ /*
+ * To minimise LRU disruption, the caller can indicate with
+ * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
+ * it will be able to migrate without blocking - clean pages
+ * for the most part. PageWriteback would require blocking.
+ */
+ if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
+ goto isolate_fail_put;
+
+ if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
+ bool migrate_dirty;
+
+ /*
+ * Only folios without mappings or that have
+ * a ->migrate_folio callback are possible to
+ * migrate without blocking. However, we may
+ * be racing with truncation, which can free
+ * the mapping. Truncation holds the folio lock
+ * until after the folio is removed from the page
+ * cache so holding it ourselves is sufficient.
+ */
+ if (!folio_trylock(folio))
+ goto isolate_fail_put;
+
+ mapping = folio_mapping(folio);
+ migrate_dirty = !mapping ||
+ mapping->a_ops->migrate_folio;
+ folio_unlock(folio);
+ if (!migrate_dirty)
+ goto isolate_fail_put;
+ }
+
+ /* Try isolate the folio */
+ if (!folio_test_clear_lru(folio))
+ goto isolate_fail_put;
+
+ lruvec = folio_lruvec(folio);
+
+ /* If we already hold the lock, we can skip some rechecking */
+ if (lruvec != locked) {
+ if (locked)
+ unlock_page_lruvec_irqrestore(locked, flags);
+
+ compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
+ locked = lruvec;
+
+ lruvec_memcg_debug(lruvec, folio);
+
+ /*
+ * Try get exclusive access under lock. If marked for
+ * skip, the scan is aborted unless the current context
+ * is a rescan to reach the end of the pageblock.
+ */
+ if (!skip_updated && valid_page) {
+ skip_updated = true;
+ if (test_and_set_skip(cc, valid_page) &&
+ !cc->finish_pageblock) {
+ low_pfn = end_pfn;
+ goto isolate_abort;
+ }
+ }
+
+ /*
+ * folio become large since the non-locked check,
+ * and it's on LRU.
+ */
+ if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
+ low_pfn += folio_nr_pages(folio) - 1;
+ nr_scanned += folio_nr_pages(folio) - 1;
+ folio_set_lru(folio);
+ goto isolate_fail_put;
+ }
+ }
+
+ /* The folio is taken off the LRU */
+ if (folio_test_large(folio))
+ low_pfn += folio_nr_pages(folio) - 1;
+
+ /* Successfully isolated */
+ lruvec_del_folio(lruvec, folio);
+ node_stat_mod_folio(folio,
+ NR_ISOLATED_ANON + folio_is_file_lru(folio),
+ folio_nr_pages(folio));
+
+isolate_success:
+ list_add(&folio->lru, &cc->migratepages);
+isolate_success_no_list:
+ cc->nr_migratepages += folio_nr_pages(folio);
+ nr_isolated += folio_nr_pages(folio);
+ nr_scanned += folio_nr_pages(folio) - 1;
+
+ /*
+ * Avoid isolating too much unless this block is being
+ * fully scanned (e.g. dirty/writeback pages, parallel allocation)
+ * or a lock is contended. For contention, isolate quickly to
+ * potentially remove one source of contention.
+ */
+ if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
+ !cc->finish_pageblock && !cc->contended) {
+ ++low_pfn;
+ break;
+ }
+
+ continue;
+
+isolate_fail_put:
+ /* Avoid potential deadlock in freeing page under lru_lock */
+ if (locked) {
+ unlock_page_lruvec_irqrestore(locked, flags);
+ locked = NULL;
+ }
+ folio_put(folio);
+
+isolate_fail:
+ if (!skip_on_failure && ret != -ENOMEM)
+ continue;
+
+ /*
+ * We have isolated some pages, but then failed. Release them
+ * instead of migrating, as we cannot form the cc->order buddy
+ * page anyway.
+ */
+ if (nr_isolated) {
+ if (locked) {
+ unlock_page_lruvec_irqrestore(locked, flags);
+ locked = NULL;
+ }
+ putback_movable_pages(&cc->migratepages);
+ cc->nr_migratepages = 0;
+ nr_isolated = 0;
+ }
+
+ if (low_pfn < next_skip_pfn) {
+ low_pfn = next_skip_pfn - 1;
+ /*
+ * The check near the loop beginning would have updated
+ * next_skip_pfn too, but this is a bit simpler.
+ */
+ next_skip_pfn += 1UL << cc->order;
+ }
+
+ if (ret == -ENOMEM)
+ break;
+ }
+
+ /*
+ * The PageBuddy() check could have potentially brought us outside
+ * the range to be scanned.
+ */
+ if (unlikely(low_pfn > end_pfn))
+ low_pfn = end_pfn;
+
+ folio = NULL;
+
+isolate_abort:
+ if (locked)
+ unlock_page_lruvec_irqrestore(locked, flags);
+ if (folio) {
+ folio_set_lru(folio);
+ folio_put(folio);
+ }
+
+ /*
+ * Update the cached scanner pfn once the pageblock has been scanned.
+ * Pages will either be migrated in which case there is no point
+ * scanning in the near future or migration failed in which case the
+ * failure reason may persist. The block is marked for skipping if
+ * there were no pages isolated in the block or if the block is
+ * rescanned twice in a row.
+ */
+ if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
+ if (!cc->no_set_skip_hint && valid_page && !skip_updated)
+ set_pageblock_skip(valid_page);
+ update_cached_migrate(cc, low_pfn);
+ }
+
+ trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
+ nr_scanned, nr_isolated);
+
+fatal_pending:
+ cc->total_migrate_scanned += nr_scanned;
+ if (nr_isolated)
+ count_compact_events(COMPACTISOLATED, nr_isolated);
+
+ cc->migrate_pfn = low_pfn;
+
+ return ret;
+}
+
+/**
+ * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
+ * @cc: Compaction control structure.
+ * @start_pfn: The first PFN to start isolating.
+ * @end_pfn: The one-past-last PFN.
+ *
+ * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
+ * in case we could not allocate a page, or 0.
+ */
+int
+isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
+ unsigned long end_pfn)
+{
+ unsigned long pfn, block_start_pfn, block_end_pfn;
+ int ret = 0;
+
+ /* Scan block by block. First and last block may be incomplete */
+ pfn = start_pfn;
+ block_start_pfn = pageblock_start_pfn(pfn);
+ if (block_start_pfn < cc->zone->zone_start_pfn)
+ block_start_pfn = cc->zone->zone_start_pfn;
+ block_end_pfn = pageblock_end_pfn(pfn);
+
+ for (; pfn < end_pfn; pfn = block_end_pfn,
+ block_start_pfn = block_end_pfn,
+ block_end_pfn += pageblock_nr_pages) {
+
+ block_end_pfn = min(block_end_pfn, end_pfn);
+
+ if (!pageblock_pfn_to_page(block_start_pfn,
+ block_end_pfn, cc->zone))
+ continue;
+
+ ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
+ ISOLATE_UNEVICTABLE);
+
+ if (ret)
+ break;
+
+ if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
+ break;
+ }
+
+ return ret;
+}
+
+#endif /* CONFIG_COMPACTION || CONFIG_CMA */
+#ifdef CONFIG_COMPACTION
+
+static bool suitable_migration_source(struct compact_control *cc,
+ struct page *page)
+{
+ int block_mt;
+
+ if (pageblock_skip_persistent(page))
+ return false;
+
+ if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
+ return true;
+
+ block_mt = get_pageblock_migratetype(page);
+
+ if (cc->migratetype == MIGRATE_MOVABLE)
+ return is_migrate_movable(block_mt);
+ else
+ return block_mt == cc->migratetype;
+}
+
+/* Returns true if the page is within a block suitable for migration to */
+static bool suitable_migration_target(struct compact_control *cc,
+ struct page *page)
+{
+ /* If the page is a large free page, then disallow migration */
+ if (PageBuddy(page)) {
+ /*
+ * We are checking page_order without zone->lock taken. But
+ * the only small danger is that we skip a potentially suitable
+ * pageblock, so it's not worth to check order for valid range.
