summaryrefslogtreecommitdiffstats
path: root/rust/alloc/boxed.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/alloc/boxed.rs')
-rw-r--r--rust/alloc/boxed.rs2463
1 files changed, 0 insertions, 2463 deletions
diff --git a/rust/alloc/boxed.rs b/rust/alloc/boxed.rs
deleted file mode 100644
index c93a22a5c9..0000000000
--- a/rust/alloc/boxed.rs
+++ /dev/null
@@ -1,2463 +0,0 @@
-// SPDX-License-Identifier: Apache-2.0 OR MIT
-
-//! The `Box<T>` type for heap allocation.
-//!
-//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
-//! heap allocation in Rust. Boxes provide ownership for this allocation, and
-//! drop their contents when they go out of scope. Boxes also ensure that they
-//! never allocate more than `isize::MAX` bytes.
-//!
-//! # Examples
-//!
-//! Move a value from the stack to the heap by creating a [`Box`]:
-//!
-//! ```
-//! let val: u8 = 5;
-//! let boxed: Box<u8> = Box::new(val);
-//! ```
-//!
-//! Move a value from a [`Box`] back to the stack by [dereferencing]:
-//!
-//! ```
-//! let boxed: Box<u8> = Box::new(5);
-//! let val: u8 = *boxed;
-//! ```
-//!
-//! Creating a recursive data structure:
-//!
-//! ```
-//! #[derive(Debug)]
-//! enum List<T> {
-//! Cons(T, Box<List<T>>),
-//! Nil,
-//! }
-//!
-//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
-//! println!("{list:?}");
-//! ```
-//!
-//! This will print `Cons(1, Cons(2, Nil))`.
-//!
-//! Recursive structures must be boxed, because if the definition of `Cons`
-//! looked like this:
-//!
-//! ```compile_fail,E0072
-//! # enum List<T> {
-//! Cons(T, List<T>),
-//! # }
-//! ```
-//!
-//! It wouldn't work. This is because the size of a `List` depends on how many
-//! elements are in the list, and so we don't know how much memory to allocate
-//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
-//! big `Cons` needs to be.
-//!
-//! # Memory layout
-//!
-//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
-//! its allocation. It is valid to convert both ways between a [`Box`] and a
-//! raw pointer allocated with the [`Global`] allocator, given that the
-//! [`Layout`] used with the allocator is correct for the type. More precisely,
-//! a `value: *mut T` that has been allocated with the [`Global`] allocator
-//! with `Layout::for_value(&*value)` may be converted into a box using
-//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
-//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
-//! [`Global`] allocator with [`Layout::for_value(&*value)`].
-//!
-//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
-//! and writes and sufficiently aligned. In particular, casting any aligned
-//! non-zero integer literal to a raw pointer produces a valid pointer, but a
-//! pointer pointing into previously allocated memory that since got freed is
-//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
-//! be used is to use [`ptr::NonNull::dangling`].
-//!
-//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
-//! as a single pointer and is also ABI-compatible with C pointers
-//! (i.e. the C type `T*`). This means that if you have extern "C"
-//! Rust functions that will be called from C, you can define those
-//! Rust functions using `Box<T>` types, and use `T*` as corresponding
-//! type on the C side. As an example, consider this C header which
-//! declares functions that create and destroy some kind of `Foo`
-//! value:
-//!
-//! ```c
-//! /* C header */
-//!
-//! /* Returns ownership to the caller */
-//! struct Foo* foo_new(void);
-//!
-//! /* Takes ownership from the caller; no-op when invoked with null */
-//! void foo_delete(struct Foo*);
-//! ```
-//!
-//! These two functions might be implemented in Rust as follows. Here, the
-//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
-//! the ownership constraints. Note also that the nullable argument to
-//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
-//! cannot be null.
-//!
-//! ```
-//! #[repr(C)]
-//! pub struct Foo;
-//!
-//! #[no_mangle]
-//! pub extern "C" fn foo_new() -> Box<Foo> {
-//! Box::new(Foo)
-//! }
-//!
-//! #[no_mangle]
-//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
-//! ```
-//!
-//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
-//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
-//! and expect things to work. `Box<T>` values will always be fully aligned,
-//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
-//! free the value with the global allocator. In general, the best practice
-//! is to only use `Box<T>` for pointers that originated from the global
-//! allocator.
-//!
-//! **Important.** At least at present, you should avoid using
-//! `Box<T>` types for functions that are defined in C but invoked
-//! from Rust. In those cases, you should directly mirror the C types
-//! as closely as possible. Using types like `Box<T>` where the C
-//! definition is just using `T*` can lead to undefined behavior, as
-//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
-//!
-//! # Considerations for unsafe code
-//!
-//! **Warning: This section is not normative and is subject to change, possibly
-//! being relaxed in the future! It is a simplified summary of the rules
-//! currently implemented in the compiler.**
-//!
-//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
-//! asserts uniqueness over its content. Using raw pointers derived from a box
-//! after that box has been mutated through, moved or borrowed as `&mut T`
-//! is not allowed. For more guidance on working with box from unsafe code, see
-//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
-//!
-//!
-//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
-//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
-//! [dereferencing]: core::ops::Deref
-//! [`Box::<T>::from_raw(value)`]: Box::from_raw
-//! [`Global`]: crate::alloc::Global
-//! [`Layout`]: crate::alloc::Layout
-//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
-//! [valid]: ptr#safety
-
-#![stable(feature = "rust1", since = "1.0.0")]
-
-use core::any::Any;
-use core::async_iter::AsyncIterator;
-use core::borrow;
-use core::cmp::Ordering;
-use core::error::Error;
-use core::fmt;
-use core::future::Future;
-use core::hash::{Hash, Hasher};
-use core::iter::FusedIterator;
-use core::marker::Tuple;
-use core::marker::Unsize;
-use core::mem::{self, SizedTypeProperties};
-use core::ops::{
- CoerceUnsized, Coroutine, CoroutineState, Deref, DerefMut, DispatchFromDyn, Receiver,
-};
-use core::pin::Pin;
-use core::ptr::{self, NonNull, Unique};
-use core::task::{Context, Poll};
-
-#[cfg(not(no_global_oom_handling))]
-use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw};
-use crate::alloc::{AllocError, Allocator, Global, Layout};
-#[cfg(not(no_global_oom_handling))]
-use crate::borrow::Cow;
-use crate::raw_vec::RawVec;
-#[cfg(not(no_global_oom_handling))]
-use crate::str::from_boxed_utf8_unchecked;
-#[cfg(not(no_global_oom_handling))]
-use crate::string::String;
-#[cfg(not(no_global_oom_handling))]
-use crate::vec::Vec;
-
-#[cfg(not(no_thin))]
-#[unstable(feature = "thin_box", issue = "92791")]
-pub use thin::ThinBox;
-
-#[cfg(not(no_thin))]
-mod thin;
-
-/// A pointer type that uniquely owns a heap allocation of type `T`.
-///
-/// See the [module-level documentation](../../std/boxed/index.html) for more.
-#[lang = "owned_box"]
-#[fundamental]
-#[stable(feature = "rust1", since = "1.0.0")]
-// The declaration of the `Box` struct must be kept in sync with the
-// `alloc::alloc::box_free` function or ICEs will happen. See the comment
-// on `box_free` for more details.
-pub struct Box<
- T: ?Sized,
- #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
->(Unique<T>, A);
-
-impl<T> Box<T> {
- /// Allocates memory on the heap and then places `x` into it.
- ///
- /// This doesn't actually allocate if `T` is zero-sized.
- ///
- /// # Examples
- ///
- /// ```
- /// let five = Box::new(5);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[inline(always)]
- #[stable(feature = "rust1", since = "1.0.0")]
- #[must_use]
- #[rustc_diagnostic_item = "box_new"]
- pub fn new(x: T) -> Self {
- #[rustc_box]
- Box::new(x)
- }
-
- /// Constructs a new box with uninitialized contents.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(new_uninit)]
- ///
- /// let mut five = Box::<u32>::new_uninit();
- ///
- /// let five = unsafe {
- /// // Deferred initialization:
- /// five.as_mut_ptr().write(5);
- ///
- /// five.assume_init()
- /// };
- ///
- /// assert_eq!(*five, 5)
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[unstable(feature = "new_uninit", issue = "63291")]
- #[must_use]
- #[inline]
- pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
- Self::new_uninit_in(Global)
- }
-
- /// Constructs a new `Box` with uninitialized contents, with the memory
- /// being filled with `0` bytes.
