From ace9429bb58fd418f0c81d4c2835699bddf6bde6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:27:49 +0200 Subject: Adding upstream version 6.6.15. Signed-off-by: Daniel Baumann --- arch/x86/kvm/x86.c | 13695 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 13695 insertions(+) create mode 100644 arch/x86/kvm/x86.c (limited to 'arch/x86/kvm/x86.c') diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c new file mode 100644 index 0000000000..e179db7c17 --- /dev/null +++ b/arch/x86/kvm/x86.c @@ -0,0 +1,13695 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Kernel-based Virtual Machine driver for Linux + * + * derived from drivers/kvm/kvm_main.c + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright (C) 2008 Qumranet, Inc. + * Copyright IBM Corporation, 2008 + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Avi Kivity + * Yaniv Kamay + * Amit Shah + * Ben-Ami Yassour + */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include +#include "irq.h" +#include "ioapic.h" +#include "mmu.h" +#include "i8254.h" +#include "tss.h" +#include "kvm_cache_regs.h" +#include "kvm_emulate.h" +#include "mmu/page_track.h" +#include "x86.h" +#include "cpuid.h" +#include "pmu.h" +#include "hyperv.h" +#include "lapic.h" +#include "xen.h" +#include "smm.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define CREATE_TRACE_POINTS +#include "trace.h" + +#define MAX_IO_MSRS 256 +#define KVM_MAX_MCE_BANKS 32 + +struct kvm_caps kvm_caps __read_mostly = { + .supported_mce_cap = MCG_CTL_P | MCG_SER_P, +}; +EXPORT_SYMBOL_GPL(kvm_caps); + +#define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) + +#define emul_to_vcpu(ctxt) \ + ((struct kvm_vcpu *)(ctxt)->vcpu) + +/* EFER defaults: + * - enable syscall per default because its emulated by KVM + * - enable LME and LMA per default on 64 bit KVM + */ +#ifdef CONFIG_X86_64 +static +u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); +#else +static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); +#endif + +static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; + +#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) + +#define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE + +#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ + KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) + +static void update_cr8_intercept(struct kvm_vcpu *vcpu); +static void process_nmi(struct kvm_vcpu *vcpu); +static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); +static void store_regs(struct kvm_vcpu *vcpu); +static int sync_regs(struct kvm_vcpu *vcpu); +static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); + +static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); +static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); + +static DEFINE_MUTEX(vendor_module_lock); +struct kvm_x86_ops kvm_x86_ops __read_mostly; + +#define KVM_X86_OP(func) \ + DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ + *(((struct kvm_x86_ops *)0)->func)); +#define KVM_X86_OP_OPTIONAL KVM_X86_OP +#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP +#include +EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); +EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); + +static bool __read_mostly ignore_msrs = 0; +module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); + +bool __read_mostly report_ignored_msrs = true; +module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); +EXPORT_SYMBOL_GPL(report_ignored_msrs); + +unsigned int min_timer_period_us = 200; +module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); + +static bool __read_mostly kvmclock_periodic_sync = true; +module_param(kvmclock_periodic_sync, bool, S_IRUGO); + +/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ +static u32 __read_mostly tsc_tolerance_ppm = 250; +module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); + +/* + * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables + * adaptive tuning starting from default advancement of 1000ns. '0' disables + * advancement entirely. Any other value is used as-is and disables adaptive + * tuning, i.e. allows privileged userspace to set an exact advancement time. + */ +static int __read_mostly lapic_timer_advance_ns = -1; +module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); + +static bool __read_mostly vector_hashing = true; +module_param(vector_hashing, bool, S_IRUGO); + +bool __read_mostly enable_vmware_backdoor = false; +module_param(enable_vmware_backdoor, bool, S_IRUGO); +EXPORT_SYMBOL_GPL(enable_vmware_backdoor); + +/* + * Flags to manipulate forced emulation behavior (any non-zero value will + * enable forced emulation). + */ +#define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) +static int __read_mostly force_emulation_prefix; +module_param(force_emulation_prefix, int, 0644); + +int __read_mostly pi_inject_timer = -1; +module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); + +/* Enable/disable PMU virtualization */ +bool __read_mostly enable_pmu = true; +EXPORT_SYMBOL_GPL(enable_pmu); +module_param(enable_pmu, bool, 0444); + +bool __read_mostly eager_page_split = true; +module_param(eager_page_split, bool, 0644); + +/* Enable/disable SMT_RSB bug mitigation */ +static bool __read_mostly mitigate_smt_rsb; +module_param(mitigate_smt_rsb, bool, 0444); + +/* + * Restoring the host value for MSRs that are only consumed when running in + * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU + * returns to userspace, i.e. the kernel can run with the guest's value. + */ +#define KVM_MAX_NR_USER_RETURN_MSRS 16 + +struct kvm_user_return_msrs { + struct user_return_notifier urn; + bool registered; + struct kvm_user_return_msr_values { + u64 host; + u64 curr; + } values[KVM_MAX_NR_USER_RETURN_MSRS]; +}; + +u32 __read_mostly kvm_nr_uret_msrs; +EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); +static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; +static struct kvm_user_return_msrs __percpu *user_return_msrs; + +#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ + | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ + | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ + | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) + +u64 __read_mostly host_efer; +EXPORT_SYMBOL_GPL(host_efer); + +bool __read_mostly allow_smaller_maxphyaddr = 0; +EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); + +bool __read_mostly enable_apicv = true; +EXPORT_SYMBOL_GPL(enable_apicv); + +u64 __read_mostly host_xss; +EXPORT_SYMBOL_GPL(host_xss); + +u64 __read_mostly host_arch_capabilities; +EXPORT_SYMBOL_GPL(host_arch_capabilities); + +const struct _kvm_stats_desc kvm_vm_stats_desc[] = { + KVM_GENERIC_VM_STATS(), + STATS_DESC_COUNTER(VM, mmu_shadow_zapped), + STATS_DESC_COUNTER(VM, mmu_pte_write), + STATS_DESC_COUNTER(VM, mmu_pde_zapped), + STATS_DESC_COUNTER(VM, mmu_flooded), + STATS_DESC_COUNTER(VM, mmu_recycled), + STATS_DESC_COUNTER(VM, mmu_cache_miss), + STATS_DESC_ICOUNTER(VM, mmu_unsync), + STATS_DESC_ICOUNTER(VM, pages_4k), + STATS_DESC_ICOUNTER(VM, pages_2m), + STATS_DESC_ICOUNTER(VM, pages_1g), + STATS_DESC_ICOUNTER(VM, nx_lpage_splits), + STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), + STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) +}; + +const struct kvm_stats_header kvm_vm_stats_header = { + .name_size = KVM_STATS_NAME_SIZE, + .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), + .id_offset = sizeof(struct kvm_stats_header), + .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, + .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + + sizeof(kvm_vm_stats_desc), +}; + +const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { + KVM_GENERIC_VCPU_STATS(), + STATS_DESC_COUNTER(VCPU, pf_taken), + STATS_DESC_COUNTER(VCPU, pf_fixed), + STATS_DESC_COUNTER(VCPU, pf_emulate), + STATS_DESC_COUNTER(VCPU, pf_spurious), + STATS_DESC_COUNTER(VCPU, pf_fast), + STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), + STATS_DESC_COUNTER(VCPU, pf_guest), + STATS_DESC_COUNTER(VCPU, tlb_flush), + STATS_DESC_COUNTER(VCPU, invlpg), + STATS_DESC_COUNTER(VCPU, exits), + STATS_DESC_COUNTER(VCPU, io_exits), + STATS_DESC_COUNTER(VCPU, mmio_exits), + STATS_DESC_COUNTER(VCPU, signal_exits), + STATS_DESC_COUNTER(VCPU, irq_window_exits), + STATS_DESC_COUNTER(VCPU, nmi_window_exits), + STATS_DESC_COUNTER(VCPU, l1d_flush), + STATS_DESC_COUNTER(VCPU, halt_exits), + STATS_DESC_COUNTER(VCPU, request_irq_exits), + STATS_DESC_COUNTER(VCPU, irq_exits), + STATS_DESC_COUNTER(VCPU, host_state_reload), + STATS_DESC_COUNTER(VCPU, fpu_reload), + STATS_DESC_COUNTER(VCPU, insn_emulation), + STATS_DESC_COUNTER(VCPU, insn_emulation_fail), + STATS_DESC_COUNTER(VCPU, hypercalls), + STATS_DESC_COUNTER(VCPU, irq_injections), + STATS_DESC_COUNTER(VCPU, nmi_injections), + STATS_DESC_COUNTER(VCPU, req_event), + STATS_DESC_COUNTER(VCPU, nested_run), + STATS_DESC_COUNTER(VCPU, directed_yield_attempted), + STATS_DESC_COUNTER(VCPU, directed_yield_successful), + STATS_DESC_COUNTER(VCPU, preemption_reported), + STATS_DESC_COUNTER(VCPU, preemption_other), + STATS_DESC_IBOOLEAN(VCPU, guest_mode), + STATS_DESC_COUNTER(VCPU, notify_window_exits), +}; + +const struct kvm_stats_header kvm_vcpu_stats_header = { + .name_size = KVM_STATS_NAME_SIZE, + .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), + .id_offset = sizeof(struct kvm_stats_header), + .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, + .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + + sizeof(kvm_vcpu_stats_desc), +}; + +u64 __read_mostly host_xcr0; + +static struct kmem_cache *x86_emulator_cache; + +/* + * When called, it means the previous get/set msr reached an invalid msr. + * Return true if we want to ignore/silent this failed msr access. + */ +static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) +{ + const char *op = write ? "wrmsr" : "rdmsr"; + + if (ignore_msrs) { + if (report_ignored_msrs) + kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", + op, msr, data); + /* Mask the error */ + return true; + } else { + kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", + op, msr, data); + return false; + } +} + +static struct kmem_cache *kvm_alloc_emulator_cache(void) +{ + unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); + unsigned int size = sizeof(struct x86_emulate_ctxt); + + return kmem_cache_create_usercopy("x86_emulator", size, + __alignof__(struct x86_emulate_ctxt), + SLAB_ACCOUNT, useroffset, + size - useroffset, NULL); +} + +static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); + +static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) +{ + int i; + for (i = 0; i < ASYNC_PF_PER_VCPU; i++) + vcpu->arch.apf.gfns[i] = ~0; +} + +static void kvm_on_user_return(struct user_return_notifier *urn) +{ + unsigned slot; + struct kvm_user_return_msrs *msrs + = container_of(urn, struct kvm_user_return_msrs, urn); + struct kvm_user_return_msr_values *values; + unsigned long flags; + + /* + * Disabling irqs at this point since the following code could be + * interrupted and executed through kvm_arch_hardware_disable() + */ + local_irq_save(flags); + if (msrs->registered) { + msrs->registered = false; + user_return_notifier_unregister(urn); + } + local_irq_restore(flags); + for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { + values = &msrs->values[slot]; + if (values->host != values->curr) { + wrmsrl(kvm_uret_msrs_list[slot], values->host); + values->curr = values->host; + } + } +} + +static int kvm_probe_user_return_msr(u32 msr) +{ + u64 val; + int ret; + + preempt_disable(); + ret = rdmsrl_safe(msr, &val); + if (ret) + goto out; + ret = wrmsrl_safe(msr, val); +out: + preempt_enable(); + return ret; +} + +int kvm_add_user_return_msr(u32 msr) +{ + BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); + + if (kvm_probe_user_return_msr(msr)) + return -1; + + kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; + return kvm_nr_uret_msrs++; +} +EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); + +int kvm_find_user_return_msr(u32 msr) +{ + int i; + + for (i = 0; i < kvm_nr_uret_msrs; ++i) { + if (kvm_uret_msrs_list[i] == msr) + return i; + } + return -1; +} +EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); + +static void kvm_user_return_msr_cpu_online(void) +{ + unsigned int cpu = smp_processor_id(); + struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); + u64 value; + int i; + + for (i = 0; i < kvm_nr_uret_msrs; ++i) { + rdmsrl_safe(kvm_uret_msrs_list[i], &value); + msrs->values[i].host = value; + msrs->values[i].curr = value; + } +} + +int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) +{ + unsigned int cpu = smp_processor_id(); + struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); + int err; + + value = (value & mask) | (msrs->values[slot].host & ~mask); + if (value == msrs->values[slot].curr) + return 0; + err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); + if (err) + return 1; + + msrs->values[slot].curr = value; + if (!msrs->registered) { + msrs->urn.on_user_return = kvm_on_user_return; + user_return_notifier_register(&msrs->urn); + msrs->registered = true; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); + +static void drop_user_return_notifiers(void) +{ + unsigned int cpu = smp_processor_id(); + struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); + + if (msrs->registered) + kvm_on_user_return(&msrs->urn); +} + +u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.apic_base; +} + +enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) +{ + return kvm_apic_mode(kvm_get_apic_base(vcpu)); +} +EXPORT_SYMBOL_GPL(kvm_get_apic_mode); + +int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); + enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); + u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | + (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); + + if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) + return 1; + if (!msr_info->host_initiated) { + if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) + return 1; + if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) + return 1; + } + + kvm_lapic_set_base(vcpu, msr_info->data); + kvm_recalculate_apic_map(vcpu->kvm); + return 0; +} + +/* + * Handle a fault on a hardware virtualization (VMX or SVM) instruction. + * + * Hardware virtualization extension instructions may fault if a reboot turns + * off virtualization while processes are running. Usually after catching the + * fault we just panic; during reboot instead the instruction is ignored. + */ +noinstr void kvm_spurious_fault(void) +{ + /* Fault while not rebooting. We want the trace. */ + BUG_ON(!kvm_rebooting); +} +EXPORT_SYMBOL_GPL(kvm_spurious_fault); + +#define EXCPT_BENIGN 0 +#define EXCPT_CONTRIBUTORY 1 +#define EXCPT_PF 2 + +static int exception_class(int vector) +{ + switch (vector) { + case PF_VECTOR: + return EXCPT_PF; + case DE_VECTOR: + case TS_VECTOR: + case NP_VECTOR: + case SS_VECTOR: + case GP_VECTOR: + return EXCPT_CONTRIBUTORY; + default: + break; + } + return EXCPT_BENIGN; +} + +#define EXCPT_FAULT 0 +#define EXCPT_TRAP 1 +#define EXCPT_ABORT 2 +#define EXCPT_INTERRUPT 3 +#define EXCPT_DB 4 + +static int exception_type(int vector) +{ + unsigned int mask; + + if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) + return EXCPT_INTERRUPT; + + mask = 1 << vector; + + /* + * #DBs can be trap-like or fault-like, the caller must check other CPU + * state, e.g. DR6, to determine whether a #DB is a trap or fault. + */ + if (mask & (1 << DB_VECTOR)) + return EXCPT_DB; + + if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) + return EXCPT_TRAP; + + if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) + return EXCPT_ABORT; + + /* Reserved exceptions will result in fault */ + return EXCPT_FAULT; +} + +void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, + struct kvm_queued_exception *ex) +{ + if (!ex->has_payload) + return; + + switch (ex->vector) { + case DB_VECTOR: + /* + * "Certain debug exceptions may clear bit 0-3. The + * remaining contents of the DR6 register are never + * cleared by the processor". + */ + vcpu->arch.dr6 &= ~DR_TRAP_BITS; + /* + * In order to reflect the #DB exception payload in guest + * dr6, three components need to be considered: active low + * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, + * DR6_BS and DR6_BT) + * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. + * In the target guest dr6: + * FIXED_1 bits should always be set. + * Active low bits should be cleared if 1-setting in payload. + * Active high bits should be set if 1-setting in payload. + * + * Note, the payload is compatible with the pending debug + * exceptions/exit qualification under VMX, that active_low bits + * are active high in payload. + * So they need to be flipped for DR6. + */ + vcpu->arch.dr6 |= DR6_ACTIVE_LOW; + vcpu->arch.dr6 |= ex->payload; + vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; + + /* + * The #DB payload is defined as compatible with the 'pending + * debug exceptions' field under VMX, not DR6. While bit 12 is + * defined in the 'pending debug exceptions' field (enabled + * breakpoint), it is reserved and must be zero in DR6. + */ + vcpu->arch.dr6 &= ~BIT(12); + break; + case PF_VECTOR: + vcpu->arch.cr2 = ex->payload; + break; + } + + ex->has_payload = false; + ex->payload = 0; +} +EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); + +static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, + bool has_error_code, u32 error_code, + bool has_payload, unsigned long payload) +{ + struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; + + ex->vector = vector; + ex->injected = false; + ex->pending = true; + ex->has_error_code = has_error_code; + ex->error_code = error_code; + ex->has_payload = has_payload; + ex->payload = payload; +} + +/* Forcibly leave the nested mode in cases like a vCPU reset */ +static void kvm_leave_nested(struct kvm_vcpu *vcpu) +{ + kvm_x86_ops.nested_ops->leave_nested(vcpu); +} + +static void kvm_multiple_exception(struct kvm_vcpu *vcpu, + unsigned nr, bool has_error, u32 error_code, + bool has_payload, unsigned long payload, bool reinject) +{ + u32 prev_nr; + int class1, class2; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + /* + * If the exception is destined for L2 and isn't being reinjected, + * morph it to a VM-Exit if L1 wants to intercept the exception. A + * previously injected exception is not checked because it was checked + * when it was original queued, and re-checking is incorrect if _L1_ + * injected the exception, in which case it's exempt from interception. + */ + if (!reinject && is_guest_mode(vcpu) && + kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { + kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, + has_payload, payload); + return; + } + + if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { + queue: + if (reinject) { + /* + * On VM-Entry, an exception can be pending if and only + * if event injection was blocked by nested_run_pending. + * In that case, however, vcpu_enter_guest() requests an + * immediate exit, and the guest shouldn't proceed far + * enough to need reinjection. + */ + WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); + vcpu->arch.exception.injected = true; + if (WARN_ON_ONCE(has_payload)) { + /* + * A reinjected event has already + * delivered its payload. + */ + has_payload = false; + payload = 0; + } + } else { + vcpu->arch.exception.pending = true; + vcpu->arch.exception.injected = false; + } + vcpu->arch.exception.has_error_code = has_error; + vcpu->arch.exception.vector = nr; + vcpu->arch.exception.error_code = error_code; + vcpu->arch.exception.has_payload = has_payload; + vcpu->arch.exception.payload = payload; + if (!is_guest_mode(vcpu)) + kvm_deliver_exception_payload(vcpu, + &vcpu->arch.exception); + return; + } + + /* to check exception */ + prev_nr = vcpu->arch.exception.vector; + if (prev_nr == DF_VECTOR) { + /* triple fault -> shutdown */ + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + class1 = exception_class(prev_nr); + class2 = exception_class(nr); + if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || + (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { + /* + * Synthesize #DF. Clear the previously injected or pending + * exception so as not to incorrectly trigger shutdown. + */ + vcpu->arch.exception.injected = false; + vcpu->arch.exception.pending = false; + + kvm_queue_exception_e(vcpu, DF_VECTOR, 0); + } else { + /* replace previous exception with a new one in a hope + that instruction re-execution will regenerate lost + exception */ + goto queue; + } +} + +void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) +{ + kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); +} +EXPORT_SYMBOL_GPL(kvm_queue_exception); + +void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) +{ + kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); +} +EXPORT_SYMBOL_GPL(kvm_requeue_exception); + +void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, + unsigned long payload) +{ + kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); +} +EXPORT_SYMBOL_GPL(kvm_queue_exception_p); + +static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, + u32 error_code, unsigned long payload) +{ + kvm_multiple_exception(vcpu, nr, true, error_code, + true, payload, false); +} + +int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) +{ + if (err) + kvm_inject_gp(vcpu, 0); + else + return kvm_skip_emulated_instruction(vcpu); + + return 1; +} +EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); + +static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) +{ + if (err) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | + EMULTYPE_COMPLETE_USER_EXIT); +} + +void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) +{ + ++vcpu->stat.pf_guest; + + /* + * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of + * whether or not L1 wants to intercept "regular" #PF. + */ + if (is_guest_mode(vcpu) && fault->async_page_fault) + kvm_queue_exception_vmexit(vcpu, PF_VECTOR, + true, fault->error_code, + true, fault->address); + else + kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, + fault->address); +} + +void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, + struct x86_exception *fault) +{ + struct kvm_mmu *fault_mmu; + WARN_ON_ONCE(fault->vector != PF_VECTOR); + + fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : + vcpu->arch.walk_mmu; + + /* + * Invalidate the TLB entry for the faulting address, if it exists, + * else the access will fault indefinitely (and to emulate hardware). + */ + if ((fault->error_code & PFERR_PRESENT_MASK) && + !(fault->error_code & PFERR_RSVD_MASK)) + kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, + KVM_MMU_ROOT_CURRENT); + + fault_mmu->inject_page_fault(vcpu, fault); +} +EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); + +void kvm_inject_nmi(struct kvm_vcpu *vcpu) +{ + atomic_inc(&vcpu->arch.nmi_queued); + kvm_make_request(KVM_REQ_NMI, vcpu); +} + +void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) +{ + kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); +} +EXPORT_SYMBOL_GPL(kvm_queue_exception_e); + +void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) +{ + kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); +} +EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); + +/* + * Checks if cpl <= required_cpl; if true, return true. Otherwise queue + * a #GP and return false. + */ +bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) +{ + if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) + return true; + kvm_queue_exception_e(vcpu, GP_VECTOR, 0); + return false; +} + +bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) +{ + if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) + return true; + + kvm_queue_exception(vcpu, UD_VECTOR); + return false; +} +EXPORT_SYMBOL_GPL(kvm_require_dr); + +static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); +} + +/* + * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. + */ +int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; + gpa_t real_gpa; + int i; + int ret; + u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; + + /* + * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated + * to an L1 GPA. + */ + real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), + PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); + if (real_gpa == INVALID_GPA) + return 0; + + /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ + ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, + cr3 & GENMASK(11, 5), sizeof(pdpte)); + if (ret < 0) + return 0; + + for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { + if ((pdpte[i] & PT_PRESENT_MASK) && + (pdpte[i] & pdptr_rsvd_bits(vcpu))) { + return 0; + } + } + + /* + * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. + * Shadow page roots need to be reconstructed instead. + */ + if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) + kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); + + memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); + kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); + kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); + vcpu->arch.pdptrs_from_userspace = false; + + return 1; +} +EXPORT_SYMBOL_GPL(load_pdptrs); + +static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) +{ +#ifdef CONFIG_X86_64 + if (cr0 & 0xffffffff00000000UL) + return false; +#endif + + if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) + return false; + + if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) + return false; + + return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); +} + +void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) +{ + /* + * CR0.WP is incorporated into the MMU role, but only for non-nested, + * indirect shadow MMUs. If paging is disabled, no updates are needed + * as there are no permission bits to emulate. If TDP is enabled, the + * MMU's metadata needs to be updated, e.g. so that emulating guest + * translations does the right thing, but there's no need to unload the + * root as CR0.WP doesn't affect SPTEs. + */ + if ((cr0 ^ old_cr0) == X86_CR0_WP) { + if (!(cr0 & X86_CR0_PG)) + return; + + if (tdp_enabled) { + kvm_init_mmu(vcpu); + return; + } + } + + if ((cr0 ^ old_cr0) & X86_CR0_PG) { + kvm_clear_async_pf_completion_queue(vcpu); + kvm_async_pf_hash_reset(vcpu); + + /* + * Clearing CR0.PG is defined to flush the TLB from the guest's + * perspective. + */ + if (!(cr0 & X86_CR0_PG)) + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + } + + if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) + kvm_mmu_reset_context(vcpu); + + if (((cr0 ^ old_cr0) & X86_CR0_CD) && + kvm_arch_has_noncoherent_dma(vcpu->kvm) && + !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) + kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); +} +EXPORT_SYMBOL_GPL(kvm_post_set_cr0); + +int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) +{ + unsigned long old_cr0 = kvm_read_cr0(vcpu); + + if (!kvm_is_valid_cr0(vcpu, cr0)) + return 1; + + cr0 |= X86_CR0_ET; + + /* Write to CR0 reserved bits are ignored, even on Intel. */ + cr0 &= ~CR0_RESERVED_BITS; + +#ifdef CONFIG_X86_64 + if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && + (cr0 & X86_CR0_PG)) { + int cs_db, cs_l; + + if (!is_pae(vcpu)) + return 1; + static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); + if (cs_l) + return 1; + } +#endif + if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && + is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && + !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) + return 1; + + if (!(cr0 & X86_CR0_PG) && + (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) + return 1; + + static_call(kvm_x86_set_cr0)(vcpu, cr0); + + kvm_post_set_cr0(vcpu, old_cr0, cr0); + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_cr0); + +void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) +{ + (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); +} +EXPORT_SYMBOL_GPL(kvm_lmsw); + +void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) +{ + if (vcpu->arch.guest_state_protected) + return; + + if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { + + if (vcpu->arch.xcr0 != host_xcr0) + xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); + + if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && + vcpu->arch.ia32_xss != host_xss) + wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); + } + + if (cpu_feature_enabled(X86_FEATURE_PKU) && + vcpu->arch.pkru != vcpu->arch.host_pkru && + ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || + kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) + write_pkru(vcpu->arch.pkru); +} +EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); + +void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) +{ + if (vcpu->arch.guest_state_protected) + return; + + if (cpu_feature_enabled(X86_FEATURE_PKU) && + ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || + kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { + vcpu->arch.pkru = rdpkru(); + if (vcpu->arch.pkru != vcpu->arch.host_pkru) + write_pkru(vcpu->arch.host_pkru); + } + + if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { + + if (vcpu->arch.xcr0 != host_xcr0) + xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); + + if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && + vcpu->arch.ia32_xss != host_xss) + wrmsrl(MSR_IA32_XSS, host_xss); + } + +} +EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); + +#ifdef CONFIG_X86_64 +static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; +} +#endif + +static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) +{ + u64 xcr0 = xcr; + u64 old_xcr0 = vcpu->arch.xcr0; + u64 valid_bits; + + /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ + if (index != XCR_XFEATURE_ENABLED_MASK) + return 1; + if (!(xcr0 & XFEATURE_MASK_FP)) + return 1; + if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) + return 1; + + /* + * Do not allow the guest to set bits that we do not support + * saving. However, xcr0 bit 0 is always set, even if the + * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). + */ + valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; + if (xcr0 & ~valid_bits) + return 1; + + if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != + (!(xcr0 & XFEATURE_MASK_BNDCSR))) + return 1; + + if (xcr0 & XFEATURE_MASK_AVX512) { + if (!(xcr0 & XFEATURE_MASK_YMM)) + return 1; + if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) + return 1; + } + + if ((xcr0 & XFEATURE_MASK_XTILE) && + ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) + return 1; + + vcpu->arch.xcr0 = xcr0; + + if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) + kvm_update_cpuid_runtime(vcpu); + return 0; +} + +int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) +{ + /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ + if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || + __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + return kvm_skip_emulated_instruction(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); + +bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + if (cr4 & cr4_reserved_bits) + return false; + + if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) + return false; + + return true; +} +EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); + +static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + return __kvm_is_valid_cr4(vcpu, cr4) && + static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); +} + +void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) +{ + if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) + kvm_mmu_reset_context(vcpu); + + /* + * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB + * according to the SDM; however, stale prev_roots could be reused + * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we + * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST + * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, + * so fall through. + */ + if (!tdp_enabled && + (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) + kvm_mmu_unload(vcpu); + + /* + * The TLB has to be flushed for all PCIDs if any of the following + * (architecturally required) changes happen: + * - CR4.PCIDE is changed from 1 to 0 + * - CR4.PGE is toggled + * + * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. + */ + if (((cr4 ^ old_cr4) & X86_CR4_PGE) || + (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + + /* + * The TLB has to be flushed for the current PCID if any of the + * following (architecturally required) changes happen: + * - CR4.SMEP is changed from 0 to 1 + * - CR4.PAE is toggled + */ + else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || + ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) + kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); + +} +EXPORT_SYMBOL_GPL(kvm_post_set_cr4); + +int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + unsigned long old_cr4 = kvm_read_cr4(vcpu); + + if (!kvm_is_valid_cr4(vcpu, cr4)) + return 1; + + if (is_long_mode(vcpu)) { + if (!(cr4 & X86_CR4_PAE)) + return 1; + if ((cr4 ^ old_cr4) & X86_CR4_LA57) + return 1; + } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) + && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) + && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) + return 1; + + if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { + /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ + if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) + return 1; + } + + static_call(kvm_x86_set_cr4)(vcpu, cr4); + + kvm_post_set_cr4(vcpu, old_cr4, cr4); + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_cr4); + +static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) +{ + struct kvm_mmu *mmu = vcpu->arch.mmu; + unsigned long roots_to_free = 0; + int i; + + /* + * MOV CR3 and INVPCID are usually not intercepted when using TDP, but + * this is reachable when running EPT=1 and unrestricted_guest=0, and + * also via the emulator. KVM's TDP page tables are not in the scope of + * the invalidation, but the guest's TLB entries need to be flushed as + * the CPU may have cached entries in its TLB for the target PCID. + */ + if (unlikely(tdp_enabled)) { + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + return; + } + + /* + * If neither the current CR3 nor any of the prev_roots use the given + * PCID, then nothing needs to be done here because a resync will + * happen anyway before switching to any other CR3. + */ + if (kvm_get_active_pcid(vcpu) == pcid) { + kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); + } + + /* + * If PCID is disabled, there is no need to free prev_roots even if the + * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB + * with PCIDE=0. + */ + if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) + return; + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) + if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) + roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); + + kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); +} + +int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) +{ + bool skip_tlb_flush = false; + unsigned long pcid = 0; +#ifdef CONFIG_X86_64 + if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { + skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; + cr3 &= ~X86_CR3_PCID_NOFLUSH; + pcid = cr3 & X86_CR3_PCID_MASK; + } +#endif + + /* PDPTRs are always reloaded for PAE paging. */ + if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) + goto handle_tlb_flush; + + /* + * Do not condition the GPA check on long mode, this helper is used to + * stuff CR3, e.g. for RSM emulation, and there is no guarantee that + * the current vCPU mode is accurate. + */ + if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) + return 1; + + if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) + return 1; + + if (cr3 != kvm_read_cr3(vcpu)) + kvm_mmu_new_pgd(vcpu, cr3); + + vcpu->arch.cr3 = cr3; + kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); + /* Do not call post_set_cr3, we do not get here for confidential guests. */ + +handle_tlb_flush: + /* + * A load of CR3 that flushes the TLB flushes only the current PCID, + * even if PCID is disabled, in which case PCID=0 is flushed. It's a + * moot point in the end because _disabling_ PCID will flush all PCIDs, + * and it's impossible to use a non-zero PCID when PCID is disabled, + * i.e. only PCID=0 can be relevant. + */ + if (!skip_tlb_flush) + kvm_invalidate_pcid(vcpu, pcid); + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_cr3); + +int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) +{ + if (cr8 & CR8_RESERVED_BITS) + return 1; + if (lapic_in_kernel(vcpu)) + kvm_lapic_set_tpr(vcpu, cr8); + else + vcpu->arch.cr8 = cr8; + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_cr8); + +unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) +{ + if (lapic_in_kernel(vcpu)) + return kvm_lapic_get_cr8(vcpu); + else + return vcpu->arch.cr8; +} +EXPORT_SYMBOL_GPL(kvm_get_cr8); + +static void kvm_update_dr0123(struct kvm_vcpu *vcpu) +{ + int i; + + if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { + for (i = 0; i < KVM_NR_DB_REGS; i++) + vcpu->arch.eff_db[i] = vcpu->arch.db[i]; + } +} + +void kvm_update_dr7(struct kvm_vcpu *vcpu) +{ + unsigned long dr7; + + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) + dr7 = vcpu->arch.guest_debug_dr7; + else + dr7 = vcpu->arch.dr7; + static_call(kvm_x86_set_dr7)(vcpu, dr7); + vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; + if (dr7 & DR7_BP_EN_MASK) + vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; +} +EXPORT_SYMBOL_GPL(kvm_update_dr7); + +static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) +{ + u64 fixed = DR6_FIXED_1; + + if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) + fixed |= DR6_RTM; + + if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) + fixed |= DR6_BUS_LOCK; + return fixed; +} + +int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) +{ + size_t size = ARRAY_SIZE(vcpu->arch.db); + + switch (dr) { + case 0 ... 3: + vcpu->arch.db[array_index_nospec(dr, size)] = val; + if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) + vcpu->arch.eff_db[dr] = val; + break; + case 4: + case 6: + if (!kvm_dr6_valid(val)) + return 1; /* #GP */ + vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); + break; + case 5: + default: /* 7 */ + if (!kvm_dr7_valid(val)) + return 1; /* #GP */ + vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; + kvm_update_dr7(vcpu); + break; + } + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_dr); + +void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) +{ + size_t size = ARRAY_SIZE(vcpu->arch.db); + + switch (dr) { + case 0 ... 3: + *val = vcpu->arch.db[array_index_nospec(dr, size)]; + break; + case 4: + case 6: + *val = vcpu->arch.dr6; + break; + case 5: + default: /* 7 */ + *val = vcpu->arch.dr7; + break; + } +} +EXPORT_SYMBOL_GPL(kvm_get_dr); + +int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) +{ + u32 ecx = kvm_rcx_read(vcpu); + u64 data; + + if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + kvm_rax_write(vcpu, (u32)data); + kvm_rdx_write(vcpu, data >> 32); + return kvm_skip_emulated_instruction(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); + +/* + * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track + * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, + * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that + * require host support, i.e. should be probed via RDMSR. emulated_msrs holds + * MSRs that KVM emulates without strictly requiring host support. + * msr_based_features holds MSRs that enumerate features, i.e. are effectively + * CPUID leafs. Note, msr_based_features isn't mutually exclusive with + * msrs_to_save and emulated_msrs. + */ + +static const u32 msrs_to_save_base[] = { + MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, + MSR_STAR, +#ifdef CONFIG_X86_64 + MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, +#endif + MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, + MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, + MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, + MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, + MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, + MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, + MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, + MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, + MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, + MSR_IA32_UMWAIT_CONTROL, + + MSR_IA32_XFD, MSR_IA32_XFD_ERR, +}; + +static const u32 msrs_to_save_pmu[] = { + MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, + MSR_ARCH_PERFMON_FIXED_CTR0 + 2, + MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, + MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, + MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, + + /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ + MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, + MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, + MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, + MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, + MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, + MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, + MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, + MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, + + MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, + MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, + + /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ + MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, + MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, + MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, + MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, + + MSR_AMD64_PERF_CNTR_GLOBAL_CTL, + MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, + MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, +}; + +static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + + ARRAY_SIZE(msrs_to_save_pmu)]; +static unsigned num_msrs_to_save; + +static const u32 emulated_msrs_all[] = { + MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, + MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, + HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, + HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, + HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, + HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, + HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, + HV_X64_MSR_RESET, + HV_X64_MSR_VP_INDEX, + HV_X64_MSR_VP_RUNTIME, + HV_X64_MSR_SCONTROL, + HV_X64_MSR_STIMER0_CONFIG, + HV_X64_MSR_VP_ASSIST_PAGE, + HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, + HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, + HV_X64_MSR_SYNDBG_OPTIONS, + HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, + HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, + HV_X64_MSR_SYNDBG_PENDING_BUFFER, + + MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, + MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, + + MSR_IA32_TSC_ADJUST, + MSR_IA32_TSC_DEADLINE, + MSR_IA32_ARCH_CAPABILITIES, + MSR_IA32_PERF_CAPABILITIES, + MSR_IA32_MISC_ENABLE, + MSR_IA32_MCG_STATUS, + MSR_IA32_MCG_CTL, + MSR_IA32_MCG_EXT_CTL, + MSR_IA32_SMBASE, + MSR_SMI_COUNT, + MSR_PLATFORM_INFO, + MSR_MISC_FEATURES_ENABLES, + MSR_AMD64_VIRT_SPEC_CTRL, + MSR_AMD64_TSC_RATIO, + MSR_IA32_POWER_CTL, + MSR_IA32_UCODE_REV, + + /* + * KVM always supports the "true" VMX control MSRs, even if the host + * does not. The VMX MSRs as a whole are considered "emulated" as KVM + * doesn't strictly require them to exist in the host (ignoring that + * KVM would refuse to load in the first place if the core set of MSRs + * aren't supported). + */ + MSR_IA32_VMX_BASIC, + MSR_IA32_VMX_TRUE_PINBASED_CTLS, + MSR_IA32_VMX_TRUE_PROCBASED_CTLS, + MSR_IA32_VMX_TRUE_EXIT_CTLS, + MSR_IA32_VMX_TRUE_ENTRY_CTLS, + MSR_IA32_VMX_MISC, + MSR_IA32_VMX_CR0_FIXED0, + MSR_IA32_VMX_CR4_FIXED0, + MSR_IA32_VMX_VMCS_ENUM, + MSR_IA32_VMX_PROCBASED_CTLS2, + MSR_IA32_VMX_EPT_VPID_CAP, + MSR_IA32_VMX_VMFUNC, + + MSR_K7_HWCR, + MSR_KVM_POLL_CONTROL, +}; + +static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; +static unsigned num_emulated_msrs; + +/* + * List of MSRs that control the existence of MSR-based features, i.e. MSRs + * that are effectively CPUID leafs. VMX MSRs are also included in the set of + * feature MSRs, but are handled separately to allow expedited lookups. + */ +static const u32 msr_based_features_all_except_vmx[] = { + MSR_AMD64_DE_CFG, + MSR_IA32_UCODE_REV, + MSR_IA32_ARCH_CAPABILITIES, + MSR_IA32_PERF_CAPABILITIES, +}; + +static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + + (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; +static unsigned int num_msr_based_features; + +/* + * All feature MSRs except uCode revID, which tracks the currently loaded uCode + * patch, are immutable once the vCPU model is defined. + */ +static bool kvm_is_immutable_feature_msr(u32 msr) +{ + int i; + + if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) + return true; + + for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { + if (msr == msr_based_features_all_except_vmx[i]) + return msr != MSR_IA32_UCODE_REV; + } + + return false; +} + +/* + * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM + * does not yet virtualize. These include: + * 10 - MISC_PACKAGE_CTRLS + * 11 - ENERGY_FILTERING_CTL + * 12 - DOITM + * 18 - FB_CLEAR_CTRL + * 21 - XAPIC_DISABLE_STATUS + * 23 - OVERCLOCKING_STATUS + */ + +#define KVM_SUPPORTED_ARCH_CAP \ + (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ + ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ + ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ + ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ + ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) + +static u64 kvm_get_arch_capabilities(void) +{ + u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; + + /* + * If nx_huge_pages is enabled, KVM's shadow paging will ensure that + * the nested hypervisor runs with NX huge pages. If it is not, + * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other + * L1 guests, so it need not worry about its own (L2) guests. + */ + data |= ARCH_CAP_PSCHANGE_MC_NO; + + /* + * If we're doing cache flushes (either "always" or "cond") + * we will do one whenever the guest does a vmlaunch/vmresume. + * If an outer hypervisor is doing the cache flush for us + * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that + * capability to the guest too, and if EPT is disabled we're not + * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will + * require a nested hypervisor to do a flush of its own. + */ + if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) + data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; + + if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) + data |= ARCH_CAP_RDCL_NO; + if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) + data |= ARCH_CAP_SSB_NO; + if (!boot_cpu_has_bug(X86_BUG_MDS)) + data |= ARCH_CAP_MDS_NO; + + if (!boot_cpu_has(X86_FEATURE_RTM)) { + /* + * If RTM=0 because the kernel has disabled TSX, the host might + * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 + * and therefore knows that there cannot be TAA) but keep + * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, + * and we want to allow migrating those guests to tsx=off hosts. + */ + data &= ~ARCH_CAP_TAA_NO; + } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { + data |= ARCH_CAP_TAA_NO; + } else { + /* + * Nothing to do here; we emulate TSX_CTRL if present on the + * host so the guest can choose between disabling TSX or + * using VERW to clear CPU buffers. + */ + } + + if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) + data |= ARCH_CAP_GDS_NO; + + return data; +} + +static int kvm_get_msr_feature(struct kvm_msr_entry *msr) +{ + switch (msr->index) { + case MSR_IA32_ARCH_CAPABILITIES: + msr->data = kvm_get_arch_capabilities(); + break; + case MSR_IA32_PERF_CAPABILITIES: + msr->data = kvm_caps.supported_perf_cap; + break; + case MSR_IA32_UCODE_REV: + rdmsrl_safe(msr->index, &msr->data); + break; + default: + return static_call(kvm_x86_get_msr_feature)(msr); + } + return 0; +} + +static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) +{ + struct kvm_msr_entry msr; + int r; + + msr.index = index; + r = kvm_get_msr_feature(&msr); + + if (r == KVM_MSR_RET_INVALID) { + /* Unconditionally clear the output for simplicity */ + *data = 0; + if (kvm_msr_ignored_check(index, 0, false)) + r = 0; + } + + if (r) + return r; + + *data = msr.data; + + return 0; +} + +static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) +{ + if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) + return false; + + if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) + return false; + + if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) + return false; + + if (efer & (EFER_LME | EFER_LMA) && + !guest_cpuid_has(vcpu, X86_FEATURE_LM)) + return false; + + if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) + return false; + + return true; + +} +bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) +{ + if (efer & efer_reserved_bits) + return false; + + return __kvm_valid_efer(vcpu, efer); +} +EXPORT_SYMBOL_GPL(kvm_valid_efer); + +static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + u64 old_efer = vcpu->arch.efer; + u64 efer = msr_info->data; + int r; + + if (efer & efer_reserved_bits) + return 1; + + if (!msr_info->host_initiated) { + if (!