diff options
Diffstat (limited to '')
-rw-r--r-- | mm/kmsan/hooks.c | 424 |
1 files changed, 424 insertions, 0 deletions
diff --git a/mm/kmsan/hooks.c b/mm/kmsan/hooks.c new file mode 100644 index 0000000000..5d6e2dee56 --- /dev/null +++ b/mm/kmsan/hooks.c @@ -0,0 +1,424 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * KMSAN hooks for kernel subsystems. + * + * These functions handle creation of KMSAN metadata for memory allocations. + * + * Copyright (C) 2018-2022 Google LLC + * Author: Alexander Potapenko <glider@google.com> + * + */ + +#include <linux/cacheflush.h> +#include <linux/dma-direction.h> +#include <linux/gfp.h> +#include <linux/kmsan.h> +#include <linux/mm.h> +#include <linux/mm_types.h> +#include <linux/scatterlist.h> +#include <linux/slab.h> +#include <linux/uaccess.h> +#include <linux/usb.h> + +#include "../internal.h" +#include "../slab.h" +#include "kmsan.h" + +/* + * Instrumented functions shouldn't be called under + * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to + * skipping effects of functions like memset() inside instrumented code. + */ + +void kmsan_task_create(struct task_struct *task) +{ + kmsan_enter_runtime(); + kmsan_internal_task_create(task); + kmsan_leave_runtime(); +} + +void kmsan_task_exit(struct task_struct *task) +{ + struct kmsan_ctx *ctx = &task->kmsan_ctx; + + if (!kmsan_enabled || kmsan_in_runtime()) + return; + + ctx->allow_reporting = false; +} + +void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) +{ + if (unlikely(object == NULL)) + return; + if (!kmsan_enabled || kmsan_in_runtime()) + return; + /* + * There's a ctor or this is an RCU cache - do nothing. The memory + * status hasn't changed since last use. + */ + if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU)) + return; + + kmsan_enter_runtime(); + if (flags & __GFP_ZERO) + kmsan_internal_unpoison_memory(object, s->object_size, + KMSAN_POISON_CHECK); + else + kmsan_internal_poison_memory(object, s->object_size, flags, + KMSAN_POISON_CHECK); + kmsan_leave_runtime(); +} + +void kmsan_slab_free(struct kmem_cache *s, void *object) +{ + if (!kmsan_enabled || kmsan_in_runtime()) + return; + + /* RCU slabs could be legally used after free within the RCU period */ + if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))) + return; + /* + * If there's a constructor, freed memory must remain in the same state + * until the next allocation. We cannot save its state to detect + * use-after-free bugs, instead we just keep it unpoisoned. + */ + if (s->ctor) + return; + kmsan_enter_runtime(); + kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL, + KMSAN_POISON_CHECK | KMSAN_POISON_FREE); + kmsan_leave_runtime(); +} + +void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) +{ + if (unlikely(ptr == NULL)) + return; + if (!kmsan_enabled || kmsan_in_runtime()) + return; + kmsan_enter_runtime(); + if (flags & __GFP_ZERO) + kmsan_internal_unpoison_memory((void *)ptr, size, + /*checked*/ true); + else + kmsan_internal_poison_memory((void *)ptr, size, flags, + KMSAN_POISON_CHECK); + kmsan_leave_runtime(); +} + +void kmsan_kfree_large(const void *ptr) +{ + struct page *page; + + if (!kmsan_enabled || kmsan_in_runtime()) + return; + kmsan_enter_runtime(); + page = virt_to_head_page((void *)ptr); + KMSAN_WARN_ON(ptr != page_address(page)); + kmsan_internal_poison_memory((void *)ptr, + page_size(page), + GFP_KERNEL, + KMSAN_POISON_CHECK | KMSAN_POISON_FREE); + kmsan_leave_runtime(); +} + +static unsigned long vmalloc_shadow(unsigned long addr) +{ + return (unsigned long)kmsan_get_metadata((void *)addr, + KMSAN_META_SHADOW); +} + +static unsigned long vmalloc_origin(unsigned long addr) +{ + return (unsigned long)kmsan_get_metadata((void *)addr, + KMSAN_META_ORIGIN); +} + +void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end) +{ + __vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end)); + __vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end)); + flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); + flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); +} + +/* + * This