+ */
+ if (buddy_order_unsafe(page) >= pageblock_order)
+ return false;
+ }
+
+ if (cc->ignore_block_suitable)
+ return true;
+
+ /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
+ if (is_migrate_movable(get_pageblock_migratetype(page)))
+ return true;
+
+ /* Otherwise skip the block */
+ return false;
+}
+
+static inline unsigned int
+freelist_scan_limit(struct compact_control *cc)
+{
+ unsigned short shift = BITS_PER_LONG - 1;
+
+ return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
+}
+
+/*
+ * Test whether the free scanner has reached the same or lower pageblock than
+ * the migration scanner, and compaction should thus terminate.
+ */
+static inline bool compact_scanners_met(struct compact_control *cc)
+{
+ return (cc->free_pfn >> pageblock_order)
+ <= (cc->migrate_pfn >> pageblock_order);
+}
+
+/*
+ * Used when scanning for a suitable migration target which scans freelists
+ * in reverse. Reorders the list such as the unscanned pages are scanned
+ * first on the next iteration of the free scanner
+ */
+static void
+move_freelist_head(struct list_head *freelist, struct page *freepage)
+{
+ LIST_HEAD(sublist);
+
+ if (!list_is_last(freelist, &freepage->lru)) {
+ list_cut_before(&sublist, freelist, &freepage->lru);
+ list_splice_tail(&sublist, freelist);
+ }
+}
+
+/*
+ * Similar to move_freelist_head except used by the migration scanner
+ * when scanning forward. It's possible for these list operations to
+ * move against each other if they search the free list exactly in
+ * lockstep.
+ */
+static void
+move_freelist_tail(struct list_head *freelist, struct page *freepage)
+{
+ LIST_HEAD(sublist);
+
+ if (!list_is_first(freelist, &freepage->lru)) {
+ list_cut_position(&sublist, freelist, &freepage->lru);
+ list_splice_tail(&sublist, freelist);
+ }
+}
+
+static void
+fast_isolate_around(struct compact_control *cc, unsigned long pfn)
+{
+ unsigned long start_pfn, end_pfn;
+ struct page *page;
+
+ /* Do not search around if there are enough pages already */
+ if (cc->nr_freepages >= cc->nr_migratepages)
+ return;
+
+ /* Minimise scanning during async compaction */
+ if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
+ return;
+
+ /* Pageblock boundaries */
+ start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
+ end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
+
+ page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
+ if (!page)
+ return;
+
+ isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
+
+ /* Skip this pageblock in the future as it's full or nearly full */
+ if (start_pfn == end_pfn && !cc->no_set_skip_hint)
+ set_pageblock_skip(page);
+}
+
+/* Search orders in round-robin fashion */
+static int next_search_order(struct compact_control *cc, int order)
+{
+ order--;
+ if (order < 0)
+ order = cc->order - 1;
+
+ /* Search wrapped around? */
+ if (order == cc->search_order) {
+ cc->search_order--;
+ if (cc->search_order < 0)
+ cc->search_order = cc->order - 1;
+ return -1;
+ }
+
+ return order;
+}
+
+static void fast_isolate_freepages(struct compact_control *cc)
+{
+ unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
+ unsigned int nr_scanned = 0, total_isolated = 0;
+ unsigned long low_pfn, min_pfn, highest = 0;
+ unsigned long nr_isolated = 0;
+ unsigned long distance;
+ struct page *page = NULL;
+ bool scan_start = false;
+ int order;
+
+ /* Full compaction passes in a negative order */
+ if (cc->order <= 0)
+ return;
+
+ /*
+ * If starting the scan, use a deeper search and use the highest
+ * PFN found if a suitable one is not found.
+ */
+ if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
+ limit = pageblock_nr_pages >> 1;
+ scan_start = true;
+ }
+
+ /*
+ * Preferred point is in the top quarter of the scan space but take
+ * a pfn from the top half if the search is problematic.
+ */
+ distance = (cc->free_pfn - cc->migrate_pfn);
+ low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
+ min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
+
+ if (WARN_ON_ONCE(min_pfn > low_pfn))
+ low_pfn = min_pfn;
+
+ /*
+ * Search starts from the last successful isolation order or the next
+ * order to search after a previous failure
+ */
+ cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
+
+ for (order = cc->search_order;
+ !page && order >= 0;
+ order = next_search_order(cc, order)) {
+ struct free_area *area = &cc->zone->free_area[order];
+ struct list_head *freelist;
+ struct page *freepage;
+ unsigned long flags;
+ unsigned int order_scanned = 0;
+ unsigned long high_pfn = 0;
+
+ if (!area->nr_free)
+ continue;
+
+ spin_lock_irqsave(&cc->zone->lock, flags);
+ freelist = &area->free_list[MIGRATE_MOVABLE];
+ list_for_each_entry_reverse(freepage, freelist, buddy_list) {
+ unsigned long pfn;
+
+ order_scanned++;
+ nr_scanned++;
+ pfn = page_to_pfn(freepage);
+
+ if (pfn >= highest)
+ highest = max(pageblock_start_pfn(pfn),
+ cc->zone->zone_start_pfn);
+
+ if (pfn >= low_pfn) {
+ cc->fast_search_fail = 0;
+ cc->search_order = order;
+ page = freepage;
+ break;
+ }
+
+ if (pfn >= min_pfn && pfn > high_pfn) {
+ high_pfn = pfn;
+
+ /* Shorten the scan if a candidate is found */
+ limit >>= 1;
+ }
+
+ if (order_scanned >= limit)
+ break;
+ }
+
+ /* Use a maximum candidate pfn if a preferred one was not found */
+ if (!page && high_pfn) {
+ page = pfn_to_page(high_pfn);
+
+ /* Update freepage for the list reorder below */
+ freepage = page;
+ }
+
+ /* Reorder to so a future search skips recent pages */
+ move_freelist_head(freelist, freepage);
+
+ /* Isolate the page if available */
+ if (page) {
+ if (__isolate_free_page(page, order)) {
+ set_page_private(page, order);
+ nr_isolated = 1 << order;
+ nr_scanned += nr_isolated - 1;
+ total_isolated += nr_isolated;
+ cc->nr_freepages += nr_isolated;
+ list_add_tail(&page->lru, &cc->freepages);
+ count_compact_events(COMPACTISOLATED, nr_isolated);
+ } else {
+ /* If isolation fails, abort the search */
+ order = cc->search_order + 1;
+ page = NULL;
+ }
+ }
+
+ spin_unlock_irqrestore(&cc->zone->lock, flags);
+
+ /* Skip fast search if enough freepages isolated */
+ if (cc->nr_freepages >= cc->nr_migratepages)
+ break;
+
+ /*
+ * Smaller scan on next order so the total scan is related
+ * to freelist_scan_limit.
+ */
+ if (order_scanned >= limit)
+ limit = max(1U, limit >> 1);
+ }
+
+ trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
+ nr_scanned, total_isolated);
+
+ if (!page) {
+ cc->fast_search_fail++;
+ if (scan_start) {
+ /*
+ * Use the highest PFN found above min. If one was
+ * not found, be pessimistic for direct compaction
+ * and use the min mark.
+ */
+ if (highest >= min_pfn) {
+ page = pfn_to_page(highest);
+ cc->free_pfn = highest;
+ } else {
+ if (cc->direct_compaction && pfn_valid(min_pfn)) {
+ page = pageblock_pfn_to_page(min_pfn,
+ min(pageblock_end_pfn(min_pfn),
+ zone_end_pfn(cc->zone)),
+ cc->zone);
+ cc->free_pfn = min_pfn;
+ }
+ }
+ }
+ }
+
+ if (highest && highest >= cc->zone->compact_cached_free_pfn) {
+ highest -= pageblock_nr_pages;
+ cc->zone->compact_cached_free_pfn = highest;
+ }
+
+ cc->total_free_scanned += nr_scanned;
+ if (!page)
+ return;
+
+ low_pfn = page_to_pfn(page);
+ fast_isolate_around(cc, low_pfn);
+}
+
+/*
+ * Based on information in the current compact_control, find blocks
+ * suitable for isolating free pages from and then isolate them.