__kvm_valid_efer(vcpu, efer)) + return 1; + + if (is_paging(vcpu) && + (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) + return 1; + } + + efer &= ~EFER_LMA; + efer |= vcpu->arch.efer & EFER_LMA; + + r = static_call(kvm_x86_set_efer)(vcpu, efer); + if (r) { + WARN_ON(r > 0); + return r; + } + + if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) + kvm_mmu_reset_context(vcpu); + + return 0; +} + +void kvm_enable_efer_bits(u64 mask) +{ + efer_reserved_bits &= ~mask; +} +EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); + +bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) +{ + struct kvm_x86_msr_filter *msr_filter; + struct msr_bitmap_range *ranges; + struct kvm *kvm = vcpu->kvm; + bool allowed; + int idx; + u32 i; + + /* x2APIC MSRs do not support filtering. */ + if (index >= 0x800 && index <= 0x8ff) + return true; + + idx = srcu_read_lock(&kvm->srcu); + + msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); + if (!msr_filter) { + allowed = true; + goto out; + } + + allowed = msr_filter->default_allow; + ranges = msr_filter->ranges; + + for (i = 0; i < msr_filter->count; i++) { + u32 start = ranges[i].base; + u32 end = start + ranges[i].nmsrs; + u32 flags = ranges[i].flags; + unsigned long *bitmap = ranges[i].bitmap; + + if ((index >= start) && (index < end) && (flags & type)) { + allowed = test_bit(index - start, bitmap); + break; + } + } + +out: + srcu_read_unlock(&kvm->srcu, idx); + + return allowed; +} +EXPORT_SYMBOL_GPL(kvm_msr_allowed); + +/* + * Write @data into the MSR specified by @index. Select MSR specific fault + * checks are bypassed if @host_initiated is %true. + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, + bool host_initiated) +{ + struct msr_data msr; + + switch (index) { + case MSR_FS_BASE: + case MSR_GS_BASE: + case MSR_KERNEL_GS_BASE: + case MSR_CSTAR: + case MSR_LSTAR: + if (is_noncanonical_address(data, vcpu)) + return 1; + break; + case MSR_IA32_SYSENTER_EIP: + case MSR_IA32_SYSENTER_ESP: + /* + * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if + * non-canonical address is written on Intel but not on + * AMD (which ignores the top 32-bits, because it does + * not implement 64-bit SYSENTER). + * + * 64-bit code should hence be able to write a non-canonical + * value on AMD. Making the address canonical ensures that + * vmentry does not fail on Intel after writing a non-canonical + * value, and that something deterministic happens if the guest + * invokes 64-bit SYSENTER. + */ + data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); + break; + case MSR_TSC_AUX: + if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) + return 1; + + if (!host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && + !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) + return 1; + + /* + * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has + * incomplete and conflicting architectural behavior. Current + * AMD CPUs completely ignore bits 63:32, i.e. they aren't + * reserved and always read as zeros. Enforce Intel's reserved + * bits check if and only if the guest CPU is Intel, and clear + * the bits in all other cases. This ensures cross-vendor + * migration will provide consistent behavior for the guest. + */ + if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) + return 1; + + data = (u32)data; + break; + } + + msr.data = data; + msr.index = index; + msr.host_initiated = host_initiated; + + return static_call(kvm_x86_set_msr)(vcpu, &msr); +} + +static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, + u32 index, u64 data, bool host_initiated) +{ + int ret = __kvm_set_msr(vcpu, index, data, host_initiated); + + if (ret == KVM_MSR_RET_INVALID) + if (kvm_msr_ignored_check(index, data, true)) + ret = 0; + + return ret; +} + +/* + * Read the MSR specified by @index into @data. Select MSR specific fault + * checks are bypassed if @host_initiated is %true. + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, + bool host_initiated) +{ + struct msr_data msr; + int ret; + + switch (index) { + case MSR_TSC_AUX: + if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) + return 1; + + if (!host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && + !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) + return 1; + break; + } + + msr.index = index; + msr.host_initiated = host_initiated; + + ret = static_call(kvm_x86_get_msr)(vcpu, &msr); + if (!ret) + *data = msr.data; + return ret; +} + +static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, + u32 index, u64 *data, bool host_initiated) +{ + int ret = __kvm_get_msr(vcpu, index, data, host_initiated); + + if (ret == KVM_MSR_RET_INVALID) { + /* Unconditionally clear *data for simplicity */ + *data = 0; + if (kvm_msr_ignored_check(index, 0, false)) + ret = 0; + } + + return ret; +} + +static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) +{ + if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) + return KVM_MSR_RET_FILTERED; + return kvm_get_msr_ignored_check(vcpu, index, data, false); +} + +static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) +{ + if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) + return KVM_MSR_RET_FILTERED; + return kvm_set_msr_ignored_check(vcpu, index, data, false); +} + +int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) +{ + return kvm_get_msr_ignored_check(vcpu, index, data, false); +} +EXPORT_SYMBOL_GPL(kvm_get_msr); + +int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) +{ + return kvm_set_msr_ignored_check(vcpu, index, data, false); +} +EXPORT_SYMBOL_GPL(kvm_set_msr); + +static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) +{ + if (!vcpu->run->msr.error) { + kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); + kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); + } +} + +static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) +{ + return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); +} + +static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) +{ + complete_userspace_rdmsr(vcpu); + return complete_emulated_msr_access(vcpu); +} + +static int complete_fast_msr_access(struct kvm_vcpu *vcpu) +{ + return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); +} + +static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) +{ + complete_userspace_rdmsr(vcpu); + return complete_fast_msr_access(vcpu); +} + +static u64 kvm_msr_reason(int r) +{ + switch (r) { + case KVM_MSR_RET_INVALID: + return KVM_MSR_EXIT_REASON_UNKNOWN; + case KVM_MSR_RET_FILTERED: + return KVM_MSR_EXIT_REASON_FILTER; + default: + return KVM_MSR_EXIT_REASON_INVAL; + } +} + +static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, + u32 exit_reason, u64 data, + int (*completion)(struct kvm_vcpu *vcpu), + int r) +{ + u64 msr_reason = kvm_msr_reason(r); + + /* Check if the user wanted to know about this MSR fault */ + if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) + return 0; + + vcpu->run->exit_reason = exit_reason; + vcpu->run->msr.error = 0; + memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); + vcpu->run->msr.reason = msr_reason; + vcpu->run->msr.index = index; + vcpu->run->msr.data = data; + vcpu->arch.complete_userspace_io = completion; + + return 1; +} + +int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) +{ + u32 ecx = kvm_rcx_read(vcpu); + u64 data; + int r; + + r = kvm_get_msr_with_filter(vcpu, ecx, &data); + + if (!r) { + trace_kvm_msr_read(ecx, data); + + kvm_rax_write(vcpu, data & -1u); + kvm_rdx_write(vcpu, (data >> 32) & -1u); + } else { + /* MSR read failed? See if we should ask user space */ + if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, + complete_fast_rdmsr, r)) + return 0; + trace_kvm_msr_read_ex(ecx); + } + + return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); +} +EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); + +int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) +{ + u32 ecx = kvm_rcx_read(vcpu); + u64 data = kvm_read_edx_eax(vcpu); + int r; + + r = kvm_set_msr_with_filter(vcpu, ecx, data); + + if (!r) { + trace_kvm_msr_write(ecx, data); + } else { + /* MSR write failed? See if we should ask user space */ + if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, + complete_fast_msr_access, r)) + return 0; + /* Signal all other negative errors to userspace */ + if (r < 0) + return r; + trace_kvm_msr_write_ex(ecx, data); + } + + return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); +} +EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); + +int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) +{ + return kvm_skip_emulated_instruction(vcpu); +} + +int kvm_emulate_invd(struct kvm_vcpu *vcpu) +{ + /* Treat an INVD instruction as a NOP and just skip it. */ + return kvm_emulate_as_nop(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_emulate_invd); + +int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) +{ + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; +} +EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); + + +static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) +{ + if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && + !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) + return kvm_handle_invalid_op(vcpu); + + pr_warn_once("%s instruction emulated as NOP!\n", insn); + return kvm_emulate_as_nop(vcpu); +} +int kvm_emulate_mwait(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); +} +EXPORT_SYMBOL_GPL(kvm_emulate_mwait); + +int kvm_emulate_monitor(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); +} +EXPORT_SYMBOL_GPL(kvm_emulate_monitor); + +static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) +{ + xfer_to_guest_mode_prepare(); + return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || + xfer_to_guest_mode_work_pending(); +} + +/* + * The fast path for frequent and performance sensitive wrmsr emulation, + * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces + * the latency of virtual IPI by avoiding the expensive bits of transitioning + * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the + * other cases which must be called after interrupts are enabled on the host. + */ +static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) +{ + if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) + return 1; + + if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && + ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && + ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && + ((u32)(data >> 32) != X2APIC_BROADCAST)) + return kvm_x2apic_icr_write(vcpu->arch.apic, data); + + return 1; +} + +static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) +{ + if (!kvm_can_use_hv_timer(vcpu)) + return 1; + + kvm_set_lapic_tscdeadline_msr(vcpu, data); + return 0; +} + +fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) +{ + u32 msr = kvm_rcx_read(vcpu); + u64 data; + fastpath_t ret = EXIT_FASTPATH_NONE; + + kvm_vcpu_srcu_read_lock(vcpu); + + switch (msr) { + case APIC_BASE_MSR + (APIC_ICR >> 4): + data = kvm_read_edx_eax(vcpu); + if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { + kvm_skip_emulated_instruction(vcpu); + ret = EXIT_FASTPATH_EXIT_HANDLED; + } + break; + case MSR_IA32_TSC_DEADLINE: + data = kvm_read_edx_eax(vcpu); + if (!handle_fastpath_set_tscdeadline(vcpu, data)) { + kvm_skip_emulated_instruction(vcpu); + ret = EXIT_FASTPATH_REENTER_GUEST; + } + break; + default: + break; + } + + if (ret != EXIT_FASTPATH_NONE) + trace_kvm_msr_write(msr, data); + + kvm_vcpu_srcu_read_unlock(vcpu); + + return ret; +} +EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); + +/* + * Adapt set_msr() to msr_io()'s calling convention + */ +static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) +{ + return kvm_get_msr_ignored_check(vcpu, index, data, true); +} + +static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) +{ + u64 val; + + /* + * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does + * not support modifying the guest vCPU model on the fly, e.g. changing + * the nVMX capabilities while L2 is running is nonsensical. Ignore + * writes of the same value, e.g. to allow userspace to blindly stuff + * all MSRs when emulating RESET. + */ + if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { + if (do_get_msr(vcpu, index, &val) || *data != val) + return -EINVAL; + + return 0; + } + + return kvm_set_msr_ignored_check(vcpu, index, *data, true); +} + +#ifdef CONFIG_X86_64 +struct pvclock_clock { + int vclock_mode; + u64 cycle_last; + u64 mask; + u32 mult; + u32 shift; + u64 base_cycles; + u64 offset; +}; + +struct pvclock_gtod_data { + seqcount_t seq; + + struct pvclock_clock clock; /* extract of a clocksource struct */ + struct pvclock_clock raw_clock; /* extract of a clocksource struct */ + + ktime_t offs_boot; + u64 wall_time_sec; +}; + +static struct pvclock_gtod_data pvclock_gtod_data; + +static void update_pvclock_gtod(struct timekeeper *tk) +{ + struct pvclock_gtod_data *vdata = &pvclock_gtod_data; + + write_seqcount_begin(&vdata->seq); + + /* copy pvclock gtod data */ + vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; + vdata->clock.cycle_last = tk->tkr_mono.cycle_last; + vdata->clock.mask = tk->tkr_mono.mask; + vdata->clock.mult = tk->tkr_mono.mult; + vdata->clock.shift = tk->tkr_mono.shift; + vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; + vdata->clock.offset = tk->tkr_mono.base; + + vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; + vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; + vdata->raw_clock.mask = tk->tkr_raw.mask; + vdata->raw_clock.mult = tk->tkr_raw.mult; + vdata->raw_clock.shift = tk->tkr_raw.shift; + vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; + vdata->raw_clock.offset = tk->tkr_raw.base; + + vdata->wall_time_sec = tk->xtime_sec; + + vdata->offs_boot = tk->offs_boot; + + write_seqcount_end(&vdata->seq); +} + +static s64 get_kvmclock_base_ns(void) +{ + /* Count up from boot time, but with the frequency of the raw clock. */ + return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); +} +#else +static s64 get_kvmclock_base_ns(void) +{ + /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ + return ktime_get_boottime_ns(); +} +#endif + +static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) +{ + int version; + int r; + struct pvclock_wall_clock wc; + u32 wc_sec_hi; + u64 wall_nsec; + + if (!wall_clock) + return; + + r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); + if (r) + return; + + if (version & 1) + ++version; /* first time write, random junk */ + + ++version; + + if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) + return; + + /* + * The guest calculates current wall clock time by adding + * system time (updated by kvm_guest_time_update below) to the + * wall clock specified here. We do the reverse here. + */ + wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); + + wc.nsec = do_div(wall_nsec, 1000000000); + wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ + wc.version = version; + + kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); + + if (sec_hi_ofs) { + wc_sec_hi = wall_nsec >> 32; + kvm_write_guest(kvm, wall_clock + sec_hi_ofs, + &wc_sec_hi, sizeof(wc_sec_hi)); + } + + version++; + kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); +} + +static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, + bool old_msr, bool host_initiated) +{ + struct kvm_arch *ka = &vcpu->kvm->arch; + + if (vcpu->vcpu_id == 0 && !host_initiated) { + if (ka->boot_vcpu_runs_old_kvmclock != old_msr) + kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); + + ka->boot_vcpu_runs_old_kvmclock = old_msr; + } + + vcpu->arch.time = system_time; + kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); + + /* we verify if the enable bit is set... */ + if (system_time & 1) + kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, + sizeof(struct pvclock_vcpu_time_info)); + else + kvm_gpc_deactivate(&vcpu->arch.pv_time); + + return; +} + +static uint32_t div_frac(uint32_t dividend, uint32_t divisor) +{ + do_shl32_div32(dividend, divisor); + return dividend; +} + +static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, + s8 *pshift, u32 *pmultiplier) +{ + uint64_t scaled64; + int32_t shift = 0; + uint64_t tps64; + uint32_t tps32; + + tps64 = base_hz; + scaled64 = scaled_hz; + while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { + tps64 >>= 1; + shift--; + } + + tps32 = (uint32_t)tps64; + while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { + if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) + scaled64 >>= 1; + else + tps32 <<= 1; + shift++; + } + + *pshift = shift; + *pmultiplier = div_frac(scaled64, tps32); +} + +#ifdef CONFIG_X86_64 +static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); +#endif + +static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); +static unsigned long max_tsc_khz; + +static u32 adjust_tsc_khz(u32 khz, s32 ppm) +{ + u64 v = (u64)khz * (1000000 + ppm); + do_div(v, 1000000); + return v; +} + +static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); + +static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) +{ + u64 ratio; + + /* Guest TSC same frequency as host TSC? */ + if (!scale) { + kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); + return 0; + } + + /* TSC scaling supported? */ + if (!kvm_caps.has_tsc_control) { + if (user_tsc_khz > tsc_khz) { + vcpu->arch.tsc_catchup = 1; + vcpu->arch.tsc_always_catchup = 1; + return 0; + } else { + pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); + return -1; + } + } + + /* TSC scaling required - calculate ratio */ + ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, + user_tsc_khz, tsc_khz); + + if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { + pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", + user_tsc_khz); + return -1; + } + + kvm_vcpu_write_tsc_multiplier(vcpu, ratio); + return 0; +} + +static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) +{ + u32 thresh_lo, thresh_hi; + int use_scaling = 0; + + /* tsc_khz can be zero if TSC calibration fails */ + if (user_tsc_khz == 0) { + /* set tsc_scaling_ratio to a safe value */ + kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); + return -1; + } + + /* Compute a scale to convert nanoseconds in TSC cycles */ + kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, + &vcpu->arch.virtual_tsc_shift, + &vcpu->arch.virtual_tsc_mult); + vcpu->arch.virtual_tsc_khz = user_tsc_khz; + + /* + * Compute the variation in TSC rate which is acceptable + * within the range of tolerance and decide if the + * rate being applied is within that bounds of the hardware + * rate. If so, no scaling or compensation need be done. + */ + thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); + thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); + if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { + pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", + user_tsc_khz, thresh_lo, thresh_hi); + use_scaling = 1; + } + return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); +} + +static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) +{ + u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, + vcpu->arch.virtual_tsc_mult, + vcpu->arch.virtual_tsc_shift); + tsc += vcpu->arch.this_tsc_write; + return tsc; +} + +#ifdef CONFIG_X86_64 +static inline int gtod_is_based_on_tsc(int mode) +{ + return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; +} +#endif + +static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) +{ +#ifdef CONFIG_X86_64 + bool vcpus_matched; + struct kvm_arch *ka = &vcpu->kvm->arch; + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + + vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == + atomic_read(&vcpu->kvm->online_vcpus)); + + /* + * Once the masterclock is enabled, always perform request in + * order to update it. + * + * In order to enable masterclock, the host clocksource must be TSC + * and the vcpus need to have matched TSCs. When that happens, + * perform request to enable masterclock. + */ + if (ka->use_master_clock || + (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) + kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); + + trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, + atomic_read(&vcpu->kvm->online_vcpus), + ka->use_master_clock, gtod->clock.vclock_mode); +#endif +} + +/* + * Multiply tsc by a fixed point number represented by ratio. + * + * The most significant 64-N bits (mult) of ratio represent the + * integral part of the fixed point number; the remaining N bits + * (frac) represent the fractional part, ie. ratio represents a fixed + * point number (mult + frac * 2^(-N)). + * + * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. + */ +static inline u64 __scale_tsc(u64 ratio, u64 tsc) +{ + return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); +} + +u64 kvm_scale_tsc(u64 tsc, u64 ratio) +{ + u64 _tsc = tsc; + + if (ratio != kvm_caps.default_tsc_scaling_ratio) + _tsc = __scale_tsc(ratio, tsc); + + return _tsc; +} + +static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) +{ + u64 tsc; + + tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); + + return target_tsc - tsc; +} + +u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) +{ + return vcpu->arch.l1_tsc_offset + + kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); +} +EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); + +u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) +{ + u64 nested_offset; + + if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) + nested_offset = l1_offset; + else + nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, + kvm_caps.tsc_scaling_ratio_frac_bits); + + nested_offset += l2_offset; + return nested_offset; +} +EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); + +u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) +{ + if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) + return mul_u64_u64_shr(l1_multiplier, l2_multiplier, + kvm_caps.tsc_scaling_ratio_frac_bits); + + return l1_multiplier; +} +EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); + +static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) +{ + trace_kvm_write_tsc_offset(vcpu->vcpu_id, + vcpu->arch.l1_tsc_offset, + l1_offset); + + vcpu->arch.l1_tsc_offset = l1_offset; + + /* + * If we are here because L1 chose not to trap WRMSR to TSC then + * according to the spec this should set L1's TSC (as opposed to + * setting L1's offset for L2). + */ + if (is_guest_mode(vcpu)) + vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( + l1_offset, + static_call(kvm_x86_get_l2_tsc_offset)(vcpu), + static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); + else + vcpu->arch.tsc_offset = l1_offset; + + static_call(kvm_x86_write_tsc_offset)(vcpu); +} + +static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) +{ + vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; + + /* Userspace is changing the multiplier while L2 is active */ + if (is_guest_mode(vcpu)) + vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( + l1_multiplier, + static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); + else + vcpu->arch.tsc_scaling_ratio = l1_multiplier; + + if (kvm_caps.has_tsc_control) + static_call(kvm_x86_write_tsc_multiplier)(vcpu); +} + +static inline bool kvm_check_tsc_unstable(void) +{ +#ifdef CONFIG_X86_64 + /* + * TSC is marked unstable when we're running on Hyper-V, + * 'TSC page' clocksource is good. + */ + if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) + return false; +#endif + return check_tsc_unstable(); +} + +/* + * Infers attempts to synchronize the guest's tsc from host writes. Sets the + * offset for the vcpu and tracks the TSC matching generation that the vcpu + * participates in. + */ +static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, + u64 ns, bool matched) +{ + struct kvm *kvm = vcpu->kvm; + + lockdep_assert_held(&kvm->arch.tsc_write_lock); + + /* + * We also track th most recent recorded KHZ, write and time to + * allow the matching interval to be extended at each write. + */ + kvm->arch.last_tsc_nsec = ns; + kvm->arch.last_tsc_write = tsc; + kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; + kvm->arch.last_tsc_offset = offset; + + vcpu->arch.last_guest_tsc = tsc; + + kvm_vcpu_write_tsc_offset(vcpu, offset); + + if (!matched) { + /* + * We split periods of matched TSC writes into generations. + * For each generation, we track the original measured + * nanosecond time, offset, and write, so if TSCs are in + * sync, we can match exact offset, and if not, we can match + * exact software computation in compute_guest_tsc() + * + * These values are tracked in kvm->arch.cur_xxx variables. + */ + kvm->arch.cur_tsc_generation++; + kvm->arch.cur_tsc_nsec = ns; + kvm->arch.cur_tsc_write = tsc; + kvm->arch.cur_tsc_offset = offset; + kvm->arch.nr_vcpus_matched_tsc = 0; + } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { + kvm->arch.nr_vcpus_matched_tsc++; + } + + /* Keep track of which generation this VCPU has synchronized to */ + vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; + vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; + vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; + + kvm_track_tsc_matching(vcpu); +} + +static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) +{ + struct kvm *kvm = vcpu->kvm; + u64 offset, ns, elapsed; + unsigned long flags; + bool matched = false; + bool synchronizing = false; + + raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); + offset = kvm_compute_l1_tsc_offset(vcpu, data); + ns = get_kvmclock_base_ns(); + elapsed = ns - kvm->arch.last_tsc_nsec; + + if (vcpu->arch.virtual_tsc_khz) { + if (data == 0) { + /* + * detection of vcpu initialization -- need to sync + * with other vCPUs. This particularly helps to keep + * kvm_clock stable after CPU hotplug + */ + synchronizing = true; + } else { + u64 tsc_exp = kvm->arch.last_tsc_write + + nsec_to_cycles(vcpu, elapsed); + u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; + /* + * Special case: TSC write with a small delta (1 second) + * of virtual cycle time against real time is + * interpreted as an attempt to synchronize the CPU. + */ + synchronizing = data < tsc_exp + tsc_hz && + data + tsc_hz > tsc_exp; + } + } + + /* + * For a reliable TSC, we can match TSC offsets, and for an unstable + * TSC, we add elapsed time in this computation. We could let the + * compensation code attempt to catch up if we fall behind, but + * it's better to try to match offsets from the beginning. + */ + if (synchronizing && + vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { + if (!kvm_check_tsc_unstable()) { + offset = kvm->arch.cur_tsc_offset; + } else { + u64 delta = nsec_to_cycles(vcpu, elapsed); + data += delta; + offset = kvm_compute_l1_tsc_offset(vcpu, data); + } + matched = true; + } + + __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); + raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); +} + +static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, + s64 adjustment) +{ + u64 tsc_offset = vcpu->arch.l1_tsc_offset; + kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); +} + +static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) +{ + if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) + WARN_ON(adjustment < 0); + adjustment = kvm_scale_tsc((u64) adjustment, + vcpu->arch.l1_tsc_scaling_ratio); + adjust_tsc_offset_guest(vcpu, adjustment); +} + +#ifdef CONFIG_X86_64 + +static u64 read_tsc(void) +{ + u64 ret = (u64)rdtsc_ordered(); + u64 last = pvclock_gtod_data.clock.cycle_last; + + if (likely(ret >= last)) + return ret; + + /* + * GCC likes to generate cmov here, but this branch is extremely + * predictable (it's just a function of time and the likely is + * very likely) and there's a data dependence, so force GCC + * to generate a branch instead. I don't barrier() because + * we don't actually need a barrier, and if this function + * ever gets inlined it will generate worse code. + */ + asm volatile (""); + return last; +} + +static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, + int *mode) +{ + u64 tsc_pg_val; + long v; + + switch (clock->vclock_mode) { + case VDSO_CLOCKMODE_HVCLOCK: + if (hv_read_tsc_page_tsc(hv_get_tsc_page(), + tsc_timestamp, &tsc_pg_val)) { + /* TSC page valid */ + *mode = VDSO_CLOCKMODE_HVCLOCK; + v = (tsc_pg_val - clock->cycle_last) & + clock->mask; + } else { + /* TSC page invalid */ + *mode = VDSO_CLOCKMODE_NONE; + } + break; + case VDSO_CLOCKMODE_TSC: + *mode = VDSO_CLOCKMODE_TSC; + *tsc_timestamp = read_tsc(); + v = (*tsc_timestamp - clock->cycle_last) & + clock->mask; + break; + default: + *mode = VDSO_CLOCKMODE_NONE; + } + + if (*mode == VDSO_CLOCKMODE_NONE) + *tsc_timestamp = v = 0; + + return v * clock->mult; +} + +static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) +{ + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + unsigned long seq; + int mode; + u64 ns; + + do { + seq = read_seqcount_begin(>od->seq); + ns = gtod->raw_clock.base_cycles; + ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); + ns >>= gtod->raw_clock.shift; + ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); + } while (unlikely(read_seqcount_retry(>od->seq, seq))); + *t = ns; + + return mode; +} + +static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) +{ + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + unsigned long seq; + int mode; + u64 ns; + + do { + seq = read_seqcount_begin(>od->seq); + ts->tv_sec = gtod->wall_time_sec; + ns = gtod->clock.base_cycles; + ns += vgettsc(>od->clock, tsc_timestamp, &mode); + ns >>= gtod->clock.shift; + } while (unlikely(read_seqcount_retry(>od->seq, seq))); + + ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); + ts->tv_nsec = ns; + + return mode; +} + +/* returns true if host is using TSC based clocksource */ +static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) +{ + /* checked again under seqlock below */ + if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) + return false; + + return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, + tsc_timestamp)); +} + +/* returns true if host is using TSC based clocksource */ +static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, + u64 *tsc_timestamp) +{ + /* checked again under seqlock below */ + if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) + return false; + + return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); +} +#endif + +/* + * + * Assuming a stable TSC across physical CPUS, and a stable TSC + * across virtual CPUs, the following condition is possible. + * Each numbered line represents an event visible to both + * CPUs at the next numbered event. + * + * "timespecX" represents host monotonic time. "tscX" represents + * RDTSC value. + * + * VCPU0 on CPU0 | VCPU1 on CPU1 + * + * 1. read timespec0,tsc0 + * 2. | timespec1 = timespec0 + N + * | tsc1 = tsc0 + M + * 3. transition to guest | transition to guest + * 4. ret0 = timespec0 + (rdtsc - tsc0) | + * 5. | ret1 = timespec1 + (rdtsc - tsc1) + * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) + * + * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: + * + * - ret0 < ret1 + * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) + * ... + * - 0 < N - M => M < N + * + * That is, when timespec0 != timespec1, M < N. Unfortunately that is not + * always the case (the difference between two distinct xtime instances + * might be smaller then the difference between corresponding TSC reads, + * when updating guest vcpus pvclock areas). + * + * To avoid that problem, do not allow visibility of distinct + * system_timestamp/tsc_timestamp values simultaneously: use a master + * copy of host monotonic time values. Update that master copy + * in lockstep. + * + * Rely on synchronization of host TSCs and guest TSCs for monotonicity. + * + */ + +static void pvclock_update_vm_gtod_copy(struct kvm *kvm) +{ +#ifdef CONFIG_X86_64 + struct kvm_arch *ka = &kvm->arch; + int vclock_mode; + bool host_tsc_clocksource, vcpus_matched; + + lockdep_assert_held(&kvm->arch.tsc_write_lock); + vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == + atomic_read(&kvm->online_vcpus)); + + /* + * If the host uses TSC clock, then passthrough TSC as stable + * to the guest. + */ + host_tsc_clocksource = kvm_get_time_and_clockread( + &ka->master_kernel_ns, + &ka->master_cycle_now); + + ka->use_master_clock = host_tsc_clocksource && vcpus_matched + && !ka->backwards_tsc_observed + && !ka->boot_vcpu_runs_old_kvmclock; + + if (ka->use_master_clock) + atomic_set(&kvm_guest_has_master_clock, 1); + + vclock_mode = pvclock_gtod_data.clock.vclock_mode; + trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, + vcpus_matched); +#endif +} + +static void kvm_make_mclock_inprogress_request(struct kvm *kvm) +{ + kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); +} + +static void __kvm_start_pvclock_update(struct kvm *kvm) +{ + raw_spin_lock_irq(&kvm->arch.tsc_write_lock); + write_seqcount_begin(&kvm->arch.pvclock_sc); +} + +static void kvm_start_pvclock_update(struct kvm *kvm) +{ + kvm_make_mclock_inprogress_request(kvm); + + /* no guest entries from this point */ + __kvm_start_pvclock_update(kvm); +} + +static void kvm_end_pvclock_update(struct kvm *kvm) +{ + struct kvm_arch *ka = &kvm->arch; + struct kvm_vcpu *vcpu; + unsigned long i; + + write_seqcount_end(&ka->pvclock_sc); + raw_spin_unlock_irq(&ka->tsc_write_lock); + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + + /* guest entries allowed */ + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); +} + +static void kvm_update_masterclock(struct kvm *kvm) +{ + kvm_hv_request_tsc_page_update(kvm); + kvm_start_pvclock_update(kvm); + pvclock_update_vm_gtod_copy(kvm); + kvm_end_pvclock_update(kvm); +} + +/* + * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's + * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz + * can change during boot even if the TSC is constant, as it's possible for KVM + * to be loaded before TSC calibration completes. Ideally, KVM would get a + * notification when calibration completes, but practically speaking calibration + * will complete before userspace is alive enough to create VMs. + */ +static unsigned long get_cpu_tsc_khz(void) +{ + if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) + return tsc_khz; + else + return __this_cpu_read(cpu_tsc_khz); +} + +/* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ +static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) +{ + struct kvm_arch *ka = &kvm->arch; + struct pvclock_vcpu_time_info hv_clock; + + /* both __this_cpu_read() and rdtsc() should be on the same cpu */ + get_cpu(); + + data->flags = 0; + if (ka->use_master_clock && + (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { +#ifdef CONFIG_X86_64 + struct timespec64 ts; + + if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { + data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; + data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; + } else +#endif + data->host_tsc = rdtsc(); + + data->flags |= KVM_CLOCK_TSC_STABLE; + hv_clock.tsc_timestamp = ka->master_cycle_now; + hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; + kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, + &hv_clock.tsc_shift, + &hv_clock.tsc_to_system_mul); + data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); + } else { + data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; + } + + put_cpu(); +} + +static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) +{ + struct kvm_arch *ka = &kvm->arch; + unsigned seq; + + do { + seq = read_seqcount_begin(&ka->pvclock_sc); + __get_kvmclock(kvm, data); + } while (read_seqcount_retry(&ka->pvclock_sc, seq)); +} + +u64 get_kvmclock_ns(struct kvm *kvm) +{ + struct kvm_clock_data data; + + get_kvmclock(kvm, &data); + return data.clock; +} + +static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, + struct gfn_to_pfn_cache *gpc, + unsigned int offset) +{ + struct kvm_vcpu_arch *vcpu = &v->arch; + struct pvclock_vcpu_time_info *guest_hv_clock; + unsigned long flags; + + read_lock_irqsave(&gpc->lock, flags); + while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { + read_unlock_irqrestore(&gpc->lock, flags); + + if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) + return; + + read_lock_irqsave(&gpc->lock, flags); + } + + guest_hv_clock = (void *)(gpc->khva + offset); + + /* + * This VCPU is paused, but it's legal for a guest to read another + * VCPU's kvmclock, so we really have to follow the specification where + * it says that version is odd if data is being modified, and even after + * it is consistent. + */ + + guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; + smp_wmb(); + + /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ + vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); + + if (vcpu->pvclock_set_guest_stopped_request) { + vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; + vcpu->pvclock_set_guest_stopped_request = false; + } + + memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); + smp_wmb(); + + guest_hv_clock->version = ++vcpu->hv_clock.version; + + mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); + read_unlock_irqrestore(&gpc->lock, flags); + + trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); +} + +static int kvm_guest_time_update(struct kvm_vcpu *v) +{ + unsigned long flags, tgt_tsc_khz; + unsigned seq; + struct kvm_vcpu_arch *vcpu = &v->arch; + struct kvm_arch *ka = &v->kvm->arch; + s64 kernel_ns; + u64 tsc_timestamp, host_tsc; + u8 pvclock_flags; + bool use_master_clock; + + kernel_ns = 0; + host_tsc = 0; + + /* + * If the host uses TSC clock, then passthrough TSC as stable + * to the guest. + */ + do { + seq = read_seqcount_begin(&ka->pvclock_sc); + use_master_clock = ka->use_master_clock; + if (use_master_clock) { + host_tsc = ka->master_cycle_now; + kernel_ns = ka->master_kernel_ns; + } + } while (read_seqcount_retry(&ka->pvclock_sc, seq)); + + /* Keep irq disabled to prevent changes to the clock */ + local_irq_save(flags); + tgt_tsc_khz = get_cpu_tsc_khz(); + if (unlikely(tgt_tsc_khz == 0)) { + local_irq_restore(flags); + kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); + return 1; + } + if (!use_master_clock) { + host_tsc = rdtsc(); + kernel_ns = get_kvmclock_base_ns(); + } + + tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); + + /* + * We may have to catch up the TSC to match elapsed wall clock + * time for two reasons, even if kvmclock is used. + * 1) CPU could have been running below the maximum TSC rate + * 2) Broken TSC compensation resets the base at each VCPU + * entry to avoid unknown leaps of TSC even when running + * again on the same CPU. This may cause apparent elapsed + * time to disappear, and the guest to stand still or run + * very slowly. + */ + if (vcpu->tsc_catchup) { + u64 tsc = compute_guest_tsc(v, kernel_ns); + if (tsc > tsc_timestamp) { + adjust_tsc_offset_guest(v, tsc - tsc_timestamp); + tsc_timestamp = tsc; + } + } + + local_irq_restore(flags); + + /* With all the info we got, fill in the values */ + + if (kvm_caps.has_tsc_control) + tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, + v->arch.l1_tsc_scaling_ratio); + + if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { + kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, + &vcpu->hv_clock.tsc_shift, + &vcpu->hv_clock.tsc_to_system_mul); + vcpu->hw_tsc_khz = tgt_tsc_khz; + kvm_xen_update_tsc_info(v); + } + + vcpu->hv_clock.tsc_timestamp = tsc_timestamp; + vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; + vcpu->last_guest_tsc = tsc_timestamp; + + /* If the host uses TSC clocksource, then it is stable */ + pvclock_flags = 0; + if (use_master_clock) + pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; + + vcpu->hv_clock.flags = pvclock_flags; + + if (vcpu->pv_time.active) + kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); + if (vcpu->xen.vcpu_info_cache.active) + kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, + offsetof(struct compat_vcpu_info, time)); + if (vcpu->xen.vcpu_time_info_cache.active) + kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); + kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); + return 0; +} + +/* + * kvmclock updates which are isolated to a given vcpu, such as + * vcpu->cpu migration, should not allow system_timestamp from + * the rest of the vcpus to remain static. Otherwise ntp frequency + * correction applies to one vcpu's system_timestamp but not + * the others. + * + * So in those cases, request a kvmclock update for all vcpus. + * We need to rate-limit these requests though, as they can + * considerably slow guests that have a large number of vcpus. + * The time for a remote vcpu to update its kvmclock is bound + * by the delay we use to rate-limit the updates. + */ + +#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) + +static void kvmclock_update_fn(struct work_struct *work) +{ + unsigned long i; + struct delayed_work *dwork = to_delayed_work(work); + struct kvm_arch *ka = container_of(dwork, struct kvm_arch, + kvmclock_update_work); + struct kvm *kvm = container_of(ka, struct kvm, arch); + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) { + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + kvm_vcpu_kick(vcpu); + } +} + +static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) +{ + struct kvm *kvm = v->kvm; + + kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); + schedule_delayed_work(&kvm->arch.kvmclock_update_work, + KVMCLOCK_UPDATE_DELAY); +} + +#define KVMCLOCK_SYNC_PERIOD (300 * HZ) + +static void kvmclock_sync_fn(struct work_struct *work) +{ + struct delayed_work *dwork = to_delayed_work(work); + struct kvm_arch *ka = container_of(dwork, struct kvm_arch, + kvmclock_sync_work); + struct kvm *kvm = container_of(ka, struct kvm, arch); + + if (!kvmclock_periodic_sync) + return; + + schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); + schedule_delayed_work(&kvm->arch.kvmclock_sync_work, + KVMCLOCK_SYNC_PERIOD); +} + +/* These helpers are safe iff @msr is known to be an MCx bank MSR. */ +static bool is_mci_control_msr(u32 msr) +{ + return (msr & 3) == 0; +} +static bool is_mci_status_msr(u32 msr) +{ + return (msr & 3) == 1; +} + +/* + * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. + */ +static bool can_set_mci_status(struct kvm_vcpu *vcpu) +{ + /* McStatusWrEn enabled? */ + if (guest_cpuid_is_amd_or_hygon(vcpu)) + return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); + + return false; +} + +static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + u64 mcg_cap = vcpu->arch.mcg_cap; + unsigned bank_num = mcg_cap & 0xff; + u32 msr = msr_info->index; + u64 data = msr_info->data; + u32 offset, last_msr; + + switch (msr) { + case MSR_IA32_MCG_STATUS: + vcpu->arch.mcg_status = data; + break; + case MSR_IA32_MCG_CTL: + if (!