summaryrefslogtreecommitdiffstats
path: root/net/tls/tls_sw.c
diff options
context:
space:
mode:
Diffstat (limited to 'net/tls/tls_sw.c')
-rw-r--r--net/tls/tls_sw.c2771
1 files changed, 2771 insertions, 0 deletions
diff --git a/net/tls/tls_sw.c b/net/tls/tls_sw.c
new file mode 100644
index 0000000000..dba523cdc7
--- /dev/null
+++ b/net/tls/tls_sw.c
@@ -0,0 +1,2771 @@
+/*
+ * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
+ * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
+ * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
+ * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
+ * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
+ * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
+ *
+ * This software is available to you under a choice of one of two
+ * licenses. You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ * Redistribution and use in source and binary forms, with or
+ * without modification, are permitted provided that the following
+ * conditions are met:
+ *
+ * - Redistributions of source code must retain the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer.
+ *
+ * - Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials
+ * provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/bug.h>
+#include <linux/sched/signal.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/splice.h>
+#include <crypto/aead.h>
+
+#include <net/strparser.h>
+#include <net/tls.h>
+#include <trace/events/sock.h>
+
+#include "tls.h"
+
+struct tls_decrypt_arg {
+ struct_group(inargs,
+ bool zc;
+ bool async;
+ u8 tail;
+ );
+
+ struct sk_buff *skb;
+};
+
+struct tls_decrypt_ctx {
+ struct sock *sk;
+ u8 iv[MAX_IV_SIZE];
+ u8 aad[TLS_MAX_AAD_SIZE];
+ u8 tail;
+ struct scatterlist sg[];
+};
+
+noinline void tls_err_abort(struct sock *sk, int err)
+{
+ WARN_ON_ONCE(err >= 0);
+ /* sk->sk_err should contain a positive error code. */
+ WRITE_ONCE(sk->sk_err, -err);
+ /* Paired with smp_rmb() in tcp_poll() */
+ smp_wmb();
+ sk_error_report(sk);
+}
+
+static int __skb_nsg(struct sk_buff *skb, int offset, int len,
+ unsigned int recursion_level)
+{
+ int start = skb_headlen(skb);
+ int i, chunk = start - offset;
+ struct sk_buff *frag_iter;
+ int elt = 0;
+
+ if (unlikely(recursion_level >= 24))
+ return -EMSGSIZE;
+
+ if (chunk > 0) {
+ if (chunk > len)
+ chunk = len;
+ elt++;
+ len -= chunk;
+ if (len == 0)
+ return elt;
+ offset += chunk;
+ }
+
+ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
+ int end;
+
+ WARN_ON(start > offset + len);
+
+ end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
+ chunk = end - offset;
+ if (chunk > 0) {
+ if (chunk > len)
+ chunk = len;
+ elt++;
+ len -= chunk;
+ if (len == 0)
+ return elt;
+ offset += chunk;
+ }
+ start = end;
+ }
+
+ if (unlikely(skb_has_frag_list(skb))) {
+ skb_walk_frags(skb, frag_iter) {
+ int end, ret;
+
+ WARN_ON(start > offset + len);
+
+ end = start + frag_iter->len;
+ chunk = end - offset;
+ if (chunk > 0) {
+ if (chunk > len)
+ chunk = len;
+ ret = __skb_nsg(frag_iter, offset - start, chunk,
+ recursion_level + 1);
+ if (unlikely(ret < 0))
+ return ret;
+ elt += ret;
+ len -= chunk;
+ if (len == 0)
+ return elt;
+ offset += chunk;
+ }
+ start = end;
+ }
+ }
+ BUG_ON(len);
+ return elt;
+}
+
+/* Return the number of scatterlist elements required to completely map the
+ * skb, or -EMSGSIZE if the recursion depth is exceeded.
+ */
+static int skb_nsg(struct sk_buff *skb, int offset, int len)
+{
+ return __skb_nsg(skb, offset, len, 0);
+}
+
+static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
+ struct tls_decrypt_arg *darg)
+{
+ struct strp_msg *rxm = strp_msg(skb);
+ struct tls_msg *tlm = tls_msg(skb);
+ int sub = 0;
+
+ /* Determine zero-padding length */
+ if (prot->version == TLS_1_3_VERSION) {
+ int offset = rxm->full_len - TLS_TAG_SIZE - 1;
+ char content_type = darg->zc ? darg->tail : 0;
+ int err;
+
+ while (content_type == 0) {
+ if (offset < prot->prepend_size)
+ return -EBADMSG;
+ err = skb_copy_bits(skb, rxm->offset + offset,
+ &content_type, 1);
+ if (err)
+ return err;
+ if (content_type)
+ break;
+ sub++;
+ offset--;
+ }
+ tlm->control = content_type;
+ }
+ return sub;
+}
+
+static void tls_decrypt_done(void *data, int err)
+{
+ struct aead_request *aead_req = data;
+ struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
+ struct scatterlist *sgout = aead_req->dst;
+ struct scatterlist *sgin = aead_req->src;
+ struct tls_sw_context_rx *ctx;
+ struct tls_decrypt_ctx *dctx;
+ struct tls_context *tls_ctx;
+ struct scatterlist *sg;
+ unsigned int pages;
+ struct sock *sk;
+ int aead_size;
+
+ aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
+ aead_size = ALIGN(aead_size, __alignof__(*dctx));
+ dctx = (void *)((u8 *)aead_req + aead_size);
+
+ sk = dctx->sk;
+ tls_ctx = tls_get_ctx(sk);
+ ctx = tls_sw_ctx_rx(tls_ctx);
+
+ /* Propagate if there was an err */
+ if (err) {
+ if (err == -EBADMSG)
+ TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
+ ctx->async_wait.err = err;
+ tls_err_abort(sk, err);
+ }
+
+ /* Free the destination pages if skb was not decrypted inplace */
+ if (sgout != sgin) {
+ /* Skip the first S/G entry as it points to AAD */
+ for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
+ if (!sg)
+ break;
+ put_page(sg_page(sg));
+ }
+ }
+
+ kfree(aead_req);
+
+ spin_lock_bh(&ctx->decrypt_compl_lock);
+ if (!atomic_dec_return(&ctx->decrypt_pending))
+ complete(&ctx->async_wait.completion);
+ spin_unlock_bh(&ctx->decrypt_compl_lock);
+}
+
+static int tls_do_decryption(struct sock *sk,
+ struct scatterlist *sgin,
+ struct scatterlist *sgout,
+ char *iv_recv,
+ size_t data_len,
+ struct aead_request *aead_req,
+ struct tls_decrypt_arg *darg)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ int ret;
+
+ aead_request_set_tfm(aead_req, ctx->aead_recv);
+ aead_request_set_ad(aead_req, prot->aad_size);
+ aead_request_set_crypt(aead_req, sgin, sgout,
+ data_len + prot->tag_size,
+ (u8 *)iv_recv);
+
+ if (darg->async) {
+ aead_request_set_callback(aead_req,
+ CRYPTO_TFM_REQ_MAY_BACKLOG,
+ tls_decrypt_done, aead_req);
+ atomic_inc(&ctx->decrypt_pending);
+ } else {
+ aead_request_set_callback(aead_req,
+ CRYPTO_TFM_REQ_MAY_BACKLOG,
+ crypto_req_done, &ctx->async_wait);
+ }
+
+ ret = crypto_aead_decrypt(aead_req);
+ if (ret == -EINPROGRESS) {
+ if (darg->async)
+ return 0;
+
+ ret = crypto_wait_req(ret, &ctx->async_wait);
+ }
+ darg->async = false;
+
+ return ret;
+}
+
+static void tls_trim_both_msgs(struct sock *sk, int target_size)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec;
+
+ sk_msg_trim(sk, &rec->msg_plaintext, target_size);
+ if (target_size > 0)
+ target_size += prot->overhead_size;
+ sk_msg_trim(sk, &rec->msg_encrypted, target_size);
+}
+
+static int tls_alloc_encrypted_msg(struct sock *sk, int len)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec;
+ struct sk_msg *msg_en = &rec->msg_encrypted;
+
+ return sk_msg_alloc(sk, msg_en, len, 0);
+}
+
+static int tls_clone_plaintext_msg(struct sock *sk, int required)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec;
+ struct sk_msg *msg_pl = &rec->msg_plaintext;
+ struct sk_msg *msg_en = &rec->msg_encrypted;
+ int skip, len;
+
+ /* We add page references worth len bytes from encrypted sg
+ * at the end of plaintext sg. It is guaranteed that msg_en
+ * has enough required room (ensured by caller).
+ */
+ len = required - msg_pl->sg.size;
+
+ /* Skip initial bytes in msg_en's data to be able to use
+ * same offset of both plain and encrypted data.
+ */
+ skip = prot->prepend_size + msg_pl->sg.size;
+
+ return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
+}
+
+static struct tls_rec *tls_get_rec(struct sock *sk)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct sk_msg *msg_pl, *msg_en;
+ struct tls_rec *rec;
+ int mem_size;
+
+ mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
+
+ rec = kzalloc(mem_size, sk->sk_allocation);
+ if (!rec)
+ return NULL;
+
+ msg_pl = &rec->msg_plaintext;
+ msg_en = &rec->msg_encrypted;
+
+ sk_msg_init(msg_pl);
+ sk_msg_init(msg_en);
+
+ sg_init_table(rec->sg_aead_in, 2);
+ sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
+ sg_unmark_end(&rec->sg_aead_in[1]);
+
+ sg_init_table(rec->sg_aead_out, 2);
+ sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
+ sg_unmark_end(&rec->sg_aead_out[1]);
+
+ rec->sk = sk;
+
+ return rec;
+}
+
+static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
+{
+ sk_msg_free(sk, &rec->msg_encrypted);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+}
+
+static void tls_free_open_rec(struct sock *sk)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec;
+
+ if (rec) {
+ tls_free_rec(sk, rec);
+ ctx->open_rec = NULL;
+ }
+}
+
+int tls_tx_records(struct sock *sk, int flags)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec, *tmp;
+ struct sk_msg *msg_en;
+ int tx_flags, rc = 0;
+
+ if (tls_is_partially_sent_record(tls_ctx)) {
+ rec = list_first_entry(&ctx->tx_list,
+ struct tls_rec, list);
+
+ if (flags == -1)
+ tx_flags = rec->tx_flags;
+ else
+ tx_flags = flags;
+
+ rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
+ if (rc)
+ goto tx_err;
+
+ /* Full record has been transmitted.
