diff options
Diffstat (limited to 'mm/slub.c')
-rw-r--r-- | mm/slub.c | 1192 |
1 files changed, 898 insertions, 294 deletions
@@ -34,6 +34,7 @@ #include <linux/memory.h> #include <linux/math64.h> #include <linux/fault-inject.h> +#include <linux/kmemleak.h> #include <linux/stacktrace.h> #include <linux/prefetch.h> #include <linux/memcontrol.h> @@ -76,13 +77,28 @@ * * Frozen slabs * - * If a slab is frozen then it is exempt from list management. It is not - * on any list except per cpu partial list. The processor that froze the + * If a slab is frozen then it is exempt from list management. It is + * the cpu slab which is actively allocated from by the processor that + * froze it and it is not on any list. The processor that froze the * slab is the one who can perform list operations on the slab. Other * processors may put objects onto the freelist but the processor that * froze the slab is the only one that can retrieve the objects from the * slab's freelist. * + * CPU partial slabs + * + * The partially empty slabs cached on the CPU partial list are used + * for performance reasons, which speeds up the allocation process. + * These slabs are not frozen, but are also exempt from list management, + * by clearing the PG_workingset flag when moving out of the node + * partial list. Please see __slab_free() for more details. + * + * To sum up, the current scheme is: + * - node partial slab: PG_Workingset && !frozen + * - cpu partial slab: !PG_Workingset && !frozen + * - cpu slab: !PG_Workingset && frozen + * - full slab: !PG_Workingset && !frozen + * * list_lock * * The list_lock protects the partial and full list on each node and @@ -204,9 +220,9 @@ DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); /* Structure holding parameters for get_partial() call chain */ struct partial_context { - struct slab **slab; gfp_t flags; unsigned int orig_size; + void *object; }; static inline bool kmem_cache_debug(struct kmem_cache *s) @@ -330,6 +346,60 @@ static void debugfs_slab_add(struct kmem_cache *); static inline void debugfs_slab_add(struct kmem_cache *s) { } #endif +enum stat_item { + ALLOC_FASTPATH, /* Allocation from cpu slab */ + ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ + FREE_FASTPATH, /* Free to cpu slab */ + FREE_SLOWPATH, /* Freeing not to cpu slab */ + FREE_FROZEN, /* Freeing to frozen slab */ + FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ + FREE_REMOVE_PARTIAL, /* Freeing removes last object */ + ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ + ALLOC_SLAB, /* Cpu slab acquired from page allocator */ + ALLOC_REFILL, /* Refill cpu slab from slab freelist */ + ALLOC_NODE_MISMATCH, /* Switching cpu slab */ + FREE_SLAB, /* Slab freed to the page allocator */ + CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ + DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ + DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ + DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ + DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ + DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ + DEACTIVATE_BYPASS, /* Implicit deactivation */ + ORDER_FALLBACK, /* Number of times fallback was necessary */ + CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ + CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ + CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ + CPU_PARTIAL_FREE, /* Refill cpu partial on free */ + CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ + CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ + NR_SLUB_STAT_ITEMS +}; + +#ifndef CONFIG_SLUB_TINY +/* + * When changing the layout, make sure freelist and tid are still compatible + * with this_cpu_cmpxchg_double() alignment requirements. + */ +struct kmem_cache_cpu { + union { + struct { + void **freelist; /* Pointer to next available object */ + unsigned long tid; /* Globally unique transaction id */ + }; + freelist_aba_t freelist_tid; + }; + struct slab *slab; /* The slab from which we are allocating */ +#ifdef CONFIG_SLUB_CPU_PARTIAL + struct slab *partial; /* Partially allocated frozen slabs */ +#endif + local_lock_t lock; /* Protects the fields above */ +#ifdef CONFIG_SLUB_STATS + unsigned int stat[NR_SLUB_STAT_ITEMS]; +#endif +}; +#endif /* CONFIG_SLUB_TINY */ + static inline void stat(const struct kmem_cache *s, enum stat_item si) { #ifdef CONFIG_SLUB_STATS @@ -341,6 +411,41 @@ static inline void stat(const struct kmem_cache *s, enum stat_item si) #endif } +static inline +void stat_add(const struct kmem_cache *s, enum stat_item si, int v) +{ +#ifdef CONFIG_SLUB_STATS + raw_cpu_add(s->cpu_slab->stat[si], v); +#endif +} + +/* + * The slab lists for all objects. + */ +struct kmem_cache_node { + spinlock_t list_lock; + unsigned long nr_partial; + struct list_head partial; +#ifdef CONFIG_SLUB_DEBUG + atomic_long_t nr_slabs; + atomic_long_t total_objects; + struct list_head full; +#endif +}; + +static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) +{ + return s->node[node]; +} + +/* + * Iterator over all nodes. The body will be executed for each node that has + * a kmem_cache_node structure allocated (which is true for all online nodes) + */ +#define for_each_kmem_cache_node(__s, __node, __n) \ + for (__node = 0; __node < nr_node_ids; __node++) \ + if ((__n = get_node(__s, __node))) + /* * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily @@ -522,7 +627,7 @@ static __always_inline void slab_unlock(struct slab *slab) struct page *page = slab_page(slab); VM_BUG_ON_PAGE(PageTail(page), page); - __bit_spin_unlock(PG_locked, &page->flags); + bit_spin_unlock(PG_locked, &page->flags); } static inline bool @@ -870,20 +975,20 @@ static inline void set_orig_size(struct kmem_cache *s, void *object, unsigned int orig_size) { void *p = kasan_reset_tag(object); + unsigned int kasan_meta_size; if (!slub_debug_orig_size(s)) return; -#ifdef CONFIG_KASAN_GENERIC /* - * KASAN could save its free meta data in object's data area at - * offset 0, if the size is larger than 'orig_size', it will - * overlap the data redzone in [orig_size+1, object_size], and - * the check should be skipped. + * KASAN can save its free meta data inside of the object at offset 0. + * If this meta data size is larger than 'orig_size', it will overlap + * the data redzone in [orig_size+1, object_size]. Thus, we adjust + * 'orig_size' to be as at least as big