(mcg_cap & MCG_CTL_P) && + (data || !msr_info->host_initiated)) + return 1; + if (data != 0 && data != ~(u64)0) + return 1; + vcpu->arch.mcg_ctl = data; + break; + case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: + last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; + if (msr > last_msr) + return 1; + + if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) + return 1; + /* An attempt to write a 1 to a reserved bit raises #GP */ + if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) + return 1; + offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, + last_msr + 1 - MSR_IA32_MC0_CTL2); + vcpu->arch.mci_ctl2_banks[offset] = data; + break; + case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: + last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; + if (msr > last_msr) + return 1; + + /* + * Only 0 or all 1s can be written to IA32_MCi_CTL, all other + * values are architecturally undefined. But, some Linux + * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB + * issue on AMD K8s, allow bit 10 to be clear when setting all + * other bits in order to avoid an uncaught #GP in the guest. + * + * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, + * single-bit ECC data errors. + */ + if (is_mci_control_msr(msr) && + data != 0 && (data | (1 << 10) | 1) != ~(u64)0) + return 1; + + /* + * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. + * AMD-based CPUs allow non-zero values, but if and only if + * HWCR[McStatusWrEn] is set. + */ + if (!msr_info->host_initiated && is_mci_status_msr(msr) && + data != 0 && !can_set_mci_status(vcpu)) + return 1; + + offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, + last_msr + 1 - MSR_IA32_MC0_CTL); + vcpu->arch.mce_banks[offset] = data; + break; + default: + return 1; + } + return 0; +} + +static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) +{ + u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; + + return (vcpu->arch.apf.msr_en_val & mask) == mask; +} + +static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) +{ + gpa_t gpa = data & ~0x3f; + + /* Bits 4:5 are reserved, Should be zero */ + if (data & 0x30) + return 1; + + if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && + (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) + return 1; + + if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && + (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) + return 1; + + if (!lapic_in_kernel(vcpu)) + return data ? 1 : 0; + + vcpu->arch.apf.msr_en_val = data; + + if (!kvm_pv_async_pf_enabled(vcpu)) { + kvm_clear_async_pf_completion_queue(vcpu); + kvm_async_pf_hash_reset(vcpu); + return 0; + } + + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, + sizeof(u64))) + return 1; + + vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); + vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; + + kvm_async_pf_wakeup_all(vcpu); + + return 0; +} + +static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) +{ + /* Bits 8-63 are reserved */ + if (data >> 8) + return 1; + + if (!lapic_in_kernel(vcpu)) + return 1; + + vcpu->arch.apf.msr_int_val = data; + + vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; + + return 0; +} + +static void kvmclock_reset(struct kvm_vcpu *vcpu) +{ + kvm_gpc_deactivate(&vcpu->arch.pv_time); + vcpu->arch.time = 0; +} + +static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) +{ + ++vcpu->stat.tlb_flush; + static_call(kvm_x86_flush_tlb_all)(vcpu); + + /* Flushing all ASIDs flushes the current ASID... */ + kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); +} + +static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) +{ + ++vcpu->stat.tlb_flush; + + if (!tdp_enabled) { + /* + * A TLB flush on behalf of the guest is equivalent to + * INVPCID(all), toggling CR4.PGE, etc., which requires + * a forced sync of the shadow page tables. Ensure all the + * roots are synced and the guest TLB in hardware is clean. + */ + kvm_mmu_sync_roots(vcpu); + kvm_mmu_sync_prev_roots(vcpu); + } + + static_call(kvm_x86_flush_tlb_guest)(vcpu); + + /* + * Flushing all "guest" TLB is always a superset of Hyper-V's fine + * grained flushing. + */ + kvm_hv_vcpu_purge_flush_tlb(vcpu); +} + + +static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) +{ + ++vcpu->stat.tlb_flush; + static_call(kvm_x86_flush_tlb_current)(vcpu); +} + +/* + * Service "local" TLB flush requests, which are specific to the current MMU + * context. In addition to the generic event handling in vcpu_enter_guest(), + * TLB flushes that are targeted at an MMU context also need to be serviced + * prior before nested VM-Enter/VM-Exit. + */ +void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) +{ + if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) + kvm_vcpu_flush_tlb_current(vcpu); + + if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) + kvm_vcpu_flush_tlb_guest(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); + +static void record_steal_time(struct kvm_vcpu *vcpu) +{ + struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; + struct kvm_steal_time __user *st; + struct kvm_memslots *slots; + gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; + u64 steal; + u32 version; + + if (kvm_xen_msr_enabled(vcpu->kvm)) { + kvm_xen_runstate_set_running(vcpu); + return; + } + + if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) + return; + + if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) + return; + + slots = kvm_memslots(vcpu->kvm); + + if (unlikely(slots->generation != ghc->generation || + gpa != ghc->gpa || + kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { + /* We rely on the fact that it fits in a single page. */ + BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); + + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || + kvm_is_error_hva(ghc->hva) || !ghc->memslot) + return; + } + + st = (struct kvm_steal_time __user *)ghc->hva; + /* + * Doing a TLB flush here, on the guest's behalf, can avoid + * expensive IPIs. + */ + if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { + u8 st_preempted = 0; + int err = -EFAULT; + + if (!user_access_begin(st, sizeof(*st))) + return; + + asm volatile("1: xchgb %0, %2\n" + "xor %1, %1\n" + "2:\n" + _ASM_EXTABLE_UA(1b, 2b) + : "+q" (st_preempted), + "+&r" (err), + "+m" (st->preempted)); + if (err) + goto out; + + user_access_end(); + + vcpu->arch.st.preempted = 0; + + trace_kvm_pv_tlb_flush(vcpu->vcpu_id, + st_preempted & KVM_VCPU_FLUSH_TLB); + if (st_preempted & KVM_VCPU_FLUSH_TLB) + kvm_vcpu_flush_tlb_guest(vcpu); + + if (!user_access_begin(st, sizeof(*st))) + goto dirty; + } else { + if (!user_access_begin(st, sizeof(*st))) + return; + + unsafe_put_user(0, &st->preempted, out); + vcpu->arch.st.preempted = 0; + } + + unsafe_get_user(version, &st->version, out); + if (version & 1) + version += 1; /* first time write, random junk */ + + version += 1; + unsafe_put_user(version, &st->version, out); + + smp_wmb(); + + unsafe_get_user(steal, &st->steal, out); + steal += current->sched_info.run_delay - + vcpu->arch.st.last_steal; + vcpu->arch.st.last_steal = current->sched_info.run_delay; + unsafe_put_user(steal, &st->steal, out); + + version += 1; + unsafe_put_user(version, &st->version, out); + + out: + user_access_end(); + dirty: + mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); +} + +static bool kvm_is_msr_to_save(u32 msr_index) +{ + unsigned int i; + + for (i = 0; i < num_msrs_to_save; i++) { + if (msrs_to_save[i] == msr_index) + return true; + } + + return false; +} + +int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + u32 msr = msr_info->index; + u64 data = msr_info->data; + + if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) + return kvm_xen_write_hypercall_page(vcpu, data); + + switch (msr) { + case MSR_AMD64_NB_CFG: + case MSR_IA32_UCODE_WRITE: + case MSR_VM_HSAVE_PA: + case MSR_AMD64_PATCH_LOADER: + case MSR_AMD64_BU_CFG2: + case MSR_AMD64_DC_CFG: + case MSR_AMD64_TW_CFG: + case MSR_F15H_EX_CFG: + break; + + case MSR_IA32_UCODE_REV: + if (msr_info->host_initiated) + vcpu->arch.microcode_version = data; + break; + case MSR_IA32_ARCH_CAPABILITIES: + if (!msr_info->host_initiated) + return 1; + vcpu->arch.arch_capabilities = data; + break; + case MSR_IA32_PERF_CAPABILITIES: + if (!msr_info->host_initiated) + return 1; + if (data & ~kvm_caps.supported_perf_cap) + return 1; + + /* + * Note, this is not just a performance optimization! KVM + * disallows changing feature MSRs after the vCPU has run; PMU + * refresh will bug the VM if called after the vCPU has run. + */ + if (vcpu->arch.perf_capabilities == data) + break; + + vcpu->arch.perf_capabilities = data; + kvm_pmu_refresh(vcpu); + break; + case MSR_IA32_PRED_CMD: + if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) + return 1; + + if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) + return 1; + if (!data) + break; + + wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); + break; + case MSR_IA32_FLUSH_CMD: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) + return 1; + + if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) + return 1; + if (!data) + break; + + wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); + break; + case MSR_EFER: + return set_efer(vcpu, msr_info); + case MSR_K7_HWCR: + data &= ~(u64)0x40; /* ignore flush filter disable */ + data &= ~(u64)0x100; /* ignore ignne emulation enable */ + data &= ~(u64)0x8; /* ignore TLB cache disable */ + + /* Handle McStatusWrEn */ + if (data == BIT_ULL(18)) { + vcpu->arch.msr_hwcr = data; + } else if (data != 0) { + kvm_pr_unimpl_wrmsr(vcpu, msr, data); + return 1; + } + break; + case MSR_FAM10H_MMIO_CONF_BASE: + if (data != 0) { + kvm_pr_unimpl_wrmsr(vcpu, msr, data); + return 1; + } + break; + case MSR_IA32_CR_PAT: + if (!kvm_pat_valid(data)) + return 1; + + vcpu->arch.pat = data; + break; + case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: + case MSR_MTRRdefType: + return kvm_mtrr_set_msr(vcpu, msr, data); + case MSR_IA32_APICBASE: + return kvm_set_apic_base(vcpu, msr_info); + case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: + return kvm_x2apic_msr_write(vcpu, msr, data); + case MSR_IA32_TSC_DEADLINE: + kvm_set_lapic_tscdeadline_msr(vcpu, data); + break; + case MSR_IA32_TSC_ADJUST: + if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { + if (!msr_info->host_initiated) { + s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; + adjust_tsc_offset_guest(vcpu, adj); + /* Before back to guest, tsc_timestamp must be adjusted + * as well, otherwise guest's percpu pvclock time could jump. + */ + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + } + vcpu->arch.ia32_tsc_adjust_msr = data; + } + break; + case MSR_IA32_MISC_ENABLE: { + u64 old_val = vcpu->arch.ia32_misc_enable_msr; + + if (!msr_info->host_initiated) { + /* RO bits */ + if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) + return 1; + + /* R bits, i.e. writes are ignored, but don't fault. */ + data = data & ~MSR_IA32_MISC_ENABLE_EMON; + data |= old_val & MSR_IA32_MISC_ENABLE_EMON; + } + + if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && + ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { + if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) + return 1; + vcpu->arch.ia32_misc_enable_msr = data; + kvm_update_cpuid_runtime(vcpu); + } else { + vcpu->arch.ia32_misc_enable_msr = data; + } + break; + } + case MSR_IA32_SMBASE: + if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) + return 1; + vcpu->arch.smbase = data; + break; + case MSR_IA32_POWER_CTL: + vcpu->arch.msr_ia32_power_ctl = data; + break; + case MSR_IA32_TSC: + if (msr_info->host_initiated) { + kvm_synchronize_tsc(vcpu, data); + } else { + u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; + adjust_tsc_offset_guest(vcpu, adj); + vcpu->arch.ia32_tsc_adjust_msr += adj; + } + break; + case MSR_IA32_XSS: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) + return 1; + /* + * KVM supports exposing PT to the guest, but does not support + * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than + * XSAVES/XRSTORS to save/restore PT MSRs. + */ + if (data & ~kvm_caps.supported_xss) + return 1; + vcpu->arch.ia32_xss = data; + kvm_update_cpuid_runtime(vcpu); + break; + case MSR_SMI_COUNT: + if (!msr_info->host_initiated) + return 1; + vcpu->arch.smi_count = data; + break; + case MSR_KVM_WALL_CLOCK_NEW: + if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) + return 1; + + vcpu->kvm->arch.wall_clock = data; + kvm_write_wall_clock(vcpu->kvm, data, 0); + break; + case MSR_KVM_WALL_CLOCK: + if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) + return 1; + + vcpu->kvm->arch.wall_clock = data; + kvm_write_wall_clock(vcpu->kvm, data, 0); + break; + case MSR_KVM_SYSTEM_TIME_NEW: + if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) + return 1; + + kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); + break; + case MSR_KVM_SYSTEM_TIME: + if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) + return 1; + + kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); + break; + case MSR_KVM_ASYNC_PF_EN: + if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) + return 1; + + if (kvm_pv_enable_async_pf(vcpu, data)) + return 1; + break; + case MSR_KVM_ASYNC_PF_INT: + if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) + return 1; + + if (kvm_pv_enable_async_pf_int(vcpu, data)) + return 1; + break; + case MSR_KVM_ASYNC_PF_ACK: + if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) + return 1; + if (data & 0x1) { + vcpu->arch.apf.pageready_pending = false; + kvm_check_async_pf_completion(vcpu); + } + break; + case MSR_KVM_STEAL_TIME: + if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) + return 1; + + if (unlikely(!sched_info_on())) + return 1; + + if (data & KVM_STEAL_RESERVED_MASK) + return 1; + + vcpu->arch.st.msr_val = data; + + if (!(data & KVM_MSR_ENABLED)) + break; + + kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); + + break; + case MSR_KVM_PV_EOI_EN: + if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) + return 1; + + if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) + return 1; + break; + + case MSR_KVM_POLL_CONTROL: + if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) + return 1; + + /* only enable bit supported */ + if (data & (-1ULL << 1)) + return 1; + + vcpu->arch.msr_kvm_poll_control = data; + break; + + case MSR_IA32_MCG_CTL: + case MSR_IA32_MCG_STATUS: + case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: + case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: + return set_msr_mce(vcpu, msr_info); + + case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: + case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: + case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: + case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: + if (kvm_pmu_is_valid_msr(vcpu, msr)) + return kvm_pmu_set_msr(vcpu, msr_info); + + if (data) + kvm_pr_unimpl_wrmsr(vcpu, msr, data); + break; + case MSR_K7_CLK_CTL: + /* + * Ignore all writes to this no longer documented MSR. + * Writes are only relevant for old K7 processors, + * all pre-dating SVM, but a recommended workaround from + * AMD for these chips. It is possible to specify the + * affected processor models on the command line, hence + * the need to ignore the workaround. + */ + break; + case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: + case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: + case HV_X64_MSR_SYNDBG_OPTIONS: + case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: + case HV_X64_MSR_CRASH_CTL: + case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: + case HV_X64_MSR_REENLIGHTENMENT_CONTROL: + case HV_X64_MSR_TSC_EMULATION_CONTROL: + case HV_X64_MSR_TSC_EMULATION_STATUS: + case HV_X64_MSR_TSC_INVARIANT_CONTROL: + return kvm_hv_set_msr_common(vcpu, msr, data, + msr_info->host_initiated); + case MSR_IA32_BBL_CR_CTL3: + /* Drop writes to this legacy MSR -- see rdmsr + * counterpart for further detail. + */ + kvm_pr_unimpl_wrmsr(vcpu, msr, data); + break; + case MSR_AMD64_OSVW_ID_LENGTH: + if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) + return 1; + vcpu->arch.osvw.length = data; + break; + case MSR_AMD64_OSVW_STATUS: + if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) + return 1; + vcpu->arch.osvw.status = data; + break; + case MSR_PLATFORM_INFO: + if (!msr_info->host_initiated || + (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && + cpuid_fault_enabled(vcpu))) + return 1; + vcpu->arch.msr_platform_info = data; + break; + case MSR_MISC_FEATURES_ENABLES: + if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || + (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && + !supports_cpuid_fault(vcpu))) + return 1; + vcpu->arch.msr_misc_features_enables = data; + break; +#ifdef CONFIG_X86_64 + case MSR_IA32_XFD: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) + return 1; + + if (data & ~kvm_guest_supported_xfd(vcpu)) + return 1; + + fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); + break; + case MSR_IA32_XFD_ERR: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) + return 1; + + if (data & ~kvm_guest_supported_xfd(vcpu)) + return 1; + + vcpu->arch.guest_fpu.xfd_err = data; + break; +#endif + default: + if (kvm_pmu_is_valid_msr(vcpu, msr)) + return kvm_pmu_set_msr(vcpu, msr_info); + + /* + * Userspace is allowed to write '0' to MSRs that KVM reports + * as to-be-saved, even if an MSRs isn't fully supported. + */ + if (msr_info->host_initiated && !data && + kvm_is_msr_to_save(msr)) + break; + + return KVM_MSR_RET_INVALID; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_set_msr_common); + +static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) +{ + u64 data; + u64 mcg_cap = vcpu->arch.mcg_cap; + unsigned bank_num = mcg_cap & 0xff; + u32 offset, last_msr; + + switch (msr) { + case MSR_IA32_P5_MC_ADDR: + case MSR_IA32_P5_MC_TYPE: + data = 0; + break; + case MSR_IA32_MCG_CAP: + data = vcpu->arch.mcg_cap; + break; + case MSR_IA32_MCG_CTL: + if (!(mcg_cap & MCG_CTL_P) && !host) + return 1; + data = vcpu->arch.mcg_ctl; + break; + case MSR_IA32_MCG_STATUS: + data = vcpu->arch.mcg_status; + break; + case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: + last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; + if (msr > last_msr) + return 1; + + if (!(mcg_cap & MCG_CMCI_P) && !host) + return 1; + offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, + last_msr + 1 - MSR_IA32_MC0_CTL2); + data = vcpu->arch.mci_ctl2_banks[offset]; + break; + case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: + last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; + if (msr > last_msr) + return 1; + + offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, + last_msr + 1 - MSR_IA32_MC0_CTL); + data = vcpu->arch.mce_banks[offset]; + break; + default: + return 1; + } + *pdata = data; + return 0; +} + +int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + switch (msr_info->index) { + case MSR_IA32_PLATFORM_ID: + case MSR_IA32_EBL_CR_POWERON: + case MSR_IA32_LASTBRANCHFROMIP: + case MSR_IA32_LASTBRANCHTOIP: + case MSR_IA32_LASTINTFROMIP: + case MSR_IA32_LASTINTTOIP: + case MSR_AMD64_SYSCFG: + case MSR_K8_TSEG_ADDR: + case MSR_K8_TSEG_MASK: + case MSR_VM_HSAVE_PA: + case MSR_K8_INT_PENDING_MSG: + case MSR_AMD64_NB_CFG: + case MSR_FAM10H_MMIO_CONF_BASE: + case MSR_AMD64_BU_CFG2: + case MSR_IA32_PERF_CTL: + case MSR_AMD64_DC_CFG: + case MSR_AMD64_TW_CFG: + case MSR_F15H_EX_CFG: + /* + * Intel Sandy Bridge CPUs must support the RAPL (running average power + * limit) MSRs. Just return 0, as we do not want to expose the host + * data here. Do not conditionalize this on CPUID, as KVM does not do + * so for existing CPU-specific MSRs. + */ + case MSR_RAPL_POWER_UNIT: + case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ + case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ + case MSR_PKG_ENERGY_STATUS: /* Total package */ + case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ + msr_info->data = 0; + break; + case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: + case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: + case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: + case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: + if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) + return kvm_pmu_get_msr(vcpu, msr_info); + msr_info->data = 0; + break; + case MSR_IA32_UCODE_REV: + msr_info->data = vcpu->arch.microcode_version; + break; + case MSR_IA32_ARCH_CAPABILITIES: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) + return 1; + msr_info->data = vcpu->arch.arch_capabilities; + break; + case MSR_IA32_PERF_CAPABILITIES: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) + return 1; + msr_info->data = vcpu->arch.perf_capabilities; + break; + case MSR_IA32_POWER_CTL: + msr_info->data = vcpu->arch.msr_ia32_power_ctl; + break; + case MSR_IA32_TSC: { + /* + * Intel SDM states that MSR_IA32_TSC read adds the TSC offset + * even when not intercepted. AMD manual doesn't explicitly + * state this but appears to behave the same. + * + * On userspace reads and writes, however, we unconditionally + * return L1's TSC value to ensure backwards-compatible + * behavior for migration. + */ + u64 offset, ratio; + + if (msr_info->host_initiated) { + offset = vcpu->arch.l1_tsc_offset; + ratio = vcpu->arch.l1_tsc_scaling_ratio; + } else { + offset = vcpu->arch.tsc_offset; + ratio = vcpu->arch.tsc_scaling_ratio; + } + + msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; + break; + } + case MSR_IA32_CR_PAT: + msr_info->data = vcpu->arch.pat; + break; + case MSR_MTRRcap: + case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: + case MSR_MTRRdefType: + return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); + case 0xcd: /* fsb frequency */ + msr_info->data = 3; + break; + /* + * MSR_EBC_FREQUENCY_ID + * Conservative value valid for even the basic CPU models. + * Models 0,1: 000 in bits 23:21 indicating a bus speed of + * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, + * and 266MHz for model 3, or 4. Set Core Clock + * Frequency to System Bus Frequency Ratio to 1 (bits + * 31:24) even though these are only valid for CPU + * models > 2, however guests may end up dividing or + * multiplying by zero otherwise. + */ + case MSR_EBC_FREQUENCY_ID: + msr_info->data = 1 << 24; + break; + case MSR_IA32_APICBASE: + msr_info->data = kvm_get_apic_base(vcpu); + break; + case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: + return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); + case MSR_IA32_TSC_DEADLINE: + msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); + break; + case MSR_IA32_TSC_ADJUST: + msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; + break; + case MSR_IA32_MISC_ENABLE: + msr_info->data = vcpu->arch.ia32_misc_enable_msr; + break; + case MSR_IA32_SMBASE: + if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) + return 1; + msr_info->data = vcpu->arch.smbase; + break; + case MSR_SMI_COUNT: + msr_info->data = vcpu->arch.smi_count; + break; + case MSR_IA32_PERF_STATUS: + /* TSC increment by tick */ + msr_info->data = 1000ULL; + /* CPU multiplier */ + msr_info->data |= (((uint64_t)4ULL) << 40); + break; + case MSR_EFER: + msr_info->data = vcpu->arch.efer; + break; + case MSR_KVM_WALL_CLOCK: + if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) + return 1; + + msr_info->data = vcpu->kvm->arch.wall_clock; + break; + case MSR_KVM_WALL_CLOCK_NEW: + if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) + return 1; + + msr_info->data = vcpu->kvm->arch.wall_clock; + break; + case MSR_KVM_SYSTEM_TIME: + if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) + return 1; + + msr_info->data = vcpu->arch.time; + break; + case MSR_KVM_SYSTEM_TIME_NEW: + if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) + return 1; + + msr_info->data = vcpu->arch.time; + break; + case MSR_KVM_ASYNC_PF_EN: + if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) + return 1; + + msr_info->data = vcpu->arch.apf.msr_en_val; + break; + case MSR_KVM_ASYNC_PF_INT: + if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) + return 1; + + msr_info->data = vcpu->arch.apf.msr_int_val; + break; + case MSR_KVM_ASYNC_PF_ACK: + if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) + return 1; + + msr_info->data = 0; + break; + case MSR_KVM_STEAL_TIME: + if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) + return 1; + + msr_info->data = vcpu->arch.st.msr_val; + break; + case MSR_KVM_PV_EOI_EN: + if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) + return 1; + + msr_info->data = vcpu->arch.pv_eoi.msr_val; + break; + case MSR_KVM_POLL_CONTROL: + if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) + return 1; + + msr_info->data = vcpu->arch.msr_kvm_poll_control; + break; + case MSR_IA32_P5_MC_ADDR: + case MSR_IA32_P5_MC_TYPE: + case MSR_IA32_MCG_CAP: + case MSR_IA32_MCG_CTL: + case MSR_IA32_MCG_STATUS: + case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: + case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: + return get_msr_mce(vcpu, msr_info->index, &msr_info->data, + msr_info->host_initiated); + case MSR_IA32_XSS: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) + return 1; + msr_info->data = vcpu->arch.ia32_xss; + break; + case MSR_K7_CLK_CTL: + /* + * Provide expected ramp-up count for K7. All other + * are set to zero, indicating minimum divisors for + * every field. + * + * This prevents guest kernels on AMD host with CPU + * type 6, model 8 and higher from exploding due to + * the rdmsr failing. + */ + msr_info->data = 0x20000000; + break; + case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: + case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: + case HV_X64_MSR_SYNDBG_OPTIONS: + case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: + case HV_X64_MSR_CRASH_CTL: + case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: + case HV_X64_MSR_REENLIGHTENMENT_CONTROL: + case HV_X64_MSR_TSC_EMULATION_CONTROL: + case HV_X64_MSR_TSC_EMULATION_STATUS: + case HV_X64_MSR_TSC_INVARIANT_CONTROL: + return kvm_hv_get_msr_common(vcpu, + msr_info->index, &msr_info->data, + msr_info->host_initiated); + case MSR_IA32_BBL_CR_CTL3: + /* This legacy MSR exists but isn't fully documented in current + * silicon. It is however accessed by winxp in very narrow + * scenarios where it sets bit #19, itself documented as + * a "reserved" bit. Best effort attempt to source coherent + * read data here should the balance of the register be + * interpreted by the guest: + * + * L2 cache control register 3: 64GB range, 256KB size, + * enabled, latency 0x1, configured + */ + msr_info->data = 0xbe702111; + break; + case MSR_AMD64_OSVW_ID_LENGTH: + if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) + return 1; + msr_info->data = vcpu->arch.osvw.length; + break; + case MSR_AMD64_OSVW_STATUS: + if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) + return 1; + msr_info->data = vcpu->arch.osvw.status; + break; + case MSR_PLATFORM_INFO: + if (!msr_info->host_initiated && + !vcpu->kvm->arch.guest_can_read_msr_platform_info) + return 1; + msr_info->data = vcpu->arch.msr_platform_info; + break; + case MSR_MISC_FEATURES_ENABLES: + msr_info->data = vcpu->arch.msr_misc_features_enables; + break; + case MSR_K7_HWCR: + msr_info->data = vcpu->arch.msr_hwcr; + break; +#ifdef CONFIG_X86_64 + case MSR_IA32_XFD: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) + return 1; + + msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; + break; + case MSR_IA32_XFD_ERR: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) + return 1; + + msr_info->data = vcpu->arch.guest_fpu.xfd_err; + break; +#endif + default: + if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) + return kvm_pmu_get_msr(vcpu, msr_info); + + /* + * Userspace is allowed to read MSRs that KVM reports as + * to-be-saved, even if an MSR isn't fully supported. + */ + if (msr_info->host_initiated && + kvm_is_msr_to_save(msr_info->index)) { + msr_info->data = 0; + break; + } + + return KVM_MSR_RET_INVALID; + } + return 0; +} +EXPORT_SYMBOL_GPL(kvm_get_msr_common); + +/* + * Read or write a bunch of msrs. All parameters are kernel addresses. + * + * @return number of msrs set successfully. + */ +static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, + struct kvm_msr_entry *entries, + int (*do_msr)(struct kvm_vcpu *vcpu, + unsigned index, u64 *data)) +{ + int i; + + for (i = 0; i < msrs->nmsrs; ++i) + if (do_msr(vcpu, entries[i].index, &entries[i].data)) + break; + + return i; +} + +/* + * Read or write a bunch of msrs. Parameters are user addresses. + * + * @return number of msrs set successfully. + */ +static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, + int (*do_msr)(struct kvm_vcpu *vcpu, + unsigned index, u64 *data), + int writeback) +{ + struct kvm_msrs msrs; + struct kvm_msr_entry *entries; + unsigned size; + int r; + + r = -EFAULT; + if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) + goto out; + + r = -E2BIG; + if (msrs.nmsrs >= MAX_IO_MSRS) + goto out; + + size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; + entries = memdup_user(user_msrs->entries, size); + if (IS_ERR(entries)) { + r = PTR_ERR(entries); + goto out; + } + + r = __msr_io(vcpu, &msrs, entries, do_msr); + + if (writeback && copy_to_user(user_msrs->entries, entries, size)) + r = -EFAULT; + + kfree(entries); +out: + return r; +} + +static inline bool kvm_can_mwait_in_guest(void) +{ + return boot_cpu_has(X86_FEATURE_MWAIT) && + !boot_cpu_has_bug(X86_BUG_MONITOR) && + boot_cpu_has(X86_FEATURE_ARAT); +} + +static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, + struct kvm_cpuid2 __user *cpuid_arg) +{ + struct kvm_cpuid2 cpuid; + int r; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) + return r; + + r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); + if (r) + return r; + + r = -EFAULT; + if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) + return r; + + return 0; +} + +int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) +{ + int r = 0; + + switch (ext) { + case KVM_CAP_IRQCHIP: + case KVM_CAP_HLT: + case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: + case KVM_CAP_SET_TSS_ADDR: + case KVM_CAP_EXT_CPUID: + case KVM_CAP_EXT_EMUL_CPUID: + case KVM_CAP_CLOCKSOURCE: + case KVM_CAP_PIT: + case KVM_CAP_NOP_IO_DELAY: + case KVM_CAP_MP_STATE: + case KVM_CAP_SYNC_MMU: + case KVM_CAP_USER_NMI: + case KVM_CAP_REINJECT_CONTROL: + case KVM_CAP_IRQ_INJECT_STATUS: + case KVM_CAP_IOEVENTFD: + case KVM_CAP_IOEVENTFD_NO_LENGTH: + case KVM_CAP_PIT2: + case KVM_CAP_PIT_STATE2: + case KVM_CAP_SET_IDENTITY_MAP_ADDR: + case KVM_CAP_VCPU_EVENTS: + case KVM_CAP_HYPERV: + case KVM_CAP_HYPERV_VAPIC: + case KVM_CAP_HYPERV_SPIN: + case KVM_CAP_HYPERV_SYNIC: + case KVM_CAP_HYPERV_SYNIC2: + case KVM_CAP_HYPERV_VP_INDEX: + case KVM_CAP_HYPERV_EVENTFD: + case KVM_CAP_HYPERV_TLBFLUSH: + case KVM_CAP_HYPERV_SEND_IPI: + case KVM_CAP_HYPERV_CPUID: + case KVM_CAP_HYPERV_ENFORCE_CPUID: + case KVM_CAP_SYS_HYPERV_CPUID: + case KVM_CAP_PCI_SEGMENT: + case KVM_CAP_DEBUGREGS: + case KVM_CAP_X86_ROBUST_SINGLESTEP: + case KVM_CAP_XSAVE: + case KVM_CAP_ASYNC_PF: + case KVM_CAP_ASYNC_PF_INT: + case KVM_CAP_GET_TSC_KHZ: + case KVM_CAP_KVMCLOCK_CTRL: + case KVM_CAP_READONLY_MEM: + case KVM_CAP_HYPERV_TIME: + case KVM_CAP_IOAPIC_POLARITY_IGNORED: + case KVM_CAP_TSC_DEADLINE_TIMER: + case KVM_CAP_DISABLE_QUIRKS: + case KVM_CAP_SET_BOOT_CPU_ID: + case KVM_CAP_SPLIT_IRQCHIP: + case KVM_CAP_IMMEDIATE_EXIT: + case KVM_CAP_PMU_EVENT_FILTER: + case KVM_CAP_PMU_EVENT_MASKED_EVENTS: + case KVM_CAP_GET_MSR_FEATURES: + case KVM_CAP_MSR_PLATFORM_INFO: + case KVM_CAP_EXCEPTION_PAYLOAD: + case KVM_CAP_X86_TRIPLE_FAULT_EVENT: + case KVM_CAP_SET_GUEST_DEBUG: + case KVM_CAP_LAST_CPU: + case KVM_CAP_X86_USER_SPACE_MSR: + case KVM_CAP_X86_MSR_FILTER: + case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: +#ifdef CONFIG_X86_SGX_KVM + case KVM_CAP_SGX_ATTRIBUTE: +#endif + case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: + case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: + case KVM_CAP_SREGS2: + case KVM_CAP_EXIT_ON_EMULATION_FAILURE: + case KVM_CAP_VCPU_ATTRIBUTES: + case KVM_CAP_SYS_ATTRIBUTES: + case KVM_CAP_VAPIC: + case KVM_CAP_ENABLE_CAP: + case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: + case KVM_CAP_IRQFD_RESAMPLE: + r = 1; + break; + case KVM_CAP_EXIT_HYPERCALL: + r = KVM_EXIT_HYPERCALL_VALID_MASK; + break; + case KVM_CAP_SET_GUEST_DEBUG2: + return KVM_GUESTDBG_VALID_MASK; +#ifdef CONFIG_KVM_XEN + case KVM_CAP_XEN_HVM: + r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | + KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | + KVM_XEN_HVM_CONFIG_SHARED_INFO | + KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | + KVM_XEN_HVM_CONFIG_EVTCHN_SEND; + if (sched_info_on()) + r |= KVM_XEN_HVM_CONFIG_RUNSTATE | + KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; + break; +#endif + case KVM_CAP_SYNC_REGS: + r = KVM_SYNC_X86_VALID_FIELDS; + break; + case KVM_CAP_ADJUST_CLOCK: + r = KVM_CLOCK_VALID_FLAGS; + break; + case KVM_CAP_X86_DISABLE_EXITS: + r = KVM_X86_DISABLE_EXITS_PAUSE; + + if (!mitigate_smt_rsb) { + r |= KVM_X86_DISABLE_EXITS_HLT | + KVM_X86_DISABLE_EXITS_CSTATE; + + if (kvm_can_mwait_in_guest()) + r |= KVM_X86_DISABLE_EXITS_MWAIT; + } + break; + case KVM_CAP_X86_SMM: + if (!IS_ENABLED(CONFIG_KVM_SMM)) + break; + + /* SMBASE is usually relocated above 1M on modern chipsets, + * and SMM handlers might indeed rely on 4G segment limits, + * so do not report SMM to be available if real mode is + * emulated via vm86 mode. Still, do not go to great lengths + * to avoid userspace's usage of the feature, because it is a + * fringe case that is not enabled except via specific settings + * of the module parameters. + */ + r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); + break; + case KVM_CAP_NR_VCPUS: + r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); + break; + case KVM_CAP_MAX_VCPUS: + r = KVM_MAX_VCPUS; + break; + case KVM_CAP_MAX_VCPU_ID: + r = KVM_MAX_VCPU_IDS; + break; + case KVM_CAP_PV_MMU: /* obsolete */ + r = 0; + break; + case KVM_CAP_MCE: + r = KVM_MAX_MCE_BANKS; + break; + case KVM_CAP_XCRS: + r = boot_cpu_has(X86_FEATURE_XSAVE); + break; + case KVM_CAP_TSC_CONTROL: + case KVM_CAP_VM_TSC_CONTROL: + r = kvm_caps.has_tsc_control; + break; + case KVM_CAP_X2APIC_API: + r = KVM_X2APIC_API_VALID_FLAGS; + break; + case KVM_CAP_NESTED_STATE: + r = kvm_x86_ops.nested_ops->get_state ? + kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; + break; + case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: + r = kvm_x86_ops.enable_l2_tlb_flush != NULL; + break; + case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: + r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; + break; + case KVM_CAP_SMALLER_MAXPHYADDR: + r = (int) allow_smaller_maxphyaddr; + break; + case KVM_CAP_STEAL_TIME: + r = sched_info_on(); + break; + case KVM_CAP_X86_BUS_LOCK_EXIT: + if (kvm_caps.has_bus_lock_exit) + r = KVM_BUS_LOCK_DETECTION_OFF | + KVM_BUS_LOCK_DETECTION_EXIT; + else + r = 0; + break; + case KVM_CAP_XSAVE2: { + r = xstate_required_size(kvm_get_filtered_xcr0(), false); + if (r < sizeof(struct kvm_xsave)) + r = sizeof(struct kvm_xsave); + break; + } + case KVM_CAP_PMU_CAPABILITY: + r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; + break; + case KVM_CAP_DISABLE_QUIRKS2: + r = KVM_X86_VALID_QUIRKS; + break; + case KVM_CAP_X86_NOTIFY_VMEXIT: + r = kvm_caps.has_notify_vmexit; + break; + default: + break; + } + return r; +} + +static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) +{ + void __user *uaddr = (void __user*)(unsigned long)attr->addr; + + if ((u64)(unsigned long)uaddr != attr->addr) + return ERR_PTR_USR(-EFAULT); + return uaddr; +} + +static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) +{ + u64 __user *uaddr = kvm_get_attr_addr(attr); + + if (attr->group) + return -ENXIO; + + if (IS_ERR(uaddr)) + return PTR_ERR(uaddr); + + switch (attr->attr) { + case KVM_X86_XCOMP_GUEST_SUPP: + if (put_user(kvm_caps.supported_xcr0, uaddr)) + return -EFAULT; + return 0; + default: + return -ENXIO; + } +} + +static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) +{ + if (attr->group) + return -ENXIO; + + switch (attr->attr) { + case KVM_X86_XCOMP_GUEST_SUPP: + return 0; + default: + return -ENXIO; + } +} + +long kvm_arch_dev_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + void __user *argp = (void __user *)arg; + long r; + + switch (ioctl) { + case KVM_GET_MSR_INDEX_LIST: { + struct kvm_msr_list __user *user_msr_list = argp; + struct kvm_msr_list msr_list; + unsigned n; + + r = -EFAULT; + if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) + goto out; + n = msr_list.nmsrs; + msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; + if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) + goto out; + r = -E2BIG; + if (n < msr_list.nmsrs) + goto out; + r = -EFAULT; + if (copy_to_user(user_msr_list->indices, &msrs_to_save, + num_msrs_to_save * sizeof(u32))) + goto out; + if (copy_to_user(user_msr_list->indices + num_msrs_to_save, + &emulated_msrs, + num_emulated_msrs * sizeof(u32))) + goto out; + r = 0; + break; + } + case KVM_GET_SUPPORTED_CPUID: + case KVM_GET_EMULATED_CPUID: { + struct kvm_cpuid2 __user *cpuid_arg = argp; + struct kvm_cpuid2 cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) + goto out; + + r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, + ioctl); + if (r) + goto out; + + r = -EFAULT; + if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) + goto out; + r = 0; + break; + } + case KVM_X86_GET_MCE_CAP_SUPPORTED: + r = -EFAULT; + if (copy_to_user(argp, &kvm_caps.supported_mce_cap, + sizeof(kvm_caps.supported_mce_cap))) + goto out; + r = 0; + break; + case KVM_GET_MSR_FEATURE_INDEX_LIST: { + struct kvm_msr_list __user *user_msr_list = argp; + struct kvm_msr_list msr_list; + unsigned int n; + + r = -EFAULT; + if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) + goto out; + n = msr_list.nmsrs; + msr_list.nmsrs = num_msr_based_features; + if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) + goto out; + r = -E2BIG; + if (n < msr_list.nmsrs) + goto out; + r = -EFAULT; + if (copy_to_user(user_msr_list->indices, &msr_based_features, + num_msr_based_features * sizeof(u32))) + goto out; + r = 0; + break; + } + case KVM_GET_MSRS: + r = msr_io(NULL, argp, do_get_msr_feature, 1); + break; + case KVM_GET_SUPPORTED_HV_CPUID: + r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); + break; + case KVM_GET_DEVICE_ATTR: { + struct kvm_device_attr attr; + r = -EFAULT; + if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) + break; + r = kvm_x86_dev_get_attr(&attr); + break; + } + case KVM_HAS_DEVICE_ATTR: { + struct kvm_device_attr attr; + r = -EFAULT; + if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) + break; + r = kvm_x86_dev_has_attr(&attr); + break; + } + default: + r = -EINVAL; + break; + } +out: + return r; +} + +static void wbinvd_ipi(void *garbage) +{ + wbinvd(); +} + +static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) +{ + return kvm_arch_has_noncoherent_dma(vcpu->kvm); +} + +void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) +{ + /* Address WBINVD may be executed by guest */ + if (need_emulate_wbinvd(vcpu)) { + if (static_call(kvm_x86_has_wbinvd_exit)()) + cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); + else if (vcpu->cpu != -1 && vcpu->cpu != cpu) + smp_call_function_single(vcpu->cpu, + wbinvd_ipi, NULL, 1); + } + + static_call(kvm_x86_vcpu_load)(vcpu, cpu); + + /* Save host pkru register if supported */ + vcpu->arch.host_pkru = read_pkru(); + + /* Apply any externally detected TSC adjustments (due to suspend) */ + if (unlikely(vcpu->arch.tsc_offset_adjustment)) { + adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); + vcpu->arch.tsc_offset_adjustment = 0; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + } + + if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { + s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : + rdtsc() - vcpu->arch.last_host_tsc; + if (tsc_delta < 0) + mark_tsc_unstable("KVM discovered backwards TSC"); + + if (kvm_check_tsc_unstable()) { + u64 offset = kvm_compute_l1_tsc_offset(vcpu, + vcpu->arch.last_guest_tsc); + kvm_vcpu_write_tsc_offset(vcpu, offset); + vcpu->arch.tsc_catchup = 1; + } + + if (kvm_lapic_hv_timer_in_use(vcpu)) + kvm_lapic_restart_hv_timer(vcpu); + + /* + * On a host with synchronized TSC, there is no need to update + * kvmclock on vcpu->cpu migration + */ + if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) + kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); + if (vcpu->cpu != cpu) + kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); + vcpu->cpu = cpu; + } + + kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); +} + +static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) +{ + struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; + struct kvm_steal_time __user *st; + struct kvm_memslots *slots; + static const u8 preempted = KVM_VCPU_PREEMPTED; + gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; + + /* + * The vCPU can be marked preempted if and only if the VM-Exit was on + * an instruction boundary and will not trigger guest emulation of any + * kind (see vcpu_run). Vendor specific code controls (conservatively) + * when this is true, for example allowing the vCPU to be marked + * preempted if and only if the VM-Exit was due to a host interrupt. + */ + if (!vcpu->arch.at_instruction_boundary) { + vcpu->stat.preemption_other++; + return; + } + + vcpu->stat.preemption_reported++; + if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) + return; + + if (vcpu->arch.st.preempted) + return; + + /* This happens on process exit */ + if (unlikely(current->mm != vcpu->kvm->mm)) + return; + + slots = kvm_memslots(vcpu->kvm); + + if (unlikely(slots->generation != ghc->generation || + gpa != ghc->gpa || + kvm_is_error_hva(ghc->hva) || !ghc->memslot)) + return; + + st = (struct kvm_steal_time __user *)ghc->hva; + BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); + + if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) + vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; + + mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); +} + +void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) +{ + int idx; + + if (vcpu->preempted) { + if (!vcpu->arch.guest_state_protected) + vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); + + /* + * Take the srcu lock as memslots will be accessed to check the gfn + * cache generation against the memslots generation. + */ + idx = srcu_read_lock(&vcpu->kvm->srcu); + if (kvm_xen_msr_enabled(vcpu->kvm)) + kvm_xen_runstate_set_preempted(vcpu); + else + kvm_steal_time_set_preempted(vcpu); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + } + + static_call(kvm_x86_vcpu_put)(vcpu); + vcpu->arch.last_host_tsc = rdtsc(); +} + +static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, + struct kvm_lapic_state *s) +{ + static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); + + return kvm_apic_get_state(vcpu, s); +} + +static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, + struct kvm_lapic_state *s) +{ + int r; + + r = kvm_apic_set_state(vcpu, s); + if (r) + return r; + update_cr8_intercept(vcpu); + + return 0; +} + +static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) +{ + /* + * We can accept userspace's request for interrupt injection + * as long as we have a place to store the interrupt number. + * The actual injection will happen when the CPU is able to + * deliver the interrupt. + */ + if (kvm_cpu_has_extint(vcpu)) + return false; + + /* Acknowledging ExtINT does not happen if LINT0 is masked. */ + return (!lapic_in_kernel(vcpu) || + kvm_apic_accept_pic_intr(vcpu)); +} + +static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) +{ + /* + * Do not cause an interrupt window exit if an exception + * is pending or an event needs reinjection; userspace + * might want to inject the interrupt manually using KVM_SET_REGS + * or KVM_SET_SREGS. For that to work, we must be at an + * instruction boundary and with no events half-injected. + */ + return (kvm_arch_interrupt_allowed(vcpu) && + kvm_cpu_accept_dm_intr(vcpu) && + !kvm_event_needs_reinjection(vcpu) && + !kvm_is_exception_pending(vcpu)); +} + +static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, + struct kvm_interrupt *irq) +{ + if (irq->irq >= KVM_NR_INTERRUPTS) + return -EINVAL; + + if (!irqchip_in_kernel(vcpu->kvm)) { + kvm_queue_interrupt(vcpu, irq->irq, false); + kvm_make_request(KVM_REQ_EVENT, vcpu); + return 0; + } + + /* + * With in-kernel LAPIC, we only use this to inject EXTINT, so + * fail for in-kernel 8259. + */ + if (pic_in_kernel(vcpu->kvm)) + return -ENXIO; + + if (vcpu->arch.pending_external_vector != -1) + return -EEXIST; + + vcpu->arch.pending_external_vector = irq->irq; + kvm_make_request(KVM_REQ_EVENT, vcpu); + return 0; +} + +static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) +{ + kvm_inject_nmi(vcpu); + + return 0; +} + +static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, + struct kvm_tpr_access_ctl *tac) +{ + if (tac->flags) + return -EINVAL; + vcpu->arch.tpr_access_reporting = !!tac->enabled; + return 0; +} + +static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, + u64 mcg_cap) +{ + int r; + unsigned bank_num = mcg_cap & 0xff, bank; + + r = -EINVAL; + if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) + goto out; + if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) + goto out; + r = 0; + vcpu->arch.mcg_cap = mcg_cap; + /* Init IA32_MCG_CTL to all 1s */ + if (mcg_cap & MCG_CTL_P) + vcpu->arch.mcg_ctl = ~(u64)0; + /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ + for (bank = 0; bank < bank_num; bank++) { + vcpu->arch.mce_banks[bank*4] = ~(u64)0; + if (mcg_cap & MCG_CMCI_P) + vcpu->arch.mci_ctl2_banks[bank] = 0; + } + + kvm_apic_after_set_mcg_cap(vcpu); + + static_call(kvm_x86_setup_mce)(vcpu); +out: + return r; +} + +/* + * Validate this is an UCNA (uncorrectable no action) error by checking the + * MCG_STATUS and MCi_STATUS registers: + * - none of the bits for Machine Check Exceptions are set + * - both the VAL (valid) and UC (uncorrectable) bits are set + * MCI_STATUS_PCC - Processor Context Corrupted + * MCI_STATUS_S - Signaled as a Machine Check Exception + * MCI_STATUS_AR - Software recoverable Action Required + */ +static bool is_ucna(struct kvm_x86_mce *mce) +{ + return !mce->mcg_status && + !