+ */
+static void isolate_freepages(struct compact_control *cc)
+{
+ struct zone *zone = cc->zone;
+ struct page *page;
+ unsigned long block_start_pfn; /* start of current pageblock */
+ unsigned long isolate_start_pfn; /* exact pfn we start at */
+ unsigned long block_end_pfn; /* end of current pageblock */
+ unsigned long low_pfn; /* lowest pfn scanner is able to scan */
+ struct list_head *freelist = &cc->freepages;
+ unsigned int stride;
+
+ /* Try a small search of the free lists for a candidate */
+ fast_isolate_freepages(cc);
+ if (cc->nr_freepages)
+ goto splitmap;
+
+ /*
+ * Initialise the free scanner. The starting point is where we last
+ * successfully isolated from, zone-cached value, or the end of the
+ * zone when isolating for the first time. For looping we also need
+ * this pfn aligned down to the pageblock boundary, because we do
+ * block_start_pfn -= pageblock_nr_pages in the for loop.
+ * For ending point, take care when isolating in last pageblock of a
+ * zone which ends in the middle of a pageblock.
+ * The low boundary is the end of the pageblock the migration scanner
+ * is using.
+ */
+ isolate_start_pfn = cc->free_pfn;
+ block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
+ block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
+ zone_end_pfn(zone));
+ low_pfn = pageblock_end_pfn(cc->migrate_pfn);
+ stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
+
+ /*
+ * Isolate free pages until enough are available to migrate the
+ * pages on cc->migratepages. We stop searching if the migrate
+ * and free page scanners meet or enough free pages are isolated.
+ */
+ for (; block_start_pfn >= low_pfn;
+ block_end_pfn = block_start_pfn,
+ block_start_pfn -= pageblock_nr_pages,
+ isolate_start_pfn = block_start_pfn) {
+ unsigned long nr_isolated;
+
+ /*
+ * This can iterate a massively long zone without finding any
+ * suitable migration targets, so periodically check resched.
+ */
+ if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
+ cond_resched();
+
+ page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
+ zone);
+ if (!page) {
+ unsigned long next_pfn;
+
+ next_pfn = skip_offline_sections_reverse(block_start_pfn);
+ if (next_pfn)
+ block_start_pfn = max(next_pfn, low_pfn);
+
+ continue;
+ }
+
+ /* Check the block is suitable for migration */
+ if (!suitable_migration_target(cc, page))
+ continue;
+
+ /* If isolation recently failed, do not retry */
+ if (!isolation_suitable(cc, page))
+ continue;
+
+ /* Found a block suitable for isolating free pages from. */
+ nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
+ block_end_pfn, freelist, stride, false);
+
+ /* Update the skip hint if the full pageblock was scanned */
+ if (isolate_start_pfn == block_end_pfn)
+ update_pageblock_skip(cc, page, block_start_pfn -
+ pageblock_nr_pages);
+
+ /* Are enough freepages isolated? */
+ if (cc->nr_freepages >= cc->nr_migratepages) {
+ if (isolate_start_pfn >= block_end_pfn) {
+ /*
+ * Restart at previous pageblock if more
+ * freepages can be isolated next time.
+ */
+ isolate_start_pfn =
+ block_start_pfn - pageblock_nr_pages;
+ }
+ break;
+ } else if (isolate_start_pfn < block_end_pfn) {
+ /*
+ * If isolation failed early, do not continue
+ * needlessly.
+ */
+ break;
+ }
+
+ /* Adjust stride depending on isolation */
+ if (nr_isolated) {
+ stride = 1;
+ continue;
+ }
+ stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
+ }
+
+ /*
+ * Record where the free scanner will restart next time. Either we
+ * broke from the loop and set isolate_start_pfn based on the last
+ * call to isolate_freepages_block(), or we met the migration scanner
+ * and the loop terminated due to isolate_start_pfn < low_pfn
+ */
+ cc->free_pfn = isolate_start_pfn;
+
+splitmap:
+ /* __isolate_free_page() does not map the pages */
+ split_map_pages(freelist);
+}
+
+/*
+ * This is a migrate-callback that "allocates" freepages by taking pages
+ * from the isolated freelists in the block we are migrating to.
+ */
+static struct folio *compaction_alloc(struct folio *src, unsigned long data)
+{
+ struct compact_control *cc = (struct compact_control *)data;
+ struct folio *dst;
+
+ if (list_empty(&cc->freepages)) {
+ isolate_freepages(cc);
+
+ if (list_empty(&cc->freepages))
+ return NULL;
+ }
+
+ dst = list_entry(cc->freepages.next, struct folio, lru);
+ list_del(&dst->lru);
+ cc->nr_freepages--;
+
+ return dst;
+}
+
+/*
+ * This is a migrate-callback that "frees" freepages back to the isolated
+ * freelist. All pages on the freelist are from the same zone, so there is no
+ * special handling needed for NUMA.
+ */
+static void compaction_free(struct folio *dst, unsigned long data)
+{
+ struct compact_control *cc = (struct compact_control *)data;
+
+ list_add(&dst->lru, &cc->freepages);
+ cc->nr_freepages++;
+}
+
+/* possible outcome of isolate_migratepages */
+typedef enum {
+ ISOLATE_ABORT, /* Abort compaction now */
+ ISOLATE_NONE, /* No pages isolated, continue scanning */
+ ISOLATE_SUCCESS, /* Pages isolated, migrate */
+} isolate_migrate_t;
+
+/*
+ * Allow userspace to control policy on scanning the unevictable LRU for
+ * compactable pages.
+ */
+static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
+/*
+ * Tunable for proactive compaction. It determines how
+ * aggressively the kernel should compact memory in the
+ * background. It takes values in the range [0, 100].
+ */
+static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
+static int sysctl_extfrag_threshold = 500;
+static int __read_mostly sysctl_compact_memory;
+
+static inline void
+update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
+{
+ if (cc->fast_start_pfn == ULONG_MAX)
+ return;
+
+ if (!cc->fast_start_pfn)
+ cc->fast_start_pfn = pfn;
+
+ cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
+}
+
+static inline unsigned long
+reinit_migrate_pfn(struct compact_control *cc)
+{
+ if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
+ return cc->migrate_pfn;
+
+ cc->migrate_pfn = cc->fast_start_pfn;
+ cc->fast_start_pfn = ULONG_MAX;
+
+ return cc->migrate_pfn;
+}
+
+/*
+ * Briefly search the free lists for a migration source that already has
+ * some free pages to reduce the number of pages that need migration
+ * before a pageblock is free.
+ */
+static unsigned long fast_find_migrateblock(struct compact_control *cc)
+{
+ unsigned int limit = freelist_scan_limit(cc);
+ unsigned int nr_scanned = 0;
+ unsigned long distance;
+ unsigned long pfn = cc->migrate_pfn;
+ unsigned long high_pfn;
+ int order;
+ bool found_block = false;
+
+ /* Skip hints are relied on to avoid repeats on the fast search */
+ if (cc->ignore_skip_hint)
+ return pfn;
+
+ /*
+ * If the pageblock should be finished then do not select a different
+ * pageblock.
+ */
+ if (cc->finish_pageblock)
+ return pfn;
+
+ /*
+ * If the migrate_pfn is not at the start of a zone or the start
+ * of a pageblock then assume this is a continuation of a previous
+ * scan restarted due to COMPACT_CLUSTER_MAX.
+ */
+ if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
+ return pfn;
+
+ /*
+ * For smaller orders, just linearly scan as the number of pages
+ * to migrate should be relatively small and does not necessarily
+ * justify freeing up a large block for a small allocation.
+ */
+ if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
+ return pfn;
+
+ /*
+ * Only allow kcompactd and direct requests for movable pages to
+ * quickly clear out a MOVABLE pageblock for allocation. This
+ * reduces the risk that a large movable pageblock is freed for
+ * an unmovable/reclaimable small allocation.
+ */
+ if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
+ return pfn;
+
+ /*
+ * When starting the migration scanner, pick any pageblock within the
+ * first half of the search space. Otherwise try and pick a pageblock
+ * within the first eighth to reduce the chances that a migration
+ * target later becomes a source.