+ * Remove the head of tx_list
+ */
+ list_del(&rec->list);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+ }
+
+ /* Tx all ready records */
+ list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
+ if (READ_ONCE(rec->tx_ready)) {
+ if (flags == -1)
+ tx_flags = rec->tx_flags;
+ else
+ tx_flags = flags;
+
+ msg_en = &rec->msg_encrypted;
+ rc = tls_push_sg(sk, tls_ctx,
+ &msg_en->sg.data[msg_en->sg.curr],
+ 0, tx_flags);
+ if (rc)
+ goto tx_err;
+
+ list_del(&rec->list);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+ } else {
+ break;
+ }
+ }
+
+tx_err:
+ if (rc < 0 && rc != -EAGAIN)
+ tls_err_abort(sk, -EBADMSG);
+
+ return rc;
+}
+
+static void tls_encrypt_done(void *data, int err)
+{
+ struct tls_sw_context_tx *ctx;
+ struct tls_context *tls_ctx;
+ struct tls_prot_info *prot;
+ struct tls_rec *rec = data;
+ struct scatterlist *sge;
+ struct sk_msg *msg_en;
+ bool ready = false;
+ struct sock *sk;
+ int pending;
+
+ msg_en = &rec->msg_encrypted;
+
+ sk = rec->sk;
+ tls_ctx = tls_get_ctx(sk);
+ prot = &tls_ctx->prot_info;
+ ctx = tls_sw_ctx_tx(tls_ctx);
+
+ sge = sk_msg_elem(msg_en, msg_en->sg.curr);
+ sge->offset -= prot->prepend_size;
+ sge->length += prot->prepend_size;
+
+ /* Check if error is previously set on socket */
+ if (err || sk->sk_err) {
+ rec = NULL;
+
+ /* If err is already set on socket, return the same code */
+ if (sk->sk_err) {
+ ctx->async_wait.err = -sk->sk_err;
+ } else {
+ ctx->async_wait.err = err;
+ tls_err_abort(sk, err);
+ }
+ }
+
+ if (rec) {
+ struct tls_rec *first_rec;
+
+ /* Mark the record as ready for transmission */
+ smp_store_mb(rec->tx_ready, true);
+
+ /* If received record is at head of tx_list, schedule tx */
+ first_rec = list_first_entry(&ctx->tx_list,
+ struct tls_rec, list);
+ if (rec == first_rec)
+ ready = true;
+ }
+
+ spin_lock_bh(&ctx->encrypt_compl_lock);
+ pending = atomic_dec_return(&ctx->encrypt_pending);
+
+ if (!pending && ctx->async_notify)
+ complete(&ctx->async_wait.completion);
+ spin_unlock_bh(&ctx->encrypt_compl_lock);
+
+ if (!ready)
+ return;
+
+ /* Schedule the transmission */
+ if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
+ schedule_delayed_work(&ctx->tx_work.work, 1);
+}
+
+static int tls_do_encryption(struct sock *sk,
+ struct tls_context *tls_ctx,
+ struct tls_sw_context_tx *ctx,
+ struct aead_request *aead_req,
+ size_t data_len, u32 start)
+{
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_rec *rec = ctx->open_rec;
+ struct sk_msg *msg_en = &rec->msg_encrypted;
+ struct scatterlist *sge = sk_msg_elem(msg_en, start);
+ int rc, iv_offset = 0;
+
+ /* For CCM based ciphers, first byte of IV is a constant */
+ switch (prot->cipher_type) {
+ case TLS_CIPHER_AES_CCM_128:
+ rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
+ iv_offset = 1;
+ break;
+ case TLS_CIPHER_SM4_CCM:
+ rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
+ iv_offset = 1;
+ break;
+ }
+
+ memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
+ prot->iv_size + prot->salt_size);
+
+ tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
+ tls_ctx->tx.rec_seq);
+
+ sge->offset += prot->prepend_size;
+ sge->length -= prot->prepend_size;
+
+ msg_en->sg.curr = start;
+
+ aead_request_set_tfm(aead_req, ctx->aead_send);
+ aead_request_set_ad(aead_req, prot->aad_size);
+ aead_request_set_crypt(aead_req, rec->sg_aead_in,
+ rec->sg_aead_out,
+ data_len, rec->iv_data);
+
+ aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
+ tls_encrypt_done, rec);
+
+ /* Add the record in tx_list */
+ list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
+ atomic_inc(&ctx->encrypt_pending);
+
+ rc = crypto_aead_encrypt(aead_req);
+ if (!rc || rc != -EINPROGRESS) {
+ atomic_dec(&ctx->encrypt_pending);
+ sge->offset -= prot->prepend_size;
+ sge->length += prot->prepend_size;
+ }
+
+ if (!rc) {
+ WRITE_ONCE(rec->tx_ready, true);
+ } else if (rc != -EINPROGRESS) {
+ list_del(&rec->list);
+ return rc;
+ }
+
+ /* Unhook the record from context if encryption is not failure */
+ ctx->open_rec = NULL;
+ tls_advance_record_sn(sk, prot, &tls_ctx->tx);
+ return rc;
+}
+
+static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
+ struct tls_rec **to, struct sk_msg *msg_opl,
+ struct sk_msg *msg_oen, u32 split_point,
+ u32 tx_overhead_size, u32 *orig_end)
+{
+ u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
+ struct scatterlist *sge, *osge, *nsge;
+ u32 orig_size = msg_opl->sg.size;
+ struct scatterlist tmp = { };
+ struct sk_msg *msg_npl;
+ struct tls_rec *new;
+ int ret;
+
+ new = tls_get_rec(sk);
+ if (!new)
+ return -ENOMEM;
+ ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
+ tx_overhead_size, 0);
+ if (ret < 0) {
+ tls_free_rec(sk, new);
+ return ret;
+ }
+
+ *orig_end = msg_opl->sg.end;
+ i = msg_opl->sg.start;
+ sge = sk_msg_elem(msg_opl, i);
+ while (apply && sge->length) {
+ if (sge->length > apply) {
+ u32 len = sge->length - apply;
+
+ get_page(sg_page(sge));
+ sg_set_page(&tmp, sg_page(sge), len,
+ sge->offset + apply);
+ sge->length = apply;
+ bytes += apply;
+ apply = 0;
+ } else {
+ apply -= sge->length;
+ bytes += sge->length;
+ }
+
+ sk_msg_iter_var_next(i);
+ if (i == msg_opl->sg.end)
+ break;
+ sge = sk_msg_elem(msg_opl, i);
+ }
+
+ msg_opl->sg.end = i;
+ msg_opl->sg.curr = i;
+ msg_opl->sg.copybreak = 0;
+ msg_opl->apply_bytes = 0;
+ msg_opl->sg.size = bytes;
+
+ msg_npl = &new->msg_plaintext;
+ msg_npl->apply_bytes = apply;
+ msg_npl->sg.size = orig_size - bytes;
+
+ j = msg_npl->sg.start;
+ nsge = sk_msg_elem(msg_npl, j);
+ if (tmp.length) {
+ memcpy(nsge, &tmp, sizeof(*nsge));
+ sk_msg_iter_var_next(j);
+ nsge = sk_msg_elem(msg_npl, j);
+ }
+
+ osge = sk_msg_elem(msg_opl, i);
+ while (osge->length) {
+ memcpy(nsge, osge, sizeof(*nsge));
+ sg_unmark_end(nsge);
+ sk_msg_iter_var_next(i);
+ sk_msg_iter_var_next(j);
+ if (i == *orig_end)
+ break;
+ osge = sk_msg_elem(msg_opl, i);
+ nsge = sk_msg_elem(msg_npl, j);
+ }
+
+ msg_npl->sg.end = j;
+ msg_npl->sg.curr = j;
+ msg_npl->sg.copybreak = 0;
+
+ *to = new;
+ return 0;
+}
+
+static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
+ struct tls_rec *from, u32 orig_end)
+{
+ struct sk_msg *msg_npl = &from->msg_plaintext;
+ struct sk_msg *msg_opl = &to->msg_plaintext;
+ struct scatterlist *osge, *nsge;
+ u32 i, j;
+
+ i = msg_opl->sg.end;
+ sk_msg_iter_var_prev(i);
+ j = msg_npl->sg.start;
+
+ osge = sk_msg_elem(msg_opl, i);
+ nsge = sk_msg_elem(msg_npl, j);
+
+ if (sg_page(osge) == sg_page(nsge) &&
+ osge->offset + osge->length == nsge->offset) {
+ osge->length += nsge->length;
+ put_page(sg_page(nsge));
+ }
+
+ msg_opl->sg.end = orig_end;
+ msg_opl->sg.curr = orig_end;
+ msg_opl->sg.copybreak = 0;
+ msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
+ msg_opl->sg.size += msg_npl->sg.size;
+
+ sk_msg_free(sk, &to->msg_encrypted);
+ sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
+
+ kfree(from);
+}
+
+static int tls_push_record(struct sock *sk, int flags,
+ unsigned char record_type)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
+ u32 i, split_point, orig_end;
+ struct sk_msg *msg_pl, *msg_en;
+ struct aead_request *req;
+ bool split;
+ int rc;
+
+ if (!rec)
+ return 0;
+
+ msg_pl = &rec->msg_plaintext;
+ msg_en = &rec->msg_encrypted;
+
+ split_point = msg_pl->apply_bytes;
+ split = split_point && split_point < msg_pl->sg.size;
+ if (unlikely((!split &&
+ msg_pl->sg.size +
+ prot->overhead_size > msg_en->sg.size) ||
+ (split &&
+ split_point +
+ prot->overhead_size > msg_en->sg.size))) {
+ split = true;
+ split_point = msg_en->sg.size;
+ }
+ if (split) {
+ rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
+ split_point, prot->overhead_size,
+ &orig_end);
+ if (rc < 0)
+ return rc;
+ /* This can happen if above tls_split_open_record allocates
+ * a single large encryption buffer instead of two smaller
+ * ones. In this case adjust pointers and continue without
+ * split.