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && + (mce->status & MCI_STATUS_VAL) && + (mce->status & MCI_STATUS_UC); +} + +static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) +{ + u64 mcg_cap = vcpu->arch.mcg_cap; + + banks[1] = mce->status; + banks[2] = mce->addr; + banks[3] = mce->misc; + vcpu->arch.mcg_status = mce->mcg_status; + + if (!(mcg_cap & MCG_CMCI_P) || + !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) + return 0; + + if (lapic_in_kernel(vcpu)) + kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); + + return 0; +} + +static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, + struct kvm_x86_mce *mce) +{ + u64 mcg_cap = vcpu->arch.mcg_cap; + unsigned bank_num = mcg_cap & 0xff; + u64 *banks = vcpu->arch.mce_banks; + + if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) + return -EINVAL; + + banks += array_index_nospec(4 * mce->bank, 4 * bank_num); + + if (is_ucna(mce)) + return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); + + /* + * if IA32_MCG_CTL is not all 1s, the uncorrected error + * reporting is disabled + */ + if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && + vcpu->arch.mcg_ctl != ~(u64)0) + return 0; + /* + * if IA32_MCi_CTL is not all 1s, the uncorrected error + * reporting is disabled for the bank + */ + if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) + return 0; + if (mce->status & MCI_STATUS_UC) { + if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || + !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return 0; + } + if (banks[1] & MCI_STATUS_VAL) + mce->status |= MCI_STATUS_OVER; + banks[2] = mce->addr; + banks[3] = mce->misc; + vcpu->arch.mcg_status = mce->mcg_status; + banks[1] = mce->status; + kvm_queue_exception(vcpu, MC_VECTOR); + } else if (!(banks[1] & MCI_STATUS_VAL) + || !(banks[1] & MCI_STATUS_UC)) { + if (banks[1] & MCI_STATUS_VAL) + mce->status |= MCI_STATUS_OVER; + banks[2] = mce->addr; + banks[3] = mce->misc; + banks[1] = mce->status; + } else + banks[1] |= MCI_STATUS_OVER; + return 0; +} + +static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, + struct kvm_vcpu_events *events) +{ + struct kvm_queued_exception *ex; + + process_nmi(vcpu); + +#ifdef CONFIG_KVM_SMM + if (kvm_check_request(KVM_REQ_SMI, vcpu)) + process_smi(vcpu); +#endif + + /* + * KVM's ABI only allows for one exception to be migrated. Luckily, + * the only time there can be two queued exceptions is if there's a + * non-exiting _injected_ exception, and a pending exiting exception. + * In that case, ignore the VM-Exiting exception as it's an extension + * of the injected exception. + */ + if (vcpu->arch.exception_vmexit.pending && + !vcpu->arch.exception.pending && + !vcpu->arch.exception.injected) + ex = &vcpu->arch.exception_vmexit; + else + ex = &vcpu->arch.exception; + + /* + * In guest mode, payload delivery should be deferred if the exception + * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 + * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, + * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not + * propagate the payload and so it cannot be safely deferred. Deliver + * the payload if the capability hasn't been requested. + */ + if (!vcpu->kvm->arch.exception_payload_enabled && + ex->pending && ex->has_payload) + kvm_deliver_exception_payload(vcpu, ex); + + memset(events, 0, sizeof(*events)); + + /* + * The API doesn't provide the instruction length for software + * exceptions, so don't report them. As long as the guest RIP + * isn't advanced, we should expect to encounter the exception + * again. + */ + if (!kvm_exception_is_soft(ex->vector)) { + events->exception.injected = ex->injected; + events->exception.pending = ex->pending; + /* + * For ABI compatibility, deliberately conflate + * pending and injected exceptions when + * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. + */ + if (!vcpu->kvm->arch.exception_payload_enabled) + events->exception.injected |= ex->pending; + } + events->exception.nr = ex->vector; + events->exception.has_error_code = ex->has_error_code; + events->exception.error_code = ex->error_code; + events->exception_has_payload = ex->has_payload; + events->exception_payload = ex->payload; + + events->interrupt.injected = + vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; + events->interrupt.nr = vcpu->arch.interrupt.nr; + events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); + + events->nmi.injected = vcpu->arch.nmi_injected; + events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); + events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); + + /* events->sipi_vector is never valid when reporting to user space */ + +#ifdef CONFIG_KVM_SMM + events->smi.smm = is_smm(vcpu); + events->smi.pending = vcpu->arch.smi_pending; + events->smi.smm_inside_nmi = + !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); +#endif + events->smi.latched_init = kvm_lapic_latched_init(vcpu); + + events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING + | KVM_VCPUEVENT_VALID_SHADOW + | KVM_VCPUEVENT_VALID_SMM); + if (vcpu->kvm->arch.exception_payload_enabled) + events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; + if (vcpu->kvm->arch.triple_fault_event) { + events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); + events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; + } +} + +static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, + struct kvm_vcpu_events *events) +{ + if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING + | KVM_VCPUEVENT_VALID_SIPI_VECTOR + | KVM_VCPUEVENT_VALID_SHADOW + | KVM_VCPUEVENT_VALID_SMM + | KVM_VCPUEVENT_VALID_PAYLOAD + | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) + return -EINVAL; + + if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { + if (!vcpu->kvm->arch.exception_payload_enabled) + return -EINVAL; + if (events->exception.pending) + events->exception.injected = 0; + else + events->exception_has_payload = 0; + } else { + events->exception.pending = 0; + events->exception_has_payload = 0; + } + + if ((events->exception.injected || events->exception.pending) && + (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) + return -EINVAL; + + /* INITs are latched while in SMM */ + if (events->flags & KVM_VCPUEVENT_VALID_SMM && + (events->smi.smm || events->smi.pending) && + vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) + return -EINVAL; + + process_nmi(vcpu); + + /* + * Flag that userspace is stuffing an exception, the next KVM_RUN will + * morph the exception to a VM-Exit if appropriate. Do this only for + * pending exceptions, already-injected exceptions are not subject to + * intercpetion. Note, userspace that conflates pending and injected + * is hosed, and will incorrectly convert an injected exception into a + * pending exception, which in turn may cause a spurious VM-Exit. + */ + vcpu->arch.exception_from_userspace = events->exception.pending; + + vcpu->arch.exception_vmexit.pending = false; + + vcpu->arch.exception.injected = events->exception.injected; + vcpu->arch.exception.pending = events->exception.pending; + vcpu->arch.exception.vector = events->exception.nr; + vcpu->arch.exception.has_error_code = events->exception.has_error_code; + vcpu->arch.exception.error_code = events->exception.error_code; + vcpu->arch.exception.has_payload = events->exception_has_payload; + vcpu->arch.exception.payload = events->exception_payload; + + vcpu->arch.interrupt.injected = events->interrupt.injected; + vcpu->arch.interrupt.nr = events->interrupt.nr; + vcpu->arch.interrupt.soft = events->interrupt.soft; + if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) + static_call(kvm_x86_set_interrupt_shadow)(vcpu, + events->interrupt.shadow); + + vcpu->arch.nmi_injected = events->nmi.injected; + if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { + vcpu->arch.nmi_pending = 0; + atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); + kvm_make_request(KVM_REQ_NMI, vcpu); + } + static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); + + if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && + lapic_in_kernel(vcpu)) + vcpu->arch.apic->sipi_vector = events->sipi_vector; + + if (events->flags & KVM_VCPUEVENT_VALID_SMM) { +#ifdef CONFIG_KVM_SMM + if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { + kvm_leave_nested(vcpu); + kvm_smm_changed(vcpu, events->smi.smm); + } + + vcpu->arch.smi_pending = events->smi.pending; + + if (events->smi.smm) { + if (events->smi.smm_inside_nmi) + vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; + else + vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; + } + +#else + if (events->smi.smm || events->smi.pending || + events->smi.smm_inside_nmi) + return -EINVAL; +#endif + + if (lapic_in_kernel(vcpu)) { + if (events->smi.latched_init) + set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); + else + clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); + } + } + + if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { + if (!vcpu->kvm->arch.triple_fault_event) + return -EINVAL; + if (events->triple_fault.pending) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + else + kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); + } + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + return 0; +} + +static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, + struct kvm_debugregs *dbgregs) +{ + unsigned long val; + + memset(dbgregs, 0, sizeof(*dbgregs)); + memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); + kvm_get_dr(vcpu, 6, &val); + dbgregs->dr6 = val; + dbgregs->dr7 = vcpu->arch.dr7; +} + +static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, + struct kvm_debugregs *dbgregs) +{ + if (dbgregs->flags) + return -EINVAL; + + if (!kvm_dr6_valid(dbgregs->dr6)) + return -EINVAL; + if (!kvm_dr7_valid(dbgregs->dr7)) + return -EINVAL; + + memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); + kvm_update_dr0123(vcpu); + vcpu->arch.dr6 = dbgregs->dr6; + vcpu->arch.dr7 = dbgregs->dr7; + kvm_update_dr7(vcpu); + + return 0; +} + + +static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, + u8 *state, unsigned int size) +{ + /* + * Only copy state for features that are enabled for the guest. The + * state itself isn't problematic, but setting bits in the header for + * features that are supported in *this* host but not exposed to the + * guest can result in KVM_SET_XSAVE failing when live migrating to a + * compatible host without the features that are NOT exposed to the + * guest. + * + * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if + * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't + * supported by the host. + */ + u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | + XFEATURE_MASK_FPSSE; + + if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) + return; + + fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, + supported_xcr0, vcpu->arch.pkru); +} + +static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, + struct kvm_xsave *guest_xsave) +{ + return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, + sizeof(guest_xsave->region)); +} + +static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, + struct kvm_xsave *guest_xsave) +{ + if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) + return 0; + + return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, + guest_xsave->region, + kvm_caps.supported_xcr0, + &vcpu->arch.pkru); +} + +static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, + struct kvm_xcrs *guest_xcrs) +{ + if (!boot_cpu_has(X86_FEATURE_XSAVE)) { + guest_xcrs->nr_xcrs = 0; + return; + } + + guest_xcrs->nr_xcrs = 1; + guest_xcrs->flags = 0; + guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; + guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; +} + +static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, + struct kvm_xcrs *guest_xcrs) +{ + int i, r = 0; + + if (!boot_cpu_has(X86_FEATURE_XSAVE)) + return -EINVAL; + + if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) + return -EINVAL; + + for (i = 0; i < guest_xcrs->nr_xcrs; i++) + /* Only support XCR0 currently */ + if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { + r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, + guest_xcrs->xcrs[i].value); + break; + } + if (r) + r = -EINVAL; + return r; +} + +/* + * kvm_set_guest_paused() indicates to the guest kernel that it has been + * stopped by the hypervisor. This function will be called from the host only. + * EINVAL is returned when the host attempts to set the flag for a guest that + * does not support pv clocks. + */ +static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) +{ + if (!vcpu->arch.pv_time.active) + return -EINVAL; + vcpu->arch.pvclock_set_guest_stopped_request = true; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + return 0; +} + +static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int r; + + switch (attr->attr) { + case KVM_VCPU_TSC_OFFSET: + r = 0; + break; + default: + r = -ENXIO; + } + + return r; +} + +static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + u64 __user *uaddr = kvm_get_attr_addr(attr); + int r; + + if (IS_ERR(uaddr)) + return PTR_ERR(uaddr); + + switch (attr->attr) { + case KVM_VCPU_TSC_OFFSET: + r = -EFAULT; + if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) + break; + r = 0; + break; + default: + r = -ENXIO; + } + + return r; +} + +static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + u64 __user *uaddr = kvm_get_attr_addr(attr); + struct kvm *kvm = vcpu->kvm; + int r; + + if (IS_ERR(uaddr)) + return PTR_ERR(uaddr); + + switch (attr->attr) { + case KVM_VCPU_TSC_OFFSET: { + u64 offset, tsc, ns; + unsigned long flags; + bool matched; + + r = -EFAULT; + if (get_user(offset, uaddr)) + break; + + raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); + + matched = (vcpu->arch.virtual_tsc_khz && + kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && + kvm->arch.last_tsc_offset == offset); + + tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; + ns = get_kvmclock_base_ns(); + + __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); + raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); + + r = 0; + break; + } + default: + r = -ENXIO; + } + + return r; +} + +static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, + unsigned int ioctl, + void __user *argp) +{ + struct kvm_device_attr attr; + int r; + + if (copy_from_user(&attr, argp, sizeof(attr))) + return -EFAULT; + + if (attr.group != KVM_VCPU_TSC_CTRL) + return -ENXIO; + + switch (ioctl) { + case KVM_HAS_DEVICE_ATTR: + r = kvm_arch_tsc_has_attr(vcpu, &attr); + break; + case KVM_GET_DEVICE_ATTR: + r = kvm_arch_tsc_get_attr(vcpu, &attr); + break; + case KVM_SET_DEVICE_ATTR: + r = kvm_arch_tsc_set_attr(vcpu, &attr); + break; + } + + return r; +} + +static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, + struct kvm_enable_cap *cap) +{ + int r; + uint16_t vmcs_version; + void __user *user_ptr; + + if (cap->flags) + return -EINVAL; + + switch (cap->cap) { + case KVM_CAP_HYPERV_SYNIC2: + if (cap->args[0]) + return -EINVAL; + fallthrough; + + case KVM_CAP_HYPERV_SYNIC: + if (!irqchip_in_kernel(vcpu->kvm)) + return -EINVAL; + return kvm_hv_activate_synic(vcpu, cap->cap == + KVM_CAP_HYPERV_SYNIC2); + case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: + if (!kvm_x86_ops.nested_ops->enable_evmcs) + return -ENOTTY; + r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); + if (!r) { + user_ptr = (void __user *)(uintptr_t)cap->args[0]; + if (copy_to_user(user_ptr, &vmcs_version, + sizeof(vmcs_version))) + r = -EFAULT; + } + return r; + case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: + if (!kvm_x86_ops.enable_l2_tlb_flush) + return -ENOTTY; + + return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); + + case KVM_CAP_HYPERV_ENFORCE_CPUID: + return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); + + case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: + vcpu->arch.pv_cpuid.enforce = cap->args[0]; + if (vcpu->arch.pv_cpuid.enforce) + kvm_update_pv_runtime(vcpu); + + return 0; + default: + return -EINVAL; + } +} + +long kvm_arch_vcpu_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm_vcpu *vcpu = filp->private_data; + void __user *argp = (void __user *)arg; + int r; + union { + struct kvm_sregs2 *sregs2; + struct kvm_lapic_state *lapic; + struct kvm_xsave *xsave; + struct kvm_xcrs *xcrs; + void *buffer; + } u; + + vcpu_load(vcpu); + + u.buffer = NULL; + switch (ioctl) { + case KVM_GET_LAPIC: { + r = -EINVAL; + if (!lapic_in_kernel(vcpu)) + goto out; + u.lapic = kzalloc(sizeof(struct kvm_lapic_state), + GFP_KERNEL_ACCOUNT); + + r = -ENOMEM; + if (!u.lapic) + goto out; + r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) + goto out; + r = 0; + break; + } + case KVM_SET_LAPIC: { + r = -EINVAL; + if (!lapic_in_kernel(vcpu)) + goto out; + u.lapic = memdup_user(argp, sizeof(*u.lapic)); + if (IS_ERR(u.lapic)) { + r = PTR_ERR(u.lapic); + goto out_nofree; + } + + r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); + break; + } + case KVM_INTERRUPT: { + struct kvm_interrupt irq; + + r = -EFAULT; + if (copy_from_user(&irq, argp, sizeof(irq))) + goto out; + r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); + break; + } + case KVM_NMI: { + r = kvm_vcpu_ioctl_nmi(vcpu); + break; + } + case KVM_SMI: { + r = kvm_inject_smi(vcpu); + break; + } + case KVM_SET_CPUID: { + struct kvm_cpuid __user *cpuid_arg = argp; + struct kvm_cpuid cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) + goto out; + r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); + break; + } + case KVM_SET_CPUID2: { + struct kvm_cpuid2 __user *cpuid_arg = argp; + struct kvm_cpuid2 cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) + goto out; + r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, + cpuid_arg->entries); + break; + } + case KVM_GET_CPUID2: { + struct kvm_cpuid2 __user *cpuid_arg = argp; + struct kvm_cpuid2 cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) + goto out; + r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, + cpuid_arg->entries); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) + goto out; + r = 0; + break; + } + case KVM_GET_MSRS: { + int idx = srcu_read_lock(&vcpu->kvm->srcu); + r = msr_io(vcpu, argp, do_get_msr, 1); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + break; + } + case KVM_SET_MSRS: { + int idx = srcu_read_lock(&vcpu->kvm->srcu); + r = msr_io(vcpu, argp, do_set_msr, 0); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + break; + } + case KVM_TPR_ACCESS_REPORTING: { + struct kvm_tpr_access_ctl tac; + + r = -EFAULT; + if (copy_from_user(&tac, argp, sizeof(tac))) + goto out; + r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, &tac, sizeof(tac))) + goto out; + r = 0; + break; + }; + case KVM_SET_VAPIC_ADDR: { + struct kvm_vapic_addr va; + int idx; + + r = -EINVAL; + if (!lapic_in_kernel(vcpu)) + goto out; + r = -EFAULT; + if (copy_from_user(&va, argp, sizeof(va))) + goto out; + idx = srcu_read_lock(&vcpu->kvm->srcu); + r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + break; + } + case KVM_X86_SETUP_MCE: { + u64 mcg_cap; + + r = -EFAULT; + if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) + goto out; + r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); + break; + } + case KVM_X86_SET_MCE: { + struct kvm_x86_mce mce; + + r = -EFAULT; + if (copy_from_user(&mce, argp, sizeof(mce))) + goto out; + r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); + break; + } + case KVM_GET_VCPU_EVENTS: { + struct kvm_vcpu_events events; + + kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); + + r = -EFAULT; + if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) + break; + r = 0; + break; + } + case KVM_SET_VCPU_EVENTS: { + struct kvm_vcpu_events events; + + r = -EFAULT; + if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) + break; + + r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); + break; + } + case KVM_GET_DEBUGREGS: { + struct kvm_debugregs dbgregs; + + kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); + + r = -EFAULT; + if (copy_to_user(argp, &dbgregs, + sizeof(struct kvm_debugregs))) + break; + r = 0; + break; + } + case KVM_SET_DEBUGREGS: { + struct kvm_debugregs dbgregs; + + r = -EFAULT; + if (copy_from_user(&dbgregs, argp, + sizeof(struct kvm_debugregs))) + break; + + r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); + break; + } + case KVM_GET_XSAVE: { + r = -EINVAL; + if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) + break; + + u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); + r = -ENOMEM; + if (!u.xsave) + break; + + kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); + + r = -EFAULT; + if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) + break; + r = 0; + break; + } + case KVM_SET_XSAVE: { + int size = vcpu->arch.guest_fpu.uabi_size; + + u.xsave = memdup_user(argp, size); + if (IS_ERR(u.xsave)) { + r = PTR_ERR(u.xsave); + goto out_nofree; + } + + r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); + break; + } + + case KVM_GET_XSAVE2: { + int size = vcpu->arch.guest_fpu.uabi_size; + + u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); + r = -ENOMEM; + if (!u.xsave) + break; + + kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); + + r = -EFAULT; + if (copy_to_user(argp, u.xsave, size)) + break; + + r = 0; + break; + } + + case KVM_GET_XCRS: { + u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); + r = -ENOMEM; + if (!u.xcrs) + break; + + kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); + + r = -EFAULT; + if (copy_to_user(argp, u.xcrs, + sizeof(struct kvm_xcrs))) + break; + r = 0; + break; + } + case KVM_SET_XCRS: { + u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); + if (IS_ERR(u.xcrs)) { + r = PTR_ERR(u.xcrs); + goto out_nofree; + } + + r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); + break; + } + case KVM_SET_TSC_KHZ: { + u32 user_tsc_khz; + + r = -EINVAL; + user_tsc_khz = (u32)arg; + + if (kvm_caps.has_tsc_control && + user_tsc_khz >= kvm_caps.max_guest_tsc_khz) + goto out; + + if (user_tsc_khz == 0) + user_tsc_khz = tsc_khz; + + if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) + r = 0; + + goto out; + } + case KVM_GET_TSC_KHZ: { + r = vcpu->arch.virtual_tsc_khz; + goto out; + } + case KVM_KVMCLOCK_CTRL: { + r = kvm_set_guest_paused(vcpu); + goto out; + } + case KVM_ENABLE_CAP: { + struct kvm_enable_cap cap; + + r = -EFAULT; + if (copy_from_user(&cap, argp, sizeof(cap))) + goto out; + r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); + break; + } + case KVM_GET_NESTED_STATE: { + struct kvm_nested_state __user *user_kvm_nested_state = argp; + u32 user_data_size; + + r = -EINVAL; + if (!kvm_x86_ops.nested_ops->get_state) + break; + + BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); + r = -EFAULT; + if (get_user(user_data_size, &user_kvm_nested_state->size)) + break; + + r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, + user_data_size); + if (r < 0) + break; + + if (r > user_data_size) { + if (put_user(r, &user_kvm_nested_state->size)) + r = -EFAULT; + else + r = -E2BIG; + break; + } + + r = 0; + break; + } + case KVM_SET_NESTED_STATE: { + struct kvm_nested_state __user *user_kvm_nested_state = argp; + struct kvm_nested_state kvm_state; + int idx; + + r = -EINVAL; + if (!kvm_x86_ops.nested_ops->set_state) + break; + + r = -EFAULT; + if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) + break; + + r = -EINVAL; + if (kvm_state.size < sizeof(kvm_state)) + break; + + if (kvm_state.flags & + ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE + | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING + | KVM_STATE_NESTED_GIF_SET)) + break; + + /* nested_run_pending implies guest_mode. */ + if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) + && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) + break; + + idx = srcu_read_lock(&vcpu->kvm->srcu); + r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + break; + } + case KVM_GET_SUPPORTED_HV_CPUID: + r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); + break; +#ifdef CONFIG_KVM_XEN + case KVM_XEN_VCPU_GET_ATTR: { + struct kvm_xen_vcpu_attr xva; + + r = -EFAULT; + if (copy_from_user(&xva, argp, sizeof(xva))) + goto out; + r = kvm_xen_vcpu_get_attr(vcpu, &xva); + if (!r && copy_to_user(argp, &xva, sizeof(xva))) + r = -EFAULT; + break; + } + case KVM_XEN_VCPU_SET_ATTR: { + struct kvm_xen_vcpu_attr xva; + + r = -EFAULT; + if (copy_from_user(&xva, argp, sizeof(xva))) + goto out; + r = kvm_xen_vcpu_set_attr(vcpu, &xva); + break; + } +#endif + case KVM_GET_SREGS2: { + u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); + r = -ENOMEM; + if (!u.sregs2) + goto out; + __get_sregs2(vcpu, u.sregs2); + r = -EFAULT; + if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) + goto out; + r = 0; + break; + } + case KVM_SET_SREGS2: { + u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); + if (IS_ERR(u.sregs2)) { + r = PTR_ERR(u.sregs2); + u.sregs2 = NULL; + goto out; + } + r = __set_sregs2(vcpu, u.sregs2); + break; + } + case KVM_HAS_DEVICE_ATTR: + case KVM_GET_DEVICE_ATTR: + case KVM_SET_DEVICE_ATTR: + r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); + break; + default: + r = -EINVAL; + } +out: + kfree(u.buffer); +out_nofree: + vcpu_put(vcpu); + return r; +} + +vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) +{ + return VM_FAULT_SIGBUS; +} + +static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) +{ + int ret; + + if (addr > (unsigned int)(-3 * PAGE_SIZE)) + return -EINVAL; + ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); + return ret; +} + +static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, + u64 ident_addr) +{ + return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); +} + +static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, + unsigned long kvm_nr_mmu_pages) +{ + if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) + return -EINVAL; + + mutex_lock(&kvm->slots_lock); + + kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); + kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; + + mutex_unlock(&kvm->slots_lock); + return 0; +} + +static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) +{ + struct kvm_pic *pic = kvm->arch.vpic; + int r; + + r = 0; + switch (chip->chip_id) { + case KVM_IRQCHIP_PIC_MASTER: + memcpy(&chip->chip.pic, &pic->pics[0], + sizeof(struct kvm_pic_state)); + break; + case KVM_IRQCHIP_PIC_SLAVE: + memcpy(&chip->chip.pic, &pic->pics[1], + sizeof(struct kvm_pic_state)); + break; + case KVM_IRQCHIP_IOAPIC: + kvm_get_ioapic(kvm, &chip->chip.ioapic); + break; + default: + r = -EINVAL; + break; + } + return r; +} + +static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) +{ + struct kvm_pic *pic = kvm->arch.vpic; + int r; + + r = 0; + switch (chip->chip_id) { + case KVM_IRQCHIP_PIC_MASTER: + spin_lock(&pic->lock); + memcpy(&pic->pics[0], &chip->chip.pic, + sizeof(struct kvm_pic_state)); + spin_unlock(&pic->lock); + break; + case KVM_IRQCHIP_PIC_SLAVE: + spin_lock(&pic->lock); + memcpy(&pic->pics[1], &chip->chip.pic, + sizeof(struct kvm_pic_state)); + spin_unlock(&pic->lock); + break; + case KVM_IRQCHIP_IOAPIC: + kvm_set_ioapic(kvm, &chip->chip.ioapic); + break; + default: + r = -EINVAL; + break; + } + kvm_pic_update_irq(pic); + return r; +} + +static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) +{ + struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; + + BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); + + mutex_lock(&kps->lock); + memcpy(ps, &kps->channels, sizeof(*ps)); + mutex_unlock(&kps->lock); + return 0; +} + +static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) +{ + int i; + struct kvm_pit *pit = kvm->arch.vpit; + + mutex_lock(&pit->pit_state.lock); + memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); + for (i = 0; i < 3; i++) + kvm_pit_load_count(pit, i, ps->channels[i].count, 0); + mutex_unlock(&pit->pit_state.lock); + return 0; +} + +static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) +{ + mutex_lock(&kvm->arch.vpit->pit_state.lock); + memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, + sizeof(ps->channels)); + ps->flags = kvm->arch.vpit->pit_state.flags; + mutex_unlock(&kvm->arch.vpit->pit_state.lock); + memset(&ps->reserved, 0, sizeof(ps->reserved)); + return 0; +} + +static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) +{ + int start = 0; + int i; + u32 prev_legacy, cur_legacy; + struct kvm_pit *pit = kvm->arch.vpit; + + mutex_lock(&pit->pit_state.lock); + prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; + cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; + if (!prev_legacy && cur_legacy) + start = 1; + memcpy(&pit->pit_state.channels, &ps->channels, + sizeof(pit->pit_state.channels)); + pit->pit_state.flags = ps->flags; + for (i = 0; i < 3; i++) + kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, + start && i == 0); + mutex_unlock(&pit->pit_state.lock); + return 0; +} + +static int kvm_vm_ioctl_reinject(struct kvm *kvm, + struct kvm_reinject_control *control) +{ + struct kvm_pit *pit = kvm->arch.vpit; + + /* pit->pit_state.lock was overloaded to prevent userspace from getting + * an inconsistent state after running multiple KVM_REINJECT_CONTROL + * ioctls in parallel. Use a separate lock if that ioctl isn't rare. + */ + mutex_lock(&pit->pit_state.lock); + kvm_pit_set_reinject(pit, control->pit_reinject); + mutex_unlock(&pit->pit_state.lock); + + return 0; +} + +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) +{ + + /* + * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called + * before reporting dirty_bitmap to userspace. KVM flushes the buffers + * on all VM-Exits, thus we only need to kick running vCPUs to force a + * VM-Exit. + */ + struct kvm_vcpu *vcpu; + unsigned long i; + + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_vcpu_kick(vcpu); +} + +int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, + bool line_status) +{ + if (!irqchip_in_kernel(kvm)) + return -ENXIO; + + irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, + irq_event->irq, irq_event->level, + line_status); + return 0; +} + +int kvm_vm_ioctl_enable_cap(struct kvm *kvm, + struct kvm_enable_cap *cap) +{ + int r; + + if (cap->flags) + return -EINVAL; + + switch (cap->cap) { + case KVM_CAP_DISABLE_QUIRKS2: + r = -EINVAL; + if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) + break; + fallthrough; + case KVM_CAP_DISABLE_QUIRKS: + kvm->arch.disabled_quirks = cap->args[0]; + r = 0; + break; + case KVM_CAP_SPLIT_IRQCHIP: { + mutex_lock(&kvm->lock); + r = -EINVAL; + if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) + goto split_irqchip_unlock; + r = -EEXIST; + if (irqchip_in_kernel(kvm)) + goto split_irqchip_unlock; + if (kvm->created_vcpus) + goto split_irqchip_unlock; + r = kvm_setup_empty_irq_routing(kvm); + if (r) + goto split_irqchip_unlock; + /* Pairs with irqchip_in_kernel. */ + smp_wmb(); + kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; + kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; + kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); + r = 0; +split_irqchip_unlock: + mutex_unlock(&kvm->lock); + break; + } + case KVM_CAP_X2APIC_API: + r = -EINVAL; + if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) + break; + + if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) + kvm->arch.x2apic_format = true; + if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) + kvm->arch.x2apic_broadcast_quirk_disabled = true; + + r = 0; + break; + case KVM_CAP_X86_DISABLE_EXITS: + r = -EINVAL; + if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) + break; + + if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) + kvm->arch.pause_in_guest = true; + +#define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ + "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." + + if (!mitigate_smt_rsb) { + if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && + (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) + pr_warn_once(SMT_RSB_MSG); + + if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && + kvm_can_mwait_in_guest()) + kvm->arch.mwait_in_guest = true; + if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) + kvm->arch.hlt_in_guest = true; + if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) + kvm->arch.cstate_in_guest = true; + } + + r = 0; + break; + case KVM_CAP_MSR_PLATFORM_INFO: + kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; + r = 0; + break; + case KVM_CAP_EXCEPTION_PAYLOAD: + kvm->arch.exception_payload_enabled = cap->args[0]; + r = 0; + break; + case KVM_CAP_X86_TRIPLE_FAULT_EVENT: + kvm->arch.triple_fault_event = cap->args[0]; + r = 0; + break; + case KVM_CAP_X86_USER_SPACE_MSR: + r = -EINVAL; + if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) + break; + kvm->arch.user_space_msr_mask = cap->args[0]; + r = 0; + break; + case KVM_CAP_X86_BUS_LOCK_EXIT: + r = -EINVAL; + if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) + break; + + if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && + (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) + break; + + if (kvm_caps.has_bus_lock_exit && + cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) + kvm->arch.bus_lock_detection_enabled = true; + r = 0; + break; +#ifdef CONFIG_X86_SGX_KVM + case KVM_CAP_SGX_ATTRIBUTE: { + unsigned long allowed_attributes = 0; + + r = sgx_set_attribute(&allowed_attributes, cap->args[0]); + if (r) + break; + + /* KVM only supports the PROVISIONKEY privileged attribute. */ + if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && + !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) + kvm->arch.sgx_provisioning_allowed = true; + else + r = -EINVAL; + break; + } +#endif + case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: + r = -EINVAL; + if (!kvm_x86_ops.vm_copy_enc_context_from) + break; + + r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); + break; + case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: + r = -EINVAL; + if (!kvm_x86_ops.vm_move_enc_context_from) + break; + + r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); + break; + case KVM_CAP_EXIT_HYPERCALL: + if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { + r = -EINVAL; + break; + } + kvm->arch.hypercall_exit_enabled = cap->args[0]; + r = 0; + break; + case KVM_CAP_EXIT_ON_EMULATION_FAILURE: + r = -EINVAL; + if (cap->args[0] & ~1) + break; + kvm->arch.exit_on_emulation_error = cap->args[0]; + r = 0; + break; + case KVM_CAP_PMU_CAPABILITY: + r = -EINVAL; + if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) + break; + + mutex_lock(&kvm->lock); + if (!kvm->created_vcpus) { + kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); + r = 0; + } + mutex_unlock(&kvm->lock); + break; + case KVM_CAP_MAX_VCPU_ID: + r = -EINVAL; + if (cap->args[0] > KVM_MAX_VCPU_IDS) + break; + + mutex_lock(&kvm->lock); + if (kvm->arch.max_vcpu_ids == cap->args[0]) { + r = 0; + } else if (!kvm->arch.max_vcpu_ids) { + kvm->arch.max_vcpu_ids = cap->args[0]; + r = 0; + } + mutex_unlock(&kvm->lock); + break; + case KVM_CAP_X86_NOTIFY_VMEXIT: + r = -EINVAL; + if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) + break; + if (!kvm_caps.has_notify_vmexit) + break; + if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) + break; + mutex_lock(&kvm->lock); + if (!kvm->created_vcpus) { + kvm->arch.notify_window = cap->args[0] >> 32; + kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; + r = 0; + } + mutex_unlock(&kvm->lock); + break; + case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: + r = -EINVAL; + + /* + * Since the risk of disabling NX hugepages is a guest crashing + * the system, ensure the userspace process has permission to + * reboot the system. + * + * Note that unlike the reboot() syscall, the process must have + * this capability in the root namespace because exposing + * /dev/kvm into a container does not limit the scope of the + * iTLB multihit bug to that container. In other words, + * this must use capable(), not ns_capable(). + */ + if (!capable(CAP_SYS_BOOT)) { + r = -EPERM; + break; + } + + if (cap->args[0]) + break; + + mutex_lock(&kvm->lock); + if (!kvm->created_vcpus) { + kvm->arch.disable_nx_huge_pages = true; + r = 0; + } + mutex_unlock(&kvm->lock); + break; + default: + r = -EINVAL; + break; + } + return r; +} + +static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) +{ + struct kvm_x86_msr_filter *msr_filter; + + msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); + if (!msr_filter) + return NULL; + + msr_filter->default_allow = default_allow; + return msr_filter; +} + +static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) +{ + u32 i; + + if (!msr_filter) + return; + + for (i = 0; i < msr_filter->count; i++) + kfree(msr_filter->ranges[i].bitmap); + + kfree(msr_filter); +} + +static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, + struct kvm_msr_filter_range *user_range) +{ + unsigned long *bitmap; + size_t bitmap_size; + + if (!user_range->nmsrs) + return 0; + + if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) + return -EINVAL; + + if (!user_range->flags) + return -EINVAL; + + bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); + if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) + return -EINVAL; + + bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); + if (IS_ERR(bitmap)) + return PTR_ERR(bitmap); + + msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { + .flags = user_range->flags, + .base = user_range->base, + .nmsrs = user_range->nmsrs, + .bitmap = bitmap, + }; + + msr_filter->count++; + return 0; +} + +static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, + struct kvm_msr_filter *filter) +{ + struct kvm_x86_msr_filter *new_filter, *old_filter; + bool default_allow; + bool empty = true; + int r; + u32 i; + + if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) + return -EINVAL; + + for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) + empty &= !filter->ranges[i].nmsrs; + + default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); + if (empty && !default_allow) + return -EINVAL; + + new_filter = kvm_alloc_msr_filter(default_allow); + if (!new_filter) + return -ENOMEM; + + for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { + r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); + if (r) { + kvm_free_msr_filter(new_filter); + return r; + } + } + + mutex_lock(&kvm->lock); + old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, + mutex_is_locked(&kvm->lock)); + mutex_unlock(&kvm->lock); + synchronize_srcu(&kvm->srcu); + + kvm_free_msr_filter(old_filter); + + kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); + + return 0; +} + +#ifdef CONFIG_KVM_COMPAT +/* for KVM_X86_SET_MSR_FILTER */ +struct kvm_msr_filter_range_compat { + __u32 flags; + __u32 nmsrs; + __u32 base; + __u32 bitmap; +}; + +struct kvm_msr_filter_compat { + __u32 flags; + struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; +}; + +#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) + +long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, + unsigned long arg) +{ + void __user *argp = (void __user *)arg; + struct kvm *kvm = filp->private_data; + long r = -ENOTTY; + + switch (ioctl) { + case KVM_X86_SET_MSR_FILTER_COMPAT: { + struct kvm_msr_filter __user *user_msr_filter = argp; + struct kvm_msr_filter_compat filter_compat; + struct kvm_msr_filter filter; + int i; + + if (copy_from_user(&filter_compat, user_msr_filter, + sizeof(filter_compat))) + return -EFAULT; + + filter.flags = filter_compat.flags; + for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { + struct kvm_msr_filter_range_compat *cr; + + cr = &filter_compat.ranges[i]; + filter.ranges[i] = (struct kvm_msr_filter_range) { + .flags = cr->flags, + .nmsrs = cr->nmsrs, + .base = cr->base, + .bitmap = (__u8 *)(ulong)cr->bitmap, + }; + } + + r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); + break; + } + } + + return r; +} +#endif + +#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER +static int kvm_arch_suspend_notifier(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + unsigned long i; + int ret = 0; + + mutex_lock(&kvm->lock); + kvm_for_each_vcpu(i, vcpu, kvm) { + if (!vcpu->arch.pv_time.active) + continue; + + ret = kvm_set_guest_paused(vcpu); + if (ret) { + kvm_err("Failed to pause guest VCPU%d: %d\n", + vcpu->vcpu_id, ret); + break; + } + } + mutex_unlock(&kvm->lock); + + return ret ? NOTIFY_BAD : NOTIFY_DONE; +} + +int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) +{ + switch (state) { + case PM_HIBERNATION_PREPARE: + case PM_SUSPEND_PREPARE: + return kvm_arch_suspend_notifier(kvm); + } + + return NOTIFY_DONE; +} +#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ + +static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) +{ + struct kvm_clock_data data = { 0 }; + + get_kvmclock(kvm, &data); + if (copy_to_user(argp, &data, sizeof(data))) + return -EFAULT; + + return 0; +} + +static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) +{ + struct kvm_arch *ka = &kvm->arch; + struct kvm_clock_data data; + u64 now_raw_ns; + + if (copy_from_user(&data, argp, sizeof(data))) + return -EFAULT; + + /* + * Only KVM_CLOCK_REALTIME is used, but allow passing the + * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. + */ + if (data.flags & ~KVM_CLOCK_VALID_FLAGS) + return -EINVAL; + + kvm_hv_request_tsc_page_update(kvm); + kvm_start_pvclock_update(kvm); + pvclock_update_vm_gtod_copy(kvm); + + /* + * This pairs with kvm_guest_time_update(): when masterclock is + * in use, we use master_kernel_ns + kvmclock_offset to set + * unsigned 'system_time' so if we use get_kvmclock_ns() (which + * is slightly ahead) here we risk going negative on unsigned + * 'system_time' when 'data.clock' is very small. + */ + if (data.flags & KVM_CLOCK_REALTIME) { + u64 now_real_ns = ktime_get_real_ns(); + + /* + * Avoid