as KASAN's meta data. */ - if (kasan_metadata_size(s, true) > orig_size) - orig_size = s->object_size; -#endif + kasan_meta_size = kasan_metadata_size(s, true); + if (kasan_meta_size > orig_size) + orig_size = kasan_meta_size; p += get_info_end(s); p += sizeof(struct track) * 2; @@ -1192,7 +1297,7 @@ static int check_object(struct kmem_cache *s, struct slab *slab, { u8 *p = object; u8 *endobject = object + s->object_size; - unsigned int orig_size; + unsigned int orig_size, kasan_meta_size; if (s->flags & SLAB_RED_ZONE) { if (!check_bytes_and_report(s, slab, object, "Left Redzone", @@ -1222,12 +1327,23 @@ static int check_object(struct kmem_cache *s, struct slab *slab, } if (s->flags & SLAB_POISON) { - if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && - (!check_bytes_and_report(s, slab, p, "Poison", p, - POISON_FREE, s->object_size - 1) || - !check_bytes_and_report(s, slab, p, "End Poison", - p + s->object_size - 1, POISON_END, 1))) - return 0; + if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { + /* + * KASAN can save its free meta data inside of the + * object at offset 0. Thus, skip checking the part of + * the redzone that overlaps with the meta data. + */ + kasan_meta_size = kasan_metadata_size(s, true); + if (kasan_meta_size < s->object_size - 1 && + !check_bytes_and_report(s, slab, p, "Poison", + p + kasan_meta_size, POISON_FREE, + s->object_size - kasan_meta_size - 1)) + return 0; + if (kasan_meta_size < s->object_size && + !check_bytes_and_report(s, slab, p, "End Poison", + p + s->object_size - 1, POISON_END, 1)) + return 0; + } /* * check_pad_bytes cleans up on its own. */ @@ -1759,12 +1875,214 @@ static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, #endif #endif /* CONFIG_SLUB_DEBUG */ +static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) +{ + return (s->flags & SLAB_RECLAIM_ACCOUNT) ? + NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; +} + +#ifdef CONFIG_MEMCG_KMEM +static inline void memcg_free_slab_cgroups(struct slab *slab) +{ + kfree(slab_objcgs(slab)); + slab->memcg_data = 0; +} + +static inline size_t obj_full_size(struct kmem_cache *s) +{ + /* + * For each accounted object there is an extra space which is used + * to store obj_cgroup membership. Charge it too. + */ + return s->size + sizeof(struct obj_cgroup *); +} + +/* + * Returns false if the allocation should fail. + */ +static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s, + struct list_lru *lru, + struct obj_cgroup **objcgp, + size_t objects, gfp_t flags) +{ + /* + * The obtained objcg pointer is safe to use within the current scope, + * defined by current task or set_active_memcg() pair. + * obj_cgroup_get() is used to get a permanent reference. + */ + struct obj_cgroup *objcg = current_obj_cgroup(); + if (!objcg) + return true; + + if (lru) { + int ret; + struct mem_cgroup *memcg; + + memcg = get_mem_cgroup_from_objcg(objcg); + ret = memcg_list_lru_alloc(memcg, lru, flags); + css_put(&memcg->css); + + if (ret) + return false; + } + + if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) + return false; + + *objcgp = objcg; + return true; +} + +/* + * Returns false if the allocation should fail. + */ +static __fastpath_inline +bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru, + struct obj_cgroup **objcgp, size_t objects, + gfp_t flags) +{ + if (!memcg_kmem_online()) + return true; + + if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) + return true; + + return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects, + flags)); +} + +static void __memcg_slab_post_alloc_hook(struct kmem_cache *s, + struct obj_cgroup *objcg, + gfp_t flags, size_t size, + void **p) +{ + struct slab *slab; + unsigned long off; + size_t i; + + flags &= gfp_allowed_mask; + + for (i = 0; i < size; i++) { + if (likely(p[i])) { + slab = virt_to_slab(p[i]); + + if (!slab_objcgs(slab) && + memcg_alloc_slab_cgroups(slab, s, flags, false)) { + obj_cgroup_uncharge(objcg, obj_full_size(s)); + continue; + } + + off = obj_to_index(s, slab, p[i]); + obj_cgroup_get(objcg); + slab_objcgs(slab)[off] = objcg; + mod_objcg_state(objcg, slab_pgdat(slab), + cache_vmstat_idx(s), obj_full_size(s)); + } else { + obj_cgroup_uncharge(objcg, obj_full_size(s)); + } + } +} + +static __fastpath_inline +void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, + gfp_t flags, size_t size, void **p) +{ + if (likely(!memcg_kmem_online() || !objcg)) + return; + + return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p); +} + +static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, + void **p, int objects, + struct obj_cgroup **objcgs) +{ + for (int i = 0; i < objects; i++) { + struct obj_cgroup *objcg; + unsigned int off; + + off = obj_to_index(s, slab, p[i]); + objcg = objcgs[off]; + if (!objcg) + continue; + + objcgs[off] = NULL; + obj_cgroup_uncharge(objcg, obj_full_size(s)); + mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), + -obj_full_size(s)); + obj_cgroup_put(objcg); + } +} + +static __fastpath_inline +void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, + int objects) +{ + struct obj_cgroup **objcgs; + + if (!memcg_kmem_online()) + return; + + objcgs = slab_objcgs(slab); + if (likely(!objcgs)) + return; + + __memcg_slab_free_hook(s, slab, p, objects, objcgs); +} + +static inline +void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, + struct obj_cgroup *objcg) +{ + if (objcg) + obj_cgroup_uncharge(objcg, objects * obj_full_size(s)); +} +#else /* CONFIG_MEMCG_KMEM */ +static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) +{ + return NULL; +} + +static inline void memcg_free_slab_cgroups(struct slab *slab) +{ +} + +static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, + struct list_lru *lru, + struct obj_cgroup **objcgp, + size_t objects, gfp_t flags) +{ + return true; +} + +static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, + struct obj_cgroup *objcg, + gfp_t flags, size_t size, + void **p) +{ +} + +static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, + void **p, int objects) +{ +} + +static inline +void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects, + struct obj_cgroup *objcg) +{ +} +#endif /* CONFIG_MEMCG_KMEM */ + /* * Hooks for other subsystems that check memory allocations. In a typical * production configuration these hooks all should produce no code at all. + * + * Returns