+ */
+ if (!msg_pl->sg.size) {
+ tls_merge_open_record(sk, rec, tmp, orig_end);
+ msg_pl = &rec->msg_plaintext;
+ msg_en = &rec->msg_encrypted;
+ split = false;
+ }
+ sk_msg_trim(sk, msg_en, msg_pl->sg.size +
+ prot->overhead_size);
+ }
+
+ rec->tx_flags = flags;
+ req = &rec->aead_req;
+
+ i = msg_pl->sg.end;
+ sk_msg_iter_var_prev(i);
+
+ rec->content_type = record_type;
+ if (prot->version == TLS_1_3_VERSION) {
+ /* Add content type to end of message. No padding added */
+ sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
+ sg_mark_end(&rec->sg_content_type);
+ sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
+ &rec->sg_content_type);
+ } else {
+ sg_mark_end(sk_msg_elem(msg_pl, i));
+ }
+
+ if (msg_pl->sg.end < msg_pl->sg.start) {
+ sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
+ MAX_SKB_FRAGS - msg_pl->sg.start + 1,
+ msg_pl->sg.data);
+ }
+
+ i = msg_pl->sg.start;
+ sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
+
+ i = msg_en->sg.end;
+ sk_msg_iter_var_prev(i);
+ sg_mark_end(sk_msg_elem(msg_en, i));
+
+ i = msg_en->sg.start;
+ sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
+
+ tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
+ tls_ctx->tx.rec_seq, record_type, prot);
+
+ tls_fill_prepend(tls_ctx,
+ page_address(sg_page(&msg_en->sg.data[i])) +
+ msg_en->sg.data[i].offset,
+ msg_pl->sg.size + prot->tail_size,
+ record_type);
+
+ tls_ctx->pending_open_record_frags = false;
+
+ rc = tls_do_encryption(sk, tls_ctx, ctx, req,
+ msg_pl->sg.size + prot->tail_size, i);
+ if (rc < 0) {
+ if (rc != -EINPROGRESS) {
+ tls_err_abort(sk, -EBADMSG);
+ if (split) {
+ tls_ctx->pending_open_record_frags = true;
+ tls_merge_open_record(sk, rec, tmp, orig_end);
+ }
+ }
+ ctx->async_capable = 1;
+ return rc;
+ } else if (split) {
+ msg_pl = &tmp->msg_plaintext;
+ msg_en = &tmp->msg_encrypted;
+ sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
+ tls_ctx->pending_open_record_frags = true;
+ ctx->open_rec = tmp;
+ }
+
+ return tls_tx_records(sk, flags);
+}
+
+static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
+ bool full_record, u8 record_type,
+ ssize_t *copied, int flags)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct sk_msg msg_redir = { };
+ struct sk_psock *psock;
+ struct sock *sk_redir;
+ struct tls_rec *rec;
+ bool enospc, policy, redir_ingress;
+ int err = 0, send;
+ u32 delta = 0;
+
+ policy = !(flags & MSG_SENDPAGE_NOPOLICY);
+ psock = sk_psock_get(sk);
+ if (!psock || !policy) {
+ err = tls_push_record(sk, flags, record_type);
+ if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
+ *copied -= sk_msg_free(sk, msg);
+ tls_free_open_rec(sk);
+ err = -sk->sk_err;
+ }
+ if (psock)
+ sk_psock_put(sk, psock);
+ return err;
+ }
+more_data:
+ enospc = sk_msg_full(msg);
+ if (psock->eval == __SK_NONE) {
+ delta = msg->sg.size;
+ psock->eval = sk_psock_msg_verdict(sk, psock, msg);
+ delta -= msg->sg.size;
+ }
+ if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
+ !enospc && !full_record) {
+ err = -ENOSPC;
+ goto out_err;
+ }
+ msg->cork_bytes = 0;
+ send = msg->sg.size;
+ if (msg->apply_bytes && msg->apply_bytes < send)
+ send = msg->apply_bytes;
+
+ switch (psock->eval) {
+ case __SK_PASS:
+ err = tls_push_record(sk, flags, record_type);
+ if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
+ *copied -= sk_msg_free(sk, msg);
+ tls_free_open_rec(sk);
+ err = -sk->sk_err;
+ goto out_err;
+ }
+ break;
+ case __SK_REDIRECT:
+ redir_ingress = psock->redir_ingress;
+ sk_redir = psock->sk_redir;
+ memcpy(&msg_redir, msg, sizeof(*msg));
+ if (msg->apply_bytes < send)
+ msg->apply_bytes = 0;
+ else
+ msg->apply_bytes -= send;
+ sk_msg_return_zero(sk, msg, send);
+ msg->sg.size -= send;
+ release_sock(sk);
+ err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
+ &msg_redir, send, flags);
+ lock_sock(sk);
+ if (err < 0) {
+ *copied -= sk_msg_free_nocharge(sk, &msg_redir);
+ msg->sg.size = 0;
+ }
+ if (msg->sg.size == 0)
+ tls_free_open_rec(sk);
+ break;
+ case __SK_DROP:
+ default:
+ sk_msg_free_partial(sk, msg, send);
+ if (msg->apply_bytes < send)
+ msg->apply_bytes = 0;
+ else
+ msg->apply_bytes -= send;
+ if (msg->sg.size == 0)
+ tls_free_open_rec(sk);
+ *copied -= (send + delta);
+ err = -EACCES;
+ }
+
+ if (likely(!err)) {
+ bool reset_eval = !ctx->open_rec;
+
+ rec = ctx->open_rec;
+ if (rec) {
+ msg = &rec->msg_plaintext;
+ if (!msg->apply_bytes)
+ reset_eval = true;
+ }
+ if (reset_eval) {
+ psock->eval = __SK_NONE;
+ if (psock->sk_redir) {
+ sock_put(psock->sk_redir);
+ psock->sk_redir = NULL;
+ }
+ }
+ if (rec)
+ goto more_data;
+ }
+ out_err:
+ sk_psock_put(sk, psock);
+ return err;
+}
+
+static int tls_sw_push_pending_record(struct sock *sk, int flags)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec;
+ struct sk_msg *msg_pl;
+ size_t copied;
+
+ if (!rec)
+ return 0;
+
+ msg_pl = &rec->msg_plaintext;
+ copied = msg_pl->sg.size;
+ if (!copied)
+ return 0;
+
+ return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
+ &copied, flags);
+}
+
+static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
+ struct sk_msg *msg_pl, size_t try_to_copy,
+ ssize_t *copied)
+{
+ struct page *page = NULL, **pages = &page;
+
+ do {
+ ssize_t part;
+ size_t off;
+
+ part = iov_iter_extract_pages(&msg->msg_iter, &pages,
+ try_to_copy, 1, 0, &off);
+ if (part <= 0)
+ return part ?: -EIO;
+
+ if (WARN_ON_ONCE(!sendpage_ok(page))) {
+ iov_iter_revert(&msg->msg_iter, part);
+ return -EIO;
+ }
+
+ sk_msg_page_add(msg_pl, page, part, off);
+ msg_pl->sg.copybreak = 0;
+ msg_pl->sg.curr = msg_pl->sg.end;
+ sk_mem_charge(sk, part);
+ *copied += part;
+ try_to_copy -= part;
+ } while (try_to_copy && !sk_msg_full(msg_pl));
+
+ return 0;
+}
+
+static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
+ size_t size)
+{
+ long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ bool async_capable = ctx->async_capable;
+ unsigned char record_type = TLS_RECORD_TYPE_DATA;
+ bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
+ bool eor = !(msg->msg_flags & MSG_MORE);
+ size_t try_to_copy;
+ ssize_t copied = 0;
+ struct sk_msg *msg_pl, *msg_en;
+ struct tls_rec *rec;
+ int required_size;
+ int num_async = 0;
+ bool full_record;
+ int record_room;
+ int num_zc = 0;
+ int orig_size;
+ int ret = 0;
+ int pending;
+
+ if (!eor && (msg->msg_flags & MSG_EOR))
+ return -EINVAL;
+
+ if (unlikely(msg->msg_controllen)) {
+ ret = tls_process_cmsg(sk, msg, &record_type);
+ if (ret) {
+ if (ret == -EINPROGRESS)
+ num_async++;
+ else if (ret != -EAGAIN)
+ goto send_end;
+ }
+ }
+
+ while (msg_data_left(msg)) {
+ if (sk->sk_err) {
+ ret = -sk->sk_err;
+ goto send_end;
+ }
+
+ if (ctx->open_rec)
+ rec = ctx->open_rec;
+ else
+ rec = ctx->open_rec = tls_get_rec(sk);
+ if (!rec) {
+ ret = -ENOMEM;
+ goto send_end;
+ }
+
+ msg_pl = &rec->msg_plaintext;
+ msg_en = &rec->msg_encrypted;
+
+ orig_size = msg_pl->sg.size;
+ full_record = false;
+ try_to_copy = msg_data_left(msg);
+ record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
+ if (try_to_copy >= record_room) {
+ try_to_copy = record_room;
+ full_record = true;
+ }
+
+ required_size = msg_pl->sg.size + try_to_copy +
+ prot->overhead_size;
+
+ if (!sk_stream_memory_free(sk))
+ goto wait_for_sndbuf;
+
+alloc_encrypted:
+ ret = tls_alloc_encrypted_msg(sk, required_size);
+ if (ret) {
+ if (ret != -ENOSPC)
+ goto wait_for_memory;
+
+ /* Adjust try_to_copy according to the amount that was
+ * actually allocated. The difference is due
+ * to max sg elements limit
+ */
+ try_to_copy -= required_size - msg_en->sg.size;
+ full_record = true;
+ }
+
+ if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
+ ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
+ try_to_copy, &copied);
+ if (ret < 0)
+ goto send_end;
+ tls_ctx->pending_open_record_frags = true;
+
+ if (sk_msg_full(msg_pl))
+ full_record = true;
+
+ if (full_record || eor)
+ goto copied;
+ continue;
+ }
+
+ if (!is_kvec && (full_record || eor) && !async_capable) {
+ u32 first = msg_pl->sg.end;
+
+ ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
+ msg_pl, try_to_copy);
+ if (ret)
+ goto fallback_to_reg_send;
+
+ num_zc++;
+ copied += try_to_copy;
+
+ sk_msg_sg_copy_set(msg_pl, first);
+ ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
+ record_type, &copied,
+ msg->msg_flags);
+ if (ret) {
+ if (ret == -EINPROGRESS)
+ num_async++;
+ else if (ret == -ENOMEM)
+ goto wait_for_memory;
+ else if (ctx->open_rec && ret == -ENOSPC)
+ goto rollback_iter;
+ else if (ret != -EAGAIN)
+ goto send_end;
+ }
+ continue;
+rollback_iter:
+ copied -= try_to_copy;
+ sk_msg_sg_copy_clear(msg_pl, first);
+ iov_iter_revert(&msg->msg_iter,
+ msg_pl->sg.size - orig_size);
+fallback_to_reg_send:
+ sk_msg_trim(sk, msg_pl, orig_size);
+ }
+
+ required_size = msg_pl->sg.size + try_to_copy;
+
+ ret = tls_clone_plaintext_msg(sk, required_size);
+ if (ret) {
+ if (ret != -ENOSPC)
+ goto send_end;
+
+ /* Adjust try_to_copy according to the amount that was
+ * actually allocated. The difference is due
+ * to max sg elements limit
+ */
+ try_to_copy -= required_size - msg_pl->sg.size;
+ full_record = true;
+ sk_msg_trim(sk, msg_en,
+ msg_pl->sg.size + prot->overhead_size);
+ }
+
+ if (try_to_copy) {
+ ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
+ msg_pl, try_to_copy);
+ if (ret < 0)
+ goto trim_sgl;
+ }
+
+ /* Open records defined only if successfully copied, otherwise
+ * we would trim the sg but not reset the open record frags.
+ */
+ tls_ctx->pending_open_record_frags = true;
+ copied += try_to_copy;
+copied:
+ if (full_record || eor) {
+ ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
+ record_type, &copied,
+ msg->msg_flags);
+ if (ret) {
+ if (ret == -EINPROGRESS)
+ num_async++;
+ else if (ret == -ENOMEM)
+ goto wait_for_memory;
+ else if (ret != -EAGAIN) {
+ if (ret == -ENOSPC)
+ ret = 0;
+ goto send_end;
+ }
+ }
+ }
+
+ continue;
+
+wait_for_sndbuf:
+ set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
+wait_for_memory:
+ ret = sk_stream_wait_memory(sk, &timeo);
+ if (ret) {
+trim_sgl:
+ if (ctx->open_rec)
+ tls_trim_both_msgs(sk, orig_size);
+ goto send_end;
+ }
+
+ if (ctx->open_rec && msg_en->sg.size < required_size)
+ goto alloc_encrypted;
+ }
+
+ if (!num_async) {
+ goto send_end;
+ } else if (num_zc) {
+ /* Wait for pending encryptions to get completed */
+ spin_lock_bh(&ctx->encrypt_compl_lock);
+ ctx->async_notify = true;
+
+ pending = atomic_read(&ctx->encrypt_pending);
+ spin_unlock_bh(&ctx->encrypt_compl_lock);
+ if (pending)
+ crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
+ else
+ reinit_completion(&ctx->async_wait.completion);
+
+ /* There can be no concurrent accesses, since we have no
+ * pending encrypt operations
+ */
+ WRITE_ONCE(ctx->async_notify, false);
+
+ if (ctx->async_wait.err) {
+ ret = ctx->async_wait.err;
+ copied = 0;
+ }
+ }
+
+ /* Transmit if any encryptions have completed */
+ if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
+ cancel_delayed_work(&ctx->tx_work.work);
+ tls_tx_records(sk, msg->msg_flags);
+ }
+
+send_end:
+ ret = sk_stream_error(sk, msg->msg_flags, ret);
+ return copied > 0 ? copied : ret;
+}
+
+int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ int ret;
+
+ if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
+ MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
+ MSG_SENDPAGE_NOPOLICY))
+ return -EOPNOTSUPP;
+
+ ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
+ if (ret)
+ return ret;
+ lock_sock(sk);
+ ret = tls_sw_sendmsg_locked(sk, msg, size);
+ release_sock(sk);
+ mutex_unlock(&tls_ctx->tx_lock);
+ return ret;
+}
+
+/*
+ * Handle unexpected EOF during splice without SPLICE_F_MORE set.
+ */
+void tls_sw_splice_eof(struct socket *sock)
+{
+ struct sock *sk = sock->sk;
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec;
+ struct sk_msg *msg_pl;
+ ssize_t copied = 0;
+ bool retrying = false;
+ int ret = 0;
+ int pending;
+
+ if (!ctx->open_rec)
+ return;
+
+ mutex_lock(&tls_ctx->tx_lock);
+ lock_sock(sk);
+
+retry:
+ /* same checks as in tls_sw_push_pending_record() */
+ rec = ctx->open_rec;
+ if (!rec)
+ goto unlock;
+
+ msg_pl = &rec->msg_plaintext;
+ if (msg_pl->sg.size == 0)
+ goto unlock;
+
+ /* Check the BPF advisor and perform transmission. */
+ ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
+ &copied, 0);
+ switch (ret) {
+ case 0:
+ case -EAGAIN:
+ if (retrying)
+ goto unlock;
+ retrying = true;
+ goto retry;
+ case -EINPROGRESS:
+ break;
+ default:
+ goto unlock;
+ }
+
+ /* Wait for pending encryptions to get completed */
+ spin_lock_bh(&ctx->encrypt_compl_lock);
+ ctx->async_notify = true;
+
+ pending = atomic_read(&ctx->encrypt_pending);
+ spin_unlock_bh(&ctx->encrypt_compl_lock);
+ if (pending)
+ crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
+ else
+ reinit_completion(&ctx->async_wait.completion);
+
+ /* There can be no concurrent accesses, since we have no pending
+ * encrypt operations
+ */
+ WRITE_ONCE(ctx->async_notify, false);
+
+ if (ctx->async_wait.err)
+ goto unlock;
+
+ /* Transmit if any encryptions have completed */
+ if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
+ cancel_delayed_work(&ctx->tx_work.work);
+ tls_tx_records(sk, 0);
+ }
+
+unlock:
+ release_sock(sk);
+ mutex_unlock(&tls_ctx->tx_lock);
+}
+
+static int
+tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
+ bool released)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ DEFINE_WAIT_FUNC(wait, woken_wake_function);
+ int ret = 0;
+ long timeo;
+
+ timeo = sock_rcvtimeo(sk, nonblock);
+
+ while (!tls_strp_msg_ready(ctx)) {
+ if (!sk_psock_queue_empty(psock))
+ return 0;
+
+ if (sk->sk_err)
+ return sock_error(sk);
+
+ if (ret < 0)
+ return ret;
+
+ if (!skb_queue_empty(&sk->sk_receive_queue)) {
+ tls_strp_check_rcv(&ctx->strp);
+ if (tls_strp_msg_ready(ctx))
+ break;
+ }
+
+ if (sk->sk_shutdown & RCV_SHUTDOWN)
+ return 0;
+
+ if (sock_flag(sk, SOCK_DONE))
+ return 0;
+
+ if (!timeo)
+ return -EAGAIN;
+
+ released = true;
+ add_wait_queue(sk_sleep(sk), &wait);
+ sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
+ ret = sk_wait_event(sk, &timeo,
+ tls_strp_msg_ready(ctx) ||
+ !sk_psock_queue_empty(psock),
+ &wait);
+ sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
+ remove_wait_queue(sk_sleep(sk), &wait);
+
+ /* Handle signals */
+ if (signal_pending(current))
+ return sock_intr_errno(timeo);
+ }
+
+ tls_strp_msg_load(&ctx->strp, released);
+
+ return 1;
+}
+
+static int tls_setup_from_iter(struct iov_iter *from,
+ int length, int *pages_used,
+ struct scatterlist *to,
+ int to_max_pages)
+{
+ int rc = 0, i = 0, num_elem = *pages_used, maxpages;
+ struct page *pages[MAX_SKB_FRAGS];
+ unsigned int size = 0;
+ ssize_t copied, use;
+ size_t offset;
+
+ while (length > 0) {
+ i = 0;
+ maxpages = to_max_pages - num_elem;
+ if (maxpages == 0) {
+ rc = -EFAULT;
+ goto out;
+ }
+ copied = iov_iter_get_pages2(from, pages,
+ length,
+ maxpages, &offset);
+ if (copied <= 0) {
+ rc = -EFAULT;
+ goto out;
+ }
+
+ length -= copied;
+ size += copied;
+ while (copied) {
+ use = min_t(int, copied, PAGE_SIZE - offset);
+
+ sg_set_page(&to[num_elem],
+ pages[i], use, offset);
+ sg_unmark_end(&to[num_elem]);
+ /* We do not uncharge memory from this API */
+
+ offset = 0;
+ copied -= use;
+
+ i++;
+ num_elem++;
+ }
+ }
+ /* Mark the end in the last sg entry if newly added */
+ if (num_elem > *pages_used)
+ sg_mark_end(&to[num_elem - 1]);
+out:
+ if (rc)
+ iov_iter_revert(from, size);
+ *pages_used = num_elem;
+
+ return rc;
+}
+
+static struct sk_buff *
+tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
+ unsigned int full_len)
+{
+ struct strp_msg *clr_rxm;
+ struct sk_buff *clr_skb;
+ int err;
+
+ clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
+ &err, sk->sk_allocation);
+ if (!clr_skb)
+ return NULL;
+
+ skb_copy_header(clr_skb, skb);
+ clr_skb->len = full_len;
+ clr_skb->data_len = full_len;
+
+ clr_rxm = strp_msg(clr_skb);
+ clr_rxm->offset = 0;
+
+ return clr_skb;
+}
+
+/* Decrypt handlers
+ *
+ * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
+ * They must transform the darg in/out argument are as follows:
+ * | Input | Output
+ * -------------------------------------------------------------------
+ * zc | Zero-copy decrypt allowed | Zero-copy performed
+ * async | Async decrypt allowed | Async crypto used / in progress
+ * skb | * | Output skb
+ *
+ * If ZC decryption was performed darg.skb will point to the input skb.