- ///
- /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
- /// of this method.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(new_uninit)]
- ///
- /// let zero = Box::<u32>::new_zeroed();
- /// let zero = unsafe { zero.assume_init() };
- ///
- /// assert_eq!(*zero, 0)
- /// ```
- ///
- /// [zeroed]: mem::MaybeUninit::zeroed
- #[cfg(not(no_global_oom_handling))]
- #[inline]
- #[unstable(feature = "new_uninit", issue = "63291")]
- #[must_use]
- pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
- Self::new_zeroed_in(Global)
- }
-
- /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
- /// `x` will be pinned in memory and unable to be moved.
- ///
- /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
- /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
- /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
- /// construct a (pinned) `Box` in a different way than with [`Box::new`].
- #[cfg(not(no_global_oom_handling))]
- #[stable(feature = "pin", since = "1.33.0")]
- #[must_use]
- #[inline(always)]
- pub fn pin(x: T) -> Pin<Box<T>> {
- Box::new(x).into()
- }
-
- /// Allocates memory on the heap then places `x` into it,
- /// returning an error if the allocation fails
- ///
- /// This doesn't actually allocate if `T` is zero-sized.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api)]
- ///
- /// let five = Box::try_new(5)?;
- /// # Ok::<(), std::alloc::AllocError>(())
- /// ```
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[inline]
- pub fn try_new(x: T) -> Result<Self, AllocError> {
- Self::try_new_in(x, Global)
- }
-
- /// Constructs a new box with uninitialized contents on the heap,
- /// returning an error if the allocation fails
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// let mut five = Box::<u32>::try_new_uninit()?;
- ///
- /// let five = unsafe {
- /// // Deferred initialization:
- /// five.as_mut_ptr().write(5);
- ///
- /// five.assume_init()
- /// };
- ///
- /// assert_eq!(*five, 5);
- /// # Ok::<(), std::alloc::AllocError>(())
- /// ```
- #[unstable(feature = "allocator_api", issue = "32838")]
- // #[unstable(feature = "new_uninit", issue = "63291")]
- #[inline]
- pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
- Box::try_new_uninit_in(Global)
- }
-
- /// Constructs a new `Box` with uninitialized contents, with the memory
- /// being filled with `0` bytes on the heap
- ///
- /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
- /// of this method.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// let zero = Box::<u32>::try_new_zeroed()?;
- /// let zero = unsafe { zero.assume_init() };
- ///
- /// assert_eq!(*zero, 0);
- /// # Ok::<(), std::alloc::AllocError>(())
- /// ```
- ///
- /// [zeroed]: mem::MaybeUninit::zeroed
- #[unstable(feature = "allocator_api", issue = "32838")]
- // #[unstable(feature = "new_uninit", issue = "63291")]
- #[inline]
- pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
- Box::try_new_zeroed_in(Global)
- }
-}
-
-impl<T, A: Allocator> Box<T, A> {
- /// Allocates memory in the given allocator then places `x` into it.
- ///
- /// This doesn't actually allocate if `T` is zero-sized.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api)]
- ///
- /// use std::alloc::System;
- ///
- /// let five = Box::new_in(5, System);
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[must_use]
- #[inline]
- pub fn new_in(x: T, alloc: A) -> Self
- where
- A: Allocator,
- {
- let mut boxed = Self::new_uninit_in(alloc);
- unsafe {
- boxed.as_mut_ptr().write(x);
- boxed.assume_init()
- }
- }
-
- /// Allocates memory in the given allocator then places `x` into it,
- /// returning an error if the allocation fails
- ///
- /// This doesn't actually allocate if `T` is zero-sized.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api)]
- ///
- /// use std::alloc::System;
- ///
- /// let five = Box::try_new_in(5, System)?;
- /// # Ok::<(), std::alloc::AllocError>(())
- /// ```
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[inline]
- pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
- where
- A: Allocator,
- {
- let mut boxed = Self::try_new_uninit_in(alloc)?;
- unsafe {
- boxed.as_mut_ptr().write(x);
- Ok(boxed.assume_init())
- }
- }
-
- /// Constructs a new box with uninitialized contents in the provided allocator.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// use std::alloc::System;
- ///
- /// let mut five = Box::<u32, _>::new_uninit_in(System);
- ///
- /// let five = unsafe {
- /// // Deferred initialization:
- /// five.as_mut_ptr().write(5);
- ///
- /// five.assume_init()
- /// };
- ///
- /// assert_eq!(*five, 5)
- /// ```
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[cfg(not(no_global_oom_handling))]
- #[must_use]
- // #[unstable(feature = "new_uninit", issue = "63291")]
- pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
- where
- A: Allocator,
- {
- let layout = Layout::new::<mem::MaybeUninit<T>>();
- // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
- // That would make code size bigger.
- match Box::try_new_uninit_in(alloc) {
- Ok(m) => m,
- Err(_) => handle_alloc_error(layout),
- }
- }
-
- /// Constructs a new box with uninitialized contents in the provided allocator,
- /// returning an error if the allocation fails
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// use std::alloc::System;
- ///
- /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
- ///
- /// let five = unsafe {
- /// // Deferred initialization:
- /// five.as_mut_ptr().write(5);
- ///
- /// five.assume_init()
- /// };
- ///
- /// assert_eq!(*five, 5);
- /// # Ok::<(), std::alloc::AllocError>(())
- /// ```
- #[unstable(feature = "allocator_api", issue = "32838")]
- // #[unstable(feature = "new_uninit", issue = "63291")]
- pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
- where
- A: Allocator,
- {
- let ptr = if T::IS_ZST {
- NonNull::dangling()
- } else {
- let layout = Layout::new::<mem::MaybeUninit<T>>();
- alloc.allocate(layout)?.cast()
- };
- unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
- }
-
- /// Constructs a new `Box` with uninitialized contents, with the memory
- /// being filled with `0` bytes in the provided allocator.
- ///
- /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
- /// of this method.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// use std::alloc::System;
- ///
- /// let zero = Box::<u32, _>::new_zeroed_in(System);
- /// let zero = unsafe { zero.assume_init() };
- ///
- /// assert_eq!(*zero, 0)
- /// ```
- ///
- /// [zeroed]: mem::MaybeUninit::zeroed
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[cfg(not(no_global_oom_handling))]
- // #[unstable(feature = "new_uninit", issue = "63291")]
- #[must_use]
- pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
- where
- A: Allocator,
- {
- let layout = Layout::new::<mem::MaybeUninit<T>>();
- // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
- // That would make code size bigger.
- match Box::try_new_zeroed_in(alloc) {
- Ok(m) => m,
- Err(_) => handle_alloc_error(layout),
- }
- }
-
- /// Constructs a new `Box` with uninitialized contents, with the memory
- /// being filled with `0` bytes in the provided allocator,
- /// returning an error if the allocation fails,
- ///
- /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
- /// of this method.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// use std::alloc::System;
- ///
- /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
- /// let zero = unsafe { zero.assume_init() };
- ///
- /// assert_eq!(*zero, 0);
- /// # Ok::<(), std::alloc::AllocError>(())
- /// ```
- ///
- /// [zeroed]: mem::MaybeUninit::zeroed
- #[unstable(feature = "allocator_api", issue = "32838")]
- // #[unstable(feature = "new_uninit", issue = "63291")]
- pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
- where
- A: Allocator,
- {
- let ptr = if T::IS_ZST {
- NonNull::dangling()
- } else {
- let layout = Layout::new::<mem::MaybeUninit<T>>();
- alloc.allocate_zeroed(layout)?.cast()
- };
- unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
- }
-
- /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
- /// `x` will be pinned in memory and unable to be moved.
