summaryrefslogtreecommitdiffstats
path: root/mm/swap_slots.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/swap_slots.c')
-rw-r--r--mm/swap_slots.c350
1 files changed, 350 insertions, 0 deletions
diff --git a/mm/swap_slots.c b/mm/swap_slots.c
new file mode 100644
index 0000000000..0bec1f705f
--- /dev/null
+++ b/mm/swap_slots.c
@@ -0,0 +1,350 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Manage cache of swap slots to be used for and returned from
+ * swap.
+ *
+ * Copyright(c) 2016 Intel Corporation.
+ *
+ * Author: Tim Chen <tim.c.chen@linux.intel.com>
+ *
+ * We allocate the swap slots from the global pool and put
+ * it into local per cpu caches. This has the advantage
+ * of no needing to acquire the swap_info lock every time
+ * we need a new slot.
+ *
+ * There is also opportunity to simply return the slot
+ * to local caches without needing to acquire swap_info
+ * lock. We do not reuse the returned slots directly but
+ * move them back to the global pool in a batch. This
+ * allows the slots to coalesce and reduce fragmentation.
+ *
+ * The swap entry allocated is marked with SWAP_HAS_CACHE
+ * flag in map_count that prevents it from being allocated
+ * again from the global pool.
+ *
+ * The swap slots cache is protected by a mutex instead of
+ * a spin lock as when we search for slots with scan_swap_map,
+ * we can possibly sleep.
+ */
+
+#include <linux/swap_slots.h>
+#include <linux/cpu.h>
+#include <linux/cpumask.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/mutex.h>
+#include <linux/mm.h>
+
+static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
+static bool swap_slot_cache_active;
+bool swap_slot_cache_enabled;
+static bool swap_slot_cache_initialized;
+static DEFINE_MUTEX(swap_slots_cache_mutex);
+/* Serialize swap slots cache enable/disable operations */
+static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
+
+static void __drain_swap_slots_cache(unsigned int type);
+
+#define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
+#define SLOTS_CACHE 0x1
+#define SLOTS_CACHE_RET 0x2
+
+static void deactivate_swap_slots_cache(void)
+{
+ mutex_lock(&swap_slots_cache_mutex);
+ swap_slot_cache_active = false;
+ __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
+ mutex_unlock(&swap_slots_cache_mutex);
+}
+
+static void reactivate_swap_slots_cache(void)
+{
+ mutex_lock(&swap_slots_cache_mutex);
+ swap_slot_cache_active = true;
+ mutex_unlock(&swap_slots_cache_mutex);
+}
+
+/* Must not be called with cpu hot plug lock */
+void disable_swap_slots_cache_lock(void)
+{
+ mutex_lock(&swap_slots_cache_enable_mutex);
+ swap_slot_cache_enabled = false;
+ if (swap_slot_cache_initialized) {
+ /* serialize with cpu hotplug operations */
+ cpus_read_lock();
+ __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
+ cpus_read_unlock();
+ }
+}
+
+static void __reenable_swap_slots_cache(void)
+{
+ swap_slot_cache_enabled = has_usable_swap();
+}
+
+void reenable_swap_slots_cache_unlock(void)
+{
+ __reenable_swap_slots_cache();
+ mutex_unlock(&swap_slots_cache_enable_mutex);
+}
+
+static bool check_cache_active(void)
+{
+ long pages;
+
+ if (!swap_slot_cache_enabled)
+ return false;
+
+ pages = get_nr_swap_pages();
+ if (!swap_slot_cache_active) {
+ if (pages > num_online_cpus() *
+ THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
+ reactivate_swap_slots_cache();
+ goto out;
+ }
+
+ /* if global pool of slot caches too low, deactivate cache */
+ if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
+ deactivate_swap_slots_cache();
+out:
+ return swap_slot_cache_active;
+}
+
+static int alloc_swap_slot_cache(unsigned int cpu)
+{
+ struct swap_slots_cache *cache;
+ swp_entry_t *slots, *slots_ret;
+
+ /*
+ * Do allocation outside swap_slots_cache_mutex
+ * as kvzalloc could trigger reclaim and folio_alloc_swap,
+ * which can lock swap_slots_cache_mutex.
+ */
+ slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
+ GFP_KERNEL);
+ if (!slots)
+ return -ENOMEM;
+
+ slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
+ GFP_KERNEL);
+ if (!slots_ret) {
+ kvfree(slots);
+ return -ENOMEM;
+ }
+
+ mutex_lock(&swap_slots_cache_mutex);
+ cache = &per_cpu(swp_slots, cpu);
+ if (cache->slots || cache->slots_ret) {
+ /* cache already allocated */
+ mutex_unlock(&swap_slots_cache_mutex);
+
+ kvfree(slots);
+ kvfree(slots_ret);
+
+ return 0;
+ }
+
+ if (!cache->lock_initialized) {
+ mutex_init(&cache->alloc_lock);
+ spin_lock_init(&cache->free_lock);
+ cache->lock_initialized = true;
+ }
+ cache->nr = 0;
+ cache->cur = 0;
+ cache->n_ret = 0;
+ /*
+ * We initialized alloc_lock and free_lock earlier. We use
+ * !cache->slots or !cache->slots_ret to know if it is safe to acquire
+ * the corresponding lock and use the cache. Memory barrier below
+ * ensures the assumption.