+ */
+ distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
+ if (cc->migrate_pfn != cc->zone->zone_start_pfn)
+ distance >>= 2;
+ high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
+
+ for (order = cc->order - 1;
+ order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
+ order--) {
+ struct free_area *area = &cc->zone->free_area[order];
+ struct list_head *freelist;
+ unsigned long flags;
+ struct page *freepage;
+
+ if (!area->nr_free)
+ continue;
+
+ spin_lock_irqsave(&cc->zone->lock, flags);
+ freelist = &area->free_list[MIGRATE_MOVABLE];
+ list_for_each_entry(freepage, freelist, buddy_list) {
+ unsigned long free_pfn;
+
+ if (nr_scanned++ >= limit) {
+ move_freelist_tail(freelist, freepage);
+ break;
+ }
+
+ free_pfn = page_to_pfn(freepage);
+ if (free_pfn < high_pfn) {
+ /*
+ * Avoid if skipped recently. Ideally it would
+ * move to the tail but even safe iteration of
+ * the list assumes an entry is deleted, not
+ * reordered.
+ */
+ if (get_pageblock_skip(freepage))
+ continue;
+
+ /* Reorder to so a future search skips recent pages */
+ move_freelist_tail(freelist, freepage);
+
+ update_fast_start_pfn(cc, free_pfn);
+ pfn = pageblock_start_pfn(free_pfn);
+ if (pfn < cc->zone->zone_start_pfn)
+ pfn = cc->zone->zone_start_pfn;
+ cc->fast_search_fail = 0;
+ found_block = true;
+ break;
+ }
+ }
+ spin_unlock_irqrestore(&cc->zone->lock, flags);
+ }
+
+ cc->total_migrate_scanned += nr_scanned;
+
+ /*
+ * If fast scanning failed then use a cached entry for a page block
+ * that had free pages as the basis for starting a linear scan.
+ */
+ if (!found_block) {
+ cc->fast_search_fail++;
+ pfn = reinit_migrate_pfn(cc);
+ }
+ return pfn;
+}
+
+/*
+ * Isolate all pages that can be migrated from the first suitable block,
+ * starting at the block pointed to by the migrate scanner pfn within
+ * compact_control.
+ */
+static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
+{
+ unsigned long block_start_pfn;
+ unsigned long block_end_pfn;
+ unsigned long low_pfn;
+ struct page *page;
+ const isolate_mode_t isolate_mode =
+ (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
+ (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
+ bool fast_find_block;
+
+ /*
+ * Start at where we last stopped, or beginning of the zone as
+ * initialized by compact_zone(). The first failure will use
+ * the lowest PFN as the starting point for linear scanning.
+ */
+ low_pfn = fast_find_migrateblock(cc);
+ block_start_pfn = pageblock_start_pfn(low_pfn);
+ if (block_start_pfn < cc->zone->zone_start_pfn)
+ block_start_pfn = cc->zone->zone_start_pfn;
+
+ /*
+ * fast_find_migrateblock() has already ensured the pageblock is not
+ * set with a skipped flag, so to avoid the isolation_suitable check
+ * below again, check whether the fast search was successful.
+ */
+ fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
+
+ /* Only scan within a pageblock boundary */
+ block_end_pfn = pageblock_end_pfn(low_pfn);
+
+ /*
+ * Iterate over whole pageblocks until we find the first suitable.
+ * Do not cross the free scanner.
+ */
+ for (; block_end_pfn <= cc->free_pfn;
+ fast_find_block = false,
+ cc->migrate_pfn = low_pfn = block_end_pfn,
+ block_start_pfn = block_end_pfn,
+ block_end_pfn += pageblock_nr_pages) {
+
+ /*
+ * This can potentially iterate a massively long zone with
+ * many pageblocks unsuitable, so periodically check if we
+ * need to schedule.
+ */
+ if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
+ cond_resched();
+
+ page = pageblock_pfn_to_page(block_start_pfn,
+ block_end_pfn, cc->zone);
+ if (!page) {
+ unsigned long next_pfn;
+
+ next_pfn = skip_offline_sections(block_start_pfn);
+ if (next_pfn)
+ block_end_pfn = min(next_pfn, cc->free_pfn);
+ continue;
+ }
+
+ /*
+ * If isolation recently failed, do not retry. Only check the
+ * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
+ * to be visited multiple times. Assume skip was checked
+ * before making it "skip" so other compaction instances do
+ * not scan the same block.
+ */
+ if ((pageblock_aligned(low_pfn) ||
+ low_pfn == cc->zone->zone_start_pfn) &&
+ !fast_find_block && !isolation_suitable(cc, page))
+ continue;
+
+ /*
+ * For async direct compaction, only scan the pageblocks of the
+ * same migratetype without huge pages. Async direct compaction
+ * is optimistic to see if the minimum amount of work satisfies
+ * the allocation. The cached PFN is updated as it's possible
+ * that all remaining blocks between source and target are
+ * unsuitable and the compaction scanners fail to meet.
+ */
+ if (!suitable_migration_source(cc, page)) {
+ update_cached_migrate(cc, block_end_pfn);
+ continue;
+ }
+
+ /* Perform the isolation */
+ if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
+ isolate_mode))
+ return ISOLATE_ABORT;
+
+ /*
+ * Either we isolated something and proceed with migration. Or
+ * we failed and compact_zone should decide if we should
+ * continue or not.
+ */
+ break;
+ }
+
+ return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
+}
+
+/*
+ * order == -1 is expected when compacting via
+ * /proc/sys/vm/compact_memory
+ */
+static inline bool is_via_compact_memory(int order)
+{
+ return order == -1;
+}
+
+/*
+ * Determine whether kswapd is (or recently was!) running on this node.
+ *
+ * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
+ * zero it.
+ */
+static bool kswapd_is_running(pg_data_t *pgdat)
+{
+ bool running;
+
+ pgdat_kswapd_lock(pgdat);
+ running = pgdat->kswapd && task_is_running(pgdat->kswapd);
+ pgdat_kswapd_unlock(pgdat);
+
+ return running;
+}
+
+/*
+ * A zone's fragmentation score is the external fragmentation wrt to the
+ * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
+ */
+static unsigned int fragmentation_score_zone(struct zone *zone)
+{
+ return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
+}
+
+/*
+ * A weighted zone's fragmentation score is the external fragmentation
+ * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
+ * returns a value in the range [0, 100].
+ *
+ * The scaling factor ensures that proactive compaction focuses on larger
+ * zones like ZONE_NORMAL, rather than smaller, specialized zones like
+ * ZONE_DMA32. For smaller zones, the score value remains close to zero,
+ * and thus never exceeds the high threshold for proactive compaction.
+ */
+static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
+{
+ unsigned long score;
+
+ score = zone->present_pages * fragmentation_score_zone(zone);
+ return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
+}
+
+/*
+ * The per-node proactive (background) compaction process is started by its
+ * corresponding kcompactd thread when the node's fragmentation score
+ * exceeds the high threshold. The compaction process remains active till
+ * the node's score falls below the low threshold, or one of the back-off
+ * conditions is met.
+ */
+static unsigned int fragmentation_score_node(pg_data_t *pgdat)
+{
+ unsigned int score = 0;
+ int zoneid;
+
+ for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+ struct zone *zone;
+
+ zone = &pgdat->node_zones[zoneid];
+ if (!populated_zone(zone))
+ continue;
+ score += fragmentation_score_zone_weighted(zone);
+ }
+
+ return score;
+}
+
+static unsigned int fragmentation_score_wmark(bool low)
+{
+ unsigned int wmark_low;
+
+ /*
+ * Cap the low watermark to avoid excessive compaction
+ * activity in case a user sets the proactiveness tunable
+ * close to 100 (maximum).
