From ace9429bb58fd418f0c81d4c2835699bddf6bde6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:27:49 +0200 Subject: Adding upstream version 6.6.15. Signed-off-by: Daniel Baumann --- Documentation/driver-api/media/camera-sensor.rst | 175 +++++++++++++++++++++++ 1 file changed, 175 insertions(+) create mode 100644 Documentation/driver-api/media/camera-sensor.rst (limited to 'Documentation/driver-api/media/camera-sensor.rst') diff --git a/Documentation/driver-api/media/camera-sensor.rst b/Documentation/driver-api/media/camera-sensor.rst new file mode 100644 index 0000000000..93f4f2536c --- /dev/null +++ b/Documentation/driver-api/media/camera-sensor.rst @@ -0,0 +1,175 @@ +.. SPDX-License-Identifier: GPL-2.0 + +Writing camera sensor drivers +============================= + +CSI-2 and parallel (BT.601 and BT.656) busses +--------------------------------------------- + +Please see :ref:`transmitter-receiver`. + +Handling clocks +--------------- + +Camera sensors have an internal clock tree including a PLL and a number of +divisors. The clock tree is generally configured by the driver based on a few +input parameters that are specific to the hardware:: the external clock frequency +and the link frequency. The two parameters generally are obtained from system +firmware. **No other frequencies should be used in any circumstances.** + +The reason why the clock frequencies are so important is that the clock signals +come out of the SoC, and in many cases a specific frequency is designed to be +used in the system. Using another frequency may cause harmful effects +elsewhere. Therefore only the pre-determined frequencies are configurable by the +user. + +ACPI +~~~~ + +Read the ``clock-frequency`` _DSD property to denote the frequency. The driver +can rely on this frequency being used. + +Devicetree +~~~~~~~~~~ + +The currently preferred way to achieve this is using ``assigned-clocks``, +``assigned-clock-parents`` and ``assigned-clock-rates`` properties. See +``Documentation/devicetree/bindings/clock/clock-bindings.txt`` for more +information. The driver then gets the frequency using ``clk_get_rate()``. + +This approach has the drawback that there's no guarantee that the frequency +hasn't been modified directly or indirectly by another driver, or supported by +the board's clock tree to begin with. Changes to the Common Clock Framework API +are required to ensure reliability. + +Frame size +---------- + +There are two distinct ways to configure the frame size produced by camera +sensors. + +Freely configurable camera sensor drivers +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Freely configurable camera sensor drivers expose the device's internal +processing pipeline as one or more sub-devices with different cropping and +scaling configurations. The output size of the device is the result of a series +of cropping and scaling operations from the device's pixel array's size. + +An example of such a driver is the CCS driver (see ``drivers/media/i2c/ccs``). + +Register list based drivers +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Register list based drivers generally, instead of able to configure the device +they control based on user requests, are limited to a number of preset +configurations that combine a number of different parameters that on hardware +level are independent. How a driver picks such configuration is based on the +format set on a source pad at the end of the device's internal pipeline. + +Most sensor drivers are implemented this way, see e.g. +``drivers/media/i2c/imx319.c`` for an example. + +Frame interval configuration +---------------------------- + +There are two different methods for obtaining possibilities for different frame +intervals as well as configuring the frame interval. Which one to implement +depends on the type of the device. + +Raw camera sensors +~~~~~~~~~~~~~~~~~~ + +Instead of a high level parameter such as frame interval, the frame interval is +a result of the configuration of a number of camera sensor implementation +specific parameters. Luckily, these parameters tend to be the same for more or +less all modern raw camera sensors. + +The frame interval is calculated using the following equation:: + + frame interval = (analogue crop width + horizontal blanking) * + (analogue crop height + vertical blanking) / pixel rate + +The formula is bus independent and is applicable for raw timing parameters on +large variety of devices beyond camera sensors. Devices that have no analogue +crop, use the full source image size, i.e. pixel array size. + +Horizontal and vertical blanking are specified by ``V4L2_CID_HBLANK`` and +``V4L2_CID_VBLANK``, respectively. The unit of the ``V4L2_CID_HBLANK`` control +is pixels and the unit of the ``V4L2_CID_VBLANK`` is lines. The pixel rate in +the sensor's **pixel array** is specified by ``V4L2_CID_PIXEL_RATE`` in the same +sub-device. The unit of that control is pixels per second. + +Register list based drivers need to implement read-only sub-device nodes for the +purpose. Devices that are not register list based need these to configure the +device's internal processing pipeline. + +The first entity in the linear pipeline is the pixel array. The pixel array may +be followed by other entities that are there to allow configuring binning, +skipping, scaling or digital crop :ref:`v4l2-subdev-selections`. + +USB cameras etc. devices +~~~~~~~~~~~~~~~~~~~~~~~~ + +USB video class hardware, as well as many cameras offering a similar higher +level interface natively, generally use the concept of frame interval (or frame +rate) on device level in firmware or hardware. This means lower level controls +implemented by raw cameras may not be used on uAPI (or even kAPI) to control the +frame interval on these devices. + +Power management +---------------- + +Always use runtime PM to manage the power states of your device. Camera sensor +drivers are in no way special in this respect: they are responsible for +controlling the power state of the device they otherwise control as well. In +general, the device must be powered on at least when its registers are being +accessed and when it is streaming. + +Existing camera sensor drivers may rely on the old +struct v4l2_subdev_core_ops->s_power() callback for bridge or ISP drivers to +manage their power state. This is however **deprecated**. If you feel you need +to begin calling an s_power from an ISP or a bridge driver, instead please add +runtime PM support to the sensor driver you are using. Likewise, new drivers +should not use s_power. + +Please see examples in e.g. ``drivers/media/i2c/ov8856.c`` and +``drivers/media/i2c/ccs/ccs-core.c``. The two drivers work in both ACPI +and DT based systems. + +Control framework +~~~~~~~~~~~~~~~~~ + +``v4l2_ctrl_handler_setup()`` function may not be used in the device's runtime +PM ``runtime_resume`` callback, as it has no way to figure out the power state +of the device. This is because the power state of the device is only changed +after the power state transition has taken place. The ``s_ctrl`` callback can be +used to obtain device's power state after the power state transition: + +.. c:function:: int pm_runtime_get_if_in_use(struct device *dev); + +The function returns a non-zero value if it succeeded getting the power count or +runtime PM was disabled, in either of which cases the driver may proceed to +access the device. + +Rotation, orientation and flipping +---------------------------------- + +Some systems have the camera sensor mounted upside down compared to its natural +mounting rotation. In such cases, drivers shall expose the information to +userspace with the :ref:`V4L2_CID_CAMERA_SENSOR_ROTATION +` control. + +Sensor drivers shall also report the sensor's mounting orientation with the +:ref:`V4L2_CID_CAMERA_SENSOR_ORIENTATION `. + +Use ``v4l2_fwnode_device_parse()`` to obtain rotation and orientation +information from system firmware and ``v4l2_ctrl_new_fwnode_properties()`` to +register the appropriate controls. + +Sensor drivers that have any vertical or horizontal flips embedded in the +register programming sequences shall initialize the V4L2_CID_HFLIP and +V4L2_CID_VFLIP controls with the values programmed by the register sequences. +The default values of these controls shall be 0 (disabled). Especially these +controls shall not be inverted, independently of the sensor's mounting +rotation. -- cgit v1.2.3