function creates new shadow/origin pages for the physical pages mapped + * into the virtual memory. If those physical pages already had shadow/origin, + * those are ignored. + */ +int kmsan_ioremap_page_range(unsigned long start, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int page_shift) +{ + gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO; + struct page *shadow, *origin; + unsigned long off = 0; + int nr, err = 0, clean = 0, mapped; + + if (!kmsan_enabled || kmsan_in_runtime()) + return 0; + + nr = (end - start) / PAGE_SIZE; + kmsan_enter_runtime(); + for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) { + shadow = alloc_pages(gfp_mask, 1); + origin = alloc_pages(gfp_mask, 1); + if (!shadow || !origin) { + err = -ENOMEM; + goto ret; + } + mapped = __vmap_pages_range_noflush( + vmalloc_shadow(start + off), + vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow, + PAGE_SHIFT); + if (mapped) { + err = mapped; + goto ret; + } + shadow = NULL; + mapped = __vmap_pages_range_noflush( + vmalloc_origin(start + off), + vmalloc_origin(start + off + PAGE_SIZE), prot, &origin, + PAGE_SHIFT); + if (mapped) { + __vunmap_range_noflush( + vmalloc_shadow(start + off), + vmalloc_shadow(start + off + PAGE_SIZE)); + err = mapped; + goto ret; + } + origin = NULL; + } + /* Page mapping loop finished normally, nothing to clean up. */ + clean = 0; + +ret: + if (clean > 0) { + /* + * Something went wrong. Clean up shadow/origin pages allocated + * on the last loop iteration, then delete mappings created + * during the previous iterations. + */ + if (shadow) + __free_pages(shadow, 1); + if (origin) + __free_pages(origin, 1); + __vunmap_range_noflush( + vmalloc_shadow(start), + vmalloc_shadow(start + clean * PAGE_SIZE)); + __vunmap_range_noflush( + vmalloc_origin(start), + vmalloc_origin(start + clean * PAGE_SIZE)); + } + flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); + flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); + kmsan_leave_runtime(); + return err; +} + +void kmsan_iounmap_page_range(unsigned long start, unsigned long end) +{ + unsigned long v_shadow, v_origin; + struct page *shadow, *origin; + int nr; + + if (!kmsan_enabled || kmsan_in_runtime()) + return; + + nr = (end - start) / PAGE_SIZE; + kmsan_enter_runtime(); + v_shadow = (unsigned long)vmalloc_shadow(start); + v_origin = (unsigned long)vmalloc_origin(start); + for (int i = 0; i < nr; + i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) { + shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow); + origin = kmsan_vmalloc_to_page_or_null((void *)v_origin); + __vunmap_range_noflush(v_shadow, vmalloc_shadow(end)); + __vunmap_range_noflush(v_origin, vmalloc_origin(end)); + if (shadow) + __free_pages(shadow, 1); + if (origin) + __free_pages(origin, 1); + } + flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); + flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); + kmsan_leave_runtime(); +} + +void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy, + size_t left) +{ + unsigned long ua_flags; + + if (!kmsan_enabled || kmsan_in_runtime()) + return; + /* + * At this point we've copied the memory already. It's hard to check it + * before copying, as the size of actually copied buffer is unknown. + */ + + /* copy_to_user() may copy zero bytes. No need to check. */ + if (!to_copy) + return; + /* Or maybe copy_to_user() failed to copy anything. */ + if (to_copy <= left) + return; + + ua_flags = user_access_save(); + if ((u64)to < TASK_SIZE) { + /* This is a user memory access, check it. */ + kmsan_internal_check_memory((void *)from, to_copy - left, to, + REASON_COPY_TO_USER); + } else { + /* Otherwise this is a kernel memory access. This happens when a + * compat syscall passes an argument allocated on the kernel + * stack to a real syscall. + * Don't check anything, just copy the shadow of the copied + * bytes. + */ + kmsan_internal_memmove_metadata((void *)to, (void *)from, + to_copy - left); + } + user_access_restore(ua_flags); +} +EXPORT_SYMBOL(kmsan_copy_to_user); + +/* Helper function to check an URB. */ +void kmsan_handle_urb(const struct urb *urb, bool is_out) +{ + if (!urb) + return; + if (is_out) + kmsan_internal_check_memory(urb->transfer_buffer, + urb->transfer_buffer_length, + /*user_addr*/ 0, REASON_SUBMIT_URB); + else + kmsan_internal_unpoison_memory(urb->transfer_buffer, + urb->transfer_buffer_length, + /*checked*/ false); +} +EXPORT_SYMBOL_GPL(kmsan_handle_urb); + +static void kmsan_handle_dma_page(const void *addr, size_t size, + enum dma_data_direction dir) +{ + switch (dir) { + case DMA_BIDIRECTIONAL: + kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, + REASON_ANY); + kmsan_internal_unpoison_memory((void *)addr, size, + /*checked*/ false); + break; + case DMA_TO_DEVICE: + kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, + REASON_ANY); + break; + case DMA_FROM_DEVICE: + kmsan_internal_unpoison_memory((void *)addr, size, + /*checked*/ false); + break; + case DMA_NONE: + break; + } +} + +/* Helper function to handle DMA data transfers. */ +void kmsan_handle_dma(struct page *page, size_t offset, size_t size, + enum dma_data_direction dir) +{ + u64 page_offset, to_go, addr; + + if (PageHighMem(page)) + return; + addr = (u64)page_address(page) + offset; + /* + * The kernel may occasionally give us adjacent DMA pages not belonging + * to the same allocation. Process them separately to avoid triggering + * internal KMSAN checks. + */ + while (size > 0) { + page_offset = offset_in_page(addr); + to_go = min(PAGE_SIZE - page_offset, (u64)size); + kmsan_handle_dma_page((void *)addr, to_go, dir); + addr += to_go; + size -= to_go; + } +} + +void kmsan_handle_dma_sg(struct scatterlist *sg, int nents, + enum dma_data_direction dir) +{ + struct scatterlist *item; + int i; + + for_each_sg(sg, item, nents, i) + kmsan_handle_dma(sg_page(item), item->offset, item->length, + dir); +} + +/* Functions from kmsan-checks.h follow. */ +void kmsan_poison_memory(const void *address, size_t size, gfp_t flags) +{ + if (!kmsan_enabled || kmsan_in_runtime()) + return; + kmsan_enter_runtime(); + /* The users may want to poison/unpoison random memory. */ + kmsan_internal_poison_memory((void *)address, size, flags, + KMSAN_POISON_NOCHECK); + kmsan_leave_runtime(); +} +EXPORT_SYMBOL(kmsan_poison_memory); + +void kmsan_unpoison_memory(const void *address, size_t size) +{ + unsigned long ua_flags; + + if (!kmsan_enabled || kmsan_in_runtime()) + return; + + ua_flags = user_access_save(); + kmsan_enter_runtime(); + /* The users may want to poison/unpoison random memory. */ + kmsan_internal_unpoison_memory((void *)address, size, + KMSAN_POISON_NOCHECK); + kmsan_leave_runtime(); + user_access_restore(ua_flags); +} +EXPORT_SYMBOL(kmsan_unpoison_memory); + +/* + * Version of kmsan_unpoison_memory() that can be called from within the KMSAN + * runtime. + * + * Non-instrumented IRQ entry functions receive struct pt_regs from assembly + * code. Those regs need to be unpoisoned, otherwise using them will result in + * false positives. + * Using kmsan_unpoison_memory() is not an option in entry code, because the + * return value of in_task() is inconsistent - as a result, certain calls to + * kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that + * the registers are unpoisoned even if kmsan_in_runtime() is true in the early + * entry code. + */ +void kmsan_unpoison_entry_regs(const struct pt_regs *regs) +{ + unsigned long ua_flags; + + if (!kmsan_enabled) + return; + + ua_flags = user_access_save(); + kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs), + KMSAN_POISON_NOCHECK); + user_access_restore(ua_flags); +} + +void kmsan_check_memory(const void *addr, size_t size) +{ + if (!kmsan_enabled) + return; + return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, + REASON_ANY); +} +EXPORT_SYMBOL(kmsan_check_memory); |