+ */
+ wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
+ return low ? wmark_low : min(wmark_low + 10, 100U);
+}
+
+static bool should_proactive_compact_node(pg_data_t *pgdat)
+{
+ int wmark_high;
+
+ if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
+ return false;
+
+ wmark_high = fragmentation_score_wmark(false);
+ return fragmentation_score_node(pgdat) > wmark_high;
+}
+
+static enum compact_result __compact_finished(struct compact_control *cc)
+{
+ unsigned int order;
+ const int migratetype = cc->migratetype;
+ int ret;
+
+ /* Compaction run completes if the migrate and free scanner meet */
+ if (compact_scanners_met(cc)) {
+ /* Let the next compaction start anew. */
+ reset_cached_positions(cc->zone);
+
+ /*
+ * Mark that the PG_migrate_skip information should be cleared
+ * by kswapd when it goes to sleep. kcompactd does not set the
+ * flag itself as the decision to be clear should be directly
+ * based on an allocation request.
+ */
+ if (cc->direct_compaction)
+ cc->zone->compact_blockskip_flush = true;
+
+ if (cc->whole_zone)
+ return COMPACT_COMPLETE;
+ else
+ return COMPACT_PARTIAL_SKIPPED;
+ }
+
+ if (cc->proactive_compaction) {
+ int score, wmark_low;
+ pg_data_t *pgdat;
+
+ pgdat = cc->zone->zone_pgdat;
+ if (kswapd_is_running(pgdat))
+ return COMPACT_PARTIAL_SKIPPED;
+
+ score = fragmentation_score_zone(cc->zone);
+ wmark_low = fragmentation_score_wmark(true);
+
+ if (score > wmark_low)
+ ret = COMPACT_CONTINUE;
+ else
+ ret = COMPACT_SUCCESS;
+
+ goto out;
+ }
+
+ if (is_via_compact_memory(cc->order))
+ return COMPACT_CONTINUE;
+
+ /*
+ * Always finish scanning a pageblock to reduce the possibility of
+ * fallbacks in the future. This is particularly important when
+ * migration source is unmovable/reclaimable but it's not worth
+ * special casing.
+ */
+ if (!pageblock_aligned(cc->migrate_pfn))
+ return COMPACT_CONTINUE;
+
+ /* Direct compactor: Is a suitable page free? */
+ ret = COMPACT_NO_SUITABLE_PAGE;
+ for (order = cc->order; order <= MAX_ORDER; order++) {
+ struct free_area *area = &cc->zone->free_area[order];
+ bool can_steal;
+
+ /* Job done if page is free of the right migratetype */
+ if (!free_area_empty(area, migratetype))
+ return COMPACT_SUCCESS;
+
+#ifdef CONFIG_CMA
+ /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
+ if (migratetype == MIGRATE_MOVABLE &&
+ !free_area_empty(area, MIGRATE_CMA))
+ return COMPACT_SUCCESS;
+#endif
+ /*
+ * Job done if allocation would steal freepages from
+ * other migratetype buddy lists.
+ */
+ if (find_suitable_fallback(area, order, migratetype,
+ true, &can_steal) != -1)
+ /*
+ * Movable pages are OK in any pageblock. If we are
+ * stealing for a non-movable allocation, make sure
+ * we finish compacting the current pageblock first
+ * (which is assured by the above migrate_pfn align
+ * check) so it is as free as possible and we won't
+ * have to steal another one soon.
+ */
+ return COMPACT_SUCCESS;
+ }
+
+out:
+ if (cc->contended || fatal_signal_pending(current))
+ ret = COMPACT_CONTENDED;
+
+ return ret;
+}
+
+static enum compact_result compact_finished(struct compact_control *cc)
+{
+ int ret;
+
+ ret = __compact_finished(cc);
+ trace_mm_compaction_finished(cc->zone, cc->order, ret);
+ if (ret == COMPACT_NO_SUITABLE_PAGE)
+ ret = COMPACT_CONTINUE;
+
+ return ret;
+}
+
+static bool __compaction_suitable(struct zone *zone, int order,
+ int highest_zoneidx,
+ unsigned long wmark_target)
+{
+ unsigned long watermark;
+ /*
+ * Watermarks for order-0 must be met for compaction to be able to
+ * isolate free pages for migration targets. This means that the
+ * watermark and alloc_flags have to match, or be more pessimistic than
+ * the check in __isolate_free_page(). We don't use the direct
+ * compactor's alloc_flags, as they are not relevant for freepage
+ * isolation. We however do use the direct compactor's highest_zoneidx
+ * to skip over zones where lowmem reserves would prevent allocation
+ * even if compaction succeeds.
+ * For costly orders, we require low watermark instead of min for
+ * compaction to proceed to increase its chances.
+ * ALLOC_CMA is used, as pages in CMA pageblocks are considered
+ * suitable migration targets
+ */
+ watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
+ low_wmark_pages(zone) : min_wmark_pages(zone);
+ watermark += compact_gap(order);
+ return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
+ ALLOC_CMA, wmark_target);
+}
+
+/*
+ * compaction_suitable: Is this suitable to run compaction on this zone now?
+ */
+bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
+{
+ enum compact_result compact_result;
+ bool suitable;
+
+ suitable = __compaction_suitable(zone, order, highest_zoneidx,
+ zone_page_state(zone, NR_FREE_PAGES));
+ /*
+ * fragmentation index determines if allocation failures are due to
+ * low memory or external fragmentation
+ *
+ * index of -1000 would imply allocations might succeed depending on
+ * watermarks, but we already failed the high-order watermark check
+ * index towards 0 implies failure is due to lack of memory
+ * index towards 1000 implies failure is due to fragmentation
+ *
+ * Only compact if a failure would be due to fragmentation. Also
+ * ignore fragindex for non-costly orders where the alternative to
+ * a successful reclaim/compaction is OOM. Fragindex and the
+ * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
+ * excessive compaction for costly orders, but it should not be at the
+ * expense of system stability.
+ */
+ if (suitable) {
+ compact_result = COMPACT_CONTINUE;
+ if (order > PAGE_ALLOC_COSTLY_ORDER) {
+ int fragindex = fragmentation_index(zone, order);
+
+ if (fragindex >= 0 &&
+ fragindex <= sysctl_extfrag_threshold) {
+ suitable = false;
+ compact_result = COMPACT_NOT_SUITABLE_ZONE;
+ }
+ }
+ } else {
+ compact_result = COMPACT_SKIPPED;
+ }
+
+ trace_mm_compaction_suitable(zone, order, compact_result);
+
+ return suitable;
+}
+
+bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
+ int alloc_flags)
+{
+ struct zone *zone;
+ struct zoneref *z;
+
+ /*
+ * Make sure at least one zone would pass __compaction_suitable if we continue
+ * retrying the reclaim.
+ */
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
+ ac->highest_zoneidx, ac->nodemask) {
+ unsigned long available;
+
+ /*
+ * Do not consider all the reclaimable memory because we do not
+ * want to trash just for a single high order allocation which
+ * is even not guaranteed to appear even if __compaction_suitable
+ * is happy about the watermark check.
+ */
+ available = zone_reclaimable_pages(zone) / order;
+ available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
+ if (__compaction_suitable(zone, order, ac->highest_zoneidx,
+ available))
+ return true;
+ }
+
+ return false;
+}
+
+static enum compact_result
+compact_zone(struct compact_control *cc, struct capture_control *capc)
+{
+ enum compact_result ret;
+ unsigned long start_pfn = cc->zone->zone_start_pfn;
+ unsigned long end_pfn = zone_end_pfn(cc->zone);
+ unsigned long last_migrated_pfn;
+ const bool sync = cc->mode != MIGRATE_ASYNC;
+ bool update_cached;
+ unsigned int nr_succeeded = 0;
+
+ /*
+ * These counters track activities during zone compaction. Initialize
+ * them before compacting a new zone.
+ */
+ cc->total_migrate_scanned = 0;
+ cc->total_free_scanned = 0;
+ cc->nr_migratepages = 0;
+ cc->nr_freepages = 0;
+ INIT_LIST_HEAD(&cc->freepages);
+ INIT_LIST_HEAD(&cc->migratepages);
+
+ cc->migratetype = gfp_migratetype(cc->gfp_mask);
+
+ if (!is_via_compact_memory(cc->order)) {
+ unsigned long watermark;
+
+ /* Allocation can already succeed, nothing to do */
+ watermark = wmark_pages(cc->zone,
+ cc->alloc_flags & ALLOC_WMARK_MASK);
+ if (zone_watermark_ok(cc->zone, cc->order, watermark,
+ cc->highest_zoneidx, cc->alloc_flags))
+ return COMPACT_SUCCESS;
+
+ /* Compaction is likely to fail */
+ if (!compaction_suitable(cc->zone, cc->order,
+ cc->highest_zoneidx))
+ return COMPACT_SKIPPED;
+ }
+
+ /*
+ * Clear pageblock skip if there were failures recently and compaction
+ * is about to be retried after being deferred.