stepping the kvmclock backwards. + */ + if (now_real_ns > data.realtime) + data.clock += now_real_ns - data.realtime; + } + + if (ka->use_master_clock) + now_raw_ns = ka->master_kernel_ns; + else + now_raw_ns = get_kvmclock_base_ns(); + ka->kvmclock_offset = data.clock - now_raw_ns; + kvm_end_pvclock_update(kvm); + return 0; +} + +int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) +{ + struct kvm *kvm = filp->private_data; + void __user *argp = (void __user *)arg; + int r = -ENOTTY; + /* + * This union makes it completely explicit to gcc-3.x + * that these two variables' stack usage should be + * combined, not added together. + */ + union { + struct kvm_pit_state ps; + struct kvm_pit_state2 ps2; + struct kvm_pit_config pit_config; + } u; + + switch (ioctl) { + case KVM_SET_TSS_ADDR: + r = kvm_vm_ioctl_set_tss_addr(kvm, arg); + break; + case KVM_SET_IDENTITY_MAP_ADDR: { + u64 ident_addr; + + mutex_lock(&kvm->lock); + r = -EINVAL; + if (kvm->created_vcpus) + goto set_identity_unlock; + r = -EFAULT; + if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) + goto set_identity_unlock; + r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); +set_identity_unlock: + mutex_unlock(&kvm->lock); + break; + } + case KVM_SET_NR_MMU_PAGES: + r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); + break; + case KVM_CREATE_IRQCHIP: { + mutex_lock(&kvm->lock); + + r = -EEXIST; + if (irqchip_in_kernel(kvm)) + goto create_irqchip_unlock; + + r = -EINVAL; + if (kvm->created_vcpus) + goto create_irqchip_unlock; + + r = kvm_pic_init(kvm); + if (r) + goto create_irqchip_unlock; + + r = kvm_ioapic_init(kvm); + if (r) { + kvm_pic_destroy(kvm); + goto create_irqchip_unlock; + } + + r = kvm_setup_default_irq_routing(kvm); + if (r) { + kvm_ioapic_destroy(kvm); + kvm_pic_destroy(kvm); + goto create_irqchip_unlock; + } + /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ + smp_wmb(); + kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; + kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); + create_irqchip_unlock: + mutex_unlock(&kvm->lock); + break; + } + case KVM_CREATE_PIT: + u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; + goto create_pit; + case KVM_CREATE_PIT2: + r = -EFAULT; + if (copy_from_user(&u.pit_config, argp, + sizeof(struct kvm_pit_config))) + goto out; + create_pit: + mutex_lock(&kvm->lock); + r = -EEXIST; + if (kvm->arch.vpit) + goto create_pit_unlock; + r = -ENOMEM; + kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); + if (kvm->arch.vpit) + r = 0; + create_pit_unlock: + mutex_unlock(&kvm->lock); + break; + case KVM_GET_IRQCHIP: { + /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ + struct kvm_irqchip *chip; + + chip = memdup_user(argp, sizeof(*chip)); + if (IS_ERR(chip)) { + r = PTR_ERR(chip); + goto out; + } + + r = -ENXIO; + if (!irqchip_kernel(kvm)) + goto get_irqchip_out; + r = kvm_vm_ioctl_get_irqchip(kvm, chip); + if (r) + goto get_irqchip_out; + r = -EFAULT; + if (copy_to_user(argp, chip, sizeof(*chip))) + goto get_irqchip_out; + r = 0; + get_irqchip_out: + kfree(chip); + break; + } + case KVM_SET_IRQCHIP: { + /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ + struct kvm_irqchip *chip; + + chip = memdup_user(argp, sizeof(*chip)); + if (IS_ERR(chip)) { + r = PTR_ERR(chip); + goto out; + } + + r = -ENXIO; + if (!irqchip_kernel(kvm)) + goto set_irqchip_out; + r = kvm_vm_ioctl_set_irqchip(kvm, chip); + set_irqchip_out: + kfree(chip); + break; + } + case KVM_GET_PIT: { + r = -EFAULT; + if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) + goto out; + r = -ENXIO; + if (!kvm->arch.vpit) + goto out; + r = kvm_vm_ioctl_get_pit(kvm, &u.ps); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) + goto out; + r = 0; + break; + } + case KVM_SET_PIT: { + r = -EFAULT; + if (copy_from_user(&u.ps, argp, sizeof(u.ps))) + goto out; + mutex_lock(&kvm->lock); + r = -ENXIO; + if (!kvm->arch.vpit) + goto set_pit_out; + r = kvm_vm_ioctl_set_pit(kvm, &u.ps); +set_pit_out: + mutex_unlock(&kvm->lock); + break; + } + case KVM_GET_PIT2: { + r = -ENXIO; + if (!kvm->arch.vpit) + goto out; + r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); + if (r) + goto out; + r = -EFAULT; + if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) + goto out; + r = 0; + break; + } + case KVM_SET_PIT2: { + r = -EFAULT; + if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) + goto out; + mutex_lock(&kvm->lock); + r = -ENXIO; + if (!kvm->arch.vpit) + goto set_pit2_out; + r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); +set_pit2_out: + mutex_unlock(&kvm->lock); + break; + } + case KVM_REINJECT_CONTROL: { + struct kvm_reinject_control control; + r = -EFAULT; + if (copy_from_user(&control, argp, sizeof(control))) + goto out; + r = -ENXIO; + if (!kvm->arch.vpit) + goto out; + r = kvm_vm_ioctl_reinject(kvm, &control); + break; + } + case KVM_SET_BOOT_CPU_ID: + r = 0; + mutex_lock(&kvm->lock); + if (kvm->created_vcpus) + r = -EBUSY; + else + kvm->arch.bsp_vcpu_id = arg; + mutex_unlock(&kvm->lock); + break; +#ifdef CONFIG_KVM_XEN + case KVM_XEN_HVM_CONFIG: { + struct kvm_xen_hvm_config xhc; + r = -EFAULT; + if (copy_from_user(&xhc, argp, sizeof(xhc))) + goto out; + r = kvm_xen_hvm_config(kvm, &xhc); + break; + } + case KVM_XEN_HVM_GET_ATTR: { + struct kvm_xen_hvm_attr xha; + + r = -EFAULT; + if (copy_from_user(&xha, argp, sizeof(xha))) + goto out; + r = kvm_xen_hvm_get_attr(kvm, &xha); + if (!r && copy_to_user(argp, &xha, sizeof(xha))) + r = -EFAULT; + break; + } + case KVM_XEN_HVM_SET_ATTR: { + struct kvm_xen_hvm_attr xha; + + r = -EFAULT; + if (copy_from_user(&xha, argp, sizeof(xha))) + goto out; + r = kvm_xen_hvm_set_attr(kvm, &xha); + break; + } + case KVM_XEN_HVM_EVTCHN_SEND: { + struct kvm_irq_routing_xen_evtchn uxe; + + r = -EFAULT; + if (copy_from_user(&uxe, argp, sizeof(uxe))) + goto out; + r = kvm_xen_hvm_evtchn_send(kvm, &uxe); + break; + } +#endif + case KVM_SET_CLOCK: + r = kvm_vm_ioctl_set_clock(kvm, argp); + break; + case KVM_GET_CLOCK: + r = kvm_vm_ioctl_get_clock(kvm, argp); + break; + case KVM_SET_TSC_KHZ: { + u32 user_tsc_khz; + + r = -EINVAL; + user_tsc_khz = (u32)arg; + + if (kvm_caps.has_tsc_control && + user_tsc_khz >= kvm_caps.max_guest_tsc_khz) + goto out; + + if (user_tsc_khz == 0) + user_tsc_khz = tsc_khz; + + WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); + r = 0; + + goto out; + } + case KVM_GET_TSC_KHZ: { + r = READ_ONCE(kvm->arch.default_tsc_khz); + goto out; + } + case KVM_MEMORY_ENCRYPT_OP: { + r = -ENOTTY; + if (!kvm_x86_ops.mem_enc_ioctl) + goto out; + + r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); + break; + } + case KVM_MEMORY_ENCRYPT_REG_REGION: { + struct kvm_enc_region region; + + r = -EFAULT; + if (copy_from_user(®ion, argp, sizeof(region))) + goto out; + + r = -ENOTTY; + if (!kvm_x86_ops.mem_enc_register_region) + goto out; + + r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); + break; + } + case KVM_MEMORY_ENCRYPT_UNREG_REGION: { + struct kvm_enc_region region; + + r = -EFAULT; + if (copy_from_user(®ion, argp, sizeof(region))) + goto out; + + r = -ENOTTY; + if (!kvm_x86_ops.mem_enc_unregister_region) + goto out; + + r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); + break; + } + case KVM_HYPERV_EVENTFD: { + struct kvm_hyperv_eventfd hvevfd; + + r = -EFAULT; + if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) + goto out; + r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); + break; + } + case KVM_SET_PMU_EVENT_FILTER: + r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); + break; + case KVM_X86_SET_MSR_FILTER: { + struct kvm_msr_filter __user *user_msr_filter = argp; + struct kvm_msr_filter filter; + + if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) + return -EFAULT; + + r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); + break; + } + default: + r = -ENOTTY; + } +out: + return r; +} + +static void kvm_probe_feature_msr(u32 msr_index) +{ + struct kvm_msr_entry msr = { + .index = msr_index, + }; + + if (kvm_get_msr_feature(&msr)) + return; + + msr_based_features[num_msr_based_features++] = msr_index; +} + +static void kvm_probe_msr_to_save(u32 msr_index) +{ + u32 dummy[2]; + + if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) + return; + + /* + * Even MSRs that are valid in the host may not be exposed to guests in + * some cases. + */ + switch (msr_index) { + case MSR_IA32_BNDCFGS: + if (!kvm_mpx_supported()) + return; + break; + case MSR_TSC_AUX: + if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && + !kvm_cpu_cap_has(X86_FEATURE_RDPID)) + return; + break; + case MSR_IA32_UMWAIT_CONTROL: + if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) + return; + break; + case MSR_IA32_RTIT_CTL: + case MSR_IA32_RTIT_STATUS: + if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) + return; + break; + case MSR_IA32_RTIT_CR3_MATCH: + if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || + !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) + return; + break; + case MSR_IA32_RTIT_OUTPUT_BASE: + case MSR_IA32_RTIT_OUTPUT_MASK: + if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || + (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && + !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) + return; + break; + case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: + if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || + (msr_index - MSR_IA32_RTIT_ADDR0_A >= + intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) + return; + break; + case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: + if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= + kvm_pmu_cap.num_counters_gp) + return; + break; + case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: + if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= + kvm_pmu_cap.num_counters_gp) + return; + break; + case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: + if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= + kvm_pmu_cap.num_counters_fixed) + return; + break; + case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: + case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: + case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: + if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) + return; + break; + case MSR_IA32_XFD: + case MSR_IA32_XFD_ERR: + if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) + return; + break; + case MSR_IA32_TSX_CTRL: + if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) + return; + break; + default: + break; + } + + msrs_to_save[num_msrs_to_save++] = msr_index; +} + +static void kvm_init_msr_lists(void) +{ + unsigned i; + + BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, + "Please update the fixed PMCs in msrs_to_save_pmu[]"); + + num_msrs_to_save = 0; + num_emulated_msrs = 0; + num_msr_based_features = 0; + + for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) + kvm_probe_msr_to_save(msrs_to_save_base[i]); + + if (enable_pmu) { + for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) + kvm_probe_msr_to_save(msrs_to_save_pmu[i]); + } + + for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { + if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) + continue; + + emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; + } + + for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) + kvm_probe_feature_msr(i); + + for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) + kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); +} + +static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, + const void *v) +{ + int handled = 0; + int n; + + do { + n = min(len, 8); + if (!(lapic_in_kernel(vcpu) && + !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) + && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) + break; + handled += n; + addr += n; + len -= n; + v += n; + } while (len); + + return handled; +} + +static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) +{ + int handled = 0; + int n; + + do { + n = min(len, 8); + if (!(lapic_in_kernel(vcpu) && + !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, + addr, n, v)) + && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) + break; + trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); + handled += n; + addr += n; + len -= n; + v += n; + } while (len); + + return handled; +} + +void kvm_set_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + static_call(kvm_x86_set_segment)(vcpu, var, seg); +} + +void kvm_get_segment(struct kvm_vcpu *vcpu, + struct kvm_segment *var, int seg) +{ + static_call(kvm_x86_get_segment)(vcpu, var, seg); +} + +gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, + struct x86_exception *exception) +{ + struct kvm_mmu *mmu = vcpu->arch.mmu; + gpa_t t_gpa; + + BUG_ON(!mmu_is_nested(vcpu)); + + /* NPT walks are always user-walks */ + access |= PFERR_USER_MASK; + t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); + + return t_gpa; +} + +gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; + return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); +} +EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); + +gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; + access |= PFERR_WRITE_MASK; + return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); +} +EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); + +/* uses this to access any guest's mapped memory without checking CPL */ +gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, + struct x86_exception *exception) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); +} + +static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, + struct kvm_vcpu *vcpu, u64 access, + struct x86_exception *exception) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + void *data = val; + int r = X86EMUL_CONTINUE; + + while (bytes) { + gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); + unsigned offset = addr & (PAGE_SIZE-1); + unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); + int ret; + + if (gpa == INVALID_GPA) + return X86EMUL_PROPAGATE_FAULT; + ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, + offset, toread); + if (ret < 0) { + r = X86EMUL_IO_NEEDED; + goto out; + } + + bytes -= toread; + data += toread; + addr += toread; + } +out: + return r; +} + +/* used for instruction fetching */ +static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; + unsigned offset; + int ret; + + /* Inline kvm_read_guest_virt_helper for speed. */ + gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, + exception); + if (unlikely(gpa == INVALID_GPA)) + return X86EMUL_PROPAGATE_FAULT; + + offset = addr & (PAGE_SIZE-1); + if (WARN_ON(offset + bytes > PAGE_SIZE)) + bytes = (unsigned)PAGE_SIZE - offset; + ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, + offset, bytes); + if (unlikely(ret < 0)) + return X86EMUL_IO_NEEDED; + + return X86EMUL_CONTINUE; +} + +int kvm_read_guest_virt(struct kvm_vcpu *vcpu, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception) +{ + u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; + + /* + * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED + * is returned, but our callers are not ready for that and they blindly + * call kvm_inject_page_fault. Ensure that they at least do not leak + * uninitialized kernel stack memory into cr2 and error code. + */ + memset(exception, 0, sizeof(*exception)); + return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, + exception); +} +EXPORT_SYMBOL_GPL(kvm_read_guest_virt); + +static int emulator_read_std(struct x86_emulate_ctxt *ctxt, + gva_t addr, void *val, unsigned int bytes, + struct x86_exception *exception, bool system) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + u64 access = 0; + + if (system) + access |= PFERR_IMPLICIT_ACCESS; + else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) + access |= PFERR_USER_MASK; + + return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); +} + +static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, + struct kvm_vcpu *vcpu, u64 access, + struct x86_exception *exception) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + void *data = val; + int r = X86EMUL_CONTINUE; + + while (bytes) { + gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); + unsigned offset = addr & (PAGE_SIZE-1); + unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); + int ret; + + if (gpa == INVALID_GPA) + return X86EMUL_PROPAGATE_FAULT; + ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); + if (ret < 0) { + r = X86EMUL_IO_NEEDED; + goto out; + } + + bytes -= towrite; + data += towrite; + addr += towrite; + } +out: + return r; +} + +static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, + unsigned int bytes, struct x86_exception *exception, + bool system) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + u64 access = PFERR_WRITE_MASK; + + if (system) + access |= PFERR_IMPLICIT_ACCESS; + else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) + access |= PFERR_USER_MASK; + + return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, + access, exception); +} + +int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, + unsigned int bytes, struct x86_exception *exception) +{ + /* kvm_write_guest_virt_system can pull in tons of pages. */ + vcpu->arch.l1tf_flush_l1d = true; + + return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, + PFERR_WRITE_MASK, exception); +} +EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); + +static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, + void *insn, int insn_len) +{ + return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, + insn, insn_len); +} + +int handle_ud(struct kvm_vcpu *vcpu) +{ + static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; + int fep_flags = READ_ONCE(force_emulation_prefix); + int emul_type = EMULTYPE_TRAP_UD; + char sig[5]; /* ud2; .ascii "kvm" */ + struct x86_exception e; + + if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) + return 1; + + if (fep_flags && + kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), + sig, sizeof(sig), &e) == 0 && + memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { + if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) + kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); + kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); + emul_type = EMULTYPE_TRAP_UD_FORCED; + } + + return kvm_emulate_instruction(vcpu, emul_type); +} +EXPORT_SYMBOL_GPL(handle_ud); + +static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, + gpa_t gpa, bool write) +{ + /* For APIC access vmexit */ + if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) + return 1; + + if (vcpu_match_mmio_gpa(vcpu, gpa)) { + trace_vcpu_match_mmio(gva, gpa, write, true); + return 1; + } + + return 0; +} + +static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, + gpa_t *gpa, struct x86_exception *exception, + bool write) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) + | (write ? PFERR_WRITE_MASK : 0); + + /* + * currently PKRU is only applied to ept enabled guest so + * there is no pkey in EPT page table for L1 guest or EPT + * shadow page table for L2 guest. + */ + if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || + !permission_fault(vcpu, vcpu->arch.walk_mmu, + vcpu->arch.mmio_access, 0, access))) { + *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | + (gva & (PAGE_SIZE - 1)); + trace_vcpu_match_mmio(gva, *gpa, write, false); + return 1; + } + + *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); + + if (*gpa == INVALID_GPA) + return -1; + + return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); +} + +int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, + const void *val, int bytes) +{ + int ret; + + ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); + if (ret < 0) + return 0; + kvm_page_track_write(vcpu, gpa, val, bytes); + return 1; +} + +struct read_write_emulator_ops { + int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, + int bytes); + int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes); + int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, + int bytes, void *val); + int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes); + bool write; +}; + +static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) +{ + if (vcpu->mmio_read_completed) { + trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, + vcpu->mmio_fragments[0].gpa, val); + vcpu->mmio_read_completed = 0; + return 1; + } + + return 0; +} + +static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); +} + +static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + return emulator_write_phys(vcpu, gpa, val, bytes); +} + +static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) +{ + trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); + return vcpu_mmio_write(vcpu, gpa, bytes, val); +} + +static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); + return X86EMUL_IO_NEEDED; +} + +static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, + void *val, int bytes) +{ + struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; + + memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); + return X86EMUL_CONTINUE; +} + +static const struct read_write_emulator_ops read_emultor = { + .read_write_prepare = read_prepare, + .read_write_emulate = read_emulate, + .read_write_mmio = vcpu_mmio_read, + .read_write_exit_mmio = read_exit_mmio, +}; + +static const struct read_write_emulator_ops write_emultor = { + .read_write_emulate = write_emulate, + .read_write_mmio = write_mmio, + .read_write_exit_mmio = write_exit_mmio, + .write = true, +}; + +static int emulator_read_write_onepage(unsigned long addr, void *val, + unsigned int bytes, + struct x86_exception *exception, + struct kvm_vcpu *vcpu, + const struct read_write_emulator_ops *ops) +{ + gpa_t gpa; + int handled, ret; + bool write = ops->write; + struct kvm_mmio_fragment *frag; + struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; + + /* + * If the exit was due to a NPF we may already have a GPA. + * If the GPA is present, use it to avoid the GVA to GPA table walk. + * Note, this cannot be used on string operations since string + * operation using rep will only have the initial GPA from the NPF + * occurred. + */ + if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && + (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { + gpa = ctxt->gpa_val; + ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); + } else { + ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); + if (ret < 0) + return X86EMUL_PROPAGATE_FAULT; + } + + if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) + return X86EMUL_CONTINUE; + + /* + * Is this MMIO handled locally? + */ + handled = ops->read_write_mmio(vcpu, gpa, bytes, val); + if (handled == bytes) + return X86EMUL_CONTINUE; + + gpa += handled; + bytes -= handled; + val += handled; + + WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); + frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; + frag->gpa = gpa; + frag->data = val; + frag->len = bytes; + return X86EMUL_CONTINUE; +} + +static int emulator_read_write(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + void *val, unsigned int bytes, + struct x86_exception *exception, + const struct read_write_emulator_ops *ops) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + gpa_t gpa; + int rc; + + if (ops->read_write_prepare && + ops->read_write_prepare(vcpu, val, bytes)) + return X86EMUL_CONTINUE; + + vcpu->mmio_nr_fragments = 0; + + /* Crossing a page boundary? */ + if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { + int now; + + now = -addr & ~PAGE_MASK; + rc = emulator_read_write_onepage(addr, val, now, exception, + vcpu, ops); + + if (rc != X86EMUL_CONTINUE) + return rc; + addr += now; + if (ctxt->mode != X86EMUL_MODE_PROT64) + addr = (u32)addr; + val += now; + bytes -= now; + } + + rc = emulator_read_write_onepage(addr, val, bytes, exception, + vcpu, ops); + if (rc != X86EMUL_CONTINUE) + return rc; + + if (!vcpu->mmio_nr_fragments) + return rc; + + gpa = vcpu->mmio_fragments[0].gpa; + + vcpu->mmio_needed = 1; + vcpu->mmio_cur_fragment = 0; + + vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); + vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; + vcpu->run->exit_reason = KVM_EXIT_MMIO; + vcpu->run->mmio.phys_addr = gpa; + + return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); +} + +static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + void *val, + unsigned int bytes, + struct x86_exception *exception) +{ + return emulator_read_write(ctxt, addr, val, bytes, + exception, &read_emultor); +} + +static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + const void *val, + unsigned int bytes, + struct x86_exception *exception) +{ + return emulator_read_write(ctxt, addr, (void *)val, bytes, + exception, &write_emultor); +} + +#define emulator_try_cmpxchg_user(t, ptr, old, new) \ + (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) + +static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, + unsigned long addr, + const void *old, + const void *new, + unsigned int bytes, + struct x86_exception *exception) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + u64 page_line_mask; + unsigned long hva; + gpa_t gpa; + int r; + + /* guests cmpxchg8b have to be emulated atomically */ + if (bytes > 8 || (bytes & (bytes - 1))) + goto emul_write; + + gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); + + if (gpa == INVALID_GPA || + (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) + goto emul_write; + + /* + * Emulate the atomic as a straight write to avoid #AC if SLD is + * enabled in the host and the access splits a cache line. + */ + if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) + page_line_mask = ~(cache_line_size() - 1); + else + page_line_mask = PAGE_MASK; + + if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) + goto emul_write; + + hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); + if (kvm_is_error_hva(hva)) + goto emul_write; + + hva += offset_in_page(gpa); + + switch (bytes) { + case 1: + r = emulator_try_cmpxchg_user(u8, hva, old, new); + break; + case 2: + r = emulator_try_cmpxchg_user(u16, hva, old, new); + break; + case 4: + r = emulator_try_cmpxchg_user(u32, hva, old, new); + break; + case 8: + r = emulator_try_cmpxchg_user(u64, hva, old, new); + break; + default: + BUG(); + } + + if (r < 0) + return X86EMUL_UNHANDLEABLE; + if (r) + return X86EMUL_CMPXCHG_FAILED; + + kvm_page_track_write(vcpu, gpa, new, bytes); + + return X86EMUL_CONTINUE; + +emul_write: + pr_warn_once("emulating exchange as write\n"); + + return emulator_write_emulated(ctxt, addr, new, bytes, exception); +} + +static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, + unsigned short port, void *data, + unsigned int count, bool in) +{ + unsigned i; + int r; + + WARN_ON_ONCE(vcpu->arch.pio.count); + for (i = 0; i < count; i++) { + if (in) + r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); + else + r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); + + if (r) { + if (i == 0) + goto userspace_io; + + /* + * Userspace must have unregistered the device while PIO + * was running. Drop writes / read as 0. + */ + if (in) + memset(data, 0, size * (count - i)); + break; + } + + data += size; + } + return 1; + +userspace_io: + vcpu->arch.pio.port = port; + vcpu->arch.pio.in = in; + vcpu->arch.pio.count = count; + vcpu->arch.pio.size = size; + + if (in) + memset(vcpu->arch.pio_data, 0, size * count); + else + memcpy(vcpu->arch.pio_data, data, size * count); + + vcpu->run->exit_reason = KVM_EXIT_IO; + vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; + vcpu->run->io.size = size; + vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; + vcpu->run->io.count = count; + vcpu->run->io.port = port; + return 0; +} + +static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, + unsigned short port, void *val, unsigned int count) +{ + int r = emulator_pio_in_out(vcpu, size, port, val, count, true); + if (r) + trace_kvm_pio(KVM_PIO_IN, port, size, count, val); + + return r; +} + +static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) +{ + int size = vcpu->arch.pio.size; + unsigned int count = vcpu->arch.pio.count; + memcpy(val, vcpu->arch.pio_data, size * count); + trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); + vcpu->arch.pio.count = 0; +} + +static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, + int size, unsigned short port, void *val, + unsigned int count) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + if (vcpu->arch.pio.count) { + /* + * Complete a previous iteration that required userspace I/O. + * Note, @count isn't guaranteed to match pio.count as userspace + * can modify ECX before rerunning the vCPU. Ignore any such + * shenanigans as KVM doesn't support modifying the rep count, + * and the emulator ensures @count doesn't overflow the buffer. + */ + complete_emulator_pio_in(vcpu, val); + return 1; + } + + return emulator_pio_in(vcpu, size, port, val, count); +} + +static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, + unsigned short port, const void *val, + unsigned int count) +{ + trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); + return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); +} + +static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, + int size, unsigned short port, + const void *val, unsigned int count) +{ + return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); +} + +static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) +{ + return static_call(kvm_x86_get_segment_base)(vcpu, seg); +} + +static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) +{ + kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); +} + +static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) +{ + if (!need_emulate_wbinvd(vcpu)) + return X86EMUL_CONTINUE; + + if (static_call(kvm_x86_has_wbinvd_exit)()) { + int cpu = get_cpu(); + + cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); + on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, + wbinvd_ipi, NULL, 1); + put_cpu(); + cpumask_clear(vcpu->arch.wbinvd_dirty_mask); + } else + wbinvd(); + return X86EMUL_CONTINUE; +} + +int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) +{ + kvm_emulate_wbinvd_noskip(vcpu); + return kvm_skip_emulated_instruction(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); + + + +static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) +{ + kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); +} + +static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, + unsigned long *dest) +{ + kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); +} + +static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, + unsigned long value) +{ + + return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); +} + +static u64 mk_cr_64(u64 curr_cr, u32 new_val) +{ + return (curr_cr & ~((1ULL << 32) - 1)) | new_val; +} + +static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + unsigned long value; + + switch (cr) { + case 0: + value = kvm_read_cr0(vcpu); + break; + case 2: + value = vcpu->arch.cr2; + break; + case 3: + value = kvm_read_cr3(vcpu); + break; + case 4: + value = kvm_read_cr4(vcpu); + break; + case 8: + value = kvm_get_cr8(vcpu); + break; + default: + kvm_err("%s: unexpected cr %u\n", __func__, cr); + return 0; + } + + return value; +} + +static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + int res = 0; + + switch (cr) { + case 0: + res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); + break; + case 2: + vcpu->arch.cr2 = val; + break; + case 3: + res = kvm_set_cr3(vcpu, val); + break; + case 4: + res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); + break; + case 8: + res = kvm_set_cr8(vcpu, val); + break; + default: + kvm_err("%s: unexpected cr %u\n", __func__, cr); + res = -1; + } + + return res; +} + +static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) +{ + return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); +} + +static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); +} + +static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); +} + +static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); +} + +static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) +{ + static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); +} + +static unsigned long emulator_get_cached_segment_base( + struct x86_emulate_ctxt *ctxt, int seg) +{ + return get_segment_base(emul_to_vcpu(ctxt), seg); +} + +static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, + struct desc_struct *desc, u32 *base3, + int seg) +{ + struct kvm_segment var; + + kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); + *selector = var.selector; + + if (var.unusable) { + memset(desc, 0, sizeof(*desc)); + if (base3) + *base3 = 0; + return false; + } + + if (var.g) + var.limit >>= 12; + set_desc_limit(desc, var.limit); + set_desc_base(desc, (unsigned long)var.base); +#ifdef CONFIG_X86_64 + if (base3) + *base3 = var.base >> 32; +#endif + desc->type = var.type; + desc->s = var.s; + desc->dpl = var.dpl; + desc->p = var.present; + desc->avl = var.avl; + desc->l = var.l; + desc->d = var.db; + desc->g = var.g; + + return true; +} + +static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, + struct desc_struct *desc, u32 base3, + int seg) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + struct kvm_segment var; + + var.selector = selector; + var.base = get_desc_base(desc); +#ifdef CONFIG_X86_64 + var.base |= ((u64)base3) << 32; +#endif + var.limit = get_desc_limit(desc); + if (desc->g) + var.limit = (var.limit << 12) | 0xfff; + var.type = desc->type; + var.dpl = desc->dpl; + var.db = desc->d; + var.s = desc->s; + var.l = desc->l; + var.g = desc->g; + var.avl = desc->avl; + var.present = desc->p; + var.unusable = !var.present; + var.padding = 0; + + kvm_set_segment(vcpu, &var, seg); + return; +} + +static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, + u32 msr_index, u64 *pdata) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + int r; + + r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); + if (r < 0) + return X86EMUL_UNHANDLEABLE; + + if (r) { + if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, + complete_emulated_rdmsr, r)) + return X86EMUL_IO_NEEDED; + + trace_kvm_msr_read_ex(msr_index); + return X86EMUL_PROPAGATE_FAULT; + } + + trace_kvm_msr_read(msr_index, *pdata); + return X86EMUL_CONTINUE; +} + +static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, + u32 msr_index, u64 data) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + int r; + + r = kvm_set_msr_with_filter(vcpu, msr_index, data); + if (r < 0) + return X86EMUL_UNHANDLEABLE; + + if (r) { + if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, + complete_emulated_msr_access, r)) + return X86EMUL_IO_NEEDED; + + trace_kvm_msr_write_ex(msr_index, data); + return X86EMUL_PROPAGATE_FAULT; + } + + trace_kvm_msr_write(msr_index, data); + return X86EMUL_CONTINUE; +} + +static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, + u32 msr_index, u64 *pdata) +{ + return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); +} + +static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, + u32 pmc) +{ + if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) + return 0; + return -EINVAL; +} + +static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, + u32 pmc, u64 *pdata) +{ + return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); +} + +static void emulator_halt(struct x86_emulate_ctxt *ctxt) +{ + emul_to_vcpu(ctxt)->arch.halt_request = 1; +} + +static int emulator_intercept(struct x86_emulate_ctxt *ctxt, + struct x86_instruction_info *info, + enum x86_intercept_stage stage) +{ + return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, + &ctxt->exception); +} + +static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, + u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, + bool exact_only) +{ + return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); +} + +static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) +{ + return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); +} + +static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) +{ + return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); +} + +static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) +{ + return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); +} + +static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) +{ + return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); +} + +static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) +{ + kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); +} + +static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) +{ + static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); +} + +static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) +{ + return is_smm(emul_to_vcpu(ctxt)); +} + +static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) +{ + return is_guest_mode(emul_to_vcpu(ctxt)); +} + +#ifndef CONFIG_KVM_SMM +static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) +{ + WARN_ON_ONCE(1); + return X86EMUL_UNHANDLEABLE; +} +#endif + +static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) +{ + kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); +} + +static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) +{ + return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); +} + +static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) +{ + struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; + + if (!kvm->vm_bugged) + kvm_vm_bugged(kvm); +} + +static const struct x86_emulate_ops emulate_ops = { + .vm_bugged = emulator_vm_bugged, + .read_gpr = emulator_read_gpr, + .write_gpr = emulator_write_gpr, + .read_std = emulator_read_std, + .write_std = emulator_write_std, + .fetch = kvm_fetch_guest_virt, + .read_emulated = emulator_read_emulated, + .write_emulated = emulator_write_emulated, + .cmpxchg_emulated = emulator_cmpxchg_emulated, + .invlpg = emulator_invlpg, + .pio_in_emulated = emulator_pio_in_emulated, + .pio_out_emulated = emulator_pio_out_emulated, + .get_segment = emulator_get_segment, + .set_segment = emulator_set_segment, + .get_cached_segment_base = emulator_get_cached_segment_base, + .get_gdt = emulator_get_gdt, + .get_idt = emulator_get_idt, + .set_gdt = emulator_set_gdt, + .set_idt = emulator_set_idt, + .get_cr = emulator_get_cr, + .set_cr = emulator_set_cr, + .cpl = emulator_get_cpl, + .get_dr = emulator_get_dr, + .set_dr = emulator_set_dr, + .set_msr_with_filter = emulator_set_msr_with_filter, + .get_msr_with_filter = emulator_get_msr_with_filter, + .get_msr = emulator_get_msr, + .check_pmc = emulator_check_pmc, + .read_pmc = emulator_read_pmc, + .halt = emulator_halt, + .wbinvd = emulator_wbinvd, + .fix_hypercall = emulator_fix_hypercall, + .intercept = emulator_intercept, + .get_cpuid = emulator_get_cpuid, + .guest_has_movbe = emulator_guest_has_movbe, + .guest_has_fxsr = emulator_guest_has_fxsr, + .guest_has_rdpid = emulator_guest_has_rdpid, + .set_nmi_mask = emulator_set_nmi_mask, + .is_smm = emulator_is_smm, + .is_guest_mode = emulator_is_guest_mode, + .leave_smm = emulator_leave_smm, + .triple_fault = emulator_triple_fault, + .set_xcr = emulator_set_xcr, +}; + +static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) +{ + u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); + /* + * an sti; sti; sequence only disable interrupts for the first + * instruction. So, if the last instruction, be it emulated or + * not, left the system with the INT_STI flag enabled, it + * means that the last instruction is an sti. We should not + * leave the flag on in this case. The same goes for mov ss + */ + if (int_shadow & mask) + mask = 0; + if (unlikely(int_shadow || mask)) { + static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); + if (!mask) + kvm_make_request(KVM_REQ_EVENT, vcpu); + } +} + +static void inject_emulated_exception(struct kvm_vcpu *vcpu) +{ + struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; + + if (ctxt->exception.vector == PF_VECTOR) + kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); + else if (ctxt->exception.error_code_valid) + kvm_queue_exception_e(vcpu, ctxt->exception.vector, + ctxt->exception.error_code); + else + kvm_queue_exception(vcpu, ctxt->exception.vector); +} + +static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) +{ + struct x86_emulate_ctxt *ctxt; + + ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); + if (!ctxt) { + pr_err("failed to allocate vcpu's emulator\n"); + return NULL; + } + + ctxt->vcpu = vcpu; + ctxt->ops = &emulate_ops; + vcpu->arch.emulate_ctxt = ctxt; + + return ctxt; +} + +static void init_emulate_ctxt(struct kvm_vcpu *vcpu) +{ + struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; + int cs_db, cs_l; + + static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); + + ctxt->gpa_available = false; + ctxt->eflags = kvm_get_rflags(vcpu); + ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; + + ctxt->eip = kvm_rip_read(vcpu); + ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : + (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : + (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : + cs_db ? X86EMUL_MODE_PROT32 : + X86EMUL_MODE_PROT16; + ctxt->interruptibility = 0; + ctxt->have_exception = false; + ctxt->exception.vector = -1; + ctxt->perm_ok = false; + + init_decode_cache(ctxt); + vcpu->arch.emulate_regs_need_sync_from_vcpu = false; +} + +void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) +{ + struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; + int ret; + + init_emulate_ctxt(vcpu); + + ctxt->op_bytes = 2; + ctxt->ad_bytes = 2; + ctxt->_eip = ctxt->eip + inc_eip; + ret = emulate_int_real(ctxt, irq); + + if (ret != X86EMUL_CONTINUE) { + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + } else { + ctxt->eip = ctxt->_eip; + kvm_rip_write(vcpu, ctxt->eip); + kvm_set_rflags(vcpu, ctxt->eflags); + } +} +EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); + +static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, + u8 ndata, u8 *insn_bytes, u8 insn_size) +{ + struct kvm_run *run = vcpu->run; + u64 info[5]; + u8 info_start; + + /* + * Zero the whole array used to retrieve the exit info, as casting to + * u32 for select entries will leave some chunks uninitialized. + */ + memset(&info, 0, sizeof(info)); + + static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], + &info[2], (u32 *)&info[3], + (u32 *)&info[4]); + + run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; + + /* + * There's currently space for 13 entries, but 5 are used for the exit + * reason and info. Restrict to 4 to reduce the maintenance burden + * when expanding kvm_run.emulation_failure in the future. + */ + if (WARN_ON_ONCE(ndata > 4)) + ndata = 4; + + /* Always include the flags as a 'data' entry. */ + info_start = 1; + run->emulation_failure.flags = 0; + + if (insn_size) { + BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + + sizeof(run->emulation_failure.insn_bytes) != 16)); + info_start += 2; + run->emulation_failure.flags |= + KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; + run->emulation_failure.insn_size = insn_size; + memset(run->emulation_failure.insn_bytes, 0x90, + sizeof(run->emulation_failure.insn_bytes)); + memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); + } + + memcpy(&run->internal.data[info_start], info, sizeof(info)); + memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, + ndata * sizeof(data[0])); + + run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; +} + +static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) +{ + struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; + + prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, + ctxt->fetch.end - ctxt->fetch.data); +} + +void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, + u8 ndata) +{ + prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); +} +EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); + +void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) +{ + __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); +} +EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); + +static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) +{ + struct kvm *kvm = vcpu->kvm; + + ++vcpu->stat.insn_emulation_fail; + trace_kvm_emulate_insn_failed(vcpu); + + if (emulation_type & EMULTYPE_VMWARE_GP) { + kvm_queue_exception_e(vcpu, GP_VECTOR, 0); + return 1; + } + + if (kvm->arch.exit_on_emulation_error || + (emulation_type & EMULTYPE_SKIP)) { + prepare_emulation_ctxt_failure_exit(vcpu); + return 0; + } + + kvm_queue_exception(vcpu, UD_VECTOR); + + if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { + prepare_emulation_ctxt_failure_exit(vcpu); + return 0; + } + + return 1; +} + +static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, + int emulation_type) +{ + gpa_t gpa = cr2_or_gpa; + kvm_pfn_t pfn; + + if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) + return false; + + if (WARN_ON_ONCE(is_guest_mode(vcpu)) || + WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) + return false; + + if (!vcpu->arch.mmu->root_role.direct) { + /* + * Write permission should be allowed