From ace9429bb58fd418f0c81d4c2835699bddf6bde6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:27:49 +0200 Subject: Adding upstream version 6.6.15. Signed-off-by: Daniel Baumann --- Documentation/dev-tools/kcsan.rst | 366 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 366 insertions(+) create mode 100644 Documentation/dev-tools/kcsan.rst (limited to 'Documentation/dev-tools/kcsan.rst') diff --git a/Documentation/dev-tools/kcsan.rst b/Documentation/dev-tools/kcsan.rst new file mode 100644 index 0000000000..3ae866dcc9 --- /dev/null +++ b/Documentation/dev-tools/kcsan.rst @@ -0,0 +1,366 @@ +.. SPDX-License-Identifier: GPL-2.0 +.. Copyright (C) 2019, Google LLC. + +The Kernel Concurrency Sanitizer (KCSAN) +======================================== + +The Kernel Concurrency Sanitizer (KCSAN) is a dynamic race detector, which +relies on compile-time instrumentation, and uses a watchpoint-based sampling +approach to detect races. KCSAN's primary purpose is to detect `data races`_. + +Usage +----- + +KCSAN is supported by both GCC and Clang. With GCC we require version 11 or +later, and with Clang also require version 11 or later. + +To enable KCSAN configure the kernel with:: + + CONFIG_KCSAN = y + +KCSAN provides several other configuration options to customize behaviour (see +the respective help text in ``lib/Kconfig.kcsan`` for more info). + +Error reports +~~~~~~~~~~~~~ + +A typical data race report looks like this:: + + ================================================================== + BUG: KCSAN: data-race in test_kernel_read / test_kernel_write + + write to 0xffffffffc009a628 of 8 bytes by task 487 on cpu 0: + test_kernel_write+0x1d/0x30 + access_thread+0x89/0xd0 + kthread+0x23e/0x260 + ret_from_fork+0x22/0x30 + + read to 0xffffffffc009a628 of 8 bytes by task 488 on cpu 6: + test_kernel_read+0x10/0x20 + access_thread+0x89/0xd0 + kthread+0x23e/0x260 + ret_from_fork+0x22/0x30 + + value changed: 0x00000000000009a6 -> 0x00000000000009b2 + + Reported by Kernel Concurrency Sanitizer on: + CPU: 6 PID: 488 Comm: access_thread Not tainted 5.12.0-rc2+ #1 + Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014 + ================================================================== + +The header of the report provides a short summary of the functions involved in +the race. It is followed by the access types and stack traces of the 2 threads +involved in the data race. If KCSAN also observed a value change, the observed +old value and new value are shown on the "value changed" line respectively. + +The other less common type of data race report looks like this:: + + ================================================================== + BUG: KCSAN: data-race in test_kernel_rmw_array+0x71/0xd0 + + race at unknown origin, with read to 0xffffffffc009bdb0 of 8 bytes by task 515 on cpu 2: + test_kernel_rmw_array+0x71/0xd0 + access_thread+0x89/0xd0 + kthread+0x23e/0x260 + ret_from_fork+0x22/0x30 + + value changed: 0x0000000000002328 -> 0x0000000000002329 + + Reported by Kernel Concurrency Sanitizer on: + CPU: 2 PID: 515 Comm: access_thread Not tainted 5.12.0-rc2+ #1 + Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014 + ================================================================== + +This report is generated where it was not possible to determine the other +racing thread, but a race was inferred due to the data value of the watched +memory location having changed. These reports always show a "value changed" +line. A common reason for reports of this type are missing instrumentation in +the racing thread, but could also occur due to e.g. DMA accesses. Such reports +are shown only if ``CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=y``, which is +enabled by default. + +Selective analysis +~~~~~~~~~~~~~~~~~~ + +It may be desirable to disable data race detection for specific accesses, +functions, compilation units, or entire subsystems. For static blacklisting, +the below options are available: + +* KCSAN understands the ``data_race(expr)`` annotation, which tells KCSAN that + any data races due to accesses in ``expr`` should be ignored and resulting + behaviour when encountering a data race is deemed safe. Please see + `"Marking Shared-Memory Accesses" in the LKMM`_ for more information. + +* Disabling data race detection for entire