true if freeing of the object can proceed, false if its reuse + * was delayed by KASAN quarantine, or it was returned to KFENCE. */ -static __always_inline bool slab_free_hook(struct kmem_cache *s, - void *x, bool init) +static __always_inline +bool slab_free_hook(struct kmem_cache *s, void *x, bool init) { kmemleak_free_recursive(x, s->flags); kmsan_slab_free(s, x); @@ -1779,6 +2097,9 @@ static __always_inline bool slab_free_hook(struct kmem_cache *s, __kcsan_check_access(x, s->object_size, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); + if (kfence_free(x)) + return false; + /* * As memory initialization might be integrated into KASAN, * kasan_slab_free and initialization memset's must be @@ -1787,7 +2108,7 @@ static __always_inline bool slab_free_hook(struct kmem_cache *s, * The initialization memset's clear the object and the metadata, * but don't touch the SLAB redzone. */ - if (init) { + if (unlikely(init)) { int rsize; if (!kasan_has_integrated_init()) @@ -1797,7 +2118,7 @@ static __always_inline bool slab_free_hook(struct kmem_cache *s, s->size - s->inuse - rsize); } /* KASAN might put x into memory quarantine, delaying its reuse. */ - return kasan_slab_free(s, x, init); + return !kasan_slab_free(s, x, init); } static inline bool slab_free_freelist_hook(struct kmem_cache *s, @@ -1807,23 +2128,26 @@ static inline bool slab_free_freelist_hook(struct kmem_cache *s, void *object; void *next = *head; - void *old_tail = *tail ? *tail : *head; + void *old_tail = *tail; + bool init; if (is_kfence_address(next)) { slab_free_hook(s, next, false); - return true; + return false; } /* Head and tail of the reconstructed freelist */ *head = NULL; *tail = NULL; + init = slab_want_init_on_free(s); + do { object = next; next = get_freepointer(s, object); /* If object's reuse doesn't have to be delayed */ - if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { + if (likely(slab_free_hook(s, object, init))) { /* Move object to the new freelist */ set_freepointer(s, object, *head); *head = object; @@ -1838,9 +2162,6 @@ static inline bool slab_free_freelist_hook(struct kmem_cache *s, } } while (object != old_tail); - if (*head == *tail) - *tail = NULL; - return *head != NULL; } @@ -1849,9 +2170,9 @@ static void *setup_object(struct kmem_cache *s, void *object) setup_object_debug(s, object); object = kasan_init_slab_obj(s, object); if (unlikely(s->ctor)) { - kasan_unpoison_object_data(s, object); + kasan_unpoison_new_object(s, object); s->ctor(object); - kasan_poison_object_data(s, object); + kasan_poison_new_object(s, object); } return object; } @@ -1866,11 +2187,7 @@ static inline struct slab *alloc_slab_page(gfp_t flags, int node, struct slab *slab; unsigned int order = oo_order(oo); - if (node == NUMA_NO_NODE) - folio = (struct folio *)alloc_pages(flags, order); - else - folio = (struct folio *)__alloc_pages_node(node, flags, order); - + folio = (struct folio *)alloc_pages_node(node, flags, order); if (!folio) return NULL; @@ -1993,6 +2310,26 @@ static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) } #endif /* CONFIG_SLAB_FREELIST_RANDOM */ +static __always_inline void account_slab(struct slab *slab, int order, + struct kmem_cache *s, gfp_t gfp) +{ + if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) + memcg_alloc_slab_cgroups(slab, s, gfp, true); + + mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), + PAGE_SIZE << order); +} + +static __always_inline void unaccount_slab(struct slab *slab, int order, + struct kmem_cache *s) +{ + if (memcg_kmem_online()) + memcg_free_slab_cgroups(slab); + + mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), + -(PAGE_SIZE << order)); +} + static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) { struct slab *slab; @@ -2117,6 +2454,25 @@ static void discard_slab(struct kmem_cache *s, struct slab *slab) } /* + * SLUB reuses PG_workingset bit to keep track of whether it's on + * the per-node partial list. + */ +static inline bool slab_test_node_partial(const struct slab *slab) +{ + return folio_test_workingset((struct folio *)slab_folio(slab)); +} + +static inline void slab_set_node_partial(struct slab *slab) +{ + set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); +} + +static inline void slab_clear_node_partial(struct slab *slab) +{ + clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); +} + +/* * Management of partially allocated slabs. */ static inline void @@ -2127,6 +2483,7 @@ __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) list_add_tail(&slab->slab_list, &n->partial); else list_add(&slab->slab_list, &n->partial); + slab_set_node_partial(slab); } static inline void add_partial(struct kmem_cache_node *n, @@ -2141,11 +2498,12 @@ static inline void remove_partial(struct kmem_cache_node *n, { lockdep_assert_held(&n->list_lock); list_del(&slab->slab_list); + slab_clear_node_partial(slab); n->nr_partial--; } /* - * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a + * Called only for kmem_cache_debug() caches instead of remove_partial(), with a * slab from the n->partial list. Remove only a single object from the slab, do * the alloc_debug_processing() checks and leave the slab on the list, or move * it to full list if it was the last free object. @@ -2213,51 +2571,6 @@ static void *alloc_single_from_new_slab(struct kmem_cache *s, return object; } -/* - * Remove slab from the partial list, freeze it and - * return the pointer to the freelist. - * - * Returns a list of objects or NULL if it fails. - */ -static inline void *acquire_slab(struct kmem_cache *s, - struct kmem_cache_node *n, struct slab *slab, - int mode) -{ - void *freelist; - unsigned long counters; - struct slab new; - - lockdep_assert_held(&n->list_lock); - - /* - * Zap the freelist and set the frozen bit. - * The old freelist is the list of objects for the - * per cpu allocation list. - */ - freelist = slab->freelist; - counters = slab->counters; - new.counters = counters; - if (mode) { - new.inuse = slab->objects; - new.freelist = NULL; - } else { - new.freelist = freelist; - } - - VM_BUG_ON(new.frozen); - new.frozen = 1; - - if (!