+ */
+ if (compaction_restarting(cc->zone, cc->order))
+ __reset_isolation_suitable(cc->zone);
+
+ /*
+ * Setup to move all movable pages to the end of the zone. Used cached
+ * information on where the scanners should start (unless we explicitly
+ * want to compact the whole zone), but check that it is initialised
+ * by ensuring the values are within zone boundaries.
+ */
+ cc->fast_start_pfn = 0;
+ if (cc->whole_zone) {
+ cc->migrate_pfn = start_pfn;
+ cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
+ } else {
+ cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
+ cc->free_pfn = cc->zone->compact_cached_free_pfn;
+ if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
+ cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
+ cc->zone->compact_cached_free_pfn = cc->free_pfn;
+ }
+ if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
+ cc->migrate_pfn = start_pfn;
+ cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
+ cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
+ }
+
+ if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
+ cc->whole_zone = true;
+ }
+
+ last_migrated_pfn = 0;
+
+ /*
+ * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
+ * the basis that some migrations will fail in ASYNC mode. However,
+ * if the cached PFNs match and pageblocks are skipped due to having
+ * no isolation candidates, then the sync state does not matter.
+ * Until a pageblock with isolation candidates is found, keep the
+ * cached PFNs in sync to avoid revisiting the same blocks.
+ */
+ update_cached = !sync &&
+ cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
+
+ trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
+
+ /* lru_add_drain_all could be expensive with involving other CPUs */
+ lru_add_drain();
+
+ while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
+ int err;
+ unsigned long iteration_start_pfn = cc->migrate_pfn;
+
+ /*
+ * Avoid multiple rescans of the same pageblock which can
+ * happen if a page cannot be isolated (dirty/writeback in
+ * async mode) or if the migrated pages are being allocated
+ * before the pageblock is cleared. The first rescan will
+ * capture the entire pageblock for migration. If it fails,
+ * it'll be marked skip and scanning will proceed as normal.
+ */
+ cc->finish_pageblock = false;
+ if (pageblock_start_pfn(last_migrated_pfn) ==
+ pageblock_start_pfn(iteration_start_pfn)) {
+ cc->finish_pageblock = true;
+ }
+
+rescan:
+ switch (isolate_migratepages(cc)) {
+ case ISOLATE_ABORT:
+ ret = COMPACT_CONTENDED;
+ putback_movable_pages(&cc->migratepages);
+ cc->nr_migratepages = 0;
+ goto out;
+ case ISOLATE_NONE:
+ if (update_cached) {
+ cc->zone->compact_cached_migrate_pfn[1] =
+ cc->zone->compact_cached_migrate_pfn[0];
+ }
+
+ /*
+ * We haven't isolated and migrated anything, but
+ * there might still be unflushed migrations from
+ * previous cc->order aligned block.
+ */
+ goto check_drain;
+ case ISOLATE_SUCCESS:
+ update_cached = false;
+ last_migrated_pfn = max(cc->zone->zone_start_pfn,
+ pageblock_start_pfn(cc->migrate_pfn - 1));
+ }
+
+ err = migrate_pages(&cc->migratepages, compaction_alloc,
+ compaction_free, (unsigned long)cc, cc->mode,
+ MR_COMPACTION, &nr_succeeded);
+
+ trace_mm_compaction_migratepages(cc, nr_succeeded);
+
+ /* All pages were either migrated or will be released */
+ cc->nr_migratepages = 0;
+ if (err) {
+ putback_movable_pages(&cc->migratepages);
+ /*
+ * migrate_pages() may return -ENOMEM when scanners meet
+ * and we want compact_finished() to detect it
+ */
+ if (err == -ENOMEM && !compact_scanners_met(cc)) {
+ ret = COMPACT_CONTENDED;
+ goto out;
+ }
+ /*
+ * If an ASYNC or SYNC_LIGHT fails to migrate a page
+ * within the pageblock_order-aligned block and
+ * fast_find_migrateblock may be used then scan the
+ * remainder of the pageblock. This will mark the
+ * pageblock "skip" to avoid rescanning in the near
+ * future. This will isolate more pages than necessary
+ * for the request but avoid loops due to
+ * fast_find_migrateblock revisiting blocks that were
+ * recently partially scanned.
+ */
+ if (!pageblock_aligned(cc->migrate_pfn) &&
+ !cc->ignore_skip_hint && !cc->finish_pageblock &&
+ (cc->mode < MIGRATE_SYNC)) {
+ cc->finish_pageblock = true;
+
+ /*
+ * Draining pcplists does not help THP if
+ * any page failed to migrate. Even after
+ * drain, the pageblock will not be free.
+ */
+ if (cc->order == COMPACTION_HPAGE_ORDER)
+ last_migrated_pfn = 0;
+
+ goto rescan;
+ }
+ }
+
+ /* Stop if a page has been captured */
+ if (capc && capc->page) {
+ ret = COMPACT_SUCCESS;
+ break;
+ }
+
+check_drain:
+ /*
+ * Has the migration scanner moved away from the previous
+ * cc->order aligned block where we migrated from? If yes,
+ * flush the pages that were freed, so that they can merge and
+ * compact_finished() can detect immediately if allocation
+ * would succeed.
+ */
+ if (cc->order > 0 && last_migrated_pfn) {
+ unsigned long current_block_start =
+ block_start_pfn(cc->migrate_pfn, cc->order);
+
+ if (last_migrated_pfn < current_block_start) {
+ lru_add_drain_cpu_zone(cc->zone);
+ /* No more flushing until we migrate again */
+ last_migrated_pfn = 0;
+ }
+ }
+ }
+
+out:
+ /*
+ * Release free pages and update where the free scanner should restart,
+ * so we don't leave any returned pages behind in the next attempt.
+ */
+ if (cc->nr_freepages > 0) {
+ unsigned long free_pfn = release_freepages(&cc->freepages);
+
+ cc->nr_freepages = 0;
+ VM_BUG_ON(free_pfn == 0);
+ /* The cached pfn is always the first in a pageblock */
+ free_pfn = pageblock_start_pfn(free_pfn);
+ /*
+ * Only go back, not forward. The cached pfn might have been
+ * already reset to zone end in compact_finished()
+ */
+ if (free_pfn > cc->zone->compact_cached_free_pfn)
+ cc->zone->compact_cached_free_pfn = free_pfn;
+ }
+
+ count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
+ count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
+
+ trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
+
+ VM_BUG_ON(!list_empty(&cc->freepages));
+ VM_BUG_ON(!list_empty(&cc->migratepages));
+
+ return ret;
+}
+
+static enum compact_result compact_zone_order(struct zone *zone, int order,
+ gfp_t gfp_mask, enum compact_priority prio,
+ unsigned int alloc_flags, int highest_zoneidx,
+ struct page **capture)
+{
+ enum compact_result ret;
+ struct compact_control cc = {
+ .order = order,
+ .search_order = order,
+ .gfp_mask = gfp_mask,
+ .zone = zone,
+ .mode = (prio == COMPACT_PRIO_ASYNC) ?
+ MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
+ .alloc_flags = alloc_flags,
+ .highest_zoneidx = highest_zoneidx,
+ .direct_compaction = true,
+ .whole_zone = (prio == MIN_COMPACT_PRIORITY),
+ .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
+ .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
+ };
+ struct capture_control capc = {
+ .cc = &cc,
+ .page = NULL,
+ };
+
+ /*
+ * Make sure the structs are really initialized before we expose the
+ * capture control, in case we are interrupted and the interrupt handler
+ * frees a page.