+ */
+
+/* This function decrypts the input skb into either out_iov or in out_sg
+ * or in skb buffers itself. The input parameter 'darg->zc' indicates if
+ * zero-copy mode needs to be tried or not. With zero-copy mode, either
+ * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
+ * NULL, then the decryption happens inside skb buffers itself, i.e.
+ * zero-copy gets disabled and 'darg->zc' is updated.
+ */
+static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
+ struct scatterlist *out_sg,
+ struct tls_decrypt_arg *darg)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ int n_sgin, n_sgout, aead_size, err, pages = 0;
+ struct sk_buff *skb = tls_strp_msg(ctx);
+ const struct strp_msg *rxm = strp_msg(skb);
+ const struct tls_msg *tlm = tls_msg(skb);
+ struct aead_request *aead_req;
+ struct scatterlist *sgin = NULL;
+ struct scatterlist *sgout = NULL;
+ const int data_len = rxm->full_len - prot->overhead_size;
+ int tail_pages = !!prot->tail_size;
+ struct tls_decrypt_ctx *dctx;
+ struct sk_buff *clear_skb;
+ int iv_offset = 0;
+ u8 *mem;
+
+ n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
+ rxm->full_len - prot->prepend_size);
+ if (n_sgin < 1)
+ return n_sgin ?: -EBADMSG;
+
+ if (darg->zc && (out_iov || out_sg)) {
+ clear_skb = NULL;
+
+ if (out_iov)
+ n_sgout = 1 + tail_pages +
+ iov_iter_npages_cap(out_iov, INT_MAX, data_len);
+ else
+ n_sgout = sg_nents(out_sg);
+ } else {
+ darg->zc = false;
+
+ clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
+ if (!clear_skb)
+ return -ENOMEM;
+
+ n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
+ }
+
+ /* Increment to accommodate AAD */
+ n_sgin = n_sgin + 1;
+
+ /* Allocate a single block of memory which contains
+ * aead_req || tls_decrypt_ctx.
+ * Both structs are variable length.
+ */
+ aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
+ aead_size = ALIGN(aead_size, __alignof__(*dctx));
+ mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
+ sk->sk_allocation);
+ if (!mem) {
+ err = -ENOMEM;
+ goto exit_free_skb;
+ }
+
+ /* Segment the allocated memory */
+ aead_req = (struct aead_request *)mem;
+ dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
+ dctx->sk = sk;
+ sgin = &dctx->sg[0];
+ sgout = &dctx->sg[n_sgin];
+
+ /* For CCM based ciphers, first byte of nonce+iv is a constant */
+ switch (prot->cipher_type) {
+ case TLS_CIPHER_AES_CCM_128:
+ dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
+ iv_offset = 1;
+ break;
+ case TLS_CIPHER_SM4_CCM:
+ dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
+ iv_offset = 1;
+ break;
+ }
+
+ /* Prepare IV */
+ if (prot->version == TLS_1_3_VERSION ||
+ prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
+ memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
+ prot->iv_size + prot->salt_size);
+ } else {
+ err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
+ &dctx->iv[iv_offset] + prot->salt_size,
+ prot->iv_size);
+ if (err < 0)
+ goto exit_free;
+ memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
+ }
+ tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
+
+ /* Prepare AAD */
+ tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
+ prot->tail_size,
+ tls_ctx->rx.rec_seq, tlm->control, prot);
+
+ /* Prepare sgin */
+ sg_init_table(sgin, n_sgin);
+ sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
+ err = skb_to_sgvec(skb, &sgin[1],
+ rxm->offset + prot->prepend_size,
+ rxm->full_len - prot->prepend_size);
+ if (err < 0)
+ goto exit_free;
+
+ if (clear_skb) {
+ sg_init_table(sgout, n_sgout);
+ sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
+
+ err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
+ data_len + prot->tail_size);
+ if (err < 0)
+ goto exit_free;
+ } else if (out_iov) {
+ sg_init_table(sgout, n_sgout);
+ sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
+
+ err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
+ (n_sgout - 1 - tail_pages));
+ if (err < 0)
+ goto exit_free_pages;
+
+ if (prot->tail_size) {
+ sg_unmark_end(&sgout[pages]);
+ sg_set_buf(&sgout[pages + 1], &dctx->tail,
+ prot->tail_size);
+ sg_mark_end(&sgout[pages + 1]);
+ }
+ } else if (out_sg) {
+ memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
+ }
+
+ /* Prepare and submit AEAD request */
+ err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
+ data_len + prot->tail_size, aead_req, darg);
+ if (err)
+ goto exit_free_pages;
+
+ darg->skb = clear_skb ?: tls_strp_msg(ctx);
+ clear_skb = NULL;
+
+ if (unlikely(darg->async)) {
+ err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
+ if (err)
+ __skb_queue_tail(&ctx->async_hold, darg->skb);
+ return err;
+ }
+
+ if (prot->tail_size)
+ darg->tail = dctx->tail;
+
+exit_free_pages:
+ /* Release the pages in case iov was mapped to pages */
+ for (; pages > 0; pages--)
+ put_page(sg_page(&sgout[pages]));
+exit_free:
+ kfree(mem);
+exit_free_skb:
+ consume_skb(clear_skb);
+ return err;
+}
+
+static int
+tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
+ struct msghdr *msg, struct tls_decrypt_arg *darg)
+{
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct strp_msg *rxm;
+ int pad, err;
+
+ err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
+ if (err < 0) {
+ if (err == -EBADMSG)
+ TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
+ return err;
+ }
+ /* keep going even for ->async, the code below is TLS 1.3 */
+
+ /* If opportunistic TLS 1.3 ZC failed retry without ZC */
+ if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
+ darg->tail != TLS_RECORD_TYPE_DATA)) {
+ darg->zc = false;
+ if (!darg->tail)
+ TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
+ TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
+ return tls_decrypt_sw(sk, tls_ctx, msg, darg);
+ }
+
+ pad = tls_padding_length(prot, darg->skb, darg);
+ if (pad < 0) {
+ if (darg->skb != tls_strp_msg(ctx))
+ consume_skb(darg->skb);
+ return pad;
+ }
+
+ rxm = strp_msg(darg->skb);
+ rxm->full_len -= pad;
+
+ return 0;
+}
+
+static int
+tls_decrypt_device(struct sock *sk, struct msghdr *msg,
+ struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
+{
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct strp_msg *rxm;
+ int pad, err;
+
+ if (tls_ctx->rx_conf != TLS_HW)
+ return 0;
+
+ err = tls_device_decrypted(sk, tls_ctx);
+ if (err <= 0)
+ return err;
+
+ pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
+ if (pad < 0)
+ return pad;
+
+ darg->async = false;
+ darg->skb = tls_strp_msg(ctx);
+ /* ->zc downgrade check, in case TLS 1.3 gets here */
+ darg->zc &= !(prot->version == TLS_1_3_VERSION &&
+ tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
+
+ rxm = strp_msg(darg->skb);
+ rxm->full_len -= pad;
+
+ if (!darg->zc) {
+ /* Non-ZC case needs a real skb */
+ darg->skb = tls_strp_msg_detach(ctx);
+ if (!darg->skb)
+ return -ENOMEM;
+ } else {
+ unsigned int off, len;
+
+ /* In ZC case nobody cares about the output skb.
+ * Just copy the data here. Note the skb is not fully trimmed.