__slab_update_freelist(s, slab, - freelist, counters, - new.freelist, new.counters, - "acquire_slab")) - return NULL; - - remove_partial(n, slab); - WARN_ON(!freelist); - return freelist; -} - #ifdef CONFIG_SLUB_CPU_PARTIAL static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); #else @@ -2269,11 +2582,11 @@ static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); /* * Try to allocate a partial slab from a specific node. */ -static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, - struct partial_context *pc) +static struct slab *get_partial_node(struct kmem_cache *s, + struct kmem_cache_node *n, + struct partial_context *pc) { - struct slab *slab, *slab2; - void *object = NULL; + struct slab *slab, *slab2, *partial = NULL; unsigned long flags; unsigned int partial_slabs = 0; @@ -2288,27 +2601,25 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, spin_lock_irqsave(&n->list_lock, flags); list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { - void *t; - if (!pfmemalloc_match(slab, pc->flags)) continue; if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { - object = alloc_single_from_partial(s, n, slab, + void *object = alloc_single_from_partial(s, n, slab, pc->orig_size); - if (object) + if (object) { + partial = slab; + pc->object = object; break; + } continue; } - t = acquire_slab(s, n, slab, object == NULL); - if (!t) - break; + remove_partial(n, slab); - if (!object) { - *pc->slab = slab; + if (!partial) { + partial = slab; stat(s, ALLOC_FROM_PARTIAL); - object = t; } else { put_cpu_partial(s, slab, 0); stat(s, CPU_PARTIAL_NODE); @@ -2324,20 +2635,21 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, } spin_unlock_irqrestore(&n->list_lock, flags); - return object; + return partial; } /* * Get a slab from somewhere. Search in increasing NUMA distances. */ -static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) +static struct slab *get_any_partial(struct kmem_cache *s, + struct partial_context *pc) { #ifdef CONFIG_NUMA struct zonelist *zonelist; struct zoneref *z; struct zone *zone; enum zone_type highest_zoneidx = gfp_zone(pc->flags); - void *object; + struct slab *slab; unsigned int cpuset_mems_cookie; /* @@ -2372,8 +2684,8 @@ static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) if (n && cpuset_zone_allowed(zone, pc->flags) && n->nr_partial > s->min_partial) { - object = get_partial_node(s, n, pc); - if (object) { + slab = get_partial_node(s, n, pc); + if (slab) { /* * Don't check read_mems_allowed_retry() * here - if mems_allowed was updated in @@ -2381,7 +2693,7 @@ static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) * between allocation and the cpuset * update */ - return object; + return slab; } } } @@ -2393,17 +2705,18 @@ static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) /* * Get a partial slab, lock it and return it. */ -static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc) +static struct slab *get_partial(struct kmem_cache *s, int node, + struct partial_context *pc) { - void *object; + struct slab *slab; int searchnode = node; if (node == NUMA_NO_NODE) searchnode = numa_mem_id(); - object = get_partial_node(s, get_node(s, searchnode), pc); - if (object || node != NUMA_NO_NODE) - return object; + slab = get_partial_node(s, get_node(s, searchnode), pc); + if (slab || node != NUMA_NO_NODE) + return slab; return get_any_partial(s, pc); } @@ -2492,10 +2805,8 @@ static void init_kmem_cache_cpus(struct kmem_cache *s) static void deactivate_slab(struct kmem_cache *s, struct slab *slab, void *freelist) { - enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST }; struct kmem_cache_node *n = get_node(s, slab_nid(slab)); int free_delta = 0; - enum slab_modes mode = M_NONE; void *nextfree, *freelist_iter, *freelist_tail; int tail = DEACTIVATE_TO_HEAD; unsigned long flags = 0; @@ -2533,80 +2844,52 @@ static void deactivate_slab(struct kmem_cache *s, struct slab *slab, /* * Stage two: Unfreeze the slab while splicing the per-cpu * freelist to the head of slab's freelist. - * - * Ensure that the slab is unfrozen while the list presence - * reflects the actual number of objects during unfreeze. - * - * We first perform cmpxchg holding lock and insert to list - * when it succeed. If there is mismatch then the slab is not - * unfrozen and number of objects in the slab may have changed. - * Then release lock and retry cmpxchg again. */ -redo: - - old.freelist = READ_ONCE(slab->freelist); - old.counters = READ_ONCE(slab->counters); - VM_BUG_ON(!old.frozen); - - /* Determine target state of the slab */ - new.counters = old.counters; - if (freelist_tail) { - new.inuse -= free_delta; - set_freepointer(s, freelist_tail, old.freelist); - new.freelist = freelist; - } else - new.freelist = old.freelist; - - new.frozen = 0; + do { + old.freelist = READ_ONCE(slab->freelist); + old.counters = READ_ONCE(slab->counters); + VM_BUG_ON(!old.frozen); + + /* Determine target state of the slab */ + new.counters = old.counters; + new.frozen = 0; + if (freelist_tail) { + new.inuse -= free_delta; + set_freepointer(s, freelist_tail, old.freelist); + new.freelist = freelist; + } else { + new.freelist = old.freelist; + } + } while (!slab_update_freelist(s, slab, + old.freelist, old.counters, + new.freelist, new.counters, + "unfreezing slab")); + /* + * Stage three: Manipulate the slab list based on the updated state. + */ if (!new.inuse && n->nr_partial >= s->min_partial) { - mode = M_FREE; + stat(s, DEACTIVATE_EMPTY); + discard_slab(s, slab); + stat(s, FREE_SLAB); } else if (new.freelist) { - mode = M_PARTIAL; - /* - * Taking the spinlock removes the possibility that - * acquire_slab() will see a slab that is frozen - */ spin_lock_irqsave(&n->list_lock, flags); - } else { - mode = M_FULL_NOLIST; - } - - - if (!slab_update_freelist(s, slab, - old.freelist, old.counters, - new.freelist, new.counters, - "unfreezing slab")) { - if (mode == M_PARTIAL) - spin_unlock_irqrestore(&n->list_lock, flags); - goto redo; - } - - - if (mode == M_PARTIAL) { add_partial(n, slab, tail); spin_unlock_irqrestore(&n->list_lock, flags); stat(s, tail); - } else if (mode == M_FREE) { - stat(s, DEACTIVATE_EMPTY); - discard_slab(s, slab); - stat(s, FREE_SLAB); - } else if (mode == M_FULL_NOLIST) { + } else { stat(s, DEACTIVATE_FULL); } } #ifdef CONFIG_SLUB_CPU_PARTIAL -static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) +static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) { struct kmem_cache_node *n = NULL, *n2 = NULL; struct slab *slab, *slab_to_discard = NULL; unsigned long flags = 0; while (partial_slab) { - struct slab new; - struct slab old; - slab = partial_slab; partial_slab = slab->next; @@ -2619,23 +2902,7 @@ static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) spin_lock_irqsave(&n->list_lock, flags); } - do { - - old.freelist = slab->freelist; - old.counters = slab->counters; - VM_BUG_ON(!old.frozen); - - new.counters = old.counters; - new.freelist = old.freelist; - - new.frozen = 0; - - } while (!