+ */
+ mb();
+ cache->slots = slots;
+ cache->slots_ret = slots_ret;
+ mutex_unlock(&swap_slots_cache_mutex);
+ return 0;
+}
+
+static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
+ bool free_slots)
+{
+ struct swap_slots_cache *cache;
+ swp_entry_t *slots = NULL;
+
+ cache = &per_cpu(swp_slots, cpu);
+ if ((type & SLOTS_CACHE) && cache->slots) {
+ mutex_lock(&cache->alloc_lock);
+ swapcache_free_entries(cache->slots + cache->cur, cache->nr);
+ cache->cur = 0;
+ cache->nr = 0;
+ if (free_slots && cache->slots) {
+ kvfree(cache->slots);
+ cache->slots = NULL;
+ }
+ mutex_unlock(&cache->alloc_lock);
+ }
+ if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
+ spin_lock_irq(&cache->free_lock);
+ swapcache_free_entries(cache->slots_ret, cache->n_ret);
+ cache->n_ret = 0;
+ if (free_slots && cache->slots_ret) {
+ slots = cache->slots_ret;
+ cache->slots_ret = NULL;
+ }
+ spin_unlock_irq(&cache->free_lock);
+ kvfree(slots);
+ }
+}
+
+static void __drain_swap_slots_cache(unsigned int type)
+{
+ unsigned int cpu;
+
+ /*
+ * This function is called during
+ * 1) swapoff, when we have to make sure no
+ * left over slots are in cache when we remove
+ * a swap device;
+ * 2) disabling of swap slot cache, when we run low
+ * on swap slots when allocating memory and need
+ * to return swap slots to global pool.
+ *
+ * We cannot acquire cpu hot plug lock here as
+ * this function can be invoked in the cpu
+ * hot plug path:
+ * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
+ * -> memory allocation -> direct reclaim -> folio_alloc_swap
+ * -> drain_swap_slots_cache
+ *
+ * Hence the loop over current online cpu below could miss cpu that
+ * is being brought online but not yet marked as online.
+ * That is okay as we do not schedule and run anything on a
+ * cpu before it has been marked online. Hence, we will not
+ * fill any swap slots in slots cache of such cpu.
+ * There are no slots on such cpu that need to be drained.
+ */
+ for_each_online_cpu(cpu)
+ drain_slots_cache_cpu(cpu, type, false);
+}
+
+static int free_slot_cache(unsigned int cpu)
+{
+ mutex_lock(&swap_slots_cache_mutex);
+ drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
+ mutex_unlock(&swap_slots_cache_mutex);
+ return 0;
+}
+
+void enable_swap_slots_cache(void)
+{
+ mutex_lock(&swap_slots_cache_enable_mutex);
+ if (!swap_slot_cache_initialized) {
+ int ret;
+
+ ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
+ alloc_swap_slot_cache, free_slot_cache);
+ if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
+ "without swap slots cache.\n", __func__))
+ goto out_unlock;
+
+ swap_slot_cache_initialized = true;
+ }
+
+ __reenable_swap_slots_cache();
+out_unlock:
+ mutex_unlock(&swap_slots_cache_enable_mutex);
+}
+
+/* called with swap slot cache's alloc lock held */
+static int refill_swap_slots_cache(struct swap_slots_cache *cache)
+{
+ if (!use_swap_slot_cache)
+ return 0;
+
+ cache->cur = 0;
+ if (swap_slot_cache_active)
+ cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
+ cache->slots, 1);
+
+ return cache->nr;
+}
+
+void free_swap_slot(swp_entry_t entry)
+{
+ struct swap_slots_cache *cache;
+
+ cache = raw_cpu_ptr(&swp_slots);
+ if (likely(use_swap_slot_cache && cache->slots_ret)) {
+ spin_lock_irq(&cache->free_lock);
+ /* Swap slots cache may be deactivated before acquiring lock */
+ if (!use_swap_slot_cache || !cache->slots_ret) {
+ spin_unlock_irq(&cache->free_lock);
+ goto direct_free;
+ }
+ if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
+ /*
+ * Return slots to global pool.
+ * The current swap_map value is SWAP_HAS_CACHE.
+ * Set it to 0 to indicate it is available for
+ * allocation in global pool
+ */
+ swapcache_free_entries(cache->slots_ret, cache->n_ret);
+ cache->n_ret = 0;
+ }
+ cache->slots_ret[cache->n_ret++] = entry;
+ spin_unlock_irq(&cache->free_lock);
+ } else {
+direct_free:
+ swapcache_free_entries(&entry, 1);
+ }
+}
+
+swp_entry_t folio_alloc_swap(struct folio *folio)
+{
+ swp_entry_t entry;
+ struct swap_slots_cache *cache;
+
+ entry.val = 0;
+
+ if (folio_test_large(folio)) {
+ if (IS_ENABLED(CONFIG_THP_SWAP) && arch_thp_swp_supported())
+ get_swap_pages(1, &entry, folio_nr_pages(folio));
+ goto out;
+ }
+
+ /*
+ * Preemption is allowed here, because we may sleep
+ * in refill_swap_slots_cache(). But it is safe, because
+ * accesses to the per-CPU data structure are protected by the
+ * mutex cache->alloc_lock.
+ *
+ * The alloc path here does not touch cache->slots_ret
+ * so cache->free_lock is not taken.
+ */
+ cache = raw_cpu_ptr(&swp_slots);
+
+ if (likely(check_cache_active() && cache->slots)) {
+ mutex_lock(&cache->alloc_lock);
+ if (cache->slots) {
+repeat:
+ if (cache->nr) {
+ entry = cache->slots[cache->cur];
+ cache->slots[cache->cur++].val = 0;
+ cache->nr--;
+ } else if (refill_swap_slots_cache(cache)) {
+ goto repeat;
+ }
+ }
+ mutex_unlock(&cache->alloc_lock);
+ if (entry.val)
+ goto out;
+ }
+
+ get_swap_pages(1, &entry, 1);
+out:
+ if (mem_cgroup_try_charge_swap(folio, entry)) {
+ put_swap_folio(folio, entry);
+ entry.val = 0;
+ }
+ return entry;
+}