functions can be accomplished by + using the function attribute ``__no_kcsan``:: + + __no_kcsan + void foo(void) { + ... + + To dynamically limit for which functions to generate reports, see the + `DebugFS interface`_ blacklist/whitelist feature. + +* To disable data race detection for a particular compilation unit, add to the + ``Makefile``:: + + KCSAN_SANITIZE_file.o := n + +* To disable data race detection for all compilation units listed in a + ``Makefile``, add to the respective ``Makefile``:: + + KCSAN_SANITIZE := n + +.. _"Marking Shared-Memory Accesses" in the LKMM: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/access-marking.txt + +Furthermore, it is possible to tell KCSAN to show or hide entire classes of +data races, depending on preferences. These can be changed via the following +Kconfig options: + +* ``CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY``: If enabled and a conflicting write + is observed via a watchpoint, but the data value of the memory location was + observed to remain unchanged, do not report the data race. + +* ``CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC``: Assume that plain aligned writes + up to word size are atomic by default. Assumes that such writes are not + subject to unsafe compiler optimizations resulting in data races. The option + causes KCSAN to not report data races due to conflicts where the only plain + accesses are aligned writes up to word size. + +* ``CONFIG_KCSAN_PERMISSIVE``: Enable additional permissive rules to ignore + certain classes of common data races. Unlike the above, the rules are more + complex involving value-change patterns, access type, and address. This + option depends on ``CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=y``. For details + please see the ``kernel/kcsan/permissive.h``. Testers and maintainers that + only focus on reports from specific subsystems and not the whole kernel are + recommended to disable this option. + +To use the strictest possible rules, select ``CONFIG_KCSAN_STRICT=y``, which +configures KCSAN to follow the Linux-kernel memory consistency model (LKMM) as +closely as possible. + +DebugFS interface +~~~~~~~~~~~~~~~~~ + +The file ``/sys/kernel/debug/kcsan`` provides the following interface: + +* Reading ``/sys/kernel/debug/kcsan`` returns various runtime statistics. + +* Writing ``on`` or ``off`` to ``/sys/kernel/debug/kcsan`` allows turning KCSAN + on or off, respectively. + +* Writing ``!some_func_name`` to ``/sys/kernel/debug/kcsan`` adds + ``some_func_name`` to the report filter list, which (by default) blacklists + reporting data races where either one of the top stackframes are a function + in the list. + +* Writing either ``blacklist`` or ``whitelist`` to ``/sys/kernel/debug/kcsan`` + changes the report filtering behaviour. For example, the blacklist feature + can be used to silence frequently occurring data races; the whitelist feature + can help with reproduction and testing of fixes. + +Tuning performance +~~~~~~~~~~~~~~~~~~ + +Core parameters that affect KCSAN's overall performance and bug detection +ability are exposed as kernel command-line arguments whose defaults can also be +changed via the corresponding Kconfig options. + +* ``kcsan.skip_watch`` (``CONFIG_KCSAN_SKIP_WATCH``): Number of per-CPU memory + operations to skip, before another watchpoint is set up. Setting up + watchpoints more frequently will result in the likelihood of races to be + observed to increase. This parameter has the most significant impact on + overall system performance and race detection ability. + +* ``kcsan.udelay_task`` (``CONFIG_KCSAN_UDELAY_TASK``): For tasks, the + microsecond delay to stall execution after a watchpoint has been set up. + Larger values result in the window in which we may observe a race to + increase. + +* ``kcsan.udelay_interrupt`` (``CONFIG_KCSAN_UDELAY_INTERRUPT``): For + interrupts, the microsecond delay to stall execution after a watchpoint has + been set up. Interrupts have tighter latency requirements, and their delay + should generally be smaller than the one chosen for tasks. + +They may be tweaked at runtime via ``/sys/module/kcsan/parameters/``. + +Data Races +---------- + +In an execution, two memory accesses form a *data race* if they *conflict*, +they happen concurrently in