__slab_update_freelist(s, slab, - old.freelist, old.counters, - new.freelist, new.counters, - "unfreezing slab")); - - if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { + if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { slab->next = slab_to_discard; slab_to_discard = slab; } else { @@ -2658,9 +2925,9 @@ static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) } /* - * Unfreeze all the cpu partial slabs. + * Put all the cpu partial slabs to the node partial list. */ -static void unfreeze_partials(struct kmem_cache *s) +static void put_partials(struct kmem_cache *s) { struct slab *partial_slab; unsigned long flags; @@ -2671,11 +2938,11 @@ static void unfreeze_partials(struct kmem_cache *s) local_unlock_irqrestore(&s->cpu_slab->lock, flags); if (partial_slab) - __unfreeze_partials(s, partial_slab); + __put_partials(s, partial_slab); } -static void unfreeze_partials_cpu(struct kmem_cache *s, - struct kmem_cache_cpu *c) +static void put_partials_cpu(struct kmem_cache *s, + struct kmem_cache_cpu *c) { struct slab *partial_slab; @@ -2683,12 +2950,11 @@ static void unfreeze_partials_cpu(struct kmem_cache *s, c->partial = NULL; if (partial_slab) - __unfreeze_partials(s, partial_slab); + __put_partials(s, partial_slab); } /* - * Put a slab that was just frozen (in __slab_free|get_partial_node) into a - * partial slab slot if available. + * Put a slab into a partial slab slot if available. * * If we did not find a slot then simply move all the partials to the * per node partial list. @@ -2696,7 +2962,7 @@ static void unfreeze_partials_cpu(struct kmem_cache *s, static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) { struct slab *oldslab; - struct slab *slab_to_unfreeze = NULL; + struct slab *slab_to_put = NULL; unsigned long flags; int slabs = 0; @@ -2711,7 +2977,7 @@ static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) * per node partial list. Postpone the actual unfreezing * outside of the critical section. */ - slab_to_unfreeze = oldslab; + slab_to_put = oldslab; oldslab = NULL; } else { slabs = oldslab->slabs; @@ -2727,17 +2993,17 @@ static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) local_unlock_irqrestore(&s->cpu_slab->lock, flags); - if (slab_to_unfreeze) { - __unfreeze_partials(s, slab_to_unfreeze); + if (slab_to_put) { + __put_partials(s, slab_to_put); stat(s, CPU_PARTIAL_DRAIN); } } #else /* CONFIG_SLUB_CPU_PARTIAL */ -static inline void unfreeze_partials(struct kmem_cache *s) { } -static inline void unfreeze_partials_cpu(struct kmem_cache *s, - struct kmem_cache_cpu *c) { } +static inline void put_partials(struct kmem_cache *s) { } +static inline void put_partials_cpu(struct kmem_cache *s, + struct kmem_cache_cpu *c) { } #endif /* CONFIG_SLUB_CPU_PARTIAL */ @@ -2779,7 +3045,7 @@ static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) stat(s, CPUSLAB_FLUSH); } - unfreeze_partials_cpu(s, c); + put_partials_cpu(s, c); } struct slub_flush_work { @@ -2807,7 +3073,7 @@ static void flush_cpu_slab(struct work_struct *w) if (c->slab) flush_slab(s, c); - unfreeze_partials(s); + put_partials(s); } static bool has_cpu_slab(int cpu, struct kmem_cache *s) @@ -3074,6 +3340,33 @@ static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) } /* + * Freeze the partial slab and return the pointer to the freelist. + */ +static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) +{ + struct slab new; + unsigned long counters; + void *freelist; + + do { + freelist = slab->freelist; + counters = slab->counters; + + new.counters = counters; + VM_BUG_ON(new.frozen); + + new.inuse = slab->objects; + new.frozen = 1; + + } while (!slab_update_freelist(s, slab, + freelist, counters, + NULL, new.counters, + "freeze_slab")); + + return freelist; +} + +/* * Slow path. The lockless freelist is empty or we need to perform * debugging duties. * @@ -3115,7 +3408,6 @@ reread_slab: node = NUMA_NO_NODE; goto new_slab; } -redo: if (unlikely(!node_match(slab, node))) { /* @@ -3191,7 +3483,8 @@ deactivate_slab: new_slab: - if (slub_percpu_partial(c)) { +#ifdef CONFIG_SLUB_CPU_PARTIAL + while (slub_percpu_partial(c)) { local_lock_irqsave(&s->cpu_slab->lock, flags); if (unlikely(c->slab)) { local_unlock_irqrestore(&s->cpu_slab->lock, flags); @@ -3203,21 +3496,45 @@ new_slab: goto new_objects; } - slab = c->slab = slub_percpu_partial(c); + slab = slub_percpu_partial(c); slub_set_percpu_partial(c, slab); local_unlock_irqrestore(&s->cpu_slab->lock, flags); stat(s, CPU_PARTIAL_ALLOC); - goto redo; + + if (unlikely(!node_match(slab, node) || + !pfmemalloc_match(slab, gfpflags))) { + slab->next = NULL; + __put_partials(s, slab); + continue; + } + + freelist = freeze_slab(s, slab); + goto retry_load_slab; } +#endif new_objects: pc.flags = gfpflags; - pc.slab = &slab; pc.orig_size = orig_size; - freelist = get_partial(s, node, &pc); - if (freelist) - goto check_new_slab; + slab = get_partial(s, node, &pc); + if (slab) { + if (kmem_cache_debug(s)) { + freelist = pc.object; + /* + * For debug caches here we had to go through + * alloc_single_from_partial() so just store the + * tracking info and return the object. + */ + if (s->flags & SLAB_STORE_USER) + set_track(s, freelist, TRACK_ALLOC, addr); + + return freelist; + } + + freelist = freeze_slab(s, slab); + goto retry_load_slab; + } slub_put_cpu_ptr(s->cpu_slab); slab = new_slab(s, gfpflags, node); @@ -3253,20 +3570,6 @@ new_objects: inc_slabs_node(s, slab_nid(slab), slab->objects); -check_new_slab: - - if (kmem_cache_debug(s)) { - /* - * For debug caches here we had to go through - * alloc_single_from_partial() so just store the tracking info - * and return the object - */ - if (s->flags & SLAB_STORE_USER) - set_track(s, freelist, TRACK_ALLOC, addr); - - return freelist; - } - if (unlikely(!pfmemalloc_match(slab, gfpflags))) { /* * For !pfmemalloc_match() case we don't load freelist so that @@ -3409,12 +3712,11 @@ static void *__slab_alloc_node(struct kmem_cache *s, void *object; pc.flags = gfpflags; - pc.slab = &slab; pc.orig_size = orig_size; - object = get_partial(s, node, &pc); + slab = get_partial(s, node, &pc); - if (object) - return object; + if (slab) + return pc.object; slab = new_slab(s, gfpflags, node); if (unlikely(!slab)) { @@ -3440,6 +3742,86 @@ static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 0, sizeof(void *)); } +noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags) +{ + if (__should_failslab(s, gfpflags)) + return -ENOMEM; + return 0; +} +ALLOW_ERROR_INJECTION(should_failslab, ERRNO); + +static __fastpath_inline +struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, + struct list_lru *lru, + struct obj_cgroup **objcgp, + size_t size, gfp_t flags) +{ + flags &= gfp_allowed_mask; + + might_alloc(flags); + + if (unlikely(should_failslab(s, flags))) + return NULL; + + if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))) + return NULL; + + return s; +} + +static __fastpath_inline +void slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg, + gfp_t flags, size_t size, void **p, bool init, + unsigned int orig_size) +{ + unsigned int zero_size = s->object_size; + bool kasan_init = init; + size_t i; + gfp_t init_flags = flags & gfp_allowed_mask; + + /* + * For kmalloc object, the allocated memory size(object_size) is likely + * larger than the requested size(orig_size). If redzone check is + * enabled for the extra space, don't zero it, as it will be redzoned + * soon. The redzone operation for this extra space could be seen as a + * replacement of current poisoning under certain debug option, and + * won't break other sanity checks. + */ + if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && + (s->flags & SLAB_KMALLOC)) + zero_size = orig_size; + + /* + * When slub_debug is enabled, avoid memory initialization integrated + * into KASAN and instead zero out the memory via the memset below with + * the proper size. Otherwise, KASAN might overwrite SLUB redzones and + * cause false-positive reports. This does not lead to a performance + * penalty on production builds, as slub_debug is not intended to be + * enabled there. + */ + if (__slub_debug_enabled()) + kasan_init = false; + + /* + * As memory initialization might be integrated into KASAN, + * kasan_slab_alloc and initialization memset must be + * kept together to avoid discrepancies in behavior. + * + * As p[i] might get tagged, memset and kmemleak hook come after KASAN. + */ + for (i = 0; i < size; i++) { + p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); + if (p[i] && init && (!kasan_init || + !kasan_has_integrated_init())) + memset(p[i], 0, zero_size); + kmemleak_alloc_recursive(p[i], s->object_size, 1, + s->flags, init_flags); + kmsan_slab_alloc(s, p[i], init_flags); + } + + memcg_slab_post_alloc_hook(s, objcg, flags, size, p); +} + /* * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) * have the fastpath folded into their functions. So no function call @@ -3458,7 +3840,7 @@ static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list bool init = false; s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); - if (!s) + if (unlikely(!s)) return NULL; object = kfence_alloc(s, orig_size, gfpflags); @@ -3480,53 +3862,169 @@ out: return object; } -static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, - gfp_t gfpflags, unsigned long addr, size_t orig_size) +void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) { - return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); + void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, + s->object_size); + + trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); + + return ret; } +EXPORT_SYMBOL(kmem_cache_alloc); -static __fastpath_inline -void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, - gfp_t gfpflags) +void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, + gfp_t gfpflags) { - void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); + void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, + s->object_size); trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); return ret; } +EXPORT_SYMBOL(kmem_cache_alloc_lru); -void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) +/** + * kmem_cache_alloc_node - Allocate an object on the specified node + * @s: The cache to allocate from. + * @gfpflags: See kmalloc(). + * @node: node number of the target node. + * + * Identical to kmem_cache_alloc but it will allocate memory on the given + * node, which can improve the performance for cpu bound structures. + * + * Fallback to other node is possible if __GFP_THISNODE is not set. + * + * Return: pointer to the new object or %NULL in case of error + */ +void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) { - return __kmem_cache_alloc_lru(s, NULL, gfpflags); + void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); + + trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); + + return ret; } -EXPORT_SYMBOL(kmem_cache_alloc); +EXPORT_SYMBOL(kmem_cache_alloc_node); -void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, - gfp_t gfpflags) +/* + * To avoid unnecessary overhead, we pass through large allocation requests + * directly to the page allocator. We use __GFP_COMP, because we will need to + * know the allocation order to free the pages properly in kfree. + */ +static void *__kmalloc_large_node(size_t size, gfp_t flags, int node) { - return __kmem_cache_alloc_lru(s, lru, gfpflags); + struct folio *folio; + void *ptr = NULL; + unsigned int order = get_order(size); + + if (unlikely(flags & GFP_SLAB_BUG_MASK)) + flags = kmalloc_fix_flags(flags); + + flags |= __GFP_COMP; + folio = (struct folio *)alloc_pages_node(node, flags, order); + if (folio) { + ptr = folio_address(folio); + lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, + PAGE_SIZE << order); + } + + ptr = kasan_kmalloc_large(ptr, size, flags); + /* As ptr might get tagged, call kmemleak hook after KASAN. */ + kmemleak_alloc(ptr, size, 1, flags); + kmsan_kmalloc_large(ptr, size, flags); + + return ptr; } -EXPORT_SYMBOL(kmem_cache_alloc_lru); -void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, - int node, size_t orig_size, - unsigned long caller) +void *kmalloc_large(size_t size, gfp_t flags) { - return slab_alloc_node(s, NULL, gfpflags, node, - caller, orig_size); + void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE); + + trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), + flags, NUMA_NO_NODE); + return