+ */
+ barrier();
+ WRITE_ONCE(current->capture_control, &capc);
+
+ ret = compact_zone(&cc, &capc);
+
+ /*
+ * Make sure we hide capture control first before we read the captured
+ * page pointer, otherwise an interrupt could free and capture a page
+ * and we would leak it.
+ */
+ WRITE_ONCE(current->capture_control, NULL);
+ *capture = READ_ONCE(capc.page);
+ /*
+ * Technically, it is also possible that compaction is skipped but
+ * the page is still captured out of luck(IRQ came and freed the page).
+ * Returning COMPACT_SUCCESS in such cases helps in properly accounting
+ * the COMPACT[STALL|FAIL] when compaction is skipped.
+ */
+ if (*capture)
+ ret = COMPACT_SUCCESS;
+
+ return ret;
+}
+
+/**
+ * try_to_compact_pages - Direct compact to satisfy a high-order allocation
+ * @gfp_mask: The GFP mask of the current allocation
+ * @order: The order of the current allocation
+ * @alloc_flags: The allocation flags of the current allocation
+ * @ac: The context of current allocation
+ * @prio: Determines how hard direct compaction should try to succeed
+ * @capture: Pointer to free page created by compaction will be stored here
+ *
+ * This is the main entry point for direct page compaction.
+ */
+enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
+ unsigned int alloc_flags, const struct alloc_context *ac,
+ enum compact_priority prio, struct page **capture)
+{
+ int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
+ struct zoneref *z;
+ struct zone *zone;
+ enum compact_result rc = COMPACT_SKIPPED;
+
+ /*
+ * Check if the GFP flags allow compaction - GFP_NOIO is really
+ * tricky context because the migration might require IO
+ */
+ if (!may_perform_io)
+ return COMPACT_SKIPPED;
+
+ trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
+
+ /* Compact each zone in the list */
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
+ ac->highest_zoneidx, ac->nodemask) {
+ enum compact_result status;
+
+ if (prio > MIN_COMPACT_PRIORITY
+ && compaction_deferred(zone, order)) {
+ rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
+ continue;
+ }
+
+ status = compact_zone_order(zone, order, gfp_mask, prio,
+ alloc_flags, ac->highest_zoneidx, capture);
+ rc = max(status, rc);
+
+ /* The allocation should succeed, stop compacting */
+ if (status == COMPACT_SUCCESS) {
+ /*
+ * We think the allocation will succeed in this zone,
+ * but it is not certain, hence the false. The caller
+ * will repeat this with true if allocation indeed
+ * succeeds in this zone.
+ */
+ compaction_defer_reset(zone, order, false);
+
+ break;
+ }
+
+ if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
+ status == COMPACT_PARTIAL_SKIPPED))
+ /*
+ * We think that allocation won't succeed in this zone
+ * so we defer compaction there. If it ends up
+ * succeeding after all, it will be reset.
+ */
+ defer_compaction(zone, order);
+
+ /*
+ * We might have stopped compacting due to need_resched() in
+ * async compaction, or due to a fatal signal detected. In that
+ * case do not try further zones
+ */
+ if ((prio == COMPACT_PRIO_ASYNC && need_resched())
+ || fatal_signal_pending(current))
+ break;
+ }
+
+ return rc;
+}
+
+/*
+ * Compact all zones within a node till each zone's fragmentation score
+ * reaches within proactive compaction thresholds (as determined by the
+ * proactiveness tunable).
+ *
+ * It is possible that the function returns before reaching score targets
+ * due to various back-off conditions, such as, contention on per-node or
+ * per-zone locks.
+ */
+static void proactive_compact_node(pg_data_t *pgdat)
+{
+ int zoneid;
+ struct zone *zone;
+ struct compact_control cc = {
+ .order = -1,
+ .mode = MIGRATE_SYNC_LIGHT,
+ .ignore_skip_hint = true,
+ .whole_zone = true,
+ .gfp_mask = GFP_KERNEL,
+ .proactive_compaction = true,
+ };
+
+ for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+ zone = &pgdat->node_zones[zoneid];
+ if (!populated_zone(zone))
+ continue;
+
+ cc.zone = zone;
+
+ compact_zone(&cc, NULL);
+
+ count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
+ cc.total_migrate_scanned);
+ count_compact_events(KCOMPACTD_FREE_SCANNED,
+ cc.total_free_scanned);
+ }
+}
+
+/* Compact all zones within a node */
+static void compact_node(int nid)
+{
+ pg_data_t *pgdat = NODE_DATA(nid);
+ int zoneid;
+ struct zone *zone;
+ struct compact_control cc = {
+ .order = -1,
+ .mode = MIGRATE_SYNC,
+ .ignore_skip_hint = true,
+ .whole_zone = true,
+ .gfp_mask = GFP_KERNEL,
+ };
+
+
+ for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+
+ zone = &pgdat->node_zones[zoneid];
+ if (!populated_zone(zone))
+ continue;
+
+ cc.zone = zone;
+
+ compact_zone(&cc, NULL);
+ }
+}
+
+/* Compact all nodes in the system */
+static void compact_nodes(void)
+{
+ int nid;
+
+ /* Flush pending updates to the LRU lists */
+ lru_add_drain_all();
+
+ for_each_online_node(nid)
+ compact_node(nid);
+}
+
+static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
+{
+ int rc, nid;
+
+ rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
+ if (rc)
+ return rc;
+
+ if (write && sysctl_compaction_proactiveness) {
+ for_each_online_node(nid) {
+ pg_data_t *pgdat = NODE_DATA(nid);
+
+ if (pgdat->proactive_compact_trigger)
+ continue;
+
+ pgdat->proactive_compact_trigger = true;
+ trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
+ pgdat->nr_zones - 1);
+ wake_up_interruptible(&pgdat->kcompactd_wait);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * This is the entry point for compacting all nodes via
+ * /proc/sys/vm/compact_memory
+ */
+static int sysctl_compaction_handler(struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
+{
+ int ret;
+
+ ret = proc_dointvec(table, write, buffer, length, ppos);
+ if (ret)
+ return ret;
+
+ if (sysctl_compact_memory != 1)
+ return -EINVAL;
+
+ if (write)
+ compact_nodes();
+
+ return 0;
+}
+
+#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
+static ssize_t compact_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ int nid = dev->id;
+
+ if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
+ /* Flush pending updates to the LRU lists */
+ lru_add_drain_all();
+
+ compact_node(nid);
+ }
+
+ return count;
+}
+static DEVICE_ATTR_WO(compact);
+
+int compaction_register_node(struct node *node)
+{
+ return device_create_file(&node->dev, &dev_attr_compact);
+}
+
+void compaction_unregister_node(struct node *node)
+{
+ device_remove_file(&node->dev, &dev_attr_compact);
+}
+#endif /* CONFIG_SYSFS && CONFIG_NUMA */
+
+static inline bool kcompactd_work_requested(pg_data_t *pgdat)
+{
+ return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
+ pgdat->proactive_compact_trigger;
+}
+
+static bool kcompactd_node_suitable(pg_data_t *pgdat)
+{
+ int zoneid;
+ struct zone *zone;
+ enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
+
+ for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
+ zone = &pgdat->node_zones[zoneid];
+
+ if (!populated_zone(zone))
+ continue;
+
+ /* Allocation can already succeed, check other zones */
+ if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
+ min_wmark_pages(zone),
+ highest_zoneidx, 0))
+ continue;
+
+ if (compaction_suitable(zone, pgdat->kcompactd_max_order,
+ highest_zoneidx))
+ return true;
+ }
+
+ return false;
+}
+
+static void kcompactd_do_work(pg_data_t *pgdat)
+{
+ /*
+ * With no special task, compact all zones so that a page of requested
+ * order is allocatable.