+ */
+ off = rxm->offset + prot->prepend_size;
+ len = rxm->full_len - prot->overhead_size;
+
+ err = skb_copy_datagram_msg(darg->skb, off, msg, len);
+ if (err)
+ return err;
+ }
+ return 1;
+}
+
+static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
+ struct tls_decrypt_arg *darg)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct strp_msg *rxm;
+ int err;
+
+ err = tls_decrypt_device(sk, msg, tls_ctx, darg);
+ if (!err)
+ err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
+ if (err < 0)
+ return err;
+
+ rxm = strp_msg(darg->skb);
+ rxm->offset += prot->prepend_size;
+ rxm->full_len -= prot->overhead_size;
+ tls_advance_record_sn(sk, prot, &tls_ctx->rx);
+
+ return 0;
+}
+
+int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
+{
+ struct tls_decrypt_arg darg = { .zc = true, };
+
+ return tls_decrypt_sg(sk, NULL, sgout, &darg);
+}
+
+static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
+ u8 *control)
+{
+ int err;
+
+ if (!*control) {
+ *control = tlm->control;
+ if (!*control)
+ return -EBADMSG;
+
+ err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
+ sizeof(*control), control);
+ if (*control != TLS_RECORD_TYPE_DATA) {
+ if (err || msg->msg_flags & MSG_CTRUNC)
+ return -EIO;
+ }
+ } else if (*control != tlm->control) {
+ return 0;
+ }
+
+ return 1;
+}
+
+static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
+{
+ tls_strp_msg_done(&ctx->strp);
+}
+
+/* This function traverses the rx_list in tls receive context to copies the
+ * decrypted records into the buffer provided by caller zero copy is not
+ * true. Further, the records are removed from the rx_list if it is not a peek
+ * case and the record has been consumed completely.
+ */
+static int process_rx_list(struct tls_sw_context_rx *ctx,
+ struct msghdr *msg,
+ u8 *control,
+ size_t skip,
+ size_t len,
+ bool is_peek)
+{
+ struct sk_buff *skb = skb_peek(&ctx->rx_list);
+ struct tls_msg *tlm;
+ ssize_t copied = 0;
+ int err;
+
+ while (skip && skb) {
+ struct strp_msg *rxm = strp_msg(skb);
+ tlm = tls_msg(skb);
+
+ err = tls_record_content_type(msg, tlm, control);
+ if (err <= 0)
+ goto out;
+
+ if (skip < rxm->full_len)
+ break;
+
+ skip = skip - rxm->full_len;
+ skb = skb_peek_next(skb, &ctx->rx_list);
+ }
+
+ while (len && skb) {
+ struct sk_buff *next_skb;
+ struct strp_msg *rxm = strp_msg(skb);
+ int chunk = min_t(unsigned int, rxm->full_len - skip, len);
+
+ tlm = tls_msg(skb);
+
+ err = tls_record_content_type(msg, tlm, control);
+ if (err <= 0)
+ goto out;
+
+ err = skb_copy_datagram_msg(skb, rxm->offset + skip,
+ msg, chunk);
+ if (err < 0)
+ goto out;
+
+ len = len - chunk;
+ copied = copied + chunk;
+
+ /* Consume the data from record if it is non-peek case*/
+ if (!is_peek) {
+ rxm->offset = rxm->offset + chunk;
+ rxm->full_len = rxm->full_len - chunk;
+
+ /* Return if there is unconsumed data in the record */
+ if (rxm->full_len - skip)
+ break;
+ }
+
+ /* The remaining skip-bytes must lie in 1st record in rx_list.
+ * So from the 2nd record, 'skip' should be 0.
+ */
+ skip = 0;
+
+ if (msg)
+ msg->msg_flags |= MSG_EOR;
+
+ next_skb = skb_peek_next(skb, &ctx->rx_list);
+
+ if (!is_peek) {
+ __skb_unlink(skb, &ctx->rx_list);
+ consume_skb(skb);
+ }
+
+ skb = next_skb;
+ }
+ err = 0;
+
+out:
+ return copied ? : err;
+}
+
+static bool
+tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
+ size_t len_left, size_t decrypted, ssize_t done,
+ size_t *flushed_at)
+{
+ size_t max_rec;
+
+ if (len_left <= decrypted)
+ return false;
+
+ max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
+ if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
+ return false;
+
+ *flushed_at = done;
+ return sk_flush_backlog(sk);
+}
+
+static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
+ bool nonblock)
+{
+ long timeo;
+ int ret;
+
+ timeo = sock_rcvtimeo(sk, nonblock);
+
+ while (unlikely(ctx->reader_present)) {
+ DEFINE_WAIT_FUNC(wait, woken_wake_function);
+
+ ctx->reader_contended = 1;
+
+ add_wait_queue(&ctx->wq, &wait);
+ ret = sk_wait_event(sk, &timeo,
+ !READ_ONCE(ctx->reader_present), &wait);
+ remove_wait_queue(&ctx->wq, &wait);
+
+ if (timeo <= 0)
+ return -EAGAIN;
+ if (signal_pending(current))
+ return sock_intr_errno(timeo);
+ if (ret < 0)
+ return ret;
+ }
+
+ WRITE_ONCE(ctx->reader_present, 1);
+
+ return 0;
+}
+
+static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
+ bool nonblock)
+{
+ int err;
+
+ lock_sock(sk);
+ err = tls_rx_reader_acquire(sk, ctx, nonblock);
+ if (err)
+ release_sock(sk);
+ return err;
+}
+
+static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
+{
+ if (unlikely(ctx->reader_contended)) {
+ if (wq_has_sleeper(&ctx->wq))
+ wake_up(&ctx->wq);
+ else
+ ctx->reader_contended = 0;
+
+ WARN_ON_ONCE(!ctx->reader_present);
+ }
+
+ WRITE_ONCE(ctx->reader_present, 0);
+}
+
+static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
+{
+ tls_rx_reader_release(sk, ctx);
+ release_sock(sk);
+}
+
+int tls_sw_recvmsg(struct sock *sk,
+ struct msghdr *msg,
+ size_t len,
+ int flags,
+ int *addr_len)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ ssize_t decrypted = 0, async_copy_bytes = 0;
+ struct sk_psock *psock;
+ unsigned char control = 0;
+ size_t flushed_at = 0;
+ struct strp_msg *rxm;
+ struct tls_msg *tlm;
+ ssize_t copied = 0;
+ bool async = false;
+ int target, err;
+ bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
+ bool is_peek = flags & MSG_PEEK;
+ bool released = true;
+ bool bpf_strp_enabled;
+ bool zc_capable;
+
+ if (unlikely(flags & MSG_ERRQUEUE))
+ return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
+
+ psock = sk_psock_get(sk);
+ err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
+ if (err < 0)
+ return err;
+ bpf_strp_enabled = sk_psock_strp_enabled(psock);
+
+ /* If crypto failed the connection is broken */
+ err = ctx->async_wait.err;
+ if (err)
+ goto end;
+
+ /* Process pending decrypted records. It must be non-zero-copy */
+ err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
+ if (err < 0)
+ goto end;
+
+ copied = err;
+ if (len <= copied)
+ goto end;
+
+ target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
+ len = len - copied;
+
+ zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
+ ctx->zc_capable;
+ decrypted = 0;
+ while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
+ struct tls_decrypt_arg darg;
+ int to_decrypt, chunk;
+
+ err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
+ released);
+ if (err <= 0) {
+ if (psock) {
+ chunk = sk_msg_recvmsg(sk, psock, msg, len,
+ flags);
+ if (chunk > 0) {
+ decrypted += chunk;
+ len -= chunk;
+ continue;
+ }
+ }
+ goto recv_end;
+ }
+
+ memset(&darg.inargs, 0, sizeof(darg.inargs));
+
+ rxm = strp_msg(tls_strp_msg(ctx));
+ tlm = tls_msg(tls_strp_msg(ctx));
+
+ to_decrypt = rxm->full_len - prot->overhead_size;
+
+ if (zc_capable && to_decrypt <= len &&
+ tlm->control == TLS_RECORD_TYPE_DATA)
+ darg.zc = true;
+
+ /* Do not use async mode if record is non-data */
+ if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
+ darg.async = ctx->async_capable;
+ else
+ darg.async = false;
+
+ err = tls_rx_one_record(sk, msg, &darg);
+ if (err < 0) {
+ tls_err_abort(sk, -EBADMSG);
+ goto recv_end;
+ }
+
+ async |= darg.async;
+
+ /* If the type of records being processed is not known yet,
+ * set it to record type just dequeued. If it is already known,
+ * but does not match the record type just dequeued, go to end.
+ * We always get record type here since for tls1.2, record type
+ * is known just after record is dequeued from stream parser.
+ * For tls1.3, we disable async.
+ */
+ err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
+ if (err <= 0) {
+ DEBUG_NET_WARN_ON_ONCE(darg.zc);
+ tls_rx_rec_done(ctx);
+put_on_rx_list_err:
+ __skb_queue_tail(&ctx->rx_list, darg.skb);
+ goto recv_end;
+ }
+
+ /* periodically flush backlog, and feed strparser */
+ released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
+ decrypted + copied,
+ &flushed_at);
+
+ /* TLS 1.3 may have updated the length by more than overhead */
+ rxm = strp_msg(darg.skb);
+ chunk = rxm->full_len;
+ tls_rx_rec_done(ctx);
+
+ if (!darg.zc) {
+ bool partially_consumed = chunk > len;
+ struct sk_buff *skb = darg.skb;
+
+ DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
+
+ if (async) {
+ /* TLS 1.2-only, to_decrypt must be text len */
+ chunk = min_t(int, to_decrypt, len);
+ async_copy_bytes += chunk;
+put_on_rx_list:
+ decrypted += chunk;
+ len -= chunk;
+ __skb_queue_tail(&ctx->rx_list, skb);
+ continue;
+ }
+
+ if (bpf_strp_enabled) {
+ released = true;
+ err = sk_psock_tls_strp_read(psock, skb);
+ if (err != __SK_PASS) {
+ rxm->offset = rxm->offset + rxm->full_len;
+ rxm->full_len = 0;
+ if (err == __SK_DROP)
+ consume_skb(skb);
+ continue;
+ }
+ }
+
+ if (partially_consumed)
+ chunk = len;
+
+ err = skb_copy_datagram_msg(skb, rxm->offset,
+ msg, chunk);
+ if (err < 0)
+ goto put_on_rx_list_err;
+
+ if (is_peek)
+ goto put_on_rx_list;
+
+ if (partially_consumed) {
+ rxm->offset += chunk;
+ rxm->full_len -= chunk;
+ goto put_on_rx_list;
+ }
+
+ consume_skb(skb);
+ }
+
+ decrypted += chunk;
+ len -= chunk;
+
+ /* Return full control message to userspace before trying
+ * to parse another message type
+ */
+ msg->msg_flags |= MSG_EOR;
+ if (control != TLS_RECORD_TYPE_DATA)
+ break;
+ }
+
+recv_end:
+ if (async) {
+ int ret, pending;
+
+ /* Wait for all previously submitted records to be decrypted */
+ spin_lock_bh(&ctx->decrypt_compl_lock);
+ reinit_completion(&ctx->async_wait.completion);
+ pending = atomic_read(&ctx->decrypt_pending);
+ spin_unlock_bh(&ctx->decrypt_compl_lock);
+ ret = 0;
+ if (pending)
+ ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
+ __skb_queue_purge(&ctx->async_hold);
+
+ if (ret) {
+ if (err >= 0 || err == -EINPROGRESS)
+ err = ret;
+ decrypted = 0;
+ goto end;
+ }
+
+ /* Drain records from the rx_list & copy if required */
+ if (is_peek || is_kvec)
+ err = process_rx_list(ctx, msg, &control, copied,
+ decrypted, is_peek);
+ else
+ err = process_rx_list(ctx, msg, &control, 0,
+ async_copy_bytes, is_peek);
+ decrypted += max(err, 0);
+ }
+
+ copied += decrypted;
+
+end:
+ tls_rx_reader_unlock(sk, ctx);
+ if (psock)
+ sk_psock_put(sk, psock);
+ return copied ? : err;
+}
+
+ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
+ struct pipe_inode_info *pipe,
+ size_t len, unsigned int flags)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct strp_msg *rxm = NULL;
+ struct sock *sk = sock->sk;
+ struct tls_msg *tlm;
+ struct sk_buff *skb;
+ ssize_t copied = 0;
+ int chunk;
+ int err;
+
+ err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
+ if (err < 0)
+ return err;
+
+ if (!skb_queue_empty(&ctx->rx_list)) {
+ skb = __skb_dequeue(&ctx->rx_list);
+ } else {
+ struct tls_decrypt_arg darg;
+
+ err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
+ true);
+ if (err <= 0)
+ goto splice_read_end;
+
+ memset(&darg.inargs, 0, sizeof(darg.inargs));
+
+ err = tls_rx_one_record(sk, NULL, &darg);
+ if (err < 0) {
+ tls_err_abort(sk, -EBADMSG);
+ goto splice_read_end;
+ }
+
+ tls_rx_rec_done(ctx);
+ skb = darg.skb;
+ }
+
+ rxm = strp_msg(skb);
+ tlm = tls_msg(skb);
+
+ /* splice does not support reading control messages */
+ if (tlm->control != TLS_RECORD_TYPE_DATA) {
+ err = -EINVAL;
+ goto splice_requeue;
+ }
+
+ chunk = min_t(unsigned int, rxm->full_len, len);
+ copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
+ if (copied < 0)
+ goto splice_requeue;
+
+ if (chunk < rxm->full_len) {
+ rxm->offset += len;
+ rxm->full_len -= len;
+ goto splice_requeue;
+ }
+
+ consume_skb(skb);
+
+splice_read_end:
+ tls_rx_reader_unlock(sk, ctx);
+ return copied ? : err;
+
+splice_requeue:
+ __skb_queue_head(&ctx->rx_list, skb);
+ goto splice_read_end;
+}
+
+int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
+ sk_read_actor_t read_actor)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct strp_msg *rxm = NULL;
+ struct sk_buff *skb = NULL;
+ struct sk_psock *psock;
+ size_t flushed_at = 0;
+ bool released = true;
+ struct tls_msg *tlm;
+ ssize_t copied = 0;
+ ssize_t decrypted;
+ int err, used;
+
+ psock = sk_psock_get(sk);
+ if (psock) {
+ sk_psock_put(sk, psock);
+ return -EINVAL;
+ }
+ err = tls_rx_reader_acquire(sk, ctx, true);
+ if (err < 0)
+ return err;
+
+ /* If crypto failed the connection is broken */
+ err = ctx->async_wait.err;
+ if (err)
+ goto read_sock_end;
+
+ decrypted = 0;
+ do {
+ if (!skb_queue_empty(&ctx->rx_list)) {
+ skb = __skb_dequeue(&ctx->rx_list);
+ rxm = strp_msg(skb);
+ tlm = tls_msg(skb);
+ } else {
+ struct tls_decrypt_arg darg;
+
+ err = tls_rx_rec_wait(sk, NULL, true, released);
+ if (err <= 0)
+ goto read_sock_end;
+
+ memset(&darg.inargs, 0, sizeof(darg.inargs));
+
+ err = tls_rx_one_record(sk, NULL, &darg);
+ if (err < 0) {
+ tls_err_abort(sk, -EBADMSG);
+ goto read_sock_end;
+ }
+
+ released = tls_read_flush_backlog(sk, prot, INT_MAX,
+ 0, decrypted,
+ &flushed_at);
+ skb = darg.skb;
+ rxm = strp_msg(skb);
+ tlm = tls_msg(skb);
+ decrypted += rxm->full_len;
+
+ tls_rx_rec_done(ctx);
+ }
+
+ /* read_sock does not support reading control messages */
+ if (tlm->control != TLS_RECORD_TYPE_DATA) {
+ err = -EINVAL;
+ goto read_sock_requeue;
+ }
+
+ used = read_actor(desc, skb, rxm->offset, rxm->full_len);
+ if (used <= 0) {
+ if (!copied)
+ err = used;
+ goto read_sock_requeue;
+ }
+ copied += used;
+ if (used < rxm->full_len) {
+ rxm->offset += used;
+ rxm->full_len -= used;
+ if (!desc->count)
+ goto read_sock_requeue;
+ } else {
+ consume_skb(skb);
+ if (!desc->count)
+ skb = NULL;
+ }
+ } while (skb);
+
+read_sock_end:
+ tls_rx_reader_release(sk, ctx);
+ return copied ? : err;
+
+read_sock_requeue:
+ __skb_queue_head(&ctx->rx_list, skb);
+ goto read_sock_end;
+}
+
+bool tls_sw_sock_is_readable(struct sock *sk)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ bool ingress_empty = true;
+ struct sk_psock *psock;
+
+ rcu_read_lock();
+ psock = sk_psock(sk);
+ if (psock)
+ ingress_empty = list_empty(&psock->ingress_msg);
+ rcu_read_unlock();
+
+ return !ingress_empty || tls_strp_msg_ready(ctx) ||
+ !skb_queue_empty(&ctx->rx_list);
+}
+
+int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
+ size_t cipher_overhead;
+ size_t data_len = 0;
+ int ret;
+
+ /* Verify that we have a full TLS header, or wait for more data */
+ if (strp->stm.offset + prot->prepend_size > skb->len)
+ return 0;
+
+ /* Sanity-check size of on-stack buffer. */
+ if (WARN_ON(prot->prepend_size > sizeof(header))) {
+ ret = -EINVAL;
+ goto read_failure;
+ }
+
+ /* Linearize header to local buffer */
+ ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
+ if (ret < 0)
+ goto read_failure;
+
+ strp->mark = header[0];
+
+ data_len = ((header[4] & 0xFF) | (header[3] << 8));
+
+ cipher_overhead = prot->tag_size;
+ if (prot->version != TLS_1_3_VERSION &&
+ prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
+ cipher_overhead += prot->iv_size;
+
+ if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
+ prot->tail_size) {
+ ret = -EMSGSIZE;
+ goto read_failure;
+ }
+ if (data_len < cipher_overhead) {
+ ret = -EBADMSG;
+ goto read_failure;
+ }
+
+ /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
+ if (header[1] != TLS_1_2_VERSION_MINOR ||
+ header[2] != TLS_1_2_VERSION_MAJOR) {
+ ret = -EINVAL;
+ goto read_failure;
+ }
+
+ tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
+ TCP_SKB_CB(skb)->seq + strp->stm.offset);
+ return data_len + TLS_HEADER_SIZE;
+
+read_failure:
+ tls_err_abort(strp->sk, ret);
+
+ return ret;
+}
+
+void tls_rx_msg_ready(struct tls_strparser *strp)
+{
+ struct tls_sw_context_rx *ctx;
+
+ ctx = container_of(strp, struct tls_sw_context_rx, strp);
+ ctx->saved_data_ready(strp->sk);
+}
+
+static void tls_data_ready(struct sock *sk)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct sk_psock *psock;
+ gfp_t alloc_save;
+
+ trace_sk_data_ready(sk);
+
+ alloc_save = sk->sk_allocation;
+ sk->sk_allocation = GFP_ATOMIC;
+ tls_strp_data_ready(&ctx->strp);
+ sk->sk_allocation = alloc_save;
+
+ psock = sk_psock_get(sk);
+ if (psock) {
+ if (!list_empty(&psock->ingress_msg))
+ ctx->saved_data_ready(sk);
+ sk_psock_put(sk, psock);
+ }
+}
+
+void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+
+ set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
+ set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
+ cancel_delayed_work_sync(&ctx->tx_work.work);
+}
+
+void tls_sw_release_resources_tx(struct sock *sk)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec, *tmp;
+ int pending;
+
+ /* Wait for any pending async encryptions to complete */
+ spin_lock_bh(&ctx->encrypt_compl_lock);
+ ctx->async_notify = true;
+ pending = atomic_read(&ctx->encrypt_pending);
+ spin_unlock_bh(&ctx->encrypt_compl_lock);
+
+ if (pending)
+ crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
+
+ tls_tx_records(sk, -1);
+
+ /* Free up un-sent records in tx_list. First, free
+ * the partially sent record if any at head of tx_list.
+ */
+ if (tls_ctx->partially_sent_record) {
+ tls_free_partial_record(sk, tls_ctx);
+ rec = list_first_entry(&ctx->tx_list,
+ struct tls_rec, list);
+ list_del(&rec->list);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+ }
+
+ list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
+ list_del(&rec->list);
+ sk_msg_free(sk, &rec->msg_encrypted);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+ }
+
+ crypto_free_aead(ctx->aead_send);
+ tls_free_open_rec(sk);
+}
+
+void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+
+ kfree(ctx);
+}
+
+void tls_sw_release_resources_rx(struct sock *sk)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+
+ kfree(tls_ctx->rx.rec_seq);
+ kfree(tls_ctx->rx.iv);
+
+ if (ctx->aead_recv) {
+ __skb_queue_purge(&ctx->rx_list);
+ crypto_free_aead(ctx->aead_recv);
+ tls_strp_stop(&ctx->strp);
+ /* If tls_sw_strparser_arm() was not called (cleanup paths)
+ * we still want to tls_strp_stop(), but sk->sk_data_ready was
+ * never swapped.
+ */
+ if (ctx->saved_data_ready) {
+ write_lock_bh(&sk->sk_callback_lock);
+ sk->sk_data_ready = ctx->saved_data_ready;
+ write_unlock_bh(&sk->sk_callback_lock);
+ }
+ }
+}
+
+void tls_sw_strparser_done(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+
+ tls_strp_done(&ctx->strp);
+}
+
+void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+
+ kfree(ctx);
+}
+
+void tls_sw_free_resources_rx(struct sock *sk)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+
+ tls_sw_release_resources_rx(sk);
+ tls_sw_free_ctx_rx(tls_ctx);
+}
+
+/* The work handler to transmitt the encrypted records in tx_list */
+static void tx_work_handler(struct work_struct *work)
+{
+ struct delayed_work *delayed_work = to_delayed_work(work);
+ struct tx_work *tx_work = container_of(delayed_work,
+ struct tx_work, work);
+ struct sock *sk = tx_work->sk;
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx;
+
+ if (unlikely(!tls_ctx))
+ return;
+
+ ctx = tls_sw_ctx_tx(tls_ctx);
+ if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
+ return;
+
+ if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
+ return;
+
+ if (mutex_trylock(&tls_ctx->tx_lock)) {
+ lock_sock(sk);
+ tls_tx_records(sk, -1);
+ release_sock(sk);
+ mutex_unlock(&tls_ctx->tx_lock);
+ } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
+ /* Someone is holding the tx_lock, they will likely run Tx
+ * and cancel the work on their way out of the lock section.
+ * Schedule a long delay just in case.
+ */
+ schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
+ }
+}
+
+static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
+{
+ struct tls_rec *rec;
+
+ rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
+ if (!rec)
+ return false;
+
+ return READ_ONCE(rec->tx_ready);
+}
+
+void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
+{
+ struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
+
+ /* Schedule the transmission if tx list is ready */
+ if (tls_is_tx_ready(tx_ctx) &&
+ !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
+ schedule_delayed_work(&tx_ctx->tx_work.work, 0);
+}
+
+void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
+
+ write_lock_bh(&sk->sk_callback_lock);
+ rx_ctx->saved_data_ready = sk->sk_data_ready;
+ sk->sk_data_ready = tls_data_ready;
+ write_unlock_bh(&sk->sk_callback_lock);
+}
+
+void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
+
+ rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
+ tls_ctx->prot_info.version != TLS_1_3_VERSION;
+}
+
+int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_crypto_info *crypto_info;
+ struct tls_sw_context_tx *sw_ctx_tx = NULL;
+ struct tls_sw_context_rx *sw_ctx_rx = NULL;
+ struct cipher_context *cctx;
+ struct crypto_aead **aead;
+ struct crypto_tfm *tfm;
+ char *iv, *rec_seq, *key, *salt;
+ const struct tls_cipher_desc *cipher_desc;
+ u16 nonce_size;
+ int rc = 0;
+
+ if (!ctx) {
+ rc = -EINVAL;
+ goto out;
+ }
+
+ if (tx) {
+ if (!ctx->priv_ctx_tx) {
+ sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
+ if (!sw_ctx_tx) {
+ rc = -ENOMEM;
+ goto out;
+ }
+ ctx->priv_ctx_tx = sw_ctx_tx;
+ } else {
+ sw_ctx_tx =
+ (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
+ }
+ } else {
+ if (!ctx->priv_ctx_rx) {
+ sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
+ if (!sw_ctx_rx) {
+ rc = -ENOMEM;
+ goto out;
+ }
+ ctx->priv_ctx_rx = sw_ctx_rx;
+ } else {
+ sw_ctx_rx =
+ (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
+ }
+ }
+
+ if (tx) {
+ crypto_init_wait(&sw_ctx_tx->async_wait);
+ spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
+ crypto_info = &ctx->crypto_send.info;
+ cctx = &ctx->tx;
+ aead = &sw_ctx_tx->aead_send;
+ INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
+ INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
+ sw_ctx_tx->tx_work.sk = sk;
+ } else {
+ crypto_init_wait(&sw_ctx_rx->async_wait);
+ spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
+ init_waitqueue_head(&sw_ctx_rx->wq);
+ crypto_info = &ctx->crypto_recv.info;
+ cctx = &ctx->rx;
+ skb_queue_head_init(&sw_ctx_rx->rx_list);
+ skb_queue_head_init(&sw_ctx_rx->async_hold);
+ aead = &sw_ctx_rx->aead_recv;
+ }
+
+ cipher_desc = get_cipher_desc(crypto_info->cipher_type);
+ if (!cipher_desc) {
+ rc = -EINVAL;
+ goto free_priv;
+ }
+
+ nonce_size = cipher_desc->nonce;
+
+ iv = crypto_info_iv(crypto_info, cipher_desc);
+ key = crypto_info_key(crypto_info, cipher_desc);
+ salt = crypto_info_salt(crypto_info, cipher_desc);
+ rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
+
+ if (crypto_info->version == TLS_1_3_VERSION) {
+ nonce_size = 0;
+ prot->aad_size = TLS_HEADER_SIZE;
+ prot->tail_size = 1;
+ } else {
+ prot->aad_size = TLS_AAD_SPACE_SIZE;
+ prot->tail_size = 0;
+ }
+
+ /* Sanity-check the sizes for stack allocations. */
+ if (nonce_size > MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) {
+ rc = -EINVAL;
+ goto free_priv;
+ }
+
+ prot->version = crypto_info->version;
+ prot->cipher_type = crypto_info->cipher_type;
+ prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
+ prot->tag_size = cipher_desc->tag;
+ prot->overhead_size = prot->prepend_size +
+ prot->tag_size + prot->tail_size;
+ prot->iv_size = cipher_desc->iv;
+ prot->salt_size = cipher_desc->salt;
+ cctx->iv = kmalloc(cipher_desc->iv + cipher_desc->salt, GFP_KERNEL);
+ if (!cctx->iv) {
+ rc = -ENOMEM;
+ goto free_priv;
+ }
+ /* Note: 128 & 256 bit salt are the same size */
+ prot->rec_seq_size = cipher_desc->rec_seq;
+ memcpy(cctx->iv, salt, cipher_desc->salt);
+ memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
+
+ cctx->rec_seq = kmemdup(rec_seq, cipher_desc->rec_seq, GFP_KERNEL);
+ if (!cctx->rec_seq) {
+ rc = -ENOMEM;
+ goto free_iv;
+ }
+
+ if (!*aead) {
+ *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
+ if (IS_ERR(*aead)) {
+ rc = PTR_ERR(*aead);
+ *aead = NULL;
+ goto free_rec_seq;
+ }
+ }
+
+ ctx->push_pending_record = tls_sw_push_pending_record;
+
+ rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
+ if (rc)
+ goto free_aead;
+
+ rc = crypto_aead_setauthsize(*aead, prot->tag_size);
+ if (rc)
+ goto free_aead;
+
+ if (sw_ctx_rx) {
+ tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
+
+ tls_update_rx_zc_capable(ctx);
+ sw_ctx_rx->async_capable =
+ crypto_info->version != TLS_1_3_VERSION &&
+ !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
+
+ rc = tls_strp_init(&sw_ctx_rx->strp, sk);
+ if (rc)
+ goto free_aead;
+ }
+
+ goto out;
+
+free_aead:
+ crypto_free_aead(*aead);
+ *aead = NULL;
+free_rec_seq:
+ kfree(cctx->rec_seq);
+ cctx->rec_seq = NULL;
+free_iv:
+ kfree(cctx->iv);
+ cctx->iv = NULL;
+free_priv:
+ if (tx) {
+ kfree(ctx->priv_ctx_tx);
+ ctx->priv_ctx_tx = NULL;
+ } else {
+ kfree(ctx->priv_ctx_rx);
+ ctx->priv_ctx_rx = NULL;
+ }
+out:
+ return rc;
+}