ret; } +EXPORT_SYMBOL(kmalloc_large); -void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) +void *kmalloc_large_node(size_t size, gfp_t flags, int node) { - void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); + void *ret = __kmalloc_large_node(size, flags, node); - trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); + trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), + flags, node); + return ret; +} +EXPORT_SYMBOL(kmalloc_large_node); +static __always_inline +void *__do_kmalloc_node(size_t size, gfp_t flags, int node, + unsigned long caller) +{ + struct kmem_cache *s; + void *ret; + + if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { + ret = __kmalloc_large_node(size, flags, node); + trace_kmalloc(caller, ret, size, + PAGE_SIZE << get_order(size), flags, node); + return ret; + } + + if (unlikely(!size)) + return ZERO_SIZE_PTR; + + s = kmalloc_slab(size, flags, caller); + + ret = slab_alloc_node(s, NULL, flags, node, caller, size); + ret = kasan_kmalloc(s, ret, size, flags); + trace_kmalloc(caller, ret, size, s->size, flags, node); return ret; } -EXPORT_SYMBOL(kmem_cache_alloc_node); + +void *__kmalloc_node(size_t size, gfp_t flags, int node) +{ + return __do_kmalloc_node(size, flags, node, _RET_IP_); +} +EXPORT_SYMBOL(__kmalloc_node); + +void *__kmalloc(size_t size, gfp_t flags) +{ + return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_); +} +EXPORT_SYMBOL(__kmalloc); + +void *__kmalloc_node_track_caller(size_t size, gfp_t flags, + int node, unsigned long caller) +{ + return __do_kmalloc_node(size, flags, node, caller); +} +EXPORT_SYMBOL(__kmalloc_node_track_caller); + +void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) +{ + void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, + _RET_IP_, size); + + trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); + + ret = kasan_kmalloc(s, ret, size, gfpflags); + return ret; +} +EXPORT_SYMBOL(kmalloc_trace); + +void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, + int node, size_t size) +{ + void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); + + trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); + + ret = kasan_kmalloc(s, ret, size, gfpflags); + return ret; +} +EXPORT_SYMBOL(kmalloc_node_trace); static noinline void free_to_partial_list( struct kmem_cache *s, struct slab *slab, @@ -3608,12 +4106,10 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab, unsigned long counters; struct kmem_cache_node *n = NULL; unsigned long flags; + bool on_node_partial; stat(s, FREE_SLOWPATH); - if (kfence_free(head)) - return; - if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { free_to_partial_list(s, slab, head, tail, cnt, addr); return; @@ -3631,18 +4127,8 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab, was_frozen = new.frozen; new.inuse -= cnt; if ((!new.inuse || !prior) && !was_frozen) { - - if (kmem_cache_has_cpu_partial(s) && !prior) { - - /* - * Slab was on no list before and will be - * partially empty - * We can defer the list move and instead - * freeze it. - */ - new.frozen = 1; - - } else { /* Needs to be taken off a list */ + /* Needs to be taken off a list */ + if (!kmem_cache_has_cpu_partial(s) || prior) { n = get_node(s, slab_nid(slab)); /* @@ -3655,6 +4141,7 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab, */ spin_lock_irqsave(&n->list_lock, flags); + on_node_partial = slab_test_node_partial(slab); } } @@ -3671,9 +4158,9 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab, * activity can be necessary. */ stat(s, FREE_FROZEN); - } else if (new.frozen) { + } else if (kmem_cache_has_cpu_partial(s) && !prior) { /* - * If we just froze the slab then put it onto the + * If we started with a full slab then put it onto the * per cpu partial list. */ put_cpu_partial(s, slab, 1); @@ -3683,6 +4170,15 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab, return; } + /* + * This slab was partially empty but not on the per-node partial list, + * in which case we shouldn't manipulate its list, just return. + */ + if (prior && !on_node_partial) { + spin_unlock_irqrestore(&n->list_lock, flags); + return; + } + if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) goto slab_empty; @@ -3735,7 +4231,6 @@ static __always_inline void do_slab_free(struct kmem_cache *s, struct slab *slab, void *head, void *tail, int cnt, unsigned long addr) { - void *tail_obj = tail ? : head; struct kmem_cache_cpu *c; unsigned long tid; void **freelist; @@ -3754,14 +4249,14 @@ redo: barrier(); if (unlikely(slab != c->slab)) { - __slab_free(s, slab, head, tail_obj, cnt, addr); + __slab_free(s, slab, head, tail, cnt, addr); return; } if (USE_LOCKLESS_FAST_PATH()) { freelist = READ_ONCE(c->freelist); - set_freepointer(s, tail_obj, freelist); + set_freepointer(s, tail, freelist); if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { note_cmpxchg_failure("slab_free", s, tid); @@ -3778,60 +4273,143 @@ redo: tid = c->tid; freelist = c->freelist; - set_freepointer(s, tail_obj, freelist); + set_freepointer(s, tail, freelist); c->freelist = head; c->tid = next_tid(tid); local_unlock(&s->cpu_slab->lock); } - stat(s, FREE_FASTPATH); + stat_add(s, FREE_FASTPATH, cnt); } #else /* CONFIG_SLUB_TINY */ static void do_slab_free(struct kmem_cache *s, struct slab *slab, void *head, void *tail, int cnt, unsigned long addr) { - void *tail_obj = tail ? : head; - - __slab_free(s, slab, head, tail_obj, cnt, addr); + __slab_free(s, slab, head, tail, cnt, addr); } #endif /* CONFIG_SLUB_TINY */ -static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab, - void *head, void *tail, void **p, int cnt, - unsigned long addr) +static __fastpath_inline +void slab_free(struct kmem_cache *s, struct slab *slab, void *object, + unsigned long addr) +{ + memcg_slab_free_hook(s, slab, &object, 1); + + if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) + do_slab_free(s, slab, object, object, 1, addr); +} + +static __fastpath_inline +void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, + void *tail, void **p, int cnt, unsigned long addr) { memcg_slab_free_hook(s, slab, p, cnt); /* * With KASAN enabled slab_free_freelist_hook modifies the freelist * to remove objects, whose reuse must be delayed. */ - if (slab_free_freelist_hook(s, &head, &tail, &cnt)) + if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) do_slab_free(s, slab, head, tail, cnt, addr); } #ifdef CONFIG_KASAN_GENERIC void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) { - do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); + do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); } #endif -void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller) +static inline struct kmem_cache *virt_to_cache(const void *obj) { - slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller); + struct slab *slab; + + slab = virt_to_slab(obj); + if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) + return NULL; + return slab->slab_cache; } +static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) +{ + struct kmem_cache *cachep; + + if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && + !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) + return s; + + cachep = virt_to_cache(x); + if (WARN(cachep && cachep != s, + "%s: Wrong slab cache. %s but object is from %s\n", + __func__, s->name, cachep->name)) + print_tracking(cachep, x); + return cachep; +} + +/** + * kmem_cache_free - Deallocate an object + * @s: The cache the allocation was from. + * @x: The previously allocated object. + * + * Free an object which was previously allocated from this + * cache. + */ void kmem_cache_free(struct kmem_cache *s, void *x) { s = cache_from_obj(s, x); if (!s) return; trace_kmem_cache_free(_RET_IP_, x, s); - slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); + slab_free(s, virt_to_slab(x), x, _RET_IP_); } EXPORT_SYMBOL(kmem_cache_free); +static void free_large_kmalloc(struct folio *folio, void *object) +{ + unsigned int order = folio_order(folio); + + if (WARN_ON_ONCE(order == 0)) + pr_warn_once("object pointer: 0x%p\n", object); + + kmemleak_free(object); + kasan_kfree_large(object); + kmsan_kfree_large(object); + + lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, + -(PAGE_SIZE << order)); + folio_put(folio); +} + +/** + * kfree - free previously allocated memory + * @object: pointer returned by kmalloc() or kmem_cache_alloc() + * + * If @object is NULL, no operation is performed. + */ +void kfree(const void *object) +{ + struct folio *folio; + struct slab *slab; + struct kmem_cache *s; + void *x = (void *)object; + + trace_kfree(_RET_IP_, object); + + if (unlikely(ZERO_OR_NULL_PTR(object))) + return; + + folio = virt_to_folio(object); + if (unlikely(!folio_test_slab(folio))) { + free_large_kmalloc(folio, (void *)object); + return; + } + + slab = folio_slab(folio); + s = slab->slab_cache; + slab_free(s, slab, x, _RET_IP_); +} +EXPORT_SYMBOL(kfree); + struct detached_freelist { struct slab *slab; void *tail; @@ -3911,6 +4489,27 @@ int build_detached_freelist(struct kmem_cache *s, size_t size, return same; } +/* + * Internal bulk free of objects that were not initialised by the post alloc + * hooks and thus should not be processed by the free hooks + */ +static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) +{ + if (!size) + return; + + do { + struct detached_freelist df; + + size = build_detached_freelist(s, size, p, &df); + if (!df.slab) + continue; + + do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, + _RET_IP_); + } while (likely(size)); +} + /* Note that interrupts must be enabled when calling this function. */ void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) { @@ -3924,15 +4523,16 @@ void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) if (!df.slab) continue; - slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, - _RET_IP_); + slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], + df.cnt, _RET_IP_); } while (likely(size)); } EXPORT_SYMBOL(kmem_cache_free_bulk); #ifndef CONFIG_SLUB_TINY -static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, - size_t size, void **p, struct obj_cgroup *objcg) +static inline +int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, + void **p) { struct kmem_cache_cpu *c; unsigned long irqflags; @@ -3986,6 +4586,7 @@ static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, c->freelist = get_freepointer(s, object); p[i] = object; maybe_wipe_obj_freeptr(s, p[i]); + stat(s, ALLOC_FASTPATH); } c->tid = next_tid(c->tid); local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); @@ -3995,14 +4596,13 @@ static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, error: slub_put_cpu_ptr(s->cpu_slab); - slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); - kmem_cache_free_bulk(s, i, p); + __kmem_cache_free_bulk(s, i, p); return 0; } #else /* CONFIG_SLUB_TINY */ static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, - size_t size, void **p, struct obj_cgroup *objcg) + size_t size, void **p) { int i; @@ -4025,8 +4625,7 @@ static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, return i; error: - slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); - kmem_cache_free_bulk(s, i, p); + __kmem_cache_free_bulk(s, i, p); return 0; } #endif /* CONFIG_SLUB_TINY */ @@ -4046,15 +4645,19 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, if (unlikely(!s)) return 0; - i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg); + i = __kmem_cache_alloc_bulk(s, flags, size, p); /* * memcg and kmem_cache debug support and memory initialization. * Done outside of the IRQ disabled fastpath loop. */ - if (i != 0) + if (likely(i != 0)) { slab_post_alloc_hook(s, objcg, flags, size, p, slab_want_init_on_alloc(flags, s), s->object_size); + } else { + memcg_slab_alloc_error_hook(s, size, objcg); + } + return i; } EXPORT_SYMBOL(kmem_cache_alloc_bulk); @@ -4187,7 +4790,7 @@ static inline int calculate_order(unsigned int size) * Doh this slab cannot be placed using slub_max_order. */ order = get_order(size); - if (order <= MAX_ORDER) + if (order <= MAX_PAGE_ORDER) return order; return -ENOSYS; } @@ -4715,7 +5318,7 @@ __setup("slub_min_order=", setup_slub_min_order); static int __init setup_slub_max_order(char *str) { get_option(&str, (int *)&slub_max_order); - slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER); + slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); if (slub_min_order > slub_max_order) slub_min_order = slub_max_order; @@ -4831,6 +5434,7 @@ static int __kmem_cache_do_shrink(struct kmem_cache *s) if (free == slab->objects) { list_move(&slab->slab_list, &discard); + slab_clear_node_partial(slab); n->nr_partial--; dec_slabs_node(s, node, slab->objects); } else if (free <= SHRINK_PROMOTE_MAX) |