different threads, and at least one of them is a +*plain access*; they *conflict* if both access the same memory location, and at +least one is a write. For a more thorough discussion and definition, see `"Plain +Accesses and Data Races" in the LKMM`_. + +.. _"Plain Accesses and Data Races" in the LKMM: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt#n1922 + +Relationship with the Linux-Kernel Memory Consistency Model (LKMM) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The LKMM defines the propagation and ordering rules of various memory +operations, which gives developers the ability to reason about concurrent code. +Ultimately this allows to determine the possible executions of concurrent code, +and if that code is free from data races. + +KCSAN is aware of *marked atomic operations* (``READ_ONCE``, ``WRITE_ONCE``, +``atomic_*``, etc.), and a subset of ordering guarantees implied by memory +barriers. With ``CONFIG_KCSAN_WEAK_MEMORY=y``, KCSAN models load or store +buffering, and can detect missing ``smp_mb()``, ``smp_wmb()``, ``smp_rmb()``, +``smp_store_release()``, and all ``atomic_*`` operations with equivalent +implied barriers. + +Note, KCSAN will not report all data races due to missing memory ordering, +specifically where a memory barrier would be required to prohibit subsequent +memory operation from reordering before the barrier. Developers should +therefore carefully consider the required memory ordering requirements that +remain unchecked. + +Race Detection Beyond Data Races +-------------------------------- + +For code with complex concurrency design, race-condition bugs may not always +manifest as data races. Race conditions occur if concurrently executing +operations result in unexpected system behaviour. On the other hand, data races +are defined at the C-language level. The following macros can be used to check +properties of concurrent code where bugs would not manifest as data races. + +.. kernel-doc:: include/linux/kcsan-checks.h + :functions: ASSERT_EXCLUSIVE_WRITER ASSERT_EXCLUSIVE_WRITER_SCOPED + ASSERT_EXCLUSIVE_ACCESS ASSERT_EXCLUSIVE_ACCESS_SCOPED + ASSERT_EXCLUSIVE_BITS + +Implementation Details +---------------------- + +KCSAN relies on observing that two accesses happen concurrently. Crucially, we +want to (a) increase the chances of observing races (especially for races that +manifest rarely), and (b) be able to actually observe them. We can accomplish +(a) by injecting various delays, and (b) by using address watchpoints (or +breakpoints). + +If we deliberately stall a memory access, while we have a watchpoint for its +address set up, and then observe the watchpoint to fire, two accesses to the +same address just raced. Using hardware watchpoints, this is the approach taken +in `DataCollider +`_. +Unlike DataCollider, KCSAN does not use hardware watchpoints, but instead +relies on compiler instrumentation and "soft watchpoints". + +In KCSAN, watchpoints are implemented using an efficient encoding that stores +access type, size, and address in a long; the benefits of using "soft +watchpoints" are portability and greater flexibility. KCSAN then relies on the +compiler instrumenting plain accesses. For each instrumented plain access: + +1. Check if a matching watchpoint exists; if yes, and at least one access is a + write, then we encountered a racing access. + +2. Periodically, if no matching watchpoint exists, set up a watchpoint and + stall for a small randomized delay. + +3. Also check the data value before the delay, and re-check the data value + after delay; if the values mismatch, we infer a race of unknown origin. + +To detect data races between plain and marked accesses, KCSAN also annotates +marked accesses, but only to check if a watchpoint exists; i.e. KCSAN never +sets up a watchpoint on marked accesses. By never setting up watchpoints for +marked operations, if all accesses to a variable that is accessed concurrently +are properly marked, KCSAN will never trigger a watchpoint and therefore never +report the accesses. + +Modeling Weak Memory +~~~~~~~~~~~~~~~~~~~~ + +KCSAN's approach to detecting data races due to missing memory barriers is +based on modeling access reordering (with ``CONFIG_KCSAN_WEAK_MEMORY=y``). +Each plain memory access for which a watchpoint is set up, is also