summaryrefslogtreecommitdiffstats
path: root/tools/include/uapi/drm
diff options
context:
space:
mode:
Diffstat (limited to 'tools/include/uapi/drm')
-rw-r--r--tools/include/uapi/drm/drm.h72
-rw-r--r--tools/include/uapi/drm/i915_drm.h12
2 files changed, 77 insertions, 7 deletions
diff --git a/tools/include/uapi/drm/drm.h b/tools/include/uapi/drm/drm.h
index de723566c5..16122819ed 100644
--- a/tools/include/uapi/drm/drm.h
+++ b/tools/include/uapi/drm/drm.h
@@ -713,7 +713,8 @@ struct drm_gem_open {
/**
* DRM_CAP_ASYNC_PAGE_FLIP
*
- * If set to 1, the driver supports &DRM_MODE_PAGE_FLIP_ASYNC.
+ * If set to 1, the driver supports &DRM_MODE_PAGE_FLIP_ASYNC for legacy
+ * page-flips.
*/
#define DRM_CAP_ASYNC_PAGE_FLIP 0x7
/**
@@ -773,6 +774,13 @@ struct drm_gem_open {
* :ref:`drm_sync_objects`.
*/
#define DRM_CAP_SYNCOBJ_TIMELINE 0x14
+/**
+ * DRM_CAP_ATOMIC_ASYNC_PAGE_FLIP
+ *
+ * If set to 1, the driver supports &DRM_MODE_PAGE_FLIP_ASYNC for atomic
+ * commits.
+ */
+#define DRM_CAP_ATOMIC_ASYNC_PAGE_FLIP 0x15
/* DRM_IOCTL_GET_CAP ioctl argument type */
struct drm_get_cap {
@@ -842,6 +850,31 @@ struct drm_get_cap {
*/
#define DRM_CLIENT_CAP_WRITEBACK_CONNECTORS 5
+/**
+ * DRM_CLIENT_CAP_CURSOR_PLANE_HOTSPOT
+ *
+ * Drivers for para-virtualized hardware (e.g. vmwgfx, qxl, virtio and
+ * virtualbox) have additional restrictions for cursor planes (thus
+ * making cursor planes on those drivers not truly universal,) e.g.
+ * they need cursor planes to act like one would expect from a mouse
+ * cursor and have correctly set hotspot properties.
+ * If this client cap is not set the DRM core will hide cursor plane on
+ * those virtualized drivers because not setting it implies that the
+ * client is not capable of dealing with those extra restictions.
+ * Clients which do set cursor hotspot and treat the cursor plane
+ * like a mouse cursor should set this property.
+ * The client must enable &DRM_CLIENT_CAP_ATOMIC first.
+ *
+ * Setting this property on drivers which do not special case
+ * cursor planes (i.e. non-virtualized drivers) will return
+ * EOPNOTSUPP, which can be used by userspace to gauge
+ * requirements of the hardware/drivers they're running on.
+ *
+ * This capability is always supported for atomic-capable virtualized
+ * drivers starting from kernel version 6.6.
+ */
+#define DRM_CLIENT_CAP_CURSOR_PLANE_HOTSPOT 6
+
/* DRM_IOCTL_SET_CLIENT_CAP ioctl argument type */
struct drm_set_client_cap {
__u64 capability;
@@ -893,6 +926,7 @@ struct drm_syncobj_transfer {
#define DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL (1 << 0)
#define DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT (1 << 1)
#define DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE (1 << 2) /* wait for time point to become available */
+#define DRM_SYNCOBJ_WAIT_FLAGS_WAIT_DEADLINE (1 << 3) /* set fence deadline to deadline_nsec */
struct drm_syncobj_wait {
__u64 handles;
/* absolute timeout */
@@ -901,6 +935,14 @@ struct drm_syncobj_wait {
__u32 flags;
__u32 first_signaled; /* only valid when not waiting all */
__u32 pad;
+ /**
+ * @deadline_nsec - fence deadline hint
+ *
+ * Deadline hint, in absolute CLOCK_MONOTONIC, to set on backing
+ * fence(s) if the DRM_SYNCOBJ_WAIT_FLAGS_WAIT_DEADLINE flag is
+ * set.
+ */
+ __u64 deadline_nsec;
};
struct drm_syncobj_timeline_wait {
@@ -913,6 +955,14 @@ struct drm_syncobj_timeline_wait {
__u32 flags;
__u32 first_signaled; /* only valid when not waiting all */
__u32 pad;
+ /**
+ * @deadline_nsec - fence deadline hint
+ *
+ * Deadline hint, in absolute CLOCK_MONOTONIC, to set on backing
+ * fence(s) if the DRM_SYNCOBJ_WAIT_FLAGS_WAIT_DEADLINE flag is
+ * set.
+ */
+ __u64 deadline_nsec;
};
/**
@@ -1218,6 +1268,26 @@ extern "C" {
#define DRM_IOCTL_SYNCOBJ_EVENTFD DRM_IOWR(0xCF, struct drm_syncobj_eventfd)
+/**
+ * DRM_IOCTL_MODE_CLOSEFB - Close a framebuffer.
+ *
+ * This closes a framebuffer previously added via ADDFB/ADDFB2. The IOCTL
+ * argument is a framebuffer object ID.
+ *
+ * This IOCTL is similar to &DRM_IOCTL_MODE_RMFB, except it doesn't disable
+ * planes and CRTCs. As long as the framebuffer is used by a plane, it's kept
+ * alive. When the plane no longer uses the framebuffer (because the
+ * framebuffer is replaced with another one, or the plane is disabled), the
+ * framebuffer is cleaned up.
+ *
+ * This is useful to implement flicker-free transitions between two processes.
+ *
+ * Depending on the threat model, user-space may want to ensure that the
+ * framebuffer doesn't expose any sensitive user information: closed
+ * framebuffers attached to a plane can be read back by the next DRM master.
+ */
+#define DRM_IOCTL_MODE_CLOSEFB DRM_IOWR(0xD0, struct drm_mode_closefb)
+
/*
* Device specific ioctls should only be in their respective headers
* The device specific ioctl range is from 0x40 to 0x9f.
diff --git a/tools/include/uapi/drm/i915_drm.h b/tools/include/uapi/drm/i915_drm.h
index 218edb0a96..fd4f9574d1 100644
--- a/tools/include/uapi/drm/i915_drm.h
+++ b/tools/include/uapi/drm/i915_drm.h
@@ -693,7 +693,7 @@ typedef struct drm_i915_irq_wait {
#define I915_PARAM_HAS_EXEC_FENCE 44
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
- * user specified bufffers for post-mortem debugging of GPU hangs. See
+ * user-specified buffers for post-mortem debugging of GPU hangs. See
* EXEC_OBJECT_CAPTURE.
*/
#define I915_PARAM_HAS_EXEC_CAPTURE 45
@@ -1606,7 +1606,7 @@ struct drm_i915_gem_busy {
* is accurate.
*
* The returned dword is split into two fields to indicate both
- * the engine classess on which the object is being read, and the
+ * the engine classes on which the object is being read, and the
* engine class on which it is currently being written (if any).
*
* The low word (bits 0:15) indicate if the object is being written
@@ -1815,7 +1815,7 @@ struct drm_i915_gem_madvise {
__u32 handle;
/* Advice: either the buffer will be needed again in the near future,
- * or wont be and could be discarded under memory pressure.
+ * or won't be and could be discarded under memory pressure.
*/
__u32 madv;
@@ -3246,7 +3246,7 @@ struct drm_i915_query_topology_info {
* // enough to hold our array of engines. The kernel will fill out the
* // item.length for us, which is the number of bytes we need.
* //
- * // Alternatively a large buffer can be allocated straight away enabling
+ * // Alternatively a large buffer can be allocated straightaway enabling
* // querying in one pass, in which case item.length should contain the
* // length of the provided buffer.
* err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
@@ -3256,7 +3256,7 @@ struct drm_i915_query_topology_info {
* // Now that we allocated the required number of bytes, we call the ioctl
* // again, this time with the data_ptr pointing to our newly allocated
* // blob, which the kernel can then populate with info on all engines.
- * item.data_ptr = (uintptr_t)&info,
+ * item.data_ptr = (uintptr_t)&info;
*
* err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
* if (err) ...
@@ -3286,7 +3286,7 @@ struct drm_i915_query_topology_info {
/**
* struct drm_i915_engine_info
*
- * Describes one engine and it's capabilities as known to the driver.
+ * Describes one engine and its capabilities as known to the driver.
*/
struct drm_i915_engine_info {
/** @engine: Engine class and instance. */