+ */
+ int zoneid;
+ struct zone *zone;
+ struct compact_control cc = {
+ .order = pgdat->kcompactd_max_order,
+ .search_order = pgdat->kcompactd_max_order,
+ .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
+ .mode = MIGRATE_SYNC_LIGHT,
+ .ignore_skip_hint = false,
+ .gfp_mask = GFP_KERNEL,
+ };
+ trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
+ cc.highest_zoneidx);
+ count_compact_event(KCOMPACTD_WAKE);
+
+ for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
+ int status;
+
+ zone = &pgdat->node_zones[zoneid];
+ if (!populated_zone(zone))
+ continue;
+
+ if (compaction_deferred(zone, cc.order))
+ continue;
+
+ /* Allocation can already succeed, nothing to do */
+ if (zone_watermark_ok(zone, cc.order,
+ min_wmark_pages(zone), zoneid, 0))
+ continue;
+
+ if (!compaction_suitable(zone, cc.order, zoneid))
+ continue;
+
+ if (kthread_should_stop())
+ return;
+
+ cc.zone = zone;
+ status = compact_zone(&cc, NULL);
+
+ if (status == COMPACT_SUCCESS) {
+ compaction_defer_reset(zone, cc.order, false);
+ } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
+ /*
+ * Buddy pages may become stranded on pcps that could
+ * otherwise coalesce on the zone's free area for
+ * order >= cc.order. This is ratelimited by the
+ * upcoming deferral.
+ */
+ drain_all_pages(zone);
+
+ /*
+ * We use sync migration mode here, so we defer like
+ * sync direct compaction does.
+ */
+ defer_compaction(zone, cc.order);
+ }
+
+ count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
+ cc.total_migrate_scanned);
+ count_compact_events(KCOMPACTD_FREE_SCANNED,
+ cc.total_free_scanned);
+ }
+
+ /*
+ * Regardless of success, we are done until woken up next. But remember
+ * the requested order/highest_zoneidx in case it was higher/tighter
+ * than our current ones
+ */
+ if (pgdat->kcompactd_max_order <= cc.order)
+ pgdat->kcompactd_max_order = 0;
+ if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
+ pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
+}
+
+void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
+{
+ if (!order)
+ return;
+
+ if (pgdat->kcompactd_max_order < order)
+ pgdat->kcompactd_max_order = order;
+
+ if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
+ pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
+
+ /*
+ * Pairs with implicit barrier in wait_event_freezable()
+ * such that wakeups are not missed.
+ */
+ if (!wq_has_sleeper(&pgdat->kcompactd_wait))
+ return;
+
+ if (!kcompactd_node_suitable(pgdat))
+ return;
+
+ trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
+ highest_zoneidx);
+ wake_up_interruptible(&pgdat->kcompactd_wait);
+}
+
+/*
+ * The background compaction daemon, started as a kernel thread
+ * from the init process.
+ */
+static int kcompactd(void *p)
+{
+ pg_data_t *pgdat = (pg_data_t *)p;
+ struct task_struct *tsk = current;
+ long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
+ long timeout = default_timeout;
+
+ const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
+
+ if (!cpumask_empty(cpumask))
+ set_cpus_allowed_ptr(tsk, cpumask);
+
+ set_freezable();
+
+ pgdat->kcompactd_max_order = 0;
+ pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
+
+ while (!kthread_should_stop()) {
+ unsigned long pflags;
+
+ /*
+ * Avoid the unnecessary wakeup for proactive compaction
+ * when it is disabled.
+ */
+ if (!sysctl_compaction_proactiveness)
+ timeout = MAX_SCHEDULE_TIMEOUT;
+ trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
+ if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
+ kcompactd_work_requested(pgdat), timeout) &&
+ !pgdat->proactive_compact_trigger) {
+
+ psi_memstall_enter(&pflags);
+ kcompactd_do_work(pgdat);
+ psi_memstall_leave(&pflags);
+ /*
+ * Reset the timeout value. The defer timeout from
+ * proactive compaction is lost here but that is fine
+ * as the condition of the zone changing substantionally
+ * then carrying on with the previous defer interval is
+ * not useful.
+ */
+ timeout = default_timeout;
+ continue;
+ }
+
+ /*
+ * Start the proactive work with default timeout. Based
+ * on the fragmentation score, this timeout is updated.
+ */
+ timeout = default_timeout;
+ if (should_proactive_compact_node(pgdat)) {
+ unsigned int prev_score, score;
+
+ prev_score = fragmentation_score_node(pgdat);
+ proactive_compact_node(pgdat);
+ score = fragmentation_score_node(pgdat);
+ /*
+ * Defer proactive compaction if the fragmentation
+ * score did not go down i.e. no progress made.
+ */
+ if (unlikely(score >= prev_score))
+ timeout =
+ default_timeout << COMPACT_MAX_DEFER_SHIFT;
+ }
+ if (unlikely(pgdat->proactive_compact_trigger))
+ pgdat->proactive_compact_trigger = false;
+ }
+
+ return 0;
+}
+
+/*
+ * This kcompactd start function will be called by init and node-hot-add.
+ * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
+ */
+void __meminit kcompactd_run(int nid)
+{
+ pg_data_t *pgdat = NODE_DATA(nid);
+
+ if (pgdat->kcompactd)
+ return;
+
+ pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
+ if (IS_ERR(pgdat->kcompactd)) {
+ pr_err("Failed to start kcompactd on node %d\n", nid);
+ pgdat->kcompactd = NULL;
+ }
+}
+
+/*
+ * Called by memory hotplug when all memory in a node is offlined. Caller must
+ * be holding mem_hotplug_begin/done().
+ */
+void __meminit kcompactd_stop(int nid)
+{
+ struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
+
+ if (kcompactd) {
+ kthread_stop(kcompactd);
+ NODE_DATA(nid)->kcompactd = NULL;
+ }
+}
+
+/*
+ * It's optimal to keep kcompactd on the same CPUs as their memory, but
+ * not required for correctness. So if the last cpu in a node goes
+ * away, we get changed to run anywhere: as the first one comes back,
+ * restore their cpu bindings.
+ */
+static int kcompactd_cpu_online(unsigned int cpu)
+{
+ int nid;
+
+ for_each_node_state(nid, N_MEMORY) {
+ pg_data_t *pgdat = NODE_DATA(nid);
+ const struct cpumask *mask;
+
+ mask = cpumask_of_node(pgdat->node_id);
+
+ if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
+ /* One of our CPUs online: restore mask */
+ if (pgdat->kcompactd)
+ set_cpus_allowed_ptr(pgdat->kcompactd, mask);
+ }
+ return 0;
+}
+
+static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
+ int write, void *buffer, size_t *lenp, loff_t *ppos)
+{
+ int ret, old;
+
+ if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
+ return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+
+ old = *(int *)table->data;
+ ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+ if (ret)
+ return ret;
+ if (old != *(int *)table->data)
+ pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
+ table->procname, current->comm,
+ task_pid_nr(current));
+ return ret;
+}
+
+static struct ctl_table vm_compaction[] = {
+ {
+ .procname = "compact_memory",
+ .data = &sysctl_compact_memory,
+ .maxlen = sizeof(int),
+ .mode = 0200,
+ .proc_handler = sysctl_compaction_handler,
+ },
+ {
+ .procname = "compaction_proactiveness",
+ .data = &sysctl_compaction_proactiveness,
+ .maxlen = sizeof(sysctl_compaction_proactiveness),
+ .mode = 0644,
+ .proc_handler = compaction_proactiveness_sysctl_handler,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE_HUNDRED,
+ },
+ {
+ .procname = "extfrag_threshold",
+ .data = &sysctl_extfrag_threshold,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE_THOUSAND,
+ },
+ {
+ .procname = "compact_unevictable_allowed",
+ .data = &sysctl_compact_unevictable_allowed,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax_warn_RT_change,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ },
+ { }
+};
+
+static int __init kcompactd_init(void)
+{
+ int nid;
+ int ret;
+
+ ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
+ "mm/compaction:online",
+ kcompactd_cpu_online, NULL);
+ if (ret < 0) {
+ pr_err("kcompactd: failed to register hotplug callbacks.\n");
+ return ret;
+ }
+
+ for_each_node_state(nid, N_MEMORY)
+ kcompactd_run(nid);
+ register_sysctl_init("vm", vm_compaction);
+ return 0;
+}
+subsys_initcall(kcompactd_init)
+
+#endif /* CONFIG_COMPACTION */