selected for +simulated reordering within the scope of its function (at most 1 in-flight +access). + +Once an access has been selected for reordering, it is checked along every +other access until the end of the function scope. If an appropriate memory +barrier is encountered, the access will no longer be considered for simulated +reordering. + +When the result of a memory operation should be ordered by a barrier, KCSAN can +then detect data races where the conflict only occurs as a result of a missing +barrier. Consider the example:: + + int x, flag; + void T1(void) + { + x = 1; // data race! + WRITE_ONCE(flag, 1); // correct: smp_store_release(&flag, 1) + } + void T2(void) + { + while (!READ_ONCE(flag)); // correct: smp_load_acquire(&flag) + ... = x; // data race! + } + +When weak memory modeling is enabled, KCSAN can consider ``x`` in ``T1`` for +simulated reordering. After the write of ``flag``, ``x`` is again checked for +concurrent accesses: because ``T2`` is able to proceed after the write of +``flag``, a data race is detected. With the correct barriers in place, ``x`` +would not be considered for reordering after the proper release of ``flag``, +and no data race would be detected. + +Deliberate trade-offs in complexity but also practical limitations mean only a +subset of data races due to missing memory barriers can be detected. With +currently available compiler support, the implementation is limited to modeling +the effects of "buffering" (delaying accesses), since the runtime cannot +"prefetch" accesses. Also recall that watchpoints are only set up for plain +accesses, and the only access type for which KCSAN simulates reordering. This +means reordering of marked accesses is not modeled. + +A consequence of the above is that acquire operations do not require barrier +instrumentation (no prefetching). Furthermore, marked accesses introducing +address or control dependencies do not require special handling (the marked +access cannot be reordered, later dependent accesses cannot be prefetched). + +Key Properties +~~~~~~~~~~~~~~ + +1. **Memory Overhead:** The overall memory overhead is only a few MiB + depending on configuration. The current implementation uses a small array of + longs to encode watchpoint information, which is negligible. + +2. **Performance Overhead:** KCSAN's runtime aims to be minimal, using an + efficient watchpoint encoding that does not require acquiring any shared + locks in the fast-path. For kernel boot on a system with 8 CPUs: + + - 5.0x slow-down with the default KCSAN config; + - 2.8x slow-down from runtime fast-path overhead only (set very large + ``KCSAN_SKIP_WATCH`` and unset ``KCSAN_SKIP_WATCH_RANDOMIZE``). + +3. **Annotation Overheads:** Minimal annotations are required outside the KCSAN + runtime. As a result, maintenance overheads are minimal as the kernel + evolves. + +4. **Detects Racy Writes from Devices:** Due to checking data values upon + setting up watchpoints, racy writes from devices can also be detected. + +5. **Memory Ordering:** KCSAN is aware of only a subset of LKMM ordering rules; + this may result in missed data races (false negatives). + +6. **Analysis Accuracy:** For observed executions, due to using a sampling + strategy, the analysis is *unsound* (false negatives possible), but aims to + be complete (no false positives). + +Alternatives Considered +----------------------- + +An alternative data race detection approach for the kernel can be found in the +`Kernel Thread Sanitizer (KTSAN) `_. +KTSAN is a happens-before data race detector, which explicitly establishes the +happens-before order between memory operations, which can then be used to +determine data races as defined in `Data Races`_. + +To build a correct happens-before relation, KTSAN must be aware of all ordering +rules of the LKMM and synchronization primitives. Unfortunately, any omission +leads to large numbers of false positives, which is especially detrimental in +the context of the kernel which includes numerous custom synchronization +mechanisms. To track the happens-before relation, KTSAN's implementation +requires metadata for each memory location (shadow memory), which for each page +corresponds to 4 pages of shadow memory, and can translate into overhead of +tens of GiB on a large system. -- cgit v1.2.3