since only + * write access need to be emulated. + */ + gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); + + /* + * If the mapping is invalid in guest, let cpu retry + * it to generate fault. + */ + if (gpa == INVALID_GPA) + return true; + } + + /* + * Do not retry the unhandleable instruction if it faults on the + * readonly host memory, otherwise it will goto a infinite loop: + * retry instruction -> write #PF -> emulation fail -> retry + * instruction -> ... + */ + pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); + + /* + * If the instruction failed on the error pfn, it can not be fixed, + * report the error to userspace. + */ + if (is_error_noslot_pfn(pfn)) + return false; + + kvm_release_pfn_clean(pfn); + + /* The instructions are well-emulated on direct mmu. */ + if (vcpu->arch.mmu->root_role.direct) { + unsigned int indirect_shadow_pages; + + write_lock(&vcpu->kvm->mmu_lock); + indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; + write_unlock(&vcpu->kvm->mmu_lock); + + if (indirect_shadow_pages) + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); + + return true; + } + + /* + * if emulation was due to access to shadowed page table + * and it failed try to unshadow page and re-enter the + * guest to let CPU execute the instruction. + */ + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); + + /* + * If the access faults on its page table, it can not + * be fixed by unprotecting shadow page and it should + * be reported to userspace. + */ + return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); +} + +static bool retry_instruction(struct x86_emulate_ctxt *ctxt, + gpa_t cr2_or_gpa, int emulation_type) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; + + last_retry_eip = vcpu->arch.last_retry_eip; + last_retry_addr = vcpu->arch.last_retry_addr; + + /* + * If the emulation is caused by #PF and it is non-page_table + * writing instruction, it means the VM-EXIT is caused by shadow + * page protected, we can zap the shadow page and retry this + * instruction directly. + * + * Note: if the guest uses a non-page-table modifying instruction + * on the PDE that points to the instruction, then we will unmap + * the instruction and go to an infinite loop. So, we cache the + * last retried eip and the last fault address, if we meet the eip + * and the address again, we can break out of the potential infinite + * loop. + */ + vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; + + if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) + return false; + + if (WARN_ON_ONCE(is_guest_mode(vcpu)) || + WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) + return false; + + if (x86_page_table_writing_insn(ctxt)) + return false; + + if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) + return false; + + vcpu->arch.last_retry_eip = ctxt->eip; + vcpu->arch.last_retry_addr = cr2_or_gpa; + + if (!vcpu->arch.mmu->root_role.direct) + gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); + + kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); + + return true; +} + +static int complete_emulated_mmio(struct kvm_vcpu *vcpu); +static int complete_emulated_pio(struct kvm_vcpu *vcpu); + +static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, + unsigned long *db) +{ + u32 dr6 = 0; + int i; + u32 enable, rwlen; + + enable = dr7; + rwlen = dr7 >> 16; + for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) + if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) + dr6 |= (1 << i); + return dr6; +} + +static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) +{ + struct kvm_run *kvm_run = vcpu->run; + + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { + kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; + kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); + kvm_run->debug.arch.exception = DB_VECTOR; + kvm_run->exit_reason = KVM_EXIT_DEBUG; + return 0; + } + kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); + return 1; +} + +int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) +{ + unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); + int r; + + r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); + if (unlikely(!r)) + return 0; + + kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); + + /* + * rflags is the old, "raw" value of the flags. The new value has + * not been saved yet. + * + * This is correct even for TF set by the guest, because "the + * processor will not generate this exception after the instruction + * that sets the TF flag". + */ + if (unlikely(rflags & X86_EFLAGS_TF)) + r = kvm_vcpu_do_singlestep(vcpu); + return r; +} +EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); + +static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) +{ + u32 shadow; + + if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) + return true; + + /* + * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, + * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first + * to avoid the relatively expensive CPUID lookup. + */ + shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); + return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && + guest_cpuid_is_intel(vcpu); +} + +static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, + int emulation_type, int *r) +{ + WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); + + /* + * Do not check for code breakpoints if hardware has already done the + * checks, as inferred from the emulation type. On NO_DECODE and SKIP, + * the instruction has passed all exception checks, and all intercepted + * exceptions that trigger emulation have lower priority than code + * breakpoints, i.e. the fact that the intercepted exception occurred + * means any code breakpoints have already been serviced. + * + * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as + * hardware has checked the RIP of the magic prefix, but not the RIP of + * the instruction being emulated. The intent of forced emulation is + * to behave as if KVM intercepted the instruction without an exception + * and without a prefix. + */ + if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | + EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) + return false; + + if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && + (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { + struct kvm_run *kvm_run = vcpu->run; + unsigned long eip = kvm_get_linear_rip(vcpu); + u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, + vcpu->arch.guest_debug_dr7, + vcpu->arch.eff_db); + + if (dr6 != 0) { + kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; + kvm_run->debug.arch.pc = eip; + kvm_run->debug.arch.exception = DB_VECTOR; + kvm_run->exit_reason = KVM_EXIT_DEBUG; + *r = 0; + return true; + } + } + + if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && + !kvm_is_code_breakpoint_inhibited(vcpu)) { + unsigned long eip = kvm_get_linear_rip(vcpu); + u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, + vcpu->arch.dr7, + vcpu->arch.db); + + if (dr6 != 0) { + kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); + *r = 1; + return true; + } + } + + return false; +} + +static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) +{ + switch (ctxt->opcode_len) { + case 1: + switch (ctxt->b) { + case 0xe4: /* IN */ + case 0xe5: + case 0xec: + case 0xed: + case 0xe6: /* OUT */ + case 0xe7: + case 0xee: + case 0xef: + case 0x6c: /* INS */ + case 0x6d: + case 0x6e: /* OUTS */ + case 0x6f: + return true; + } + break; + case 2: + switch (ctxt->b) { + case 0x33: /* RDPMC */ + return true; + } + break; + } + + return false; +} + +/* + * Decode an instruction for emulation. The caller is responsible for handling + * code breakpoints. Note, manually detecting code breakpoints is unnecessary + * (and wrong) when emulating on an intercepted fault-like exception[*], as + * code breakpoints have higher priority and thus have already been done by + * hardware. + * + * [*] Except #MC, which is higher priority, but KVM should never emulate in + * response to a machine check. + */ +int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, + void *insn, int insn_len) +{ + struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; + int r; + + init_emulate_ctxt(vcpu); + + r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); + + trace_kvm_emulate_insn_start(vcpu); + ++vcpu->stat.insn_emulation; + + return r; +} +EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); + +int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, + int emulation_type, void *insn, int insn_len) +{ + int r; + struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; + bool writeback = true; + + if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) + return 1; + + vcpu->arch.l1tf_flush_l1d = true; + + if (!(emulation_type & EMULTYPE_NO_DECODE)) { + kvm_clear_exception_queue(vcpu); + + /* + * Return immediately if RIP hits a code breakpoint, such #DBs + * are fault-like and are higher priority than any faults on + * the code fetch itself. + */ + if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) + return r; + + r = x86_decode_emulated_instruction(vcpu, emulation_type, + insn, insn_len); + if (r != EMULATION_OK) { + if ((emulation_type & EMULTYPE_TRAP_UD) || + (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + if (reexecute_instruction(vcpu, cr2_or_gpa, + emulation_type)) + return 1; + + if (ctxt->have_exception && + !(emulation_type & EMULTYPE_SKIP)) { + /* + * #UD should result in just EMULATION_FAILED, and trap-like + * exception should not be encountered during decode. + */ + WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || + exception_type(ctxt->exception.vector) == EXCPT_TRAP); + inject_emulated_exception(vcpu); + return 1; + } + return handle_emulation_failure(vcpu, emulation_type); + } + } + + if ((emulation_type & EMULTYPE_VMWARE_GP) && + !is_vmware_backdoor_opcode(ctxt)) { + kvm_queue_exception_e(vcpu, GP_VECTOR, 0); + return 1; + } + + /* + * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for + * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). + * The caller is responsible for updating interruptibility state and + * injecting single-step #DBs. + */ + if (emulation_type & EMULTYPE_SKIP) { + if (ctxt->mode != X86EMUL_MODE_PROT64) + ctxt->eip = (u32)ctxt->_eip; + else + ctxt->eip = ctxt->_eip; + + if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { + r = 1; + goto writeback; + } + + kvm_rip_write(vcpu, ctxt->eip); + if (ctxt->eflags & X86_EFLAGS_RF) + kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); + return 1; + } + + if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) + return 1; + + /* this is needed for vmware backdoor interface to work since it + changes registers values during IO operation */ + if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { + vcpu->arch.emulate_regs_need_sync_from_vcpu = false; + emulator_invalidate_register_cache(ctxt); + } + +restart: + if (emulation_type & EMULTYPE_PF) { + /* Save the faulting GPA (cr2) in the address field */ + ctxt->exception.address = cr2_or_gpa; + + /* With shadow page tables, cr2 contains a GVA or nGPA. */ + if (vcpu->arch.mmu->root_role.direct) { + ctxt->gpa_available = true; + ctxt->gpa_val = cr2_or_gpa; + } + } else { + /* Sanitize the address out of an abundance of paranoia. */ + ctxt->exception.address = 0; + } + + r = x86_emulate_insn(ctxt); + + if (r == EMULATION_INTERCEPTED) + return 1; + + if (r == EMULATION_FAILED) { + if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) + return 1; + + return handle_emulation_failure(vcpu, emulation_type); + } + + if (ctxt->have_exception) { + WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); + vcpu->mmio_needed = false; + r = 1; + inject_emulated_exception(vcpu); + } else if (vcpu->arch.pio.count) { + if (!vcpu->arch.pio.in) { + /* FIXME: return into emulator if single-stepping. */ + vcpu->arch.pio.count = 0; + } else { + writeback = false; + vcpu->arch.complete_userspace_io = complete_emulated_pio; + } + r = 0; + } else if (vcpu->mmio_needed) { + ++vcpu->stat.mmio_exits; + + if (!vcpu->mmio_is_write) + writeback = false; + r = 0; + vcpu->arch.complete_userspace_io = complete_emulated_mmio; + } else if (vcpu->arch.complete_userspace_io) { + writeback = false; + r = 0; + } else if (r == EMULATION_RESTART) + goto restart; + else + r = 1; + +writeback: + if (writeback) { + unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); + toggle_interruptibility(vcpu, ctxt->interruptibility); + vcpu->arch.emulate_regs_need_sync_to_vcpu = false; + + /* + * Note, EXCPT_DB is assumed to be fault-like as the emulator + * only supports code breakpoints and general detect #DB, both + * of which are fault-like. + */ + if (!ctxt->have_exception || + exception_type(ctxt->exception.vector) == EXCPT_TRAP) { + kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); + if (ctxt->is_branch) + kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); + kvm_rip_write(vcpu, ctxt->eip); + if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) + r = kvm_vcpu_do_singlestep(vcpu); + static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); + __kvm_set_rflags(vcpu, ctxt->eflags); + } + + /* + * For STI, interrupts are shadowed; so KVM_REQ_EVENT will + * do nothing, and it will be requested again as soon as + * the shadow expires. But we still need to check here, + * because POPF has no interrupt shadow. + */ + if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) + kvm_make_request(KVM_REQ_EVENT, vcpu); + } else + vcpu->arch.emulate_regs_need_sync_to_vcpu = true; + + return r; +} + +int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) +{ + return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); +} +EXPORT_SYMBOL_GPL(kvm_emulate_instruction); + +int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, + void *insn, int insn_len) +{ + return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); +} +EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); + +static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) +{ + vcpu->arch.pio.count = 0; + return 1; +} + +static int complete_fast_pio_out(struct kvm_vcpu *vcpu) +{ + vcpu->arch.pio.count = 0; + + if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) + return 1; + + return kvm_skip_emulated_instruction(vcpu); +} + +static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, + unsigned short port) +{ + unsigned long val = kvm_rax_read(vcpu); + int ret = emulator_pio_out(vcpu, size, port, &val, 1); + + if (ret) + return ret; + + /* + * Workaround userspace that relies on old KVM behavior of %rip being + * incremented prior to exiting to userspace to handle "OUT 0x7e". + */ + if (port == 0x7e && + kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { + vcpu->arch.complete_userspace_io = + complete_fast_pio_out_port_0x7e; + kvm_skip_emulated_instruction(vcpu); + } else { + vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); + vcpu->arch.complete_userspace_io = complete_fast_pio_out; + } + return 0; +} + +static int complete_fast_pio_in(struct kvm_vcpu *vcpu) +{ + unsigned long val; + + /* We should only ever be called with arch.pio.count equal to 1 */ + BUG_ON(vcpu->arch.pio.count != 1); + + if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { + vcpu->arch.pio.count = 0; + return 1; + } + + /* For size less than 4 we merge, else we zero extend */ + val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; + + complete_emulator_pio_in(vcpu, &val); + kvm_rax_write(vcpu, val); + + return kvm_skip_emulated_instruction(vcpu); +} + +static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, + unsigned short port) +{ + unsigned long val; + int ret; + + /* For size less than 4 we merge, else we zero extend */ + val = (size < 4) ? kvm_rax_read(vcpu) : 0; + + ret = emulator_pio_in(vcpu, size, port, &val, 1); + if (ret) { + kvm_rax_write(vcpu, val); + return ret; + } + + vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); + vcpu->arch.complete_userspace_io = complete_fast_pio_in; + + return 0; +} + +int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) +{ + int ret; + + if (in) + ret = kvm_fast_pio_in(vcpu, size, port); + else + ret = kvm_fast_pio_out(vcpu, size, port); + return ret && kvm_skip_emulated_instruction(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_fast_pio); + +static int kvmclock_cpu_down_prep(unsigned int cpu) +{ + __this_cpu_write(cpu_tsc_khz, 0); + return 0; +} + +static void tsc_khz_changed(void *data) +{ + struct cpufreq_freqs *freq = data; + unsigned long khz; + + WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); + + if (data) + khz = freq->new; + else + khz = cpufreq_quick_get(raw_smp_processor_id()); + if (!khz) + khz = tsc_khz; + __this_cpu_write(cpu_tsc_khz, khz); +} + +#ifdef CONFIG_X86_64 +static void kvm_hyperv_tsc_notifier(void) +{ + struct kvm *kvm; + int cpu; + + mutex_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) + kvm_make_mclock_inprogress_request(kvm); + + /* no guest entries from this point */ + hyperv_stop_tsc_emulation(); + + /* TSC frequency always matches when on Hyper-V */ + if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { + for_each_present_cpu(cpu) + per_cpu(cpu_tsc_khz, cpu) = tsc_khz; + } + kvm_caps.max_guest_tsc_khz = tsc_khz; + + list_for_each_entry(kvm, &vm_list, vm_list) { + __kvm_start_pvclock_update(kvm); + pvclock_update_vm_gtod_copy(kvm); + kvm_end_pvclock_update(kvm); + } + + mutex_unlock(&kvm_lock); +} +#endif + +static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) +{ + struct kvm *kvm; + struct kvm_vcpu *vcpu; + int send_ipi = 0; + unsigned long i; + + /* + * We allow guests to temporarily run on slowing clocks, + * provided we notify them after, or to run on accelerating + * clocks, provided we notify them before. Thus time never + * goes backwards. + * + * However, we have a problem. We can't atomically update + * the frequency of a given CPU from this function; it is + * merely a notifier, which can be called from any CPU. + * Changing the TSC frequency at arbitrary points in time + * requires a recomputation of local variables related to + * the TSC for each VCPU. We must flag these local variables + * to be updated and be sure the update takes place with the + * new frequency before any guests proceed. + * + * Unfortunately, the combination of hotplug CPU and frequency + * change creates an intractable locking scenario; the order + * of when these callouts happen is undefined with respect to + * CPU hotplug, and they can race with each other. As such, + * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is + * undefined; you can actually have a CPU frequency change take + * place in between the computation of X and the setting of the + * variable. To protect against this problem, all updates of + * the per_cpu tsc_khz variable are done in an interrupt + * protected IPI, and all callers wishing to update the value + * must wait for a synchronous IPI to complete (which is trivial + * if the caller is on the CPU already). This establishes the + * necessary total order on variable updates. + * + * Note that because a guest time update may take place + * anytime after the setting of the VCPU's request bit, the + * correct TSC value must be set before the request. However, + * to ensure the update actually makes it to any guest which + * starts running in hardware virtualization between the set + * and the acquisition of the spinlock, we must also ping the + * CPU after setting the request bit. + * + */ + + smp_call_function_single(cpu, tsc_khz_changed, freq, 1); + + mutex_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_for_each_vcpu(i, vcpu, kvm) { + if (vcpu->cpu != cpu) + continue; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + if (vcpu->cpu != raw_smp_processor_id()) + send_ipi = 1; + } + } + mutex_unlock(&kvm_lock); + + if (freq->old < freq->new && send_ipi) { + /* + * We upscale the frequency. Must make the guest + * doesn't see old kvmclock values while running with + * the new frequency, otherwise we risk the guest sees + * time go backwards. + * + * In case we update the frequency for another cpu + * (which might be in guest context) send an interrupt + * to kick the cpu out of guest context. Next time + * guest context is entered kvmclock will be updated, + * so the guest will not see stale values. + */ + smp_call_function_single(cpu, tsc_khz_changed, freq, 1); + } +} + +static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, + void *data) +{ + struct cpufreq_freqs *freq = data; + int cpu; + + if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) + return 0; + if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) + return 0; + + for_each_cpu(cpu, freq->policy->cpus) + __kvmclock_cpufreq_notifier(freq, cpu); + + return 0; +} + +static struct notifier_block kvmclock_cpufreq_notifier_block = { + .notifier_call = kvmclock_cpufreq_notifier +}; + +static int kvmclock_cpu_online(unsigned int cpu) +{ + tsc_khz_changed(NULL); + return 0; +} + +static void kvm_timer_init(void) +{ + if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { + max_tsc_khz = tsc_khz; + + if (IS_ENABLED(CONFIG_CPU_FREQ)) { + struct cpufreq_policy *policy; + int cpu; + + cpu = get_cpu(); + policy = cpufreq_cpu_get(cpu); + if (policy) { + if (policy->cpuinfo.max_freq) + max_tsc_khz = policy->cpuinfo.max_freq; + cpufreq_cpu_put(policy); + } + put_cpu(); + } + cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, + CPUFREQ_TRANSITION_NOTIFIER); + + cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", + kvmclock_cpu_online, kvmclock_cpu_down_prep); + } +} + +#ifdef CONFIG_X86_64 +static void pvclock_gtod_update_fn(struct work_struct *work) +{ + struct kvm *kvm; + struct kvm_vcpu *vcpu; + unsigned long i; + + mutex_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); + atomic_set(&kvm_guest_has_master_clock, 0); + mutex_unlock(&kvm_lock); +} + +static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); + +/* + * Indirection to move queue_work() out of the tk_core.seq write held + * region to prevent possible deadlocks against time accessors which + * are invoked with work related locks held. + */ +static void pvclock_irq_work_fn(struct irq_work *w) +{ + queue_work(system_long_wq, &pvclock_gtod_work); +} + +static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); + +/* + * Notification about pvclock gtod data update. + */ +static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, + void *priv) +{ + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + struct timekeeper *tk = priv; + + update_pvclock_gtod(tk); + + /* + * Disable master clock if host does not trust, or does not use, + * TSC based clocksource. Delegate queue_work() to irq_work as + * this is invoked with tk_core.seq write held. + */ + if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && + atomic_read(&kvm_guest_has_master_clock) != 0) + irq_work_queue(&pvclock_irq_work); + return 0; +} + +static struct notifier_block pvclock_gtod_notifier = { + .notifier_call = pvclock_gtod_notify, +}; +#endif + +static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) +{ + memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); + +#define __KVM_X86_OP(func) \ + static_call_update(kvm_x86_##func, kvm_x86_ops.func); +#define KVM_X86_OP(func) \ + WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) +#define KVM_X86_OP_OPTIONAL __KVM_X86_OP +#define KVM_X86_OP_OPTIONAL_RET0(func) \ + static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ + (void *)__static_call_return0); +#include +#undef __KVM_X86_OP + + kvm_pmu_ops_update(ops->pmu_ops); +} + +static int kvm_x86_check_processor_compatibility(void) +{ + int cpu = smp_processor_id(); + struct cpuinfo_x86 *c = &cpu_data(cpu); + + /* + * Compatibility checks are done when loading KVM and when enabling + * hardware, e.g. during CPU hotplug, to ensure all online CPUs are + * compatible, i.e. KVM should never perform a compatibility check on + * an offline CPU. + */ + WARN_ON(!cpu_online(cpu)); + + if (__cr4_reserved_bits(cpu_has, c) != + __cr4_reserved_bits(cpu_has, &boot_cpu_data)) + return -EIO; + + return static_call(kvm_x86_check_processor_compatibility)(); +} + +static void kvm_x86_check_cpu_compat(void *ret) +{ + *(int *)ret = kvm_x86_check_processor_compatibility(); +} + +static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) +{ + u64 host_pat; + int r, cpu; + + if (kvm_x86_ops.hardware_enable) { + pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); + return -EEXIST; + } + + /* + * KVM explicitly assumes that the guest has an FPU and + * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the + * vCPU's FPU state as a fxregs_state struct. + */ + if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { + pr_err("inadequate fpu\n"); + return -EOPNOTSUPP; + } + + if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { + pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); + return -EOPNOTSUPP; + } + + /* + * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes + * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something + * other than WB. Note, EPT doesn't utilize the PAT, but don't bother + * with an exception. PAT[0] is set to WB on RESET and also by the + * kernel, i.e. failure indicates a kernel bug or broken firmware. + */ + if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || + (host_pat & GENMASK(2, 0)) != 6) { + pr_err("host PAT[0] is not WB\n"); + return -EIO; + } + + x86_emulator_cache = kvm_alloc_emulator_cache(); + if (!x86_emulator_cache) { + pr_err("failed to allocate cache for x86 emulator\n"); + return -ENOMEM; + } + + user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); + if (!user_return_msrs) { + pr_err("failed to allocate percpu kvm_user_return_msrs\n"); + r = -ENOMEM; + goto out_free_x86_emulator_cache; + } + kvm_nr_uret_msrs = 0; + + r = kvm_mmu_vendor_module_init(); + if (r) + goto out_free_percpu; + + if (boot_cpu_has(X86_FEATURE_XSAVE)) { + host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); + kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; + } + + rdmsrl_safe(MSR_EFER, &host_efer); + + if (boot_cpu_has(X86_FEATURE_XSAVES)) + rdmsrl(MSR_IA32_XSS, host_xss); + + kvm_init_pmu_capability(ops->pmu_ops); + + if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) + rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); + + r = ops->hardware_setup(); + if (r != 0) + goto out_mmu_exit; + + kvm_ops_update(ops); + + for_each_online_cpu(cpu) { + smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); + if (r < 0) + goto out_unwind_ops; + } + + /* + * Point of no return! DO NOT add error paths below this point unless + * absolutely necessary, as most operations from this point forward + * require unwinding. + */ + kvm_timer_init(); + + if (pi_inject_timer == -1) + pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); +#ifdef CONFIG_X86_64 + pvclock_gtod_register_notifier(&pvclock_gtod_notifier); + + if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) + set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); +#endif + + kvm_register_perf_callbacks(ops->handle_intel_pt_intr); + + if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) + kvm_caps.supported_xss = 0; + +#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) + cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); +#undef __kvm_cpu_cap_has + + if (kvm_caps.has_tsc_control) { + /* + * Make sure the user can only configure tsc_khz values that + * fit into a signed integer. + * A min value is not calculated because it will always + * be 1 on all machines. + */ + u64 max = min(0x7fffffffULL, + __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); + kvm_caps.max_guest_tsc_khz = max; + } + kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; + kvm_init_msr_lists(); + return 0; + +out_unwind_ops: + kvm_x86_ops.hardware_enable = NULL; + static_call(kvm_x86_hardware_unsetup)(); +out_mmu_exit: + kvm_mmu_vendor_module_exit(); +out_free_percpu: + free_percpu(user_return_msrs); +out_free_x86_emulator_cache: + kmem_cache_destroy(x86_emulator_cache); + return r; +} + +int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) +{ + int r; + + mutex_lock(&vendor_module_lock); + r = __kvm_x86_vendor_init(ops); + mutex_unlock(&vendor_module_lock); + + return r; +} +EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); + +void kvm_x86_vendor_exit(void) +{ + kvm_unregister_perf_callbacks(); + +#ifdef CONFIG_X86_64 + if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) + clear_hv_tscchange_cb(); +#endif + kvm_lapic_exit(); + + if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { + cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, + CPUFREQ_TRANSITION_NOTIFIER); + cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); + } +#ifdef CONFIG_X86_64 + pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); + irq_work_sync(&pvclock_irq_work); + cancel_work_sync(&pvclock_gtod_work); +#endif + static_call(kvm_x86_hardware_unsetup)(); + kvm_mmu_vendor_module_exit(); + free_percpu(user_return_msrs); + kmem_cache_destroy(x86_emulator_cache); +#ifdef CONFIG_KVM_XEN + static_key_deferred_flush(&kvm_xen_enabled); + WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); +#endif + mutex_lock(&vendor_module_lock); + kvm_x86_ops.hardware_enable = NULL; + mutex_unlock(&vendor_module_lock); +} +EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); + +static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) +{ + /* + * The vCPU has halted, e.g. executed HLT. Update the run state if the + * local APIC is in-kernel, the run loop will detect the non-runnable + * state and halt the vCPU. Exit to userspace if the local APIC is + * managed by userspace, in which case userspace is responsible for + * handling wake events. + */ + ++vcpu->stat.halt_exits; + if (lapic_in_kernel(vcpu)) { + vcpu->arch.mp_state = state; + return 1; + } else { + vcpu->run->exit_reason = reason; + return 0; + } +} + +int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) +{ + return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); +} +EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); + +int kvm_emulate_halt(struct kvm_vcpu *vcpu) +{ + int ret = kvm_skip_emulated_instruction(vcpu); + /* + * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered + * KVM_EXIT_DEBUG here. + */ + return kvm_emulate_halt_noskip(vcpu) && ret; +} +EXPORT_SYMBOL_GPL(kvm_emulate_halt); + +int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) +{ + int ret = kvm_skip_emulated_instruction(vcpu); + + return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, + KVM_EXIT_AP_RESET_HOLD) && ret; +} +EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); + +#ifdef CONFIG_X86_64 +static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, + unsigned long clock_type) +{ + struct kvm_clock_pairing clock_pairing; + struct timespec64 ts; + u64 cycle; + int ret; + + if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) + return -KVM_EOPNOTSUPP; + + /* + * When tsc is in permanent catchup mode guests won't be able to use + * pvclock_read_retry loop to get consistent view of pvclock + */ + if (vcpu->arch.tsc_always_catchup) + return -KVM_EOPNOTSUPP; + + if (!kvm_get_walltime_and_clockread(&ts, &cycle)) + return -KVM_EOPNOTSUPP; + + clock_pairing.sec = ts.tv_sec; + clock_pairing.nsec = ts.tv_nsec; + clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); + clock_pairing.flags = 0; + memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); + + ret = 0; + if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, + sizeof(struct kvm_clock_pairing))) + ret = -KVM_EFAULT; + + return ret; +} +#endif + +/* + * kvm_pv_kick_cpu_op: Kick a vcpu. + * + * @apicid - apicid of vcpu to be kicked. + */ +static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) +{ + /* + * All other fields are unused for APIC_DM_REMRD, but may be consumed by + * common code, e.g. for tracing. Defer initialization to the compiler. + */ + struct kvm_lapic_irq lapic_irq = { + .delivery_mode = APIC_DM_REMRD, + .dest_mode = APIC_DEST_PHYSICAL, + .shorthand = APIC_DEST_NOSHORT, + .dest_id = apicid, + }; + + kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); +} + +bool kvm_apicv_activated(struct kvm *kvm) +{ + return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); +} +EXPORT_SYMBOL_GPL(kvm_apicv_activated); + +bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) +{ + ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); + ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); + + return (vm_reasons | vcpu_reasons) == 0; +} +EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); + +static void set_or_clear_apicv_inhibit(unsigned long *inhibits, + enum kvm_apicv_inhibit reason, bool set) +{ + if (set) + __set_bit(reason, inhibits); + else + __clear_bit(reason, inhibits); + + trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); +} + +static void kvm_apicv_init(struct kvm *kvm) +{ + unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; + + init_rwsem(&kvm->arch.apicv_update_lock); + + set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); + + if (!enable_apicv) + set_or_clear_apicv_inhibit(inhibits, + APICV_INHIBIT_REASON_DISABLE, true); +} + +static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) +{ + struct kvm_vcpu *target = NULL; + struct kvm_apic_map *map; + + vcpu->stat.directed_yield_attempted++; + + if (single_task_running()) + goto no_yield; + + rcu_read_lock(); + map = rcu_dereference(vcpu->kvm->arch.apic_map); + + if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) + target = map->phys_map[dest_id]->vcpu; + + rcu_read_unlock(); + + if (!target || !READ_ONCE(target->ready)) + goto no_yield; + + /* Ignore requests to yield to self */ + if (vcpu == target) + goto no_yield; + + if (kvm_vcpu_yield_to(target) <= 0) + goto no_yield; + + vcpu->stat.directed_yield_successful++; + +no_yield: + return; +} + +static int complete_hypercall_exit(struct kvm_vcpu *vcpu) +{ + u64 ret = vcpu->run->hypercall.ret; + + if (!is_64_bit_mode(vcpu)) + ret = (u32)ret; + kvm_rax_write(vcpu, ret); + ++vcpu->stat.hypercalls; + return kvm_skip_emulated_instruction(vcpu); +} + +int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) +{ + unsigned long nr, a0, a1, a2, a3, ret; + int op_64_bit; + + if (kvm_xen_hypercall_enabled(vcpu->kvm)) + return kvm_xen_hypercall(vcpu); + + if (kvm_hv_hypercall_enabled(vcpu)) + return kvm_hv_hypercall(vcpu); + + nr = kvm_rax_read(vcpu); + a0 = kvm_rbx_read(vcpu); + a1 = kvm_rcx_read(vcpu); + a2 = kvm_rdx_read(vcpu); + a3 = kvm_rsi_read(vcpu); + + trace_kvm_hypercall(nr, a0, a1, a2, a3); + + op_64_bit = is_64_bit_hypercall(vcpu); + if (!op_64_bit) { + nr &= 0xFFFFFFFF; + a0 &= 0xFFFFFFFF; + a1 &= 0xFFFFFFFF; + a2 &= 0xFFFFFFFF; + a3 &= 0xFFFFFFFF; + } + + if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { + ret = -KVM_EPERM; + goto out; + } + + ret = -KVM_ENOSYS; + + switch (nr) { + case KVM_HC_VAPIC_POLL_IRQ: + ret = 0; + break; + case KVM_HC_KICK_CPU: + if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) + break; + + kvm_pv_kick_cpu_op(vcpu->kvm, a1); + kvm_sched_yield(vcpu, a1); + ret = 0; + break; +#ifdef CONFIG_X86_64 + case KVM_HC_CLOCK_PAIRING: + ret = kvm_pv_clock_pairing(vcpu, a0, a1); + break; +#endif + case KVM_HC_SEND_IPI: + if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) + break; + + ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); + break; + case KVM_HC_SCHED_YIELD: + if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) + break; + + kvm_sched_yield(vcpu, a0); + ret = 0; + break; + case KVM_HC_MAP_GPA_RANGE: { + u64 gpa = a0, npages = a1, attrs = a2; + + ret = -KVM_ENOSYS; + if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) + break; + + if (!PAGE_ALIGNED(gpa) || !npages || + gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { + ret = -KVM_EINVAL; + break; + } + + vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; + vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; + vcpu->run->hypercall.args[0] = gpa; + vcpu->run->hypercall.args[1] = npages; + vcpu->run->hypercall.args[2] = attrs; + vcpu->run->hypercall.flags = 0; + if (op_64_bit) + vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; + + WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); + vcpu->arch.complete_userspace_io = complete_hypercall_exit; + return 0; + } + default: + ret = -KVM_ENOSYS; + break; + } +out: + if (!op_64_bit) + ret = (u32)ret; + kvm_rax_write(vcpu, ret); + + ++vcpu->stat.hypercalls; + return kvm_skip_emulated_instruction(vcpu); +} +EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); + +static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) +{ + struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); + char instruction[3]; + unsigned long rip = kvm_rip_read(vcpu); + + /* + * If the quirk is disabled, synthesize a #UD and let the guest pick up + * the pieces. + */ + if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { + ctxt->exception.error_code_valid = false; + ctxt->exception.vector = UD_VECTOR; + ctxt->have_exception = true; + return X86EMUL_PROPAGATE_FAULT; + } + + static_call(kvm_x86_patch_hypercall)(vcpu, instruction); + + return emulator_write_emulated(ctxt, rip, instruction, 3, + &ctxt->exception); +} + +static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) +{ + return vcpu->run->request_interrupt_window && + likely(!pic_in_kernel(vcpu->kvm)); +} + +/* Called within kvm->srcu read side. */ +static void post_kvm_run_save(struct kvm_vcpu *vcpu) +{ + struct kvm_run *kvm_run = vcpu->run; + + kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); + kvm_run->cr8 = kvm_get_cr8(vcpu); + kvm_run->apic_base = kvm_get_apic_base(vcpu); + + kvm_run->ready_for_interrupt_injection = + pic_in_kernel(vcpu->kvm) || + kvm_vcpu_ready_for_interrupt_injection(vcpu); + + if (is_smm(vcpu)) + kvm_run->flags |= KVM_RUN_X86_SMM; +} + +static void update_cr8_intercept(struct kvm_vcpu *vcpu) +{ + int max_irr, tpr; + + if (!kvm_x86_ops.update_cr8_intercept) + return; + + if (!lapic_in_kernel(vcpu)) + return; + + if (vcpu->arch.apic->apicv_active) + return; + + if (!vcpu->arch.apic->vapic_addr) + max_irr = kvm_lapic_find_highest_irr(vcpu); + else + max_irr = -1; + + if (max_irr != -1) + max_irr >>= 4; + + tpr = kvm_lapic_get_cr8(vcpu); + + static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); +} + + +int kvm_check_nested_events(struct kvm_vcpu *vcpu) +{ + if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { + kvm_x86_ops.nested_ops->triple_fault(vcpu); + return 1; + } + + return kvm_x86_ops.nested_ops->check_events(vcpu); +} + +static void kvm_inject_exception(struct kvm_vcpu *vcpu) +{ + /* + * Suppress the error code if the vCPU is in Real Mode, as Real Mode + * exceptions don't report error codes. The presence of an error code + * is carried with the exception and only stripped when the exception + * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do + * report an error code despite the CPU being in Real Mode. + */ + vcpu->arch.exception.has_error_code &= is_protmode(vcpu); + + trace_kvm_inj_exception(vcpu->arch.exception.vector, + vcpu->arch.exception.has_error_code, + vcpu->arch.exception.error_code, + vcpu->arch.exception.injected); + + static_call(kvm_x86_inject_exception)(vcpu); +} + +/* + * Check for any event (interrupt or exception) that is ready to be injected, + * and if there is at least one event, inject the event with the highest + * priority. This handles both "pending" events, i.e. events that have never + * been injected into the guest, and "injected" events, i.e. events that were + * injected as part of a previous VM-Enter, but weren't successfully delivered + * and need to be re-injected. + * + * Note, this is not guaranteed to be invoked on a guest instruction boundary, + * i.e. doesn't guarantee that there's an event window in the guest. KVM must + * be able to inject exceptions in the "middle" of an instruction, and so must + * also be able to re-inject NMIs and IRQs in the middle of an instruction. + * I.e. for exceptions and re-injected events, NOT invoking this on instruction + * boundaries is necessary and correct. + * + * For simplicity, KVM uses a single path to inject all events (except events + * that are injected directly from L1 to L2) and doesn't explicitly track + * instruction boundaries for asynchronous events. However, because VM-Exits + * that can occur during instruction execution typically result in KVM skipping + * the instruction or injecting an exception, e.g. instruction and exception + * intercepts, and because pending exceptions have higher priority than pending + * interrupts, KVM still honors instruction boundaries in most scenarios. + * + * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip + * the instruction or inject an exception, then KVM can incorrecty inject a new + * asynchrounous event if the event became pending after the CPU fetched the + * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) + * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be + * injected on the restarted instruction instead of being deferred until the + * instruction completes. + * + * In practice, this virtualization hole is unlikely to be observed by the + * guest, and even less likely to cause functional problems. To detect the + * hole, the guest would have to trigger an event on a side effect of an early + * phase of instruction execution, e.g. on the instruction fetch from memory. + * And for it to be a functional problem, the guest would need to depend on the + * ordering between that side effect, the instruction completing, _and_ the + * delivery of the asynchronous event. + */ +static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, + bool *req_immediate_exit) +{ + bool can_inject; + int r; + + /* + * Process nested events first, as nested VM-Exit supercedes event + * re-injection. If there's an event queued for re-injection, it will + * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. + */ + if (is_guest_mode(vcpu)) + r = kvm_check_nested_events(vcpu); + else + r = 0; + + /* + * Re-inject exceptions and events *especially* if immediate entry+exit + * to/from L2 is needed, as any event that has already been injected + * into L2 needs to complete its lifecycle before injecting a new event. + * + * Don't re-inject an NMI or interrupt if there is a pending exception. + * This collision arises if an exception occurred while vectoring the + * injected event, KVM intercepted said exception, and KVM ultimately + * determined the fault belongs to the guest and queues the exception + * for injection back into the guest. + * + * "Injected" interrupts can also collide with pending exceptions if + * userspace ignores the "ready for injection" flag and blindly queues + * an interrupt. In that case, prioritizing the exception is correct, + * as the exception "occurred" before the exit to userspace. Trap-like + * exceptions, e.g. most #DBs, have higher priority than interrupts. + * And while fault-like exceptions, e.g. #GP and #PF, are the lowest + * priority, they're only generated (pended) during instruction + * execution, and interrupts are recognized at instruction boundaries. + * Thus a pending fault-like exception means the fault occurred on the + * *previous* instruction and must be serviced prior to recognizing any + * new events in order to fully complete the previous instruction. + */ + if (vcpu->arch.exception.injected) + kvm_inject_exception(vcpu); + else if (kvm_is_exception_pending(vcpu)) + ; /* see above */ + else if (vcpu->arch.nmi_injected) + static_call(kvm_x86_inject_nmi)(vcpu); + else if (vcpu->arch.interrupt.injected) + static_call(kvm_x86_inject_irq)(vcpu, true); + + /* + * Exceptions that morph to VM-Exits are handled above, and pending + * exceptions on top of injected exceptions that do not VM-Exit should + * either morph to #DF or, sadly, override the injected exception. + */ + WARN_ON_ONCE(vcpu->arch.exception.injected && + vcpu->arch.exception.pending); + + /* + * Bail if immediate entry+exit to/from the guest is needed to complete + * nested VM-Enter or event re-injection so that a different pending + * event can be serviced (or if KVM needs to exit to userspace). + * + * Otherwise, continue processing events even if VM-Exit occurred. The + * VM-Exit will have cleared exceptions that were meant for L2, but + * there may now be events that can be injected into L1. + */ + if (r < 0) + goto out; + + /* + * A pending exception VM-Exit should either result in nested VM-Exit + * or force an immediate re-entry and exit to/from L2, and exception + * VM-Exits cannot be injected (flag should _never_ be set). + */ + WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || + vcpu->arch.exception_vmexit.pending); + + /* + * New events, other than exceptions, cannot be injected if KVM needs + * to re-inject a previous event. See above comments on re-injecting + * for why pending exceptions get priority. + */ + can_inject = !kvm_event_needs_reinjection(vcpu); + + if (vcpu->arch.exception.pending) { + /* + * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS + * value pushed on the stack. Trap-like exception and all #DBs + * leave RF as-is (KVM follows Intel's behavior in this regard; + * AMD states that code breakpoint #DBs excplitly clear RF=0). + * + * Note, most versions of Intel's SDM and AMD's APM incorrectly + * describe the behavior of General Detect #DBs, which are + * fault-like. They do _not_ set RF, a la code breakpoints. + */ + if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) + __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | + X86_EFLAGS_RF); + + if (vcpu->arch.exception.vector == DB_VECTOR) { + kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); + if (vcpu->arch.dr7 & DR7_GD) { + vcpu->arch.dr7 &= ~DR7_GD; + kvm_update_dr7(vcpu); + } + } + + kvm_inject_exception(vcpu); + + vcpu->arch.exception.pending = false; + vcpu->arch.exception.injected = true; + + can_inject = false; + } + + /* Don't inject interrupts if the user asked to avoid doing so */ + if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) + return 0; + + /* + * Finally, inject interrupt events. If an event cannot be injected + * due to architectural conditions (e.g. IF=0) a window-open exit + * will re-request KVM_REQ_EVENT. Sometimes however an event is pending + * and can architecturally be injected, but we cannot do it right now: + * an interrupt could have arrived just now and we have to inject it + * as a vmexit, or there could already an event in the queue, which is + * indicated by can_inject. In that case we request an immediate exit + * in order to make progress and get back here for another iteration. + * The kvm_x86_ops hooks communicate this by returning -EBUSY. + */ +#ifdef CONFIG_KVM_SMM + if (vcpu->arch.smi_pending) { + r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; + if (r < 0) + goto out; + if (r) { + vcpu->arch.smi_pending = false; + ++vcpu->arch.smi_count; + enter_smm(vcpu); + can_inject = false; + } else + static_call(kvm_x86_enable_smi_window)(vcpu); + } +#endif + + if (vcpu->arch.nmi_pending) { + r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; + if (r < 0) + goto out; + if (r) { + --vcpu->arch.nmi_pending; + vcpu->arch.nmi_injected = true; + static_call(kvm_x86_inject_nmi)(vcpu); + can_inject = false; + WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); + } + if (vcpu->arch.nmi_pending) + static_call(kvm_x86_enable_nmi_window)(vcpu); + } + + if (kvm_cpu_has_injectable_intr(vcpu)) { + r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; + if (r < 0) + goto out; + if (r) { + int irq = kvm_cpu_get_interrupt(vcpu); + + if (!WARN_ON_ONCE(irq == -1)) { + kvm_queue_interrupt(vcpu, irq, false); + static_call(kvm_x86_inject_irq)(vcpu, false); + WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); + } + } + if (kvm_cpu_has_injectable_intr(vcpu)) + static_call(kvm_x86_enable_irq_window)(vcpu); + } + + if (is_guest_mode(vcpu) && + kvm_x86_ops.nested_ops->has_events && + kvm_x86_ops.nested_ops->has_events(vcpu)) + *req_immediate_exit = true; + + /* + * KVM must never queue a new exception while injecting an event; KVM + * is done emulating and should only propagate the to-be-injected event + * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an + * infinite loop as KVM will bail from VM-Enter to inject the pending + * exception and start the cycle all over. + * + * Exempt triple faults as they have special handling and won't put the + * vCPU into an infinite loop. Triple fault can be queued when running + * VMX without unrestricted guest, as that requires KVM to emulate Real + * Mode events (see kvm_inject_realmode_interrupt()). + */ + WARN_ON_ONCE(vcpu->arch.exception.pending || + vcpu->arch.exception_vmexit.pending); + return 0; + +out: + if (r == -EBUSY) { + *req_immediate_exit = true; + r = 0; + } + return r; +} + +static void process_nmi(struct kvm_vcpu *vcpu) +{ + unsigned int limit; + + /* + * x86 is limited to one NMI pending, but because KVM can't react to + * incoming NMIs as quickly as bare metal, e.g. if the vCPU is + * scheduled out, KVM needs to play nice with two queued NMIs showing + * up at the same time. To handle this scenario, allow two NMIs to be + * (temporarily) pending so long as NMIs are not blocked and KVM is not + * waiting for a previous NMI injection to complete (which effectively + * blocks NMIs). KVM will immediately inject one of the two NMIs, and + * will request an NMI window to handle the second NMI. + */ + if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) + limit = 1; + else + limit = 2; + + /* + * Adjust the limit to account for pending virtual NMIs, which aren't + * tracked in vcpu->arch.nmi_pending. + */ + if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) + limit--; + + vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); + vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); + + if (vcpu->arch.nmi_pending && + (static_call(kvm_x86_set_vnmi_pending)(vcpu))) + vcpu->arch.nmi_pending--; + + if (vcpu->arch.nmi_pending) + kvm_make_request(KVM_REQ_EVENT, vcpu); +} + +/* Return total number of NMIs pending injection to the VM */ +int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.nmi_pending + + static_call(kvm_x86_is_vnmi_pending)(vcpu); +} + +void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, + unsigned long *vcpu_bitmap) +{ + kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); +} + +void kvm_make_scan_ioapic_request(struct kvm *kvm) +{ + kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); +} + +void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + bool activate; + + if (!lapic_in_kernel(vcpu)) + return; + + down_read(&vcpu->kvm->arch.apicv_update_lock); + preempt_disable(); + + /* Do not activate APICV when APIC is disabled */ + activate = kvm_vcpu_apicv_activated(vcpu) && + (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); + + if (apic->apicv_active == activate) + goto out; + + apic->apicv_active = activate; + kvm_apic_update_apicv(vcpu); + static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); + + /* + * When APICv gets disabled, we may still have injected interrupts + * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was + * still active when the interrupt got accepted. Make sure + * kvm_check_and_inject_events() is called to check for that. + */ + if (!apic->apicv_active) + kvm_make_request(KVM_REQ_EVENT, vcpu); + +out: + preempt_enable(); + up_read(&vcpu->kvm->arch.apicv_update_lock); +} +EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); + +static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) +{ + if (!lapic_in_kernel(vcpu)) + return; + + /* + * Due to sharing page tables across vCPUs, the xAPIC memslot must be + * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but + * and hardware doesn't support x2APIC virtualization. E.g. some AMD + * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in + * this case so that KVM can the AVIC doorbell to inject interrupts to + * running vCPUs, but KVM must not create SPTEs for the APIC base as + * the vCPU would incorrectly be able to access the vAPIC page via MMIO + * despite being in x2APIC mode. For simplicity, inhibiting the APIC + * access page is sticky. + */ + if (apic_x2apic_mode(vcpu->arch.apic) && + kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) + kvm_inhibit_apic_access_page(vcpu); + + __kvm_vcpu_update_apicv(vcpu); +} + +void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, + enum kvm_apicv_inhibit reason, bool set) +{ + unsigned long old, new; + + lockdep_assert_held_write(&kvm->arch.apicv_update_lock); + + if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) + return; + + old = new = kvm->arch.apicv_inhibit_reasons; + + set_or_clear_apicv_inhibit(&new, reason, set); + + if (!!old != !!new) { + /* + * Kick all vCPUs before setting apicv_inhibit_reasons to avoid + * false positives in the sanity check WARN in svm_vcpu_run(). + * This task will wait for all vCPUs to ack the kick IRQ before + * updating apicv_inhibit_reasons, and all other vCPUs will + * block on acquiring apicv_update_lock so that vCPUs can't + * redo svm_vcpu_run() without seeing the new inhibit state. + * + * Note, holding apicv_update_lock and taking it in the read + * side (handling the request) also prevents other vCPUs from + * servicing the request with a stale apicv_inhibit_reasons. + */ + kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); + kvm->arch.apicv_inhibit_reasons = new; + if (new) { + unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); + int idx = srcu_read_lock(&kvm->srcu); + + kvm_zap_gfn_range(kvm, gfn, gfn+1); + srcu_read_unlock(&kvm->srcu, idx); + } + } else { + kvm->arch.apicv_inhibit_reasons = new; + } +} + +void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, + enum kvm_apicv_inhibit reason, bool set) +{ + if (!enable_apicv) + return; + + down_write(&kvm->arch.apicv_update_lock); + __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); + up_write(&kvm->arch.apicv_update_lock); +} +EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); + +static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) +{ + if (!kvm_apic_present(vcpu)) + return; + + bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); + + if (irqchip_split(vcpu->kvm)) + kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); + else { + static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); + if (ioapic_in_kernel(vcpu->kvm)) + kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); + } + + if (is_guest_mode(vcpu)) + vcpu->arch.load_eoi_exitmap_pending = true; + else + kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); +} + +static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) +{ + u64 eoi_exit_bitmap[4]; + + if (!kvm_apic_hw_enabled(vcpu->arch.apic)) + return; + + if (to_hv_vcpu(vcpu)) { + bitmap_or((ulong *)eoi_exit_bitmap, + vcpu->arch.ioapic_handled_vectors, + to_hv_synic(vcpu)->vec_bitmap, 256); + static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); + return; + } + + static_call_cond(kvm_x86_load_eoi_exitmap)( + vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); +} + +void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) +{ + static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); +} + +static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) +{ + if (!lapic_in_kernel(vcpu)) + return; + + static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); +} + +void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) +{ + smp_send_reschedule(vcpu->cpu); +} +EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); + +/* + * Called within kvm->srcu read side. + * Returns 1 to let vcpu_run() continue the guest execution loop without + * exiting to the userspace. Otherwise, the value will be returned to the + * userspace. + */ +static int vcpu_enter_guest(struct kvm_vcpu *vcpu) +{ + int r; + bool req_int_win = + dm_request_for_irq_injection(vcpu) && + kvm_cpu_accept_dm_intr(vcpu); + fastpath_t exit_fastpath; + + bool req_immediate_exit = false; + + if (kvm_request_pending(vcpu)) { + if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { + r = -EIO; + goto out; + } + + if (kvm_dirty_ring_check_request(vcpu)) { + r = 0; + goto out; + } + + if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { + if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { + r = 0; + goto out; + } + } + if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) + kvm_mmu_free_obsolete_roots(vcpu); + if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) + __kvm_migrate_timers(vcpu); + if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) + kvm_update_masterclock(vcpu->kvm); + if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) + kvm_gen_kvmclock_update(vcpu); + if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { + r = kvm_guest_time_update(vcpu); + if (unlikely(r)) + goto out; + } + if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) + kvm_mmu_sync_roots(vcpu); + if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) + kvm_mmu_load_pgd(vcpu); + + /* + * Note, the order matters here, as flushing "all" TLB entries + * also flushes the "current" TLB entries, i.e. servicing the + * flush "all" will clear any request to flush "current". + */ + if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) + kvm_vcpu_flush_tlb_all(vcpu); + + kvm_service_local_tlb_flush_requests(vcpu); + + /* + * Fall back to a "full" guest flush if Hyper-V's precise + * flushing fails. Note, Hyper-V's flushing is per-vCPU, but + * the flushes are considered "remote" and not "local" because + * the requests can be initiated from other vCPUs. + */ + if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && + kvm_hv_vcpu_flush_tlb(vcpu)) + kvm_vcpu_flush_tlb_guest(vcpu); + + if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { + vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; + r = 0; + goto out; + } + if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { + if (is_guest_mode(vcpu)) + kvm_x86_ops.nested_ops->triple_fault(vcpu); + + if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { + vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; + vcpu->mmio_needed = 0; + r = 0; + goto out; + } + } + if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { + /* Page is swapped out. Do synthetic halt */ + vcpu->arch.apf.halted = true; + r = 1; + goto out; + } + if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) + record_steal_time(vcpu); +#ifdef CONFIG_KVM_SMM + if (kvm_check_request(KVM_REQ_SMI, vcpu)) + process_smi(vcpu); +#endif + if (kvm_check_request(KVM_REQ_NMI, vcpu)) + process_nmi(vcpu); + if (kvm_check_request(KVM_REQ_PMU, vcpu)) + kvm_pmu_handle_event(vcpu); + if (kvm_check_request(KVM_REQ_PMI, vcpu)) + kvm_pmu_deliver_pmi(vcpu); + if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { + BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); + if (test_bit(vcpu->arch.pending_ioapic_eoi, + vcpu->arch.ioapic_handled_vectors)) { + vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; + vcpu->run->eoi.vector = + vcpu->arch.pending_ioapic_eoi; + r = 0; + goto out; + } + } + if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) + vcpu_scan_ioapic(vcpu); + if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) + vcpu_load_eoi_exitmap(vcpu); + if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) + kvm_vcpu_reload_apic_access_page(vcpu); + if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { + vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; + vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; + vcpu->run->system_event.ndata = 0; + r = 0; + goto out; + } + if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { + vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; + vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; + vcpu->run->system_event.ndata = 0; + r = 0; + goto out; + } + if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { + struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); + + vcpu->run->exit_reason = KVM_EXIT_HYPERV; + vcpu->run->hyperv = hv_vcpu->exit; + r = 0; + goto out; + } + + /* + * KVM_REQ_HV_STIMER has to be processed after + * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers + * depend on the guest clock being up-to-date + */ + if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) + kvm_hv_process_stimers(vcpu); + if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) + kvm_vcpu_update_apicv(vcpu); + if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) + kvm_check_async_pf_completion(vcpu); + if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) + static_call(kvm_x86_msr_filter_changed)(vcpu); + + if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) + static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); + } + + if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || + kvm_xen_has_interrupt(vcpu)) { + ++vcpu->stat.req_event; + r = kvm_apic_accept_events(vcpu); + if (r < 0) { + r = 0; + goto out; + } + if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { + r = 1; + goto out; + } + + r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); + if (r < 0) { + r = 0; + goto out; + } + if (req_int_win) + static_call(kvm_x86_enable_irq_window)(vcpu); + + if (kvm_lapic_enabled(vcpu)) { + update_cr8_intercept(vcpu); + kvm_lapic_sync_to_vapic(vcpu); + } + } + + r = kvm_mmu_reload(vcpu); + if (unlikely(r)) { + goto cancel_injection; + } + + preempt_disable(); + + static_call(kvm_x86_prepare_switch_to_guest)(vcpu); + + /* + * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt + * IPI are then delayed after guest entry, which ensures that they + * result in virtual interrupt delivery. + */ + local_irq_disable(); + + /* Store vcpu->apicv_active before vcpu->mode. */ + smp_store_release(&vcpu->mode, IN_GUEST_MODE); + + kvm_vcpu_srcu_read_unlock(vcpu); + + /* + * 1) We should set ->mode before checking ->requests. Please see + * the comment in kvm_vcpu_exiting_guest_mode(). + * + * 2) For APICv, we should set ->mode before checking PID.ON. This + * pairs with the memory barrier implicit in pi_test_and_set_on + * (see vmx_deliver_posted_interrupt). + * + * 3) This also orders the write to mode from any reads to the page + * tables done while the VCPU is running. Please see the comment + * in kvm_flush_remote_tlbs. + */ + smp_mb__after_srcu_read_unlock(); + + /* + * Process pending posted interrupts to handle the case where the + * notification IRQ arrived in the host, or was never sent (because the + * target vCPU wasn't running). Do this regardless of the vCPU's APICv + * status, KVM doesn't update assigned devices when APICv is inhibited, + * i.e. they can post interrupts even if APICv is temporarily disabled. + */ + if (kvm_lapic_enabled(vcpu)) + static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); + + if (kvm_vcpu_exit_request(vcpu)) { + vcpu->mode = OUTSIDE_GUEST_MODE; + smp_wmb(); + local_irq_enable(); + preempt_enable(); + kvm_vcpu_srcu_read_lock(vcpu); + r = 1; + goto cancel_injection; + } + + if (req_immediate_exit) { + kvm_make_request(KVM_REQ_EVENT, vcpu); + static_call(kvm_x86_request_immediate_exit)(vcpu); + } + + fpregs_assert_state_consistent(); + if (test_thread_flag(TIF_NEED_FPU_LOAD)) + switch_fpu_return(); + + if (vcpu->arch.guest_fpu.xfd_err) + wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); + + if (unlikely(vcpu->arch.switch_db_regs)) { + set_debugreg(0, 7); + set_debugreg(vcpu->arch.eff_db[0], 0); + set_debugreg(vcpu->arch.eff_db[1], 1); + set_debugreg(vcpu->arch.eff_db[2], 2); + set_debugreg(vcpu->arch.eff_db[3], 3); + } else if (unlikely(hw_breakpoint_active())) { + set_debugreg(0, 7); + } + + guest_timing_enter_irqoff(); + + for (;;) { + /* + * Assert that vCPU vs. VM APICv state is consistent. An APICv + * update must kick and wait for all vCPUs before toggling the + * per-VM state, and responsing vCPUs must wait for the update + * to complete before servicing KVM_REQ_APICV_UPDATE. + */ + WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && + (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); + + exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); + if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) + break; + + if (kvm_lapic_enabled(vcpu)) + static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); + + if (unlikely(kvm_vcpu_exit_request(vcpu))) { + exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; + break; + } + + /* Note, VM-Exits that go down the "slow" path are accounted below. */ + ++vcpu->stat.exits; + } + + /* + * Do this here before restoring debug registers on the host. And + * since we do this before handling the vmexit, a DR access vmexit + * can (a) read the correct value of the debug registers, (b) set + * KVM_DEBUGREG_WONT_EXIT again. + */ + if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { + WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); + static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); + kvm_update_dr0123(vcpu); + kvm_update_dr7(vcpu); + } + + /* + * If the guest has used debug registers, at least dr7 + * will be disabled while returning to the host. + * If we don't have active breakpoints in the host, we don't + * care about the messed up debug address registers. But if + * we have some of them active, restore the old state. + */ + if (hw_breakpoint_active()) + hw_breakpoint_restore(); + + vcpu->arch.last_vmentry_cpu = vcpu->cpu; + vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); + + vcpu->mode = OUTSIDE_GUEST_MODE; + smp_wmb(); + + /* + * Sync xfd before calling handle_exit_irqoff() which may + * rely on the fact that guest_fpu::xfd is up-to-date (e.g. + * in #NM irqoff handler). + */ + if (vcpu->arch.xfd_no_write_intercept) + fpu_sync_guest_vmexit_xfd_state(); + + static_call(kvm_x86_handle_exit_irqoff)(vcpu); + + if (vcpu->arch.guest_fpu.xfd_err) + wrmsrl(MSR_IA32_XFD_ERR, 0); + + /* + * Consume any pending interrupts, including the possible source of + * VM-Exit on SVM and any ticks that occur between VM-Exit and now. + * An instruction is required after local_irq_enable() to fully unblock + * interrupts on processors that implement an interrupt shadow, the + * stat.exits increment will do nicely. + */ + kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); + local_irq_enable(); + ++vcpu->stat.exits; + local_irq_disable(); + kvm_after_interrupt(vcpu); + + /* + * Wait until after servicing IRQs to account guest time so that any + * ticks that occurred while running the guest are properly accounted + * to the guest. Waiting until IRQs are enabled degrades the accuracy + * of accounting via context tracking, but the loss of accuracy is + * acceptable for all known use cases. + */ + guest_timing_exit_irqoff(); + + local_irq_enable(); + preempt_enable(); + + kvm_vcpu_srcu_read_lock(vcpu); + + /* + * Profile KVM exit RIPs: + */ + if (unlikely(prof_on == KVM_PROFILING)) { + unsigned long rip = kvm_rip_read(vcpu); + profile_hit(KVM_PROFILING, (void *)rip); + } + + if (unlikely(vcpu->arch.tsc_always_catchup)) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + + if (vcpu->arch.apic_attention) + kvm_lapic_sync_from_vapic(vcpu); + + r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); + return r; + +cancel_injection: + if (req_immediate_exit) + kvm_make_request(KVM_REQ_EVENT, vcpu); + static_call(kvm_x86_cancel_injection)(vcpu); + if (unlikely(vcpu->arch.apic_attention)) + kvm_lapic_sync_from_vapic(vcpu); +out: + return r; +} + +/* Called within kvm->srcu read side. */ +static inline int vcpu_block(struct kvm_vcpu *vcpu) +{ + bool hv_timer; + + if (!kvm_arch_vcpu_runnable(vcpu)) { + /* + * Switch to the software timer before halt-polling/blocking as + * the guest's timer may be a break event for the vCPU, and the + * hypervisor timer runs only when the CPU is in guest mode. + * Switch before halt-polling so that KVM recognizes an expired + * timer before blocking. + */ + hv_timer = kvm_lapic_hv_timer_in_use(vcpu); + if (hv_timer) + kvm_lapic_switch_to_sw_timer(vcpu); + + kvm_vcpu_srcu_read_unlock(vcpu); + if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) + kvm_vcpu_halt(vcpu); + else + kvm_vcpu_block(vcpu); + kvm_vcpu_srcu_read_lock(vcpu); + + if (hv_timer) + kvm_lapic_switch_to_hv_timer(vcpu); + + /* + * If the vCPU is not runnable, a signal or another host event + * of some kind is pending; service it without changing the + * vCPU's activity state. + */ + if (!kvm_arch_vcpu_runnable(vcpu)) + return 1; + } + + /* + * Evaluate nested events before exiting the halted state. This allows + * the halt state to be recorded properly in the VMCS12's activity + * state field (AMD does not have a similar field and a VM-Exit always + * causes a spurious wakeup from HLT). + */ + if (is_guest_mode(vcpu)) { + if (kvm_check_nested_events(vcpu) < 0) + return 0; + } + + if (kvm_apic_accept_events(vcpu) < 0) + return 0; + switch(vcpu->arch.mp_state) { + case KVM_MP_STATE_HALTED: + case KVM_MP_STATE_AP_RESET_HOLD: + vcpu->arch.pv.pv_unhalted = false; + vcpu->arch.mp_state = + KVM_MP_STATE_RUNNABLE; + fallthrough; + case KVM_MP_STATE_RUNNABLE: + vcpu->arch.apf.halted = false; + break; + case KVM_MP_STATE_INIT_RECEIVED: + break; + default: + WARN_ON_ONCE(1); + break; + } + return 1; +} + +static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) +{ + return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && + !vcpu->arch.apf.halted); +} + +/* Called within kvm->srcu read side. */ +static int vcpu_run(struct kvm_vcpu *vcpu) +{ + int r; + + vcpu->arch.l1tf_flush_l1d = true; + + for (;;) { + /* + * If another guest vCPU requests a PV TLB flush in the middle + * of instruction emulation, the rest of the emulation could + * use a stale page translation. Assume that any code after + * this point can start executing an instruction. + */ + vcpu->arch.at_instruction_boundary = false; + if (kvm_vcpu_running(vcpu)) { + r = vcpu_enter_guest(vcpu); + } else { + r = vcpu_block(vcpu); + } + + if (r <= 0) + break; + + kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); + if (kvm_xen_has_pending_events(vcpu)) + kvm_xen_inject_pending_events(vcpu); + + if (kvm_cpu_has_pending_timer(vcpu)) + kvm_inject_pending_timer_irqs(vcpu); + + if (dm_request_for_irq_injection(vcpu) && + kvm_vcpu_ready_for_interrupt_injection(vcpu)) { + r = 0; + vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; + ++vcpu->stat.request_irq_exits; + break; + } + + if (__xfer_to_guest_mode_work_pending()) { + kvm_vcpu_srcu_read_unlock(vcpu); + r = xfer_to_guest_mode_handle_work(vcpu); + kvm_vcpu_srcu_read_lock(vcpu); + if (r) + return r; + } + } + + return r; +} + +static inline int complete_emulated_io(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); +} + +static int complete_emulated_pio(struct kvm_vcpu *vcpu) +{ + BUG_ON(!vcpu->arch.pio.count); + + return complete_emulated_io(vcpu); +} + +/* + * Implements the following, as a state machine: + * + * read: + * for each fragment + * for each mmio piece in the fragment + * write gpa, len + * exit + * copy data + * execute insn + * + * write: + * for each fragment + * for each mmio piece in the fragment + * write gpa, len + * copy data + * exit + */ +static int complete_emulated_mmio(struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + struct kvm_mmio_fragment *frag; + unsigned len; + + BUG_ON(!vcpu->mmio_needed); + + /* Complete previous fragment */ + frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; + len = min(8u, frag->len); + if (!vcpu->mmio_is_write) + memcpy(frag->data, run->mmio.data, len); + + if (frag->len <= 8) { + /* Switch to the next fragment. */ + frag++; + vcpu->mmio_cur_fragment++; + } else { + /* Go forward to the next mmio piece. */ + frag->data += len; + frag->gpa += len; + frag->len -= len; + } + + if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { + vcpu->mmio_needed = 0; + + /* FIXME: return into emulator if single-stepping. */ + if (vcpu->mmio_is_write) + return 1; + vcpu->mmio_read_completed = 1; + return complete_emulated_io(vcpu); + } + + run->exit_reason = KVM_EXIT_MMIO; + run->mmio.phys_addr = frag->gpa; + if (vcpu->mmio_is_write) + memcpy(run->mmio.data, frag->data, min(8u, frag->len)); + run->mmio.len = min(8u, frag->len); + run->mmio.is_write = vcpu->mmio_is_write; + vcpu->arch.complete_userspace_io = complete_emulated_mmio; + return 0; +} + +/* Swap (qemu) user FPU context for the guest FPU context. */ +static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) +{ + /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ + fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); + trace_kvm_fpu(1); +} + +/* When vcpu_run ends, restore user space FPU context. */ +static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) +{ + fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); + ++vcpu->stat.fpu_reload; + trace_kvm_fpu(0); +} + +int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) +{ + struct kvm_queued_exception *ex = &vcpu->arch.exception; + struct kvm_run *kvm_run = vcpu->run; + int r; + + vcpu_load(vcpu); + kvm_sigset_activate(vcpu); + kvm_run->flags = 0; + kvm_load_guest_fpu(vcpu); + + kvm_vcpu_srcu_read_lock(vcpu); + if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { + if (kvm_run->immediate_exit) { + r = -EINTR; + goto out; + } + + /* + * Don't bother switching APIC timer emulation from the + * hypervisor timer to the software timer, the only way for the + * APIC timer to be active is if userspace stuffed vCPU state, + * i.e. put the vCPU into a nonsensical state. Only an INIT + * will transition the vCPU out of UNINITIALIZED (without more + * state stuffing from userspace), which will reset the local + * APIC and thus cancel the timer or drop the IRQ (if the timer + * already expired). + */ + kvm_vcpu_srcu_read_unlock(vcpu); + kvm_vcpu_block(vcpu); + kvm_vcpu_srcu_read_lock(vcpu); + + if (kvm_apic_accept_events(vcpu) < 0) { + r = 0; + goto out; + } + r = -EAGAIN; + if (signal_pending(current)) { + r = -EINTR; + kvm_run->exit_reason = KVM_EXIT_INTR; + ++vcpu->stat.signal_exits; + } + goto out; + } + + if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || + (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { + r = -EINVAL; + goto out; + } + + if (kvm_run->kvm_dirty_regs) { + r = sync_regs(vcpu); + if (r != 0) + goto out; + } + + /* re-sync apic's tpr */ + if (!lapic_in_kernel(vcpu)) { + if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { + r = -EINVAL; + goto out; + } + } + + /* + * If userspace set a pending exception and L2 is active, convert it to + * a pending VM-Exit if L1 wants to intercept the exception. + */ + if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && + kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, + ex->error_code)) { + kvm_queue_exception_vmexit(vcpu, ex->vector, + ex->has_error_code, ex->error_code, + ex->has_payload, ex->payload); + ex->injected = false; + ex->pending = false; + } + vcpu->arch.exception_from_userspace = false; + + if (unlikely(vcpu->arch.complete_userspace_io)) { + int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; + vcpu->arch.complete_userspace_io = NULL; + r = cui(vcpu); + if (r <= 0) + goto out; + } else { + WARN_ON_ONCE(vcpu->arch.pio.count); + WARN_ON_ONCE(vcpu->mmio_needed); + } + + if (kvm_run->immediate_exit) { + r = -EINTR; + goto out; + } + + r = static_call(kvm_x86_vcpu_pre_run)(vcpu); + if (r <= 0) + goto out; + + r = vcpu_run(vcpu); + +out: + kvm_put_guest_fpu(vcpu); + if (kvm_run->kvm_valid_regs) + store_regs(vcpu); + post_kvm_run_save(vcpu); + kvm_vcpu_srcu_read_unlock(vcpu); + + kvm_sigset_deactivate(vcpu); + vcpu_put(vcpu); + return r; +} + +static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) +{ + if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { + /* + * We are here if userspace calls get_regs() in the middle of + * instruction emulation. Registers state needs to be copied + * back from emulation context to vcpu. Userspace shouldn't do + * that usually, but some bad designed PV devices (vmware + * backdoor interface) need this to work + */ + emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); + vcpu->arch.emulate_regs_need_sync_to_vcpu = false; + } + regs->rax = kvm_rax_read(vcpu); + regs->rbx = kvm_rbx_read(vcpu); + regs->rcx = kvm_rcx_read(vcpu); + regs->rdx = kvm_rdx_read(vcpu); + regs->rsi = kvm_rsi_read(vcpu); + regs->rdi = kvm_rdi_read(vcpu); + regs->rsp = kvm_rsp_read(vcpu); + regs->rbp = kvm_rbp_read(vcpu); +#ifdef CONFIG_X86_64 + regs->r8 = kvm_r8_read(vcpu); + regs->r9 = kvm_r9_read(vcpu); + regs->r10 = kvm_r10_read(vcpu); + regs->r11 = kvm_r11_read(vcpu); + regs->r12 = kvm_r12_read(vcpu); + regs->r13 = kvm_r13_read(vcpu); + regs->r14 = kvm_r14_read(vcpu); + regs->r15 = kvm_r15_read(vcpu); +#endif + + regs->rip = kvm_rip_read(vcpu); + regs->rflags = kvm_get_rflags(vcpu); +} + +int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) +{ + vcpu_load(vcpu); + __get_regs(vcpu, regs); + vcpu_put(vcpu); + return 0; +} + +static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) +{ + vcpu->arch.emulate_regs_need_sync_from_vcpu = true; + vcpu->arch.emulate_regs_need_sync_to_vcpu = false; + + kvm_rax_write(vcpu, regs->rax); + kvm_rbx_write(vcpu, regs->rbx); + kvm_rcx_write(vcpu, regs->rcx); + kvm_rdx_write(vcpu, regs->rdx); + kvm_rsi_write(vcpu, regs->rsi); + kvm_rdi_write(vcpu, regs->rdi); + kvm_rsp_write(vcpu, regs->rsp); + kvm_rbp_write(vcpu, regs->rbp); +#ifdef CONFIG_X86_64 + kvm_r8_write(vcpu, regs->r8); + kvm_r9_write(vcpu, regs->r9); + kvm_r10_write(vcpu, regs->r10); + kvm_r11_write(vcpu, regs->r11); + kvm_r12_write(vcpu, regs->r12); + kvm_r13_write(vcpu, regs->r13); + kvm_r14_write(vcpu, regs->r14); + kvm_r15_write(vcpu, regs->r15); +#endif + + kvm_rip_write(vcpu, regs->rip); + kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); + + vcpu->arch.exception.pending = false; + vcpu->arch.exception_vmexit.pending = false; + + kvm_make_request(KVM_REQ_EVENT, vcpu); +} + +int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) +{ + vcpu_load(vcpu); + __set_regs(vcpu, regs); + vcpu_put(vcpu); + return 0; +} + +static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) +{ + struct desc_ptr dt; + + if (vcpu->arch.guest_state_protected) + goto skip_protected_regs; + + kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); + kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); + kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); + kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); + kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); + kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); + + kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); + kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); + + static_call(kvm_x86_get_idt)(vcpu, &dt); + sregs->idt.limit = dt.size; + sregs->idt.base = dt.address; + static_call(kvm_x86_get_gdt)(vcpu, &dt); + sregs->gdt.limit = dt.size; + sregs->gdt.base = dt.address; + + sregs->cr2 = vcpu->arch.cr2; + sregs->cr3 = kvm_read_cr3(vcpu); + +skip_protected_regs: + sregs->cr0 = kvm_read_cr0(vcpu); + sregs->cr4 = kvm_read_cr4(vcpu); + sregs->cr8 = kvm_get_cr8(vcpu); + sregs->efer = vcpu->arch.efer; + sregs->apic_base = kvm_get_apic_base(vcpu); +} + +static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) +{ + __get_sregs_common(vcpu, sregs); + + if (vcpu->arch.guest_state_protected) + return; + + if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) + set_bit(vcpu->arch.interrupt.nr, + (unsigned long *)sregs->interrupt_bitmap); +} + +static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) +{ + int i; + + __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); + + if (vcpu->arch.guest_state_protected) + return; + + if (is_pae_paging(vcpu)) { + for (i = 0 ; i < 4 ; i++) + sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); + sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; + } +} + +int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, + struct kvm_sregs *sregs) +{ + vcpu_load(vcpu); + __get_sregs(vcpu, sregs); + vcpu_put(vcpu); + return 0; +} + +int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, + struct kvm_mp_state *mp_state) +{ + int r; + + vcpu_load(vcpu); + if (kvm_mpx_supported()) + kvm_load_guest_fpu(vcpu); + + r = kvm_apic_accept_events(vcpu); + if (r < 0) + goto out; + r = 0; + + if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || + vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && + vcpu->arch.pv.pv_unhalted) + mp_state->mp_state = KVM_MP_STATE_RUNNABLE; + else + mp_state->mp_state = vcpu->arch.mp_state; + +out: + if (kvm_mpx_supported()) + kvm_put_guest_fpu(vcpu); + vcpu_put(vcpu); + return r; +} + +int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, + struct kvm_mp_state *mp_state) +{ + int ret = -EINVAL; + + vcpu_load(vcpu); + + switch (mp_state->mp_state) { + case KVM_MP_STATE_UNINITIALIZED: + case KVM_MP_STATE_HALTED: + case KVM_MP_STATE_AP_RESET_HOLD: + case KVM_MP_STATE_INIT_RECEIVED: + case KVM_MP_STATE_SIPI_RECEIVED: + if (!lapic_in_kernel(vcpu)) + goto out; + break; + + case KVM_MP_STATE_RUNNABLE: + break; + + default: + goto out; + } + + /* + * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow + * forcing the guest into INIT/SIPI if those events are supposed to be + * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state + * if an SMI is pending as well. + */ + if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && + (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || + mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) + goto out; + + if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { + vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; + set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); + } else + vcpu->arch.mp_state = mp_state->mp_state; + kvm_make_request(KVM_REQ_EVENT, vcpu); + + ret = 0; +out: + vcpu_put(vcpu); + return ret; +} + +int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, + int reason, bool has_error_code, u32 error_code) +{ + struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; + int ret; + + init_emulate_ctxt(vcpu); + + ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, + has_error_code, error_code); + if (ret) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + return 0; + } + + kvm_rip_write(vcpu, ctxt->eip); + kvm_set_rflags(vcpu, ctxt->eflags); + return 1; +} +EXPORT_SYMBOL_GPL(kvm_task_switch); + +static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) +{ + if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { + /* + * When EFER.LME and CR0.PG are set, the processor is in + * 64-bit mode (though maybe in a 32-bit code segment). + * CR4.PAE and EFER.LMA must be set. + */ + if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) + return false; + if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) + return false; + } else { + /* + * Not in 64-bit mode: EFER.LMA is clear and the code + * segment cannot be 64-bit. + */ + if (sregs->efer & EFER_LMA || sregs->cs.l) + return false; + } + + return kvm_is_valid_cr4(vcpu, sregs->cr4) && + kvm_is_valid_cr0(vcpu, sregs->cr0); +} + +static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, + int *mmu_reset_needed, bool update_pdptrs) +{ + struct msr_data apic_base_msr; + int idx; + struct desc_ptr dt; + + if (!kvm_is_valid_sregs(vcpu, sregs)) + return -EINVAL; + + apic_base_msr.data = sregs->apic_base; + apic_base_msr.host_initiated = true; + if (kvm_set_apic_base(vcpu, &apic_base_msr)) + return -EINVAL; + + if (vcpu->arch.guest_state_protected) + return 0; + + dt.size = sregs->idt.limit; + dt.address = sregs->idt.base; + static_call(kvm_x86_set_idt)(vcpu, &dt); + dt.size = sregs->gdt.limit; + dt.address = sregs->gdt.base; + static_call(kvm_x86_set_gdt)(vcpu, &dt); + + vcpu->arch.cr2 = sregs->cr2; + *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; + vcpu->arch.cr3 = sregs->cr3; + kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); + static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); + + kvm_set_cr8(vcpu, sregs->cr8); + + *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; + static_call(kvm_x86_set_efer)(vcpu, sregs->efer); + + *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; + static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); + vcpu->arch.cr0 = sregs->cr0; + + *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; + static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); + + if (update_pdptrs) { + idx = srcu_read_lock(&vcpu->kvm->srcu); + if (is_pae_paging(vcpu)) { + load_pdptrs(vcpu, kvm_read_cr3(vcpu)); + *mmu_reset_needed = 1; + } + srcu_read_unlock(&vcpu->kvm->srcu, idx); + } + + kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); + kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); + kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); + kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); + kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); + kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); + + kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); + kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); + + update_cr8_intercept(vcpu); + + /* Older userspace won't unhalt the vcpu on reset. */ + if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && + sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && + !is_protmode(vcpu)) + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + + return 0; +} + +static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) +{ + int pending_vec, max_bits; + int mmu_reset_needed = 0; + int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); + + if (ret) + return ret; + + if (mmu_reset_needed) + kvm_mmu_reset_context(vcpu); + + max_bits = KVM_NR_INTERRUPTS; + pending_vec = find_first_bit( + (const unsigned long *)sregs->interrupt_bitmap, max_bits); + + if (pending_vec < max_bits) { + kvm_queue_interrupt(vcpu, pending_vec, false); + pr_debug("Set back pending irq %d\n", pending_vec); + kvm_make_request(KVM_REQ_EVENT, vcpu); + } + return 0; +} + +static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) +{ + int mmu_reset_needed = 0; + bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; + bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && + !(sregs2->efer & EFER_LMA); + int i, ret; + + if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) + return -EINVAL; + + if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) + return -EINVAL; + + ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, + &mmu_reset_needed, !valid_pdptrs); + if (ret) + return ret; + + if (valid_pdptrs) { + for (i = 0; i < 4 ; i++) + kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); + + kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); + mmu_reset_needed = 1; + vcpu->arch.pdptrs_from_userspace = true; + } + if (mmu_reset_needed) + kvm_mmu_reset_context(vcpu); + return 0; +} + +int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, + struct kvm_sregs *sregs) +{ + int ret; + + vcpu_load(vcpu); + ret = __set_sregs(vcpu, sregs); + vcpu_put(vcpu); + return ret; +} + +static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) +{ + bool set = false; + struct kvm_vcpu *vcpu; + unsigned long i; + + if (!enable_apicv) + return; + + down_write(&kvm->arch.apicv_update_lock); + + kvm_for_each_vcpu(i, vcpu, kvm) { + if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { + set = true; + break; + } + } + __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); + up_write(&kvm->arch.apicv_update_lock); +} + +int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, + struct kvm_guest_debug *dbg) +{ + unsigned long rflags; + int i, r; + + if (vcpu->arch.guest_state_protected) + return -EINVAL; + + vcpu_load(vcpu); + + if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { + r = -EBUSY; + if (kvm_is_exception_pending(vcpu)) + goto out; + if (dbg->control & KVM_GUESTDBG_INJECT_DB) + kvm_queue_exception(vcpu, DB_VECTOR); + else + kvm_queue_exception(vcpu, BP_VECTOR); + } + + /* + * Read rflags as long as potentially injected trace flags are still + * filtered out. + */ + rflags = kvm_get_rflags(vcpu); + + vcpu->guest_debug = dbg->control; + if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) + vcpu->guest_debug = 0; + + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { + for (i = 0; i < KVM_NR_DB_REGS; ++i) + vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; + vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; + } else { + for (i = 0; i < KVM_NR_DB_REGS; i++) + vcpu->arch.eff_db[i] = vcpu->arch.db[i]; + } + kvm_update_dr7(vcpu); + + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) + vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); + + /* + * Trigger an rflags update that will inject or remove the trace + * flags. + */ + kvm_set_rflags(vcpu, rflags); + + static_call(kvm_x86_update_exception_bitmap)(vcpu); + + kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); + + r = 0; + +out: + vcpu_put(vcpu); + return r; +} + +/* + * Translate a guest virtual address to a guest physical address. + */ +int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, + struct kvm_translation *tr) +{ + unsigned long vaddr = tr->linear_address; + gpa_t gpa; + int idx; + + vcpu_load(vcpu); + + idx = srcu_read_lock(&vcpu->kvm->srcu); + gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + tr->physical_address = gpa; + tr->valid = gpa != INVALID_GPA; + tr->writeable = 1; + tr->usermode = 0; + + vcpu_put(vcpu); + return 0; +} + +int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) +{ + struct fxregs_state *fxsave; + + if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) + return 0; + + vcpu_load(vcpu); + + fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; + memcpy(fpu->fpr, fxsave->st_space, 128); + fpu->fcw = fxsave->cwd; + fpu->fsw = fxsave->swd; + fpu->ftwx = fxsave->twd; + fpu->last_opcode = fxsave->fop; + fpu->last_ip = fxsave->rip; + fpu->last_dp = fxsave->rdp; + memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); + + vcpu_put(vcpu); + return 0; +} + +int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) +{ + struct fxregs_state *fxsave; + + if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) + return 0; + + vcpu_load(vcpu); + + fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; + + memcpy(fxsave->st_space, fpu->fpr, 128); + fxsave->cwd = fpu->fcw; + fxsave->swd = fpu->fsw; + fxsave->twd = fpu->ftwx; + fxsave->fop = fpu->last_opcode; + fxsave->rip = fpu->last_ip; + fxsave->rdp = fpu->last_dp; + memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); + + vcpu_put(vcpu); + return 0; +} + +static void store_regs(struct kvm_vcpu *vcpu) +{ + BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); + + if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) + __get_regs(vcpu, &vcpu->run->s.regs.regs); + + if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) + __get_sregs(vcpu, &vcpu->run->s.regs.sregs); + + if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) + kvm_vcpu_ioctl_x86_get_vcpu_events( + vcpu, &vcpu->run->s.regs.events); +} + +static int sync_regs(struct kvm_vcpu *vcpu) +{ + if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { + __set_regs(vcpu, &vcpu->run->s.regs.regs); + vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; + } + + if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { + struct kvm_sregs sregs = vcpu->run->s.regs.sregs; + + if (__set_sregs(vcpu, &sregs)) + return -EINVAL; + + vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; + } + + if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { + struct kvm_vcpu_events events = vcpu->run->s.regs.events; + + if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) + return -EINVAL; + + vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; + } + + return 0; +} + +int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) +{ + if (kvm_check_tsc_unstable() && kvm->created_vcpus) + pr_warn_once("SMP vm created on host with unstable TSC; " + "guest TSC will not be reliable\n"); + + if (!kvm->arch.max_vcpu_ids) + kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; + + if (id >= kvm->arch.max_vcpu_ids) + return -EINVAL; + + return static_call(kvm_x86_vcpu_precreate)(kvm); +} + +int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) +{ + struct page *page; + int r; + + vcpu->arch.last_vmentry_cpu = -1; + vcpu->arch.regs_avail = ~0; + vcpu->arch.regs_dirty = ~0; + + kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); + + if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + else + vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; + + r = kvm_mmu_create(vcpu); + if (r < 0) + return r; + + if (irqchip_in_kernel(vcpu->kvm)) { + r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); + if (r < 0) + goto fail_mmu_destroy; + + /* + * Defer evaluating inhibits until the vCPU is first run, as + * this vCPU will not get notified of any changes until this + * vCPU is visible to other vCPUs (marked online and added to + * the set of vCPUs). Opportunistically mark APICv active as + * VMX in particularly is highly unlikely to have inhibits. + * Ignore the current per-VM APICv state so that vCPU creation + * is guaranteed to run with a deterministic value, the request + * will ensure the vCPU gets the correct state before VM-Entry. + */ + if (enable_apicv) { + vcpu->arch.apic->apicv_active = true; + kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); + } + } else + static_branch_inc(&kvm_has_noapic_vcpu); + + r = -ENOMEM; + + page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); + if (!page) + goto fail_free_lapic; + vcpu->arch.pio_data = page_address(page); + + vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), + GFP_KERNEL_ACCOUNT); + vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), + GFP_KERNEL_ACCOUNT); + if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) + goto fail_free_mce_banks; + vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; + + if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, + GFP_KERNEL_ACCOUNT)) + goto fail_free_mce_banks; + + if (!alloc_emulate_ctxt(vcpu)) + goto free_wbinvd_dirty_mask; + + if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { + pr_err("failed to allocate vcpu's fpu\n"); + goto free_emulate_ctxt; + } + + vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); + vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); + + vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; + + kvm_async_pf_hash_reset(vcpu); + + vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; + kvm_pmu_init(vcpu); + + vcpu->arch.pending_external_vector = -1; + vcpu->arch.preempted_in_kernel = false; + +#if IS_ENABLED(CONFIG_HYPERV) + vcpu->arch.hv_root_tdp = INVALID_PAGE; +#endif + + r = static_call(kvm_x86_vcpu_create)(vcpu); + if (r) + goto free_guest_fpu; + + vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); + vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; + kvm_xen_init_vcpu(vcpu); + kvm_vcpu_mtrr_init(vcpu); + vcpu_load(vcpu); + kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); + kvm_vcpu_reset(vcpu, false); + kvm_init_mmu(vcpu); + vcpu_put(vcpu); + return 0; + +free_guest_fpu: + fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); +free_emulate_ctxt: + kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); +free_wbinvd_dirty_mask: + free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); +fail_free_mce_banks: + kfree(vcpu->arch.mce_banks); + kfree(vcpu->arch.mci_ctl2_banks); + free_page((unsigned long)vcpu->arch.pio_data); +fail_free_lapic: + kvm_free_lapic(vcpu); +fail_mmu_destroy: + kvm_mmu_destroy(vcpu); + return r; +} + +void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + + if (mutex_lock_killable(&vcpu->mutex)) + return; + vcpu_load(vcpu); + kvm_synchronize_tsc(vcpu, 0); + vcpu_put(vcpu); + + /* poll control enabled by default */ + vcpu->arch.msr_kvm_poll_control = 1; + + mutex_unlock(&vcpu->mutex); + + if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) + schedule_delayed_work(&kvm->arch.kvmclock_sync_work, + KVMCLOCK_SYNC_PERIOD); +} + +void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) +{ + int idx; + + kvmclock_reset(vcpu); + + static_call(kvm_x86_vcpu_free)(vcpu); + + kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); + free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); + fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); + + kvm_xen_destroy_vcpu(vcpu); + kvm_hv_vcpu_uninit(vcpu); + kvm_pmu_destroy(vcpu); + kfree(vcpu->arch.mce_banks); + kfree(vcpu->arch.mci_ctl2_banks); + kvm_free_lapic(vcpu); + idx = srcu_read_lock(&vcpu->kvm->srcu); + kvm_mmu_destroy(vcpu); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + free_page((unsigned long)vcpu->arch.pio_data); + kvfree(vcpu->arch.cpuid_entries); + if (!lapic_in_kernel(vcpu)) + static_branch_dec(&kvm_has_noapic_vcpu); +} + +void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) +{ + struct kvm_cpuid_entry2 *cpuid_0x1; + unsigned long old_cr0 = kvm_read_cr0(vcpu); + unsigned long new_cr0; + + /* + * Several of the "set" flows, e.g. ->set_cr0(), read other registers + * to handle side effects. RESET emulation hits those flows and relies + * on emulated/virtualized registers, including those that are loaded + * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel + * to detect improper or missing initialization. + */ + WARN_ON_ONCE(!init_event && + (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); + + /* + * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's + * possible to INIT the vCPU while L2 is active. Force the vCPU back + * into L1 as EFER.SVME is cleared on INIT (along with all other EFER + * bits), i.e. virtualization is disabled. + */ + if (is_guest_mode(vcpu)) + kvm_leave_nested(vcpu); + + kvm_lapic_reset(vcpu, init_event); + + WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); + vcpu->arch.hflags = 0; + + vcpu->arch.smi_pending = 0; + vcpu->arch.smi_count = 0; + atomic_set(&vcpu->arch.nmi_queued, 0); + vcpu->arch.nmi_pending = 0; + vcpu->arch.nmi_injected = false; + kvm_clear_interrupt_queue(vcpu); + kvm_clear_exception_queue(vcpu); + + memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); + kvm_update_dr0123(vcpu); + vcpu->arch.dr6 = DR6_ACTIVE_LOW; + vcpu->arch.dr7 = DR7_FIXED_1; + kvm_update_dr7(vcpu); + + vcpu->arch.cr2 = 0; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + vcpu->arch.apf.msr_en_val = 0; + vcpu->arch.apf.msr_int_val = 0; + vcpu->arch.st.msr_val = 0; + + kvmclock_reset(vcpu); + + kvm_clear_async_pf_completion_queue(vcpu); + kvm_async_pf_hash_reset(vcpu); + vcpu->arch.apf.halted = false; + + if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { + struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; + + /* + * All paths that lead to INIT are required to load the guest's + * FPU state (because most paths are buried in KVM_RUN). + */ + if (init_event) + kvm_put_guest_fpu(vcpu); + + fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); + fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); + + if (init_event) + kvm_load_guest_fpu(vcpu); + } + + if (!init_event) { + kvm_pmu_reset(vcpu); + vcpu->arch.smbase = 0x30000; + + vcpu->arch.msr_misc_features_enables = 0; + vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | + MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; + + __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); + __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); + } + + /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ + memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); + kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); + + /* + * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) + * if no CPUID match is found. Note, it's impossible to get a match at + * RESET since KVM emulates RESET before exposing the vCPU to userspace, + * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry + * on RESET. But, go through the motions in case that's ever remedied. + */ + cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); + kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); + + static_call(kvm_x86_vcpu_reset)(vcpu, init_event); + + kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); + kvm_rip_write(vcpu, 0xfff0); + + vcpu->arch.cr3 = 0; + kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); + + /* + * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions + * of Intel's SDM list CD/NW as being set on INIT, but they contradict + * (or qualify) that with a footnote stating that CD/NW are preserved. + */ + new_cr0 = X86_CR0_ET; + if (init_event) + new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); + else + new_cr0 |= X86_CR0_NW | X86_CR0_CD; + + static_call(kvm_x86_set_cr0)(vcpu, new_cr0); + static_call(kvm_x86_set_cr4)(vcpu, 0); + static_call(kvm_x86_set_efer)(vcpu, 0); + static_call(kvm_x86_update_exception_bitmap)(vcpu); + + /* + * On the standard CR0/CR4/EFER modification paths, there are several + * complex conditions determining whether the MMU has to be reset and/or + * which PCIDs have to be flushed. However, CR0.WP and the paging-related + * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush + * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as + * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. + */ + if (old_cr0 & X86_CR0_PG) { + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + kvm_mmu_reset_context(vcpu); + } + + /* + * Intel's SDM states that all TLB entries are flushed on INIT. AMD's + * APM states the TLBs are untouched by INIT, but it also states that + * the TLBs are flushed on "External initialization of the processor." + * Flush the guest TLB regardless of vendor, there is no meaningful + * benefit in relying on the guest to flush the TLB immediately after + * INIT. A spurious TLB flush is benign and likely negligible from a + * performance perspective. + */ + if (init_event) + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); +} +EXPORT_SYMBOL_GPL(kvm_vcpu_reset); + +void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) +{ + struct kvm_segment cs; + + kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); + cs.selector = vector << 8; + cs.base = vector << 12; + kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); + kvm_rip_write(vcpu, 0); +} +EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); + +int kvm_arch_hardware_enable(void) +{ + struct kvm *kvm; + struct kvm_vcpu *vcpu; + unsigned long i; + int ret; + u64 local_tsc; + u64 max_tsc = 0; + bool stable, backwards_tsc = false; + + kvm_user_return_msr_cpu_online(); + + ret = kvm_x86_check_processor_compatibility(); + if (ret) + return ret; + + ret = static_call(kvm_x86_hardware_enable)(); + if (ret != 0) + return ret; + + local_tsc = rdtsc(); + stable = !kvm_check_tsc_unstable(); + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_for_each_vcpu(i, vcpu, kvm) { + if (!stable && vcpu->cpu == smp_processor_id()) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + if (stable && vcpu->arch.last_host_tsc > local_tsc) { + backwards_tsc = true; + if (vcpu->arch.last_host_tsc > max_tsc) + max_tsc = vcpu->arch.last_host_tsc; + } + } + } + + /* + * Sometimes, even reliable TSCs go backwards. This happens on + * platforms that reset TSC during suspend or hibernate actions, but + * maintain synchronization. We must compensate. Fortunately, we can + * detect that condition here, which happens early in CPU bringup, + * before any KVM threads can be running. Unfortunately, we can't + * bring the TSCs fully up to date with real time, as we aren't yet far + * enough into CPU bringup that we know how much real time has actually + * elapsed; our helper function, ktime_get_boottime_ns() will be using boot + * variables that haven't been updated yet. + * + * So we simply find the maximum observed TSC above, then record the + * adjustment to TSC in each VCPU. When the VCPU later gets loaded, + * the adjustment will be applied. Note that we accumulate + * adjustments, in case multiple suspend cycles happen before some VCPU + * gets a chance to run again. In the event that no KVM threads get a + * chance to run, we will miss the entire elapsed period, as we'll have + * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may + * loose cycle time. This isn't too big a deal, since the loss will be + * uniform across all VCPUs (not to mention the scenario is extremely + * unlikely). It is possible that a second hibernate recovery happens + * much faster than a first, causing the observed TSC here to be + * smaller; this would require additional padding adjustment, which is + * why we set last_host_tsc to the local tsc observed here. + * + * N.B. - this code below runs only on platforms with reliable TSC, + * as that is the only way backwards_tsc is set above. Also note + * that this runs for ALL vcpus, which is not a bug; all VCPUs should + * have the same delta_cyc adjustment applied if backwards_tsc + * is detected. Note further, this adjustment is only done once, + * as we reset last_host_tsc on all VCPUs to stop this from being + * called multiple times (one for each physical CPU bringup). + * + * Platforms with unreliable TSCs don't have to deal with this, they + * will be compensated by the logic in vcpu_load, which sets the TSC to + * catchup mode. This will catchup all VCPUs to real time, but cannot + * guarantee that they stay in perfect synchronization. + */ + if (backwards_tsc) { + u64 delta_cyc = max_tsc - local_tsc; + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm->arch.backwards_tsc_observed = true; + kvm_for_each_vcpu(i, vcpu, kvm) { + vcpu->arch.tsc_offset_adjustment += delta_cyc; + vcpu->arch.last_host_tsc = local_tsc; + kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); + } + + /* + * We have to disable TSC offset matching.. if you were + * booting a VM while issuing an S4 host suspend.... + * you may have some problem. Solving this issue is + * left as an exercise to the reader. + */ + kvm->arch.last_tsc_nsec = 0; + kvm->arch.last_tsc_write = 0; + } + + } + return 0; +} + +void kvm_arch_hardware_disable(void) +{ + static_call(kvm_x86_hardware_disable)(); + drop_user_return_notifiers(); +} + +bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) +{ + return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; +} + +bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) +{ + return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; +} + +__read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); +EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); + +void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) +{ + struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); + + vcpu->arch.l1tf_flush_l1d = true; + if (pmu->version && unlikely(pmu->event_count)) { + pmu->need_cleanup = true; + kvm_make_request(KVM_REQ_PMU, vcpu); + } + static_call(kvm_x86_sched_in)(vcpu, cpu); +} + +void kvm_arch_free_vm(struct kvm *kvm) +{ + kfree(to_kvm_hv(kvm)->hv_pa_pg); + __kvm_arch_free_vm(kvm); +} + + +int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) +{ + int ret; + unsigned long flags; + + if (type) + return -EINVAL; + + ret = kvm_page_track_init(kvm); + if (ret) + goto out; + + kvm_mmu_init_vm(kvm); + + ret = static_call(kvm_x86_vm_init)(kvm); + if (ret) + goto out_uninit_mmu; + + INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); + INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); + atomic_set(&kvm->arch.noncoherent_dma_count, 0); + + /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ + set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); + /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ + set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, + &kvm->arch.irq_sources_bitmap); + + raw_spin_lock_init(&kvm->arch.tsc_write_lock); + mutex_init(&kvm->arch.apic_map_lock); + seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); + kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); + + raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); + pvclock_update_vm_gtod_copy(kvm); + raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); + + kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; + kvm->arch.guest_can_read_msr_platform_info = true; + kvm->arch.enable_pmu = enable_pmu; + +#if IS_ENABLED(CONFIG_HYPERV) + spin_lock_init(&kvm->arch.hv_root_tdp_lock); + kvm->arch.hv_root_tdp = INVALID_PAGE; +#endif + + INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); + INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); + + kvm_apicv_init(kvm); + kvm_hv_init_vm(kvm); + kvm_xen_init_vm(kvm); + + return 0; + +out_uninit_mmu: + kvm_mmu_uninit_vm(kvm); + kvm_page_track_cleanup(kvm); +out: + return ret; +} + +int kvm_arch_post_init_vm(struct kvm *kvm) +{ + return kvm_mmu_post_init_vm(kvm); +} + +static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) +{ + vcpu_load(vcpu); + kvm_mmu_unload(vcpu); + vcpu_put(vcpu); +} + +static void kvm_unload_vcpu_mmus(struct kvm *kvm) +{ + unsigned long i; + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) { + kvm_clear_async_pf_completion_queue(vcpu); + kvm_unload_vcpu_mmu(vcpu); + } +} + +void kvm_arch_sync_events(struct kvm *kvm) +{ + cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); + cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); + kvm_free_pit(kvm); +} + +/** + * __x86_set_memory_region: Setup KVM internal memory slot + * + * @kvm: the kvm pointer to the VM. + * @id: the slot ID to setup. + * @gpa: the GPA to install the slot (unused when @size == 0). + * @size: the size of the slot. Set to zero to uninstall a slot. + * + * This function helps to setup a KVM internal memory slot. Specify + * @size > 0 to install a new slot, while @size == 0 to uninstall a + * slot. The return code can be one of the following: + * + * HVA: on success (uninstall will return a bogus HVA) + * -errno: on error + * + * The caller should always use IS_ERR() to check the return value + * before use. Note, the KVM internal memory slots are guaranteed to + * remain valid and unchanged until the VM is destroyed, i.e., the + * GPA->HVA translation will not change. However, the HVA is a user + * address, i.e. its accessibility is not guaranteed, and must be + * accessed via __copy_{to,from}_user(). + */ +void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, + u32 size) +{ + int i, r; + unsigned long hva, old_npages; + struct kvm_memslots *slots = kvm_memslots(kvm); + struct kvm_memory_slot *slot; + + /* Called with kvm->slots_lock held. */ + if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) + return ERR_PTR_USR(-EINVAL); + + slot = id_to_memslot(slots, id); + if (size) { + if (slot && slot->npages) + return ERR_PTR_USR(-EEXIST); + + /* + * MAP_SHARED to prevent internal slot pages from being moved + * by fork()/COW. + */ + hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, + MAP_SHARED | MAP_ANONYMOUS, 0); + if (IS_ERR_VALUE(hva)) + return (void __user *)hva; + } else { + if (!slot || !slot->npages) + return NULL; + + old_npages = slot->npages; + hva = slot->userspace_addr; + } + + for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { + struct kvm_userspace_memory_region m; + + m.slot = id | (i << 16); + m.flags = 0; + m.guest_phys_addr = gpa; + m.userspace_addr = hva; + m.memory_size = size; + r = __kvm_set_memory_region(kvm, &m); + if (r < 0) + return ERR_PTR_USR(r); + } + + if (!size) + vm_munmap(hva, old_npages * PAGE_SIZE); + + return (void __user *)hva; +} +EXPORT_SYMBOL_GPL(__x86_set_memory_region); + +void kvm_arch_pre_destroy_vm(struct kvm *kvm) +{ + kvm_mmu_pre_destroy_vm(kvm); +} + +void kvm_arch_destroy_vm(struct kvm *kvm) +{ + if (current->mm == kvm->mm) { + /* + * Free memory regions allocated on behalf of userspace, + * unless the memory map has changed due to process exit + * or fd copying. + */ + mutex_lock(&kvm->slots_lock); + __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, + 0, 0); + __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, + 0, 0); + __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); + mutex_unlock(&kvm->slots_lock); + } + kvm_unload_vcpu_mmus(kvm); + static_call_cond(kvm_x86_vm_destroy)(kvm); + kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); + kvm_pic_destroy(kvm); + kvm_ioapic_destroy(kvm); + kvm_destroy_vcpus(kvm); + kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); + kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); + kvm_mmu_uninit_vm(kvm); + kvm_page_track_cleanup(kvm); + kvm_xen_destroy_vm(kvm); + kvm_hv_destroy_vm(kvm); +} + +static void memslot_rmap_free(struct kvm_memory_slot *slot) +{ + int i; + + for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { + kvfree(slot->arch.rmap[i]); + slot->arch.rmap[i] = NULL; + } +} + +void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) +{ + int i; + + memslot_rmap_free(slot); + + for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { + kvfree(slot->arch.lpage_info[i - 1]); + slot->arch.lpage_info[i - 1] = NULL; + } + + kvm_page_track_free_memslot(slot); +} + +int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) +{ + const int sz = sizeof(*slot->arch.rmap[0]); + int i; + + for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { + int level = i + 1; + int lpages = __kvm_mmu_slot_lpages(slot, npages, level); + + if (slot->arch.rmap[i]) + continue; + + slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); + if (!slot->arch.rmap[i]) { + memslot_rmap_free(slot); + return -ENOMEM; + } + } + + return 0; +} + +static int kvm_alloc_memslot_metadata(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + unsigned long npages = slot->npages; + int i, r; + + /* + * Clear out the previous array pointers for the KVM_MR_MOVE case. The + * old arrays will be freed by __kvm_set_memory_region() if installing + * the new memslot is successful. + */ + memset(&slot->arch, 0, sizeof(slot->arch)); + + if (kvm_memslots_have_rmaps(kvm)) { + r = memslot_rmap_alloc(slot, npages); + if (r) + return r; + } + + for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { + struct kvm_lpage_info *linfo; + unsigned long ugfn; + int lpages; + int level = i + 1; + + lpages = __kvm_mmu_slot_lpages(slot, npages, level); + + linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); + if (!linfo) + goto out_free; + + slot->arch.lpage_info[i - 1] = linfo; + + if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) + linfo[0].disallow_lpage = 1; + if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) + linfo[lpages - 1].disallow_lpage = 1; + ugfn = slot->userspace_addr >> PAGE_SHIFT; + /* + * If the gfn and userspace address are not aligned wrt each + * other, disable large page support for this slot. + */ + if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { + unsigned long j; + + for (j = 0; j < lpages; ++j) + linfo[j].disallow_lpage = 1; + } + } + + if (kvm_page_track_create_memslot(kvm, slot, npages)) + goto out_free; + + return 0; + +out_free: + memslot_rmap_free(slot); + + for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { + kvfree(slot->arch.lpage_info[i - 1]); + slot->arch.lpage_info[i - 1] = NULL; + } + return -ENOMEM; +} + +void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) +{ + struct kvm_vcpu *vcpu; + unsigned long i; + + /* + * memslots->generation has been incremented. + * mmio generation may have reached its maximum value. + */ + kvm_mmu_invalidate_mmio_sptes(kvm, gen); + + /* Force re-initialization of steal_time cache */ + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_vcpu_kick(vcpu); +} + +int kvm_arch_prepare_memory_region(struct kvm *kvm, + const struct kvm_memory_slot *old, + struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + /* + * KVM doesn't support moving memslots when there are external page + * trackers attached to the VM, i.e. if KVMGT is in use. + */ + if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) + return -EINVAL; + + if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { + if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) + return -EINVAL; + + return kvm_alloc_memslot_metadata(kvm, new); + } + + if (change == KVM_MR_FLAGS_ONLY) + memcpy(&new->arch, &old->arch, sizeof(old->arch)); + else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) + return -EIO; + + return 0; +} + + +static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) +{ + int nr_slots; + + if (!kvm_x86_ops.cpu_dirty_log_size) + return; + + nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); + if ((enable && nr_slots == 1) || !nr_slots) + kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); +} + +static void kvm_mmu_slot_apply_flags(struct kvm *kvm, + struct kvm_memory_slot *old, + const struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + u32 old_flags = old ? old->flags : 0; + u32 new_flags = new ? new->flags : 0; + bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; + + /* + * Update CPU dirty logging if dirty logging is being toggled. This + * applies to all operations. + */ + if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) + kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); + + /* + * Nothing more to do for RO slots (which can't be dirtied and can't be + * made writable) or CREATE/MOVE/DELETE of a slot. + * + * For a memslot with dirty logging disabled: + * CREATE: No dirty mappings will already exist. + * MOVE/DELETE: The old mappings will already have been cleaned up by + * kvm_arch_flush_shadow_memslot() + * + * For a memslot with dirty logging enabled: + * CREATE: No shadow pages exist, thus nothing to write-protect + * and no dirty bits to clear. + * MOVE/DELETE: The old mappings will already have been cleaned up by + * kvm_arch_flush_shadow_memslot(). + */ + if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) + return; + + /* + * READONLY and non-flags changes were filtered out above, and the only + * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty + * logging isn't being toggled on or off. + */ + if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) + return; + + if (!log_dirty_pages) { + /* + * Dirty logging tracks sptes in 4k granularity, meaning that + * large sptes have to be split. If live migration succeeds, + * the guest in the source machine will be destroyed and large + * sptes will be created in the destination. However, if the + * guest continues to run in the source machine (for example if + * live migration fails), small sptes will remain around and + * cause bad performance. + * + * Scan sptes if dirty logging has been stopped, dropping those + * which can be collapsed into a single large-page spte. Later + * page faults will create the large-page sptes. + */ + kvm_mmu_zap_collapsible_sptes(kvm, new); + } else { + /* + * Initially-all-set does not require write protecting any page, + * because they're all assumed to be dirty. + */ + if (kvm_dirty_log_manual_protect_and_init_set(kvm)) + return; + + if (READ_ONCE(eager_page_split)) + kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); + + if (kvm_x86_ops.cpu_dirty_log_size) { + kvm_mmu_slot_leaf_clear_dirty(kvm, new); + kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); + } else { + kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); + } + + /* + * Unconditionally flush the TLBs after enabling dirty logging. + * A flush is almost always going to be necessary (see below), + * and unconditionally flushing allows the helpers to omit + * the subtly complex checks when removing write access. + * + * Do the flush outside of mmu_lock to reduce the amount of + * time mmu_lock is held. Flushing after dropping mmu_lock is + * safe as KVM only needs to guarantee the slot is fully + * write-protected before returning to userspace, i.e. before + * userspace can consume the dirty status. + * + * Flushing outside of mmu_lock requires KVM to be careful when + * making decisions based on writable status of an SPTE, e.g. a + * !writable SPTE doesn't guarantee a CPU can't perform writes. + * + * Specifically, KVM also write-protects guest page tables to + * monitor changes when using shadow paging, and must guarantee + * no CPUs can write to those page before mmu_lock is dropped. + * Because CPUs may have stale TLB entries at this point, a + * !writable SPTE doesn't guarantee CPUs can't perform writes. + * + * KVM also allows making SPTES writable outside of mmu_lock, + * e.g. to allow dirty logging without taking mmu_lock. + * + * To handle these scenarios, KVM uses a separate software-only + * bit (MMU-writable) to track if a SPTE is !writable due to + * a guest page table being write-protected (KVM clears the + * MMU-writable flag when write-protecting for shadow paging). + * + * The use of MMU-writable is also the primary motivation for + * the unconditional flush. Because KVM must guarantee that a + * CPU doesn't contain stale, writable TLB entries for a + * !MMU-writable SPTE, KVM must flush if it encounters any + * MMU-writable SPTE regardless of whether the actual hardware + * writable bit was set. I.e. KVM is almost guaranteed to need + * to flush, while unconditionally flushing allows the "remove + * write access" helpers to ignore MMU-writable entirely. + * + * See is_writable_pte() for more details (the case involving + * access-tracked SPTEs is particularly relevant). + */ + kvm_flush_remote_tlbs_memslot(kvm, new); + } +} + +void kvm_arch_commit_memory_region(struct kvm *kvm, + struct kvm_memory_slot *old, + const struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + if (change == KVM_MR_DELETE) + kvm_page_track_delete_slot(kvm, old); + + if (!kvm->arch.n_requested_mmu_pages && + (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { + unsigned long nr_mmu_pages; + + nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; + nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); + kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); + } + + kvm_mmu_slot_apply_flags(kvm, old, new, change); + + /* Free the arrays associated with the old memslot. */ + if (change == KVM_MR_MOVE) + kvm_arch_free_memslot(kvm, old); +} + +static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) +{ + return (is_guest_mode(vcpu) && + static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); +} + +static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) +{ + if (!list_empty_careful(&vcpu->async_pf.done)) + return true; + + if (kvm_apic_has_pending_init_or_sipi(vcpu) && + kvm_apic_init_sipi_allowed(vcpu)) + return true; + + if (vcpu->arch.pv.pv_unhalted) + return true; + + if (kvm_is_exception_pending(vcpu)) + return true; + + if (kvm_test_request(KVM_REQ_NMI, vcpu) || + (vcpu->arch.nmi_pending && + static_call(kvm_x86_nmi_allowed)(vcpu, false))) + return true; + +#ifdef CONFIG_KVM_SMM + if (kvm_test_request(KVM_REQ_SMI, vcpu) || + (vcpu->arch.smi_pending && + static_call(kvm_x86_smi_allowed)(vcpu, false))) + return true; +#endif + + if (kvm_test_request(KVM_REQ_PMI, vcpu)) + return true; + + if (kvm_arch_interrupt_allowed(vcpu) && + (kvm_cpu_has_interrupt(vcpu) || + kvm_guest_apic_has_interrupt(vcpu))) + return true; + + if (kvm_hv_has_stimer_pending(vcpu)) + return true; + + if (is_guest_mode(vcpu) && + kvm_x86_ops.nested_ops->has_events && + kvm_x86_ops.nested_ops->has_events(vcpu)) + return true; + + if (kvm_xen_has_pending_events(vcpu)) + return true; + + return false; +} + +int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) +{ + return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); +} + +bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) +{ + if (kvm_vcpu_apicv_active(vcpu) && + static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) + return true; + + return false; +} + +bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) +{ + if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) + return true; + + if (kvm_test_request(KVM_REQ_NMI, vcpu) || +#ifdef CONFIG_KVM_SMM + kvm_test_request(KVM_REQ_SMI, vcpu) || +#endif + kvm_test_request(KVM_REQ_EVENT, vcpu)) + return true; + + return kvm_arch_dy_has_pending_interrupt(vcpu); +} + +bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) +{ + if (vcpu->arch.guest_state_protected) + return true; + + return vcpu->arch.preempted_in_kernel; +} + +unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) +{ + return kvm_rip_read(vcpu); +} + +int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) +{ + return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; +} + +int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) +{ + return static_call(kvm_x86_interrupt_allowed)(vcpu, false); +} + +unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) +{ + /* Can't read the RIP when guest state is protected, just return 0 */ + if (vcpu->arch.guest_state_protected) + return 0; + + if (is_64_bit_mode(vcpu)) + return kvm_rip_read(vcpu); + return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + + kvm_rip_read(vcpu)); +} +EXPORT_SYMBOL_GPL(kvm_get_linear_rip); + +bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) +{ + return kvm_get_linear_rip(vcpu) == linear_rip; +} +EXPORT_SYMBOL_GPL(kvm_is_linear_rip); + +unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) +{ + unsigned long rflags; + + rflags = static_call(kvm_x86_get_rflags)(vcpu); + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) + rflags &= ~X86_EFLAGS_TF; + return rflags; +} +EXPORT_SYMBOL_GPL(kvm_get_rflags); + +static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) +{ + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && + kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) + rflags |= X86_EFLAGS_TF; + static_call(kvm_x86_set_rflags)(vcpu, rflags); +} + +void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) +{ + __kvm_set_rflags(vcpu, rflags); + kvm_make_request(KVM_REQ_EVENT, vcpu); +} +EXPORT_SYMBOL_GPL(kvm_set_rflags); + +static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) +{ + BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); + + return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); +} + +static inline u32 kvm_async_pf_next_probe(u32 key) +{ + return (key + 1) & (ASYNC_PF_PER_VCPU - 1); +} + +static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + u32 key = kvm_async_pf_hash_fn(gfn); + + while (vcpu->arch.apf.gfns[key] != ~0) + key = kvm_async_pf_next_probe(key); + + vcpu->arch.apf.gfns[key] = gfn; +} + +static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + int i; + u32 key = kvm_async_pf_hash_fn(gfn); + + for (i = 0; i < ASYNC_PF_PER_VCPU && + (vcpu->arch.apf.gfns[key] != gfn && + vcpu->arch.apf.gfns[key] != ~0); i++) + key = kvm_async_pf_next_probe(key); + + return key; +} + +bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; +} + +static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + u32 i, j, k; + + i = j = kvm_async_pf_gfn_slot(vcpu, gfn); + + if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) + return; + + while (true) { + vcpu->arch.apf.gfns[i] = ~0; + do { + j = kvm_async_pf_next_probe(j); + if (vcpu->arch.apf.gfns[j] == ~0) + return; + k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); + /* + * k lies cyclically in ]i,j] + * | i.k.j | + * |....j i.k.| or |.k..j i...| + */ + } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); + vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; + i = j; + } +} + +static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) +{ + u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; + + return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, + sizeof(reason)); +} + +static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) +{ + unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); + + return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, + &token, offset, sizeof(token)); +} + +static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) +{ + unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); + u32 val; + + if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, + &val, offset, sizeof(val))) + return false; + + return !val; +} + +static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) +{ + + if (!kvm_pv_async_pf_enabled(vcpu)) + return false; + + if (vcpu->arch.apf.send_user_only && + static_call(kvm_x86_get_cpl)(vcpu) == 0) + return false; + + if (is_guest_mode(vcpu)) { + /* + * L1 needs to opt into the special #PF vmexits that are + * used to deliver async page faults. + */ + return vcpu->arch.apf.delivery_as_pf_vmexit; + } else { + /* + * Play it safe in case the guest temporarily disables paging. + * The real mode IDT in particular is unlikely to have a #PF + * exception setup. + */ + return is_paging(vcpu); + } +} + +bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) +{ + if (unlikely(!lapic_in_kernel(vcpu) || + kvm_event_needs_reinjection(vcpu) || + kvm_is_exception_pending(vcpu))) + return false; + + if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) + return false; + + /* + * If interrupts are off we cannot even use an artificial + * halt state. + */ + return kvm_arch_interrupt_allowed(vcpu); +} + +bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, + struct kvm_async_pf *work) +{ + struct x86_exception fault; + + trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); + kvm_add_async_pf_gfn(vcpu, work->arch.gfn); + + if (kvm_can_deliver_async_pf(vcpu) && + !apf_put_user_notpresent(vcpu)) { + fault.vector = PF_VECTOR; + fault.error_code_valid = true; + fault.error_code = 0; + fault.nested_page_fault = false; + fault.address = work->arch.token; + fault.async_page_fault = true; + kvm_inject_page_fault(vcpu, &fault); + return true; + } else { + /* + * It is not possible to deliver a paravirtualized asynchronous + * page fault, but putting the guest in an artificial halt state + * can be beneficial nevertheless: if an interrupt arrives, we + * can deliver it timely and perhaps the guest will schedule + * another process. When the instruction that triggered a page + * fault is retried, hopefully the page will be ready in the host. + */ + kvm_make_request(KVM_REQ_APF_HALT, vcpu); + return false; + } +} + +void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, + struct kvm_async_pf *work) +{ + struct kvm_lapic_irq irq = { + .delivery_mode = APIC_DM_FIXED, + .vector = vcpu->arch.apf.vec + }; + + if (work->wakeup_all) + work->arch.token = ~0; /* broadcast wakeup */ + else + kvm_del_async_pf_gfn(vcpu, work->arch.gfn); + trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); + + if ((work->wakeup_all || work->notpresent_injected) && + kvm_pv_async_pf_enabled(vcpu) && + !apf_put_user_ready(vcpu, work->arch.token)) { + vcpu->arch.apf.pageready_pending = true; + kvm_apic_set_irq(vcpu, &irq, NULL); + } + + vcpu->arch.apf.halted = false; + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; +} + +void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) +{ + kvm_make_request(KVM_REQ_APF_READY, vcpu); + if (!vcpu->arch.apf.pageready_pending) + kvm_vcpu_kick(vcpu); +} + +bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) +{ + if (!kvm_pv_async_pf_enabled(vcpu)) + return true; + else + return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); +} + +void kvm_arch_start_assignment(struct kvm *kvm) +{ + if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) + static_call_cond(kvm_x86_pi_start_assignment)(kvm); +} +EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); + +void kvm_arch_end_assignment(struct kvm *kvm) +{ + atomic_dec(&kvm->arch.assigned_device_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); + +bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) +{ + return raw_atomic_read(&kvm->arch.assigned_device_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); + +void kvm_arch_register_noncoherent_dma(struct kvm *kvm) +{ + atomic_inc(&kvm->arch.noncoherent_dma_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); + +void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) +{ + atomic_dec(&kvm->arch.noncoherent_dma_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); + +bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) +{ + return atomic_read(&kvm->arch.noncoherent_dma_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); + +bool kvm_arch_has_irq_bypass(void) +{ + return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); +} + +int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, + struct irq_bypass_producer *prod) +{ + struct kvm_kernel_irqfd *irqfd = + container_of(cons, struct kvm_kernel_irqfd, consumer); + int ret; + + irqfd->producer = prod; + kvm_arch_start_assignment(irqfd->kvm); + ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, + prod->irq, irqfd->gsi, 1); + + if (ret) + kvm_arch_end_assignment(irqfd->kvm); + + return ret; +} + +void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, + struct irq_bypass_producer *prod) +{ + int ret; + struct kvm_kernel_irqfd *irqfd = + container_of(cons, struct kvm_kernel_irqfd, consumer); + + WARN_ON(irqfd->producer != prod); + irqfd->producer = NULL; + + /* + * When producer of consumer is unregistered, we change back to + * remapped mode, so we can re-use the current implementation + * when the irq is masked/disabled or the consumer side (KVM + * int this case doesn't want to receive the interrupts. + */ + ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); + if (ret) + printk(KERN_INFO "irq bypass consumer (token %p) unregistration" + " fails: %d\n", irqfd->consumer.token, ret); + + kvm_arch_end_assignment(irqfd->kvm); +} + +int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, + uint32_t guest_irq, bool set) +{ + return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); +} + +bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, + struct kvm_kernel_irq_routing_entry *new) +{ + if (new->type != KVM_IRQ_ROUTING_MSI) + return true; + + return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); +} + +bool kvm_vector_hashing_enabled(void) +{ + return vector_hashing; +} + +bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) +{ + return (vcpu->arch.msr_kvm_poll_control & 1) == 0; +} +EXPORT_SYMBOL_GPL(kvm_arch_no_poll); + + +int kvm_spec_ctrl_test_value(u64 value) +{ + /* + * test that setting IA32_SPEC_CTRL to given value + * is allowed by the host processor + */ + + u64 saved_value; + unsigned long flags; + int ret = 0; + + local_irq_save(flags); + + if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) + ret = 1; + else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) + ret = 1; + else + wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); + + local_irq_restore(flags); + + return ret; +} +EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); + +void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + struct x86_exception fault; + u64 access = error_code & + (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); + + if (!(error_code & PFERR_PRESENT_MASK) || + mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { + /* + * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page + * tables probably do not match the TLB. Just proceed + * with the error code that the processor gave. + */ + fault.vector = PF_VECTOR; + fault.error_code_valid = true; + fault.error_code = error_code; + fault.nested_page_fault = false; + fault.address = gva; + fault.async_page_fault = false; + } + vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); +} +EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); + +/* + * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns + * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value + * indicates whether exit to userspace is needed. + */ +int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, + struct x86_exception *e) +{ + if (r == X86EMUL_PROPAGATE_FAULT) { + if (KVM_BUG_ON(!e, vcpu->kvm)) + return -EIO; + + kvm_inject_emulated_page_fault(vcpu, e); + return 1; + } + + /* + * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED + * while handling a VMX instruction KVM could've handled the request + * correctly by exiting to userspