From ace9429bb58fd418f0c81d4c2835699bddf6bde6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:27:49 +0200 Subject: Adding upstream version 6.6.15. Signed-off-by: Daniel Baumann --- Documentation/accel/qaic/qaic.rst | 170 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 170 insertions(+) create mode 100644 Documentation/accel/qaic/qaic.rst (limited to 'Documentation/accel/qaic/qaic.rst') diff --git a/Documentation/accel/qaic/qaic.rst b/Documentation/accel/qaic/qaic.rst new file mode 100644 index 0000000000..72a70ab6e3 --- /dev/null +++ b/Documentation/accel/qaic/qaic.rst @@ -0,0 +1,170 @@ +.. SPDX-License-Identifier: GPL-2.0-only + +============= + QAIC driver +============= + +The QAIC driver is the Kernel Mode Driver (KMD) for the AIC100 family of AI +accelerator products. + +Interrupts +========== + +While the AIC100 DMA Bridge hardware implements an IRQ storm mitigation +mechanism, it is still possible for an IRQ storm to occur. A storm can happen +if the workload is particularly quick, and the host is responsive. If the host +can drain the response FIFO as quickly as the device can insert elements into +it, then the device will frequently transition the response FIFO from empty to +non-empty and generate MSIs at a rate equivalent to the speed of the +workload's ability to process inputs. The lprnet (license plate reader network) +workload is known to trigger this condition, and can generate in excess of 100k +MSIs per second. It has been observed that most systems cannot tolerate this +for long, and will crash due to some form of watchdog due to the overhead of +the interrupt controller interrupting the host CPU. + +To mitigate this issue, the QAIC driver implements specific IRQ handling. When +QAIC receives an IRQ, it disables that line. This prevents the interrupt +controller from interrupting the CPU. Then AIC drains the FIFO. Once the FIFO +is drained, QAIC implements a "last chance" polling algorithm where QAIC will +sleep for a time to see if the workload will generate more activity. The IRQ +line remains disabled during this time. If no activity is detected, QAIC exits +polling mode and reenables the IRQ line. + +This mitigation in QAIC is very effective. The same lprnet usecase that +generates 100k IRQs per second (per /proc/interrupts) is reduced to roughly 64 +IRQs over 5 minutes while keeping the host system stable, and having the same +workload throughput performance (within run to run noise variation). + + +Neural Network Control (NNC) Protocol +===================================== + +The implementation of NNC is split between the KMD (QAIC) and UMD. In general +QAIC understands how to encode/decode NNC wire protocol, and elements of the +protocol which require kernel space knowledge to process (for example, mapping +host memory to device IOVAs). QAIC understands the structure of a message, and +all of the transactions. QAIC does not understand commands (the payload of a +passthrough transaction). + +QAIC handles and enforces the required little endianness and 64-bit alignment, +to the degree that it can. Since QAIC does not know the contents of a +passthrough transaction, it relies on the UMD to satisfy the requirements. + +The terminate transaction is of particular use to QAIC. QAIC is not aware of +the resources that are loaded onto a device since the majority of that activity +occurs within NNC commands. As a result, QAIC does not have the means to +roll back userspace activity. To ensure that a userspace client's resources +are fully released in the case of a process crash, or a bug, QAIC uses the +terminate command to let QSM know when a user has gone away, and the resources +can be released. + +QSM can report a version number of the NNC protocol it supports. This is in the +form of a Major number and a Minor number. + +Major number updates indicate changes to the NNC protocol which impact the +message format, or transactions (impacts QAIC). + +Minor number updates indicate changes to the NNC protocol which impact the +commands (does not impact QAIC). + +uAPI +==== + +QAIC defines a number of driver specific IOCTLs as part of the userspace API. +This section describes those APIs. + +DRM_IOCTL_QAIC_MANAGE + This IOCTL allows userspace to send a NNC request to the QSM. The call will + block until a response is received, or the request has timed out. + +DRM_IOCTL_QAIC_CREATE_BO + This IOCTL allows userspace to allocate a buffer object (BO) which can send + or receive data from a workload. The call will return a GEM handle that + represents the allocated buffer. The BO is not usable until it has been + sliced (see DRM_IOCTL_QAIC_ATTACH_SLICE_BO). + +DRM_IOCTL_QAIC_MMAP_BO + This IOCTL allows userspace to prepare an allocated BO to be mmap'd into the + userspace process. + +DRM_IOCTL_QAIC_ATTACH_SLICE_BO + This IOCTL allows userspace to slice a BO in preparation for sending the BO + to the device. Slicing is the operation of describing what portions of a BO + get sent where to a workload. This requires a set of DMA transfers for the + DMA Bridge, and as such, locks the BO to a specific DBC. + +DRM_IOCTL_QAIC_EXECUTE_BO + This IOCTL allows userspace to submit a set of sliced BOs to the device. The + call is non-blocking. Success only indicates that the BOs have been queued + to the device, but does not guarantee they have been executed. + +DRM_IOCTL_QAIC_PARTIAL_EXECUTE_BO + This IOCTL operates like DRM_IOCTL_QAIC_EXECUTE_BO, but it allows userspace + to shrink the BOs sent to the device for this specific call. If a BO + typically has N inputs, but only a subset of those is available, this IOCTL + allows userspace to indicate that only the first M bytes of the BO should be + sent to the device to minimize data transfer overhead. This IOCTL dynamically + recomputes the slicing, and therefore has some processing overhead before the + BOs can be queued to the device. + +DRM_IOCTL_QAIC_WAIT_BO + This IOCTL allows userspace to determine when a particular BO has been + processed by the device. The call will block until either the BO has been + processed and can be re-queued to the device, or a timeout occurs. + +DRM_IOCTL_QAIC_PERF_STATS_BO + This IOCTL allows userspace to collect performance statistics on the most + recent execution of a BO. This allows userspace to construct an end to end + timeline of the BO processing for a performance analysis. + +DRM_IOCTL_QAIC_PART_DEV + This IOCTL allows userspace to request a duplicate "shadow device". This extra + accelN device is associated with a specific partition of resources on the + AIC100 device and can be used for limiting a process to some subset of + resources. + +Userspace Client Isolation +========================== + +AIC100 supports multiple clients. Multiple DBCs can be consumed by a single +client, and multiple clients can each consume one or more DBCs. Workloads +may contain sensitive information therefore only the client that owns the +workload should be allowed to interface with the DBC. + +Clients are identified by the instance associated with their open(). A client +may only use memory they allocate, and DBCs that are assigned to their +workloads. Attempts to access resources assigned to other clients will be +rejected. + +Module parameters +================= + +QAIC supports the following module parameters: + +**datapath_polling (bool)** + +Configures QAIC to use a polling thread for datapath events instead of relying +on the device interrupts. Useful for platforms with broken multiMSI. Must be +set at QAIC driver initialization. Default is 0 (off). + +**mhi_timeout_ms (unsigned int)** + +Sets the timeout value for MHI operations in milliseconds (ms). Must be set +at the time the driver detects a device. Default is 2000 (2 seconds). + +**control_resp_timeout_s (unsigned int)** + +Sets the timeout value for QSM responses to NNC messages in seconds (s). Must +be set at the time the driver is sending a request to QSM. Default is 60 (one +minute). + +**wait_exec_default_timeout_ms (unsigned int)** + +Sets the default timeout for the wait_exec ioctl in milliseconds (ms). Must be +set prior to the waic_exec ioctl call. A value specified in the ioctl call +overrides this for that call. Default is 5000 (5 seconds). + +**datapath_poll_interval_us (unsigned int)** + +Sets the polling interval in microseconds (us) when datapath polling is active. +Takes effect at the next polling interval. Default is 100 (100 us). -- cgit v1.2.3