- ///
- /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
- /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
- /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
- /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
- #[cfg(not(no_global_oom_handling))]
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[must_use]
- #[inline(always)]
- pub fn pin_in(x: T, alloc: A) -> Pin<Self>
- where
- A: 'static + Allocator,
- {
- Self::into_pin(Self::new_in(x, alloc))
- }
-
- /// Converts a `Box<T>` into a `Box<[T]>`
- ///
- /// This conversion does not allocate on the heap and happens in place.
- #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
- pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
- let (raw, alloc) = Box::into_raw_with_allocator(boxed);
- unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
- }
-
- /// Consumes the `Box`, returning the wrapped value.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(box_into_inner)]
- ///
- /// let c = Box::new(5);
- ///
- /// assert_eq!(Box::into_inner(c), 5);
- /// ```
- #[unstable(feature = "box_into_inner", issue = "80437")]
- #[inline]
- pub fn into_inner(boxed: Self) -> T {
- *boxed
- }
-}
-
-impl<T> Box<[T]> {
- /// Constructs a new boxed slice with uninitialized contents.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(new_uninit)]
- ///
- /// let mut values = Box::<[u32]>::new_uninit_slice(3);
- ///
- /// let values = unsafe {
- /// // Deferred initialization:
- /// values[0].as_mut_ptr().write(1);
- /// values[1].as_mut_ptr().write(2);
- /// values[2].as_mut_ptr().write(3);
- ///
- /// values.assume_init()
- /// };
- ///
- /// assert_eq!(*values, [1, 2, 3])
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[unstable(feature = "new_uninit", issue = "63291")]
- #[must_use]
- pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
- unsafe { RawVec::with_capacity(len).into_box(len) }
- }
-
- /// Constructs a new boxed slice with uninitialized contents, with the memory
- /// being filled with `0` bytes.
- ///
- /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
- /// of this method.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(new_uninit)]
- ///
- /// let values = Box::<[u32]>::new_zeroed_slice(3);
- /// let values = unsafe { values.assume_init() };
- ///
- /// assert_eq!(*values, [0, 0, 0])
- /// ```
- ///
- /// [zeroed]: mem::MaybeUninit::zeroed
- #[cfg(not(no_global_oom_handling))]
- #[unstable(feature = "new_uninit", issue = "63291")]
- #[must_use]
- pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
- unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
- }
-
- /// Constructs a new boxed slice with uninitialized contents. Returns an error if
- /// the allocation fails
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
- /// let values = unsafe {
- /// // Deferred initialization:
- /// values[0].as_mut_ptr().write(1);
- /// values[1].as_mut_ptr().write(2);
- /// values[2].as_mut_ptr().write(3);
- /// values.assume_init()
- /// };
- ///
- /// assert_eq!(*values, [1, 2, 3]);
- /// # Ok::<(), std::alloc::AllocError>(())
- /// ```
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[inline]
- pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
- let ptr = if T::IS_ZST || len == 0 {
- NonNull::dangling()
- } else {
- let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
- Ok(l) => l,
- Err(_) => return Err(AllocError),
- };
- Global.allocate(layout)?.cast()
- };
- unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
- }
-
- /// Constructs a new boxed slice with uninitialized contents, with the memory
- /// being filled with `0` bytes. Returns an error if the allocation fails
- ///
- /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
- /// of this method.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
- /// let values = unsafe { values.assume_init() };
- ///
- /// assert_eq!(*values, [0, 0, 0]);
- /// # Ok::<(), std::alloc::AllocError>(())
- /// ```
- ///
- /// [zeroed]: mem::MaybeUninit::zeroed
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[inline]
- pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
- let ptr = if T::IS_ZST || len == 0 {
- NonNull::dangling()
- } else {
- let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
- Ok(l) => l,
- Err(_) => return Err(AllocError),
- };
- Global.allocate_zeroed(layout)?.cast()
- };
- unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
- }
-}
-
-impl<T, A: Allocator> Box<[T], A> {
- /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// use std::alloc::System;
- ///
- /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
- ///
- /// let values = unsafe {
- /// // Deferred initialization:
- /// values[0].as_mut_ptr().write(1);
- /// values[1].as_mut_ptr().write(2);
- /// values[2].as_mut_ptr().write(3);
- ///
- /// values.assume_init()
- /// };
- ///
- /// assert_eq!(*values, [1, 2, 3])
- /// ```
- #[cfg(not(no_global_oom_handling))]
- #[unstable(feature = "allocator_api", issue = "32838")]
- // #[unstable(feature = "new_uninit", issue = "63291")]
- #[must_use]
- pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
- unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
- }
-
- /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
- /// with the memory being filled with `0` bytes.
- ///
- /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
- /// of this method.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(allocator_api, new_uninit)]
- ///
- /// use std::alloc::System;
- ///
- /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
- /// let values = unsafe { values.assume_init() };
- ///
- /// assert_eq!(*values, [0, 0, 0])
- /// ```
- ///
- /// [zeroed]: mem::MaybeUninit::zeroed
- #[cfg(not(no_global_oom_handling))]
- #[unstable(feature = "allocator_api", issue = "32838")]
- // #[unstable(feature = "new_uninit", issue = "63291")]
- #[must_use]
- pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
- unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
- }
-}
-
-impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
- /// Converts to `Box<T, A>`.
- ///
- /// # Safety
- ///
- /// As with [`MaybeUninit::assume_init`],
- /// it is up to the caller to guarantee that the value
- /// really is in an initialized state.
- /// Calling this when the content is not yet fully initialized
- /// causes immediate undefined behavior.
- ///
- /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(new_uninit)]
- ///
- /// let mut five = Box::<u32>::new_uninit();
- ///
- /// let five: Box<u32> = unsafe {
- /// // Deferred initialization:
- /// five.as_mut_ptr().write(5);
- ///
- /// five.assume_init()
- /// };
- ///
- /// assert_eq!(*five, 5)
- /// ```
- #[unstable(feature = "new_uninit", issue = "63291")]
- #[inline]
- pub unsafe fn assume_init(self) -> Box<T, A> {
- let (raw, alloc) = Box::into_raw_with_allocator(self);
- unsafe { Box::from_raw_in(raw as *mut T, alloc) }
- }
-
- /// Writes the value and converts to `Box<T, A>`.
- ///
- /// This method converts the box similarly to [`Box::assume_init`] but
- /// writes `value` into it before conversion thus guaranteeing safety.
- /// In some scenarios use of this method may improve performance because
- /// the compiler may be able to optimize copying from stack.
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(new_uninit)]
- ///
- /// let big_box = Box::<[usize; 1024]>::new_uninit();
- ///
- /// let mut array = [0; 1024];
- /// for (i, place) in array.iter_mut().enumerate() {
- /// *place = i;
- /// }
- ///
- /// // The optimizer may be able to elide this copy, so previous code writes
- /// // to heap directly.
- /// let big_box = Box::write(big_box, array);
- ///
- /// for (i, x) in big_box.iter().enumerate() {
- /// assert_eq!(*x, i);
- /// }
- /// ```
- #[unstable(feature = "new_uninit", issue = "63291")]
- #[inline]
- pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
- unsafe {
- (*boxed).write(value);
- boxed.assume_init()
- }
- }
-}
-
-impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
- /// Converts to `Box<[T], A>`.
- ///
- /// # Safety
- ///
- /// As with [`MaybeUninit::assume_init`],
- /// it is up to the caller to guarantee that the values
- /// really are in an initialized state.
- /// Calling this when the content is not yet fully initialized
- /// causes immediate undefined behavior.
- ///
- /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(new_uninit)]
- ///
- /// let mut values = Box::<[u32]>::new_uninit_slice(3);
- ///
- /// let values = unsafe {
- /// // Deferred initialization:
- /// values[0].as_mut_ptr().write(1);
- /// values[1].as_mut_ptr().write(2);
- /// values[2].as_mut_ptr().write(3);
- ///
- /// values.assume_init()
- /// };
- ///
- /// assert_eq!(*values, [1, 2, 3])
- /// ```
- #[unstable(feature = "new_uninit", issue = "63291")]
- #[inline]
- pub unsafe fn assume_init(self) -> Box<[T], A> {
- let (raw, alloc) = Box::into_raw_with_allocator(self);
- unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
- }
-}
-
-impl<T: ?Sized> Box<T> {
- /// Constructs a box from a raw pointer.
- ///
- /// After calling this function, the raw pointer is owned by the
- /// resulting `Box`. Specifically, the `Box` destructor will call
- /// the destructor of `T` and free the allocated memory. For this
- /// to be safe, the memory must have been allocated in accordance
- /// with the [memory layout] used by `Box` .
- ///
- /// # Safety
- ///
- /// This function is unsafe because improper use may lead to
- /// memory problems. For example, a double-free may occur if the
- /// function is called twice on the same raw pointer.
- ///
- /// The safety conditions are described in the [memory layout] section.
- ///
- /// # Examples
- ///
- /// Recreate a `Box` which was previously converted to a raw pointer
- /// using [`Box::into_raw`]:
- /// ```
- /// let x = Box::new(5);
- /// let ptr = Box::into_raw(x);
- /// let x = unsafe { Box::from_raw(ptr) };
- /// ```
- /// Manually create a `Box` from scratch by using the global allocator:
- /// ```
- /// use std::alloc::{alloc, Layout};
- ///
- /// unsafe {
- /// let ptr = alloc(Layout::new::<i32>()) as *mut i32;
- /// // In general .write is required to avoid attempting to destruct
- /// // the (uninitialized) previous contents of `ptr`, though for this
- /// // simple example `*ptr = 5` would have worked as well.
- /// ptr.write(5);
- /// let x = Box::from_raw(ptr);
- /// }
- /// ```
- ///
- /// [memory layout]: self#memory-layout
- /// [`Layout`]: crate::Layout
- #[stable(feature = "box_raw", since = "1.4.0")]
- #[inline]
- #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"]
- pub unsafe fn from_raw(raw: *mut T) -> Self {
- unsafe { Self::from_raw_in(raw, Global) }
- }
-}
-
-impl<T: ?Sized, A: Allocator> Box<T, A> {
- /// Constructs a box from a raw pointer in the given allocator.
- ///
- /// After calling this function, the raw pointer is owned by the
- /// resulting `Box`. Specifically, the `Box` destructor will call
- /// the destructor of `T` and free the allocated memory. For this
- /// to be safe, the memory must have been allocated in accordance
- /// with the [memory layout] used by `Box` .
- ///
- /// # Safety
- ///
- /// This function is unsafe because improper use may lead to
- /// memory problems. For example, a double-free may occur if the
- /// function is called twice on the same raw pointer.
- ///
- ///
- /// # Examples
- ///
- /// Recreate a `Box` which was previously converted to a raw pointer
- /// using [`Box::into_raw_with_allocator`]:
- /// ```
- /// #![feature(allocator_api)]
- ///
- /// use std::alloc::System;
- ///
- /// let x = Box::new_in(5, System);
- /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
- /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
- /// ```
- /// Manually create a `Box` from scratch by using the system allocator:
- /// ```
- /// #![feature(allocator_api, slice_ptr_get)]
- ///
- /// use std::alloc::{Allocator, Layout, System};
- ///
- /// unsafe {
- /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
- /// // In general .write is required to avoid attempting to destruct
- /// // the (uninitialized) previous contents of `ptr`, though for this
- /// // simple example `*ptr = 5` would have worked as well.
- /// ptr.write(5);
- /// let x = Box::from_raw_in(ptr, System);
- /// }
- /// # Ok::<(), std::alloc::AllocError>(())
- /// ```
- ///
- /// [memory layout]: self#memory-layout
- /// [`Layout`]: crate::Layout
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[rustc_const_unstable(feature = "const_box", issue = "92521")]
- #[inline]
- pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
- Box(unsafe { Unique::new_unchecked(raw) }, alloc)
- }
-
- /// Consumes the `Box`, returning a wrapped raw pointer.
- ///
- /// The pointer will be properly aligned and non-null.
- ///
- /// After calling this function, the caller is responsible for the
- /// memory previously managed by the `Box`. In particular, the
- /// caller should properly destroy `T` and release the memory, taking
- /// into account the [memory layout] used by `Box`. The easiest way to
- /// do this is to convert the raw pointer back into a `Box` with the
- /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
- /// the cleanup.
- ///
- /// Note: this is an associated function, which means that you have
- /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
- /// is so that there is no conflict with a method on the inner type.
- ///
- /// # Examples
- /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
- /// for automatic cleanup:
- /// ```
- /// let x = Box::new(String::from("Hello"));
- /// let ptr = Box::into_raw(x);
- /// let x = unsafe { Box::from_raw(ptr) };
- /// ```
- /// Manual cleanup by explicitly running the destructor and deallocating
- /// the memory:
- /// ```
- /// use std::alloc::{dealloc, Layout};
- /// use std::ptr;
- ///
- /// let x = Box::new(String::from("Hello"));
- /// let ptr = Box::into_raw(x);
- /// unsafe {
- /// ptr::drop_in_place(ptr);
- /// dealloc(ptr as *mut u8, Layout::new::<String>());
- /// }
- /// ```
- /// Note: This is equivalent to the following:
- /// ```
- /// let x = Box::new(String::from("Hello"));
- /// let ptr = Box::into_raw(x);
- /// unsafe {
- /// drop(Box::from_raw(ptr));
- /// }
- /// ```
- ///
- /// [memory layout]: self#memory-layout
- #[stable(feature = "box_raw", since = "1.4.0")]
- #[inline]
- pub fn into_raw(b: Self) -> *mut T {
- Self::into_raw_with_allocator(b).0
- }
-
- /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
- ///
- /// The pointer will be properly aligned and non-null.
- ///
- /// After calling this function, the caller is responsible for the
- /// memory previously managed by the `Box`. In particular, the
- /// caller should properly destroy `T` and release the memory, taking
- /// into account the [memory layout] used by `Box`. The easiest way to
- /// do this is to convert the raw pointer back into a `Box` with the
- /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
- /// the cleanup.
- ///
- /// Note: this is an associated function, which means that you have
- /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
- /// is so that there is no conflict with a method on the inner type.
- ///
- /// # Examples
- /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
- /// for automatic cleanup:
- /// ```
- /// #![feature(allocator_api)]
- ///
- /// use std::alloc::System;
- ///
- /// let x = Box::new_in(String::from("Hello"), System);
- /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
- /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
- /// ```
- /// Manual cleanup by explicitly running the destructor and deallocating
- /// the memory:
- /// ```
- /// #![feature(allocator_api)]
- ///
- /// use std::alloc::{Allocator, Layout, System};
- /// use std::ptr::{self, NonNull};
- ///
- /// let x = Box::new_in(String::from("Hello"), System);
- /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
- /// unsafe {
- /// ptr::drop_in_place(ptr);
- /// let non_null = NonNull::new_unchecked(ptr);
- /// alloc.deallocate(non_null.cast(), Layout::new::<String>());
- /// }
- /// ```
- ///
- /// [memory layout]: self#memory-layout
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[inline]
- pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
- let (leaked, alloc) = Box::into_unique(b);
- (leaked.as_ptr(), alloc)
- }
-
- #[unstable(
- feature = "ptr_internals",
- issue = "none",
- reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
- )]
- #[inline]
- #[doc(hidden)]
- pub fn into_unique(b: Self) -> (Unique<T>, A) {
- // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
- // raw pointer for the type system. Turning it directly into a raw pointer would not be
- // recognized as "releasing" the unique pointer to permit aliased raw accesses,
- // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
- // behaves correctly.
- let alloc = unsafe { ptr::read(&b.1) };
- (Unique::from(Box::leak(b)), alloc)
- }
-
- /// Returns a reference to the underlying allocator.
- ///
- /// Note: this is an associated function, which means that you have
- /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
- /// is so that there is no conflict with a method on the inner type.
- #[unstable(feature = "allocator_api", issue = "32838")]
- #[rustc_const_unstable(feature = "const_box", issue = "92521")]
- #[inline]
- pub const fn allocator(b: &Self) -> &A {
- &b.1
- }
-
- /// Consumes and leaks the `Box`, returning a mutable reference,
- /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
- /// `'a`. If the type has only static references, or none at all, then this
- /// may be chosen to be `'static`.
- ///
- /// This function is mainly useful for data that lives for the remainder of
- /// the program's life. Dropping the returned reference will cause a memory
- /// leak. If this is not acceptable, the reference should first be wrapped
- /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
- /// then be dropped which will properly destroy `T` and release the
- /// allocated memory.
- ///
- /// Note: this is an associated function, which means that you have
- /// to call it as `Box::leak(b)` instead of `b.leak()`. This
- /// is so that there is no conflict with a method on the inner type.
- ///
- /// # Examples
- ///
- /// Simple usage:
- ///
- /// ```
- /// let x = Box::new(41);
- /// let static_ref: &'static mut usize = Box::leak(x);
- /// *static_ref += 1;
- /// assert_eq!(*static_ref, 42);
- /// ```
- ///
- /// Unsized data:
- ///
- /// ```
- /// let x = vec![1, 2, 3].into_boxed_slice();
- /// let static_ref = Box::leak(x);
- /// static_ref[0] = 4;
- /// assert_eq!(*static_ref, [4, 2, 3]);
- /// ```
- #[stable(feature = "box_leak", since = "1.26.0")]
- #[inline]
- pub fn leak<'a>(b: Self) -> &'a mut T
- where
- A: 'a,
- {
- unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
- }
-
- /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
- /// `*boxed` will be pinned in memory and unable to be moved.
- ///
- /// This conversion does not allocate on the heap and happens in place.
- ///
- /// This is also available via [`From`].
- ///
- /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
- /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
- /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
- /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
- ///
- /// # Notes
- ///
- /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
- /// as it'll introduce an ambiguity when calling `Pin::from`.
- /// A demonstration of such a poor impl is shown below.
- ///
- /// ```compile_fail
- /// # use std::pin::Pin;
- /// struct Foo; // A type defined in this crate.
- /// impl From<Box<()>> for Pin<Foo> {
- /// fn from(_: Box<()>) -> Pin<Foo> {
- /// Pin::new(Foo)
- /// }
- /// }
- ///
- /// let foo = Box::new(());
- /// let bar = Pin::from(foo);
- /// ```
- #[stable(feature = "box_into_pin", since = "1.63.0")]
- #[rustc_const_unstable(feature = "const_box", issue = "92521")]
- pub const fn into_pin(boxed: Self) -> Pin<Self>
- where
- A: 'static,
- {
- // It's not possible to move or replace the insides of a `Pin<Box<T>>`
- // when `T: !Unpin`, so it's safe to pin it directly without any
- // additional requirements.
- unsafe { Pin::new_unchecked(boxed) }
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
- #[inline]
- fn drop(&mut self) {
- // the T in the Box is dropped by the compiler before the destructor is run
-
- let ptr = self.0;
-
- unsafe {
- let layout = Layout::for_value_raw(ptr.as_ptr());
- if layout.size() != 0 {
- self.1.deallocate(From::from(ptr.cast()), layout);
- }
- }
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Default> Default for Box<T> {
- /// Creates a `Box<T>`, with the `Default` value for T.
- #[inline]
- fn default() -> Self {
- Box::new(T::default())
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> Default for Box<[T]> {
- #[inline]
- fn default() -> Self {
- let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
- Box(ptr, Global)
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "default_box_extra", since = "1.17.0")]
-impl Default for Box<str> {
- #[inline]
- fn default() -> Self {
- // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
- let ptr: Unique<str> = unsafe {
- let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
- Unique::new_unchecked(bytes.as_ptr() as *mut str)
- };
- Box(ptr, Global)
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
- /// Returns a new box with a `clone()` of this box's contents.
- ///
- /// # Examples
- ///
- /// ```
- /// let x = Box::new(5);
- /// let y = x.clone();
- ///
- /// // The value is the same
- /// assert_eq!(x, y);
- ///
- /// // But they are unique objects
- /// assert_ne!(&*x as *const i32, &*y as *const i32);
- /// ```
- #[inline]
- fn clone(&self) -> Self {
- // Pre-allocate memory to allow writing the cloned value directly.
- let mut boxed = Self::new_uninit_in(self.1.clone());
- unsafe {
- (**self).write_clone_into_raw(boxed.as_mut_ptr());
- boxed.assume_init()
- }
- }
-
- /// Copies `source`'s contents into `self` without creating a new allocation.
- ///
- /// # Examples
- ///
- /// ```
- /// let x = Box::new(5);
- /// let mut y = Box::new(10);
- /// let yp: *const i32 = &*y;
- ///
- /// y.clone_from(&x);
- ///
- /// // The value is the same
- /// assert_eq!(x, y);
- ///
- /// // And no allocation occurred
- /// assert_eq!(yp, &*y);
- /// ```
- #[inline]
- fn clone_from(&mut self, source: &Self) {
- (**self).clone_from(&(**source));
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "box_slice_clone", since = "1.3.0")]
-impl Clone for Box<str> {
- fn clone(&self) -> Self {
- // this makes a copy of the data
- let buf: Box<[u8]> = self.as_bytes().into();
- unsafe { from_boxed_utf8_unchecked(buf) }
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
- #[inline]
- fn eq(&self, other: &Self) -> bool {
- PartialEq::eq(&**self, &**other)
- }
- #[inline]
- fn ne(&self, other: &Self) -> bool {
- PartialEq::ne(&**self, &**other)
- }
-}
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
- #[inline]
- fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
- PartialOrd::partial_cmp(&**self, &**other)
- }
- #[inline]
- fn lt(&self, other: &Self) -> bool {
- PartialOrd::lt(&**self, &**other)
- }
- #[inline]
- fn le(&self, other: &Self) -> bool {
- PartialOrd::le(&**self, &**other)
- }
- #[inline]
- fn ge(&self, other: &Self) -> bool {
- PartialOrd::ge(&**self, &**other)
- }
- #[inline]
- fn gt(&self, other: &Self) -> bool {
- PartialOrd::gt(&**self, &**other)
- }
-}
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
- #[inline]
- fn cmp(&self, other: &Self) -> Ordering {
- Ord::cmp(&**self, &**other)
- }
-}
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
- fn hash<H: Hasher>(&self, state: &mut H) {
- (**self).hash(state);
- }
-}
-
-#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
-impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
- fn finish(&self) -> u64 {
- (**self).finish()
- }
- fn write(&mut self, bytes: &[u8]) {
- (**self).write(bytes)
- }
- fn write_u8(&mut self, i: u8) {
- (**self).write_u8(i)
- }
- fn write_u16(&mut self, i: u16) {
- (**self).write_u16(i)
- }
- fn write_u32(&mut self, i: u32) {
- (**self).write_u32(i)
- }
- fn write_u64(&mut self, i: u64) {
- (**self).write_u64(i)
- }
- fn write_u128(&mut self, i: u128) {
- (**self).write_u128(i)
- }
- fn write_usize(&mut self, i: usize) {
- (**self).write_usize(i)
- }
- fn write_i8(&mut self, i: i8) {
- (**self).write_i8(i)
- }
- fn write_i16(&mut self, i: i16) {
- (**self).write_i16(i)
- }
- fn write_i32(&mut self, i: i32) {
- (**self).write_i32(i)
- }
- fn write_i64(&mut self, i: i64) {
- (**self).write_i64(i)
- }
- fn write_i128(&mut self, i: i128) {
- (**self).write_i128(i)
- }
- fn write_isize(&mut self, i: isize) {
- (**self).write_isize(i)
- }
- fn write_length_prefix(&mut self, len: usize) {
- (**self).write_length_prefix(len)
- }
- fn write_str(&mut self, s: &str) {
- (**self).write_str(s)
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "from_for_ptrs", since = "1.6.0")]
-impl<T> From<T> for Box<T> {
- /// Converts a `T` into a `Box<T>`
- ///
- /// The conversion allocates on the heap and moves `t`
- /// from the stack into it.
- ///
- /// # Examples
- ///
- /// ```rust
- /// let x = 5;
- /// let boxed = Box::new(5);
- ///
- /// assert_eq!(Box::from(x), boxed);
- /// ```
- fn from(t: T) -> Self {
- Box::new(t)
- }
-}
-
-#[stable(feature = "pin", since = "1.33.0")]
-impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
-where
- A: 'static,
-{
- /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
- /// `*boxed` will be pinned in memory and unable to be moved.
- ///
- /// This conversion does not allocate on the heap and happens in place.
- ///
- /// This is also available via [`Box::into_pin`].
- ///
- /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
- /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
- /// This `From` implementation is useful if you already have a `Box<T>`, or you are
- /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
- fn from(boxed: Box<T, A>) -> Self {
- Box::into_pin(boxed)
- }
-}
-
-/// Specialization trait used for `From<&[T]>`.
-#[cfg(not(no_global_oom_handling))]
-trait BoxFromSlice<T> {
- fn from_slice(slice: &[T]) -> Self;
-}
-
-#[cfg(not(no_global_oom_handling))]
-impl<T: Clone> BoxFromSlice<T> for Box<[T]> {
- #[inline]
- default fn from_slice(slice: &[T]) -> Self {
- slice.to_vec().into_boxed_slice()
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-impl<T: Copy> BoxFromSlice<T> for Box<[T]> {
- #[inline]
- fn from_slice(slice: &[T]) -> Self {
- let len = slice.len();
- let buf = RawVec::with_capacity(len);
- unsafe {
- ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
- buf.into_box(slice.len()).assume_init()
- }
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "box_from_slice", since = "1.17.0")]
-impl<T: Clone> From<&[T]> for Box<[T]> {
- /// Converts a `&[T]` into a `Box<[T]>`
- ///
- /// This conversion allocates on the heap
- /// and performs a copy of `slice` and its contents.
- ///
- /// # Examples
- /// ```rust
- /// // create a &[u8] which will be used to create a Box<[u8]>
- /// let slice: &[u8] = &[104, 101, 108, 108, 111];
- /// let boxed_slice: Box<[u8]> = Box::from(slice);
- ///
- /// println!("{boxed_slice:?}");
- /// ```
- #[inline]
- fn from(slice: &[T]) -> Box<[T]> {
- <Self as BoxFromSlice<T>>::from_slice(slice)
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "box_from_cow", since = "1.45.0")]
-impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> {
- /// Converts a `Cow<'_, [T]>` into a `Box<[T]>`
- ///
- /// When `cow` is the `Cow::Borrowed` variant, this
- /// conversion allocates on the heap and copies the
- /// underlying slice. Otherwise, it will try to reuse the owned
- /// `Vec`'s allocation.
- #[inline]
- fn from(cow: Cow<'_, [T]>) -> Box<[T]> {
- match cow {
- Cow::Borrowed(slice) => Box::from(slice),
- Cow::Owned(slice) => Box::from(slice),
- }
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "box_from_slice", since = "1.17.0")]
-impl From<&str> for Box<str> {
- /// Converts a `&str` into a `Box<str>`
- ///
- /// This conversion allocates on the heap
- /// and performs a copy of `s`.
- ///
- /// # Examples
- ///
- /// ```rust
- /// let boxed: Box<str> = Box::from("hello");
- /// println!("{boxed}");
- /// ```
- #[inline]
- fn from(s: &str) -> Box<str> {
- unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "box_from_cow", since = "1.45.0")]
-impl From<Cow<'_, str>> for Box<str> {
- /// Converts a `Cow<'_, str>` into a `Box<str>`
- ///
- /// When `cow` is the `Cow::Borrowed` variant, this
- /// conversion allocates on the heap and copies the
- /// underlying `str`. Otherwise, it will try to reuse the owned
- /// `String`'s allocation.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use std::borrow::Cow;
- ///
- /// let unboxed = Cow::Borrowed("hello");
- /// let boxed: Box<str> = Box::from(unboxed);
- /// println!("{boxed}");
- /// ```
- ///
- /// ```rust
- /// # use std::borrow::Cow;
- /// let unboxed = Cow::Owned("hello".to_string());
- /// let boxed: Box<str> = Box::from(unboxed);
- /// println!("{boxed}");
- /// ```
- #[inline]
- fn from(cow: Cow<'_, str>) -> Box<str> {
- match cow {
- Cow::Borrowed(s) => Box::from(s),
- Cow::Owned(s) => Box::from(s),
- }
- }
-}
-
-#[stable(feature = "boxed_str_conv", since = "1.19.0")]
-impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
- /// Converts a `Box<str>` into a `Box<[u8]>`
- ///
- /// This conversion does not allocate on the heap and happens in place.
- ///
- /// # Examples
- /// ```rust
- /// // create a Box<str> which will be used to create a Box<[u8]>
- /// let boxed: Box<str> = Box::from("hello");
- /// let boxed_str: Box<[u8]> = Box::from(boxed);
- ///
- /// // create a &[u8] which will be used to create a Box<[u8]>
- /// let slice: &[u8] = &[104, 101, 108, 108, 111];
- /// let boxed_slice = Box::from(slice);
- ///
- /// assert_eq!(boxed_slice, boxed_str);
- /// ```
- #[inline]
- fn from(s: Box<str, A>) -> Self {
- let (raw, alloc) = Box::into_raw_with_allocator(s);
- unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "box_from_array", since = "1.45.0")]
-impl<T, const N: usize> From<[T; N]> for Box<[T]> {
- /// Converts a `[T; N]` into a `Box<[T]>`
- ///
- /// This conversion moves the array to newly heap-allocated memory.
- ///
- /// # Examples
- ///
- /// ```rust
- /// let boxed: Box<[u8]> = Box::from([4, 2]);
- /// println!("{boxed:?}");
- /// ```
- fn from(array: [T; N]) -> Box<[T]> {
- Box::new(array)
- }
-}
-
-/// Casts a boxed slice to a boxed array.
-///
-/// # Safety
-///
-/// `boxed_slice.len()` must be exactly `N`.
-unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>(
- boxed_slice: Box<[T], A>,
-) -> Box<[T; N], A> {
- debug_assert_eq!(boxed_slice.len(), N);
-
- let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice);
- // SAFETY: Pointer and allocator came from an existing box,
- // and our safety condition requires that the length is exactly `N`
- unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) }
-}
-
-#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
-impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
- type Error = Box<[T]>;
-
- /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
- ///
- /// The conversion occurs in-place and does not require a
- /// new memory allocation.
- ///
- /// # Errors
- ///
- /// Returns the old `Box<[T]>` in the `Err` variant if
- /// `boxed_slice.len()` does not equal `N`.
- fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
- if boxed_slice.len() == N {
- Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
- } else {
- Err(boxed_slice)
- }
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")]
-impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> {
- type Error = Vec<T>;
-
- /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`.
- ///
- /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`,
- /// but will require a reallocation otherwise.
- ///
- /// # Errors
- ///
- /// Returns the original `Vec<T>` in the `Err` variant if
- /// `boxed_slice.len()` does not equal `N`.
- ///
- /// # Examples
- ///
- /// This can be used with [`vec!`] to create an array on the heap:
- ///
- /// ```
- /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap();
- /// assert_eq!(state.len(), 100);
- /// ```
- fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> {
- if vec.len() == N {
- let boxed_slice = vec.into_boxed_slice();
- Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
- } else {
- Err(vec)
- }
- }
-}
-
-impl<A: Allocator> Box<dyn Any, A> {
- /// Attempt to downcast the box to a concrete type.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::any::Any;
- ///
- /// fn print_if_string(value: Box<dyn Any>) {
- /// if let Ok(string) = value.downcast::<String>() {
- /// println!("String ({}): {}", string.len(), string);
- /// }
- /// }
- ///
- /// let my_string = "Hello World".to_string();
- /// print_if_string(Box::new(my_string));
- /// print_if_string(Box::new(0i8));
- /// ```
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
- if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
- }
-
- /// Downcasts the box to a concrete type.
- ///
- /// For a safe alternative see [`downcast`].
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(downcast_unchecked)]
- ///
- /// use std::any::Any;
- ///
- /// let x: Box<dyn Any> = Box::new(1_usize);
- ///
- /// unsafe {
- /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
- /// }
- /// ```
- ///
- /// # Safety
- ///
- /// The contained value must be of type `T`. Calling this method
- /// with the incorrect type is *undefined behavior*.
- ///
- /// [`downcast`]: Self::downcast
- #[inline]
- #[unstable(feature = "downcast_unchecked", issue = "90850")]
- pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
- debug_assert!(self.is::<T>());
- unsafe {
- let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
- Box::from_raw_in(raw as *mut T, alloc)
- }
- }
-}
-
-impl<A: Allocator> Box<dyn Any + Send, A> {
- /// Attempt to downcast the box to a concrete type.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::any::Any;
- ///
- /// fn print_if_string(value: Box<dyn Any + Send>) {
- /// if let Ok(string) = value.downcast::<String>() {
- /// println!("String ({}): {}", string.len(), string);
- /// }
- /// }
- ///
- /// let my_string = "Hello World".to_string();
- /// print_if_string(Box::new(my_string));
- /// print_if_string(Box::new(0i8));
- /// ```
- #[inline]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
- if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
- }
-
- /// Downcasts the box to a concrete type.
- ///
- /// For a safe alternative see [`downcast`].
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(downcast_unchecked)]
- ///
- /// use std::any::Any;
- ///
- /// let x: Box<dyn Any + Send> = Box::new(1_usize);
- ///
- /// unsafe {
- /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
- /// }
- /// ```
- ///
- /// # Safety
- ///
- /// The contained value must be of type `T`. Calling this method
- /// with the incorrect type is *undefined behavior*.
- ///
- /// [`downcast`]: Self::downcast
- #[inline]
- #[unstable(feature = "downcast_unchecked", issue = "90850")]
- pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
- debug_assert!(self.is::<T>());
- unsafe {
- let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
- Box::from_raw_in(raw as *mut T, alloc)
- }
- }
-}
-
-impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
- /// Attempt to downcast the box to a concrete type.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::any::Any;
- ///
- /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
- /// if let Ok(string) = value.downcast::<String>() {
- /// println!("String ({}): {}", string.len(), string);
- /// }
- /// }
- ///
- /// let my_string = "Hello World".to_string();
- /// print_if_string(Box::new(my_string));
- /// print_if_string(Box::new(0i8));
- /// ```
- #[inline]
- #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")]
- pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
- if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
- }
-
- /// Downcasts the box to a concrete type.
- ///
- /// For a safe alternative see [`downcast`].
- ///
- /// # Examples
- ///
- /// ```
- /// #![feature(downcast_unchecked)]
- ///
- /// use std::any::Any;
- ///
- /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
- ///
- /// unsafe {
- /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
- /// }
- /// ```
- ///
- /// # Safety
- ///
- /// The contained value must be of type `T`. Calling this method
- /// with the incorrect type is *undefined behavior*.
- ///
- /// [`downcast`]: Self::downcast
- #[inline]
- #[unstable(feature = "downcast_unchecked", issue = "90850")]
- pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
- debug_assert!(self.is::<T>());
- unsafe {
- let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
- Box::into_raw_with_allocator(self);
- Box::from_raw_in(raw as *mut T, alloc)
- }
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt::Display::fmt(&**self, f)
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt::Debug::fmt(&**self, f)
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- // It's not possible to extract the inner Uniq directly from the Box,
- // instead we cast it to a *const which aliases the Unique
- let ptr: *const T = &**self;
- fmt::Pointer::fmt(&ptr, f)
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
- type Target = T;
-
- fn deref(&self) -> &T {
- &**self
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
- fn deref_mut(&mut self) -> &mut T {
- &mut **self
- }
-}
-
-#[unstable(feature = "receiver_trait", issue = "none")]
-impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
- type Item = I::Item;
- fn next(&mut self) -> Option<I::Item> {
- (**self).next()
- }
- fn size_hint(&self) -> (usize, Option<usize>) {
- (**self).size_hint()
- }
- fn nth(&mut self, n: usize) -> Option<I::Item> {
- (**self).nth(n)
- }
- fn last(self) -> Option<I::Item> {
- BoxIter::last(self)
- }
-}
-
-trait BoxIter {
- type Item;
- fn last(self) -> Option<Self::Item>;
-}
-
-impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
- type Item = I::Item;
- default fn last(self) -> Option<I::Item> {
- #[inline]
- fn some<T>(_: Option<T>, x: T) -> Option<T> {
- Some(x)
- }
-
- self.fold(None, some)
- }
-}
-
-/// Specialization for sized `I`s that uses `I`s implementation of `last()`
-/// instead of the default.
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> {
- fn last(self) -> Option<I::Item> {
- (*self).last()
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
- fn next_back(&mut self) -> Option<I::Item> {
- (**self).next_back()
- }
- fn nth_back(&mut self, n: usize) -> Option<I::Item> {
- (**self).nth_back(n)
- }
-}
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
- fn len(&self) -> usize {
- (**self).len()
- }
- fn is_empty(&self) -> bool {
- (**self).is_empty()
- }
-}
-
-#[stable(feature = "fused", since = "1.26.0")]
-impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
-
-#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
-impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
- type Output = <F as FnOnce<Args>>::Output;
-
- extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
- <F as FnOnce<Args>>::call_once(*self, args)
- }
-}
-
-#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
-impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
- extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
- <F as FnMut<Args>>::call_mut(self, args)
- }
-}
-
-#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
-impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
- extern "rust-call" fn call(&self, args: Args) -> Self::Output {
- <F as Fn<Args>>::call(self, args)
- }
-}
-
-#[unstable(feature = "coerce_unsized", issue = "18598")]
-impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}
-
-#[unstable(feature = "dispatch_from_dyn", issue = "none")]
-impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
-impl<I> FromIterator<I> for Box<[I]> {
- fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
- iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "box_slice_clone", since = "1.3.0")]
-impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
- fn clone(&self) -> Self {
- let alloc = Box::allocator(self).clone();
- self.to_vec_in(alloc).into_boxed_slice()
- }
-
- fn clone_from(&mut self, other: &Self) {
- if self.len() == other.len() {
- self.clone_from_slice(&other);
- } else {
- *self = other.clone();
- }
- }
-}
-
-#[stable(feature = "box_borrow", since = "1.1.0")]
-impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
- fn borrow(&self) -> &T {
- &**self
- }
-}
-
-#[stable(feature = "box_borrow", since = "1.1.0")]
-impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
- fn borrow_mut(&mut self) -> &mut T {
- &mut **self
- }
-}
-
-#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
-impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
- fn as_ref(&self) -> &T {
- &**self
- }
-}
-
-#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
-impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
- fn as_mut(&mut self) -> &mut T {
- &mut **self
- }
-}
-
-/* Nota bene
- *
- * We could have chosen not to add this impl, and instead have written a
- * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
- * because Box<T> implements Unpin even when T does not, as a result of
- * this impl.
- *
- * We chose this API instead of the alternative for a few reasons:
- * - Logically, it is helpful to understand pinning in regard to the
- * memory region being pointed to. For this reason none of the
- * standard library pointer types support projecting through a pin
- * (Box<T> is the only pointer type in std for which this would be
- * safe.)
- * - It is in practice very useful to have Box<T> be unconditionally
- * Unpin because of trait objects, for which the structural auto
- * trait functionality does not apply (e.g., Box<dyn Foo> would
- * otherwise not be Unpin).
- *
- * Another type with the same semantics as Box but only a conditional
- * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
- * could have a method to project a Pin<T> from it.
- */
-#[stable(feature = "pin", since = "1.33.0")]
-impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
-
-#[unstable(feature = "coroutine_trait", issue = "43122")]
-impl<G: ?Sized + Coroutine<R> + Unpin, R, A: Allocator> Coroutine<R> for Box<G, A>
-where
- A: 'static,
-{
- type Yield = G::Yield;
- type Return = G::Return;
-
- fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
- G::resume(Pin::new(&mut *self), arg)
- }
-}
-
-#[unstable(feature = "coroutine_trait", issue = "43122")]
-impl<G: ?Sized + Coroutine<R>, R, A: Allocator> Coroutine<R> for Pin<Box<G, A>>
-where
- A: 'static,
-{
- type Yield = G::Yield;
- type Return = G::Return;
-
- fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
- G::resume((*self).as_mut(), arg)
- }
-}
-
-#[stable(feature = "futures_api", since = "1.36.0")]
-impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
-where
- A: 'static,
-{
- type Output = F::Output;
-
- fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
- F::poll(Pin::new(&mut *self), cx)
- }
-}
-
-#[unstable(feature = "async_iterator", issue = "79024")]
-impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> {
- type Item = S::Item;
-
- fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
- Pin::new(&mut **self).poll_next(cx)
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- (**self).size_hint()
- }
-}
-
-impl dyn Error {
- #[inline]
- #[stable(feature = "error_downcast", since = "1.3.0")]
- #[rustc_allow_incoherent_impl]
- /// Attempts to downcast the box to a concrete type.
- pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> {
- if self.is::<T>() {
- unsafe {
- let raw: *mut dyn Error = Box::into_raw(self);
- Ok(Box::from_raw(raw as *mut T))
- }
- } else {
- Err(self)
- }
- }
-}
-
-impl dyn Error + Send {
- #[inline]
- #[stable(feature = "error_downcast", since = "1.3.0")]
- #[rustc_allow_incoherent_impl]
- /// Attempts to downcast the box to a concrete type.
- pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> {
- let err: Box<dyn Error> = self;
- <dyn Error>::downcast(err).map_err(|s| unsafe {
- // Reapply the `Send` marker.
- Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send))
- })
- }
-}
-
-impl dyn Error + Send + Sync {
- #[inline]
- #[stable(feature = "error_downcast", since = "1.3.0")]
- #[rustc_allow_incoherent_impl]
- /// Attempts to downcast the box to a concrete type.
- pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> {
- let err: Box<dyn Error> = self;
- <dyn Error>::downcast(err).map_err(|s| unsafe {
- // Reapply the `Send + Sync` marker.
- Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send + Sync))
- })
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
- /// Converts a type of [`Error`] into a box of dyn [`Error`].
- ///
- /// # Examples
- ///
- /// ```
- /// use std::error::Error;
- /// use std::fmt;
- /// use std::mem;
- ///
- /// #[derive(Debug)]
- /// struct AnError;
- ///
- /// impl fmt::Display for AnError {
- /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- /// write!(f, "An error")
- /// }
- /// }
- ///
- /// impl Error for AnError {}
- ///
- /// let an_error = AnError;
- /// assert!(0 == mem::size_of_val(&an_error));
- /// let a_boxed_error = Box::<dyn Error>::from(an_error);
- /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
- /// ```
- fn from(err: E) -> Box<dyn Error + 'a> {
- Box::new(err)
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
- /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
- /// dyn [`Error`] + [`Send`] + [`Sync`].
- ///
- /// # Examples
- ///
- /// ```
- /// use std::error::Error;
- /// use std::fmt;
- /// use std::mem;
- ///
- /// #[derive(Debug)]
- /// struct AnError;
- ///
- /// impl fmt::Display for AnError {
- /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- /// write!(f, "An error")
- /// }
- /// }
- ///
- /// impl Error for AnError {}
- ///
- /// unsafe impl Send for AnError {}
- ///
- /// unsafe impl Sync for AnError {}
- ///
- /// let an_error = AnError;
- /// assert!(0 == mem::size_of_val(&an_error));
- /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
- /// assert!(
- /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
- /// ```
- fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
- Box::new(err)
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "rust1", since = "1.0.0")]
-impl From<String> for Box<dyn Error + Send + Sync> {
- /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
- ///
- /// # Examples
- ///
- /// ```
- /// use std::error::Error;
- /// use std::mem;
- ///
- /// let a_string_error = "a string error".to_string();
- /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error);
- /// assert!(
- /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
- /// ```
- #[inline]
- fn from(err: String) -> Box<dyn Error + Send + Sync> {
- struct StringError(String);
-
- impl Error for StringError {
- #[allow(deprecated)]
- fn description(&self) -> &str {
- &self.0
- }
- }
-
- impl fmt::Display for StringError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt::Display::fmt(&self.0, f)
- }
- }
-
- // Purposefully skip printing "StringError(..)"
- impl fmt::Debug for StringError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt::Debug::fmt(&self.0, f)
- }
- }
-
- Box::new(StringError(err))
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "string_box_error", since = "1.6.0")]
-impl From<String> for Box<dyn Error> {
- /// Converts a [`String`] into a box of dyn [`Error`].
- ///
- /// # Examples
- ///
- /// ```
- /// use std::error::Error;
- /// use std::mem;
- ///
- /// let a_string_error = "a string error".to_string();
- /// let a_boxed_error = Box::<dyn Error>::from(a_string_error);
- /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
- /// ```
- fn from(str_err: String) -> Box<dyn Error> {
- let err1: Box<dyn Error + Send + Sync> = From::from(str_err);
- let err2: Box<dyn Error> = err1;
- err2
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> {
- /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
- ///
- /// [`str`]: prim@str
- ///
- /// # Examples
- ///
- /// ```
- /// use std::error::Error;
- /// use std::mem;
- ///
- /// let a_str_error = "a str error";
- /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error);
- /// assert!(
- /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
- /// ```
- #[inline]
- fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> {
- From::from(String::from(err))
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "string_box_error", since = "1.6.0")]
-impl From<&str> for Box<dyn Error> {
- /// Converts a [`str`] into a box of dyn [`Error`].
- ///
- /// [`str`]: prim@str
- ///
- /// # Examples
- ///
- /// ```
- /// use std::error::Error;
- /// use std::mem;
- ///
- /// let a_str_error = "a str error";
- /// let a_boxed_error = Box::<dyn Error>::from(a_str_error);
- /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
- /// ```
- fn from(err: &str) -> Box<dyn Error> {
- From::from(String::from(err))
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "cow_box_error", since = "1.22.0")]
-impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> {
- /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
- ///
- /// # Examples
- ///
- /// ```
- /// use std::error::Error;
- /// use std::mem;
- /// use std::borrow::Cow;
- ///
- /// let a_cow_str_error = Cow::from("a str error");
- /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error);
- /// assert!(
- /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
- /// ```
- fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> {
- From::from(String::from(err))
- }
-}
-
-#[cfg(not(no_global_oom_handling))]
-#[stable(feature = "cow_box_error", since = "1.22.0")]
-impl<'a> From<Cow<'a, str>> for Box<dyn Error> {
- /// Converts a [`Cow`] into a box of dyn [`Error`].
- ///
- /// # Examples
- ///
- /// ```
- /// use std::error::Error;
- /// use std::mem;
- /// use std::borrow::Cow;
- ///
- /// let a_cow_str_error = Cow::from("a str error");
- /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error);
- /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
- /// ```
- fn from(err: Cow<'a, str>) -> Box<dyn Error> {
- From::from(String::from(err))
- }
-}
-
-#[stable(feature = "box_error", since = "1.8.0")]
-impl<T: core::error::Error> core::error::Error for Box<T> {
- #[allow(deprecated, deprecated_in_future)]
- fn description(&self) -> &str {
- core::error::Error::description(&**self)
- }
-
- #[allow(deprecated)]
- fn cause(&self) -> Option<&dyn core::error::Error> {
- core::error::Error::cause(&**self)
- }
-
- fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
- core::error::Error::source(&**self)
- }
-
- fn provide<'b>(&'b self, request: &mut core::error::Request<'b>) {
- core::error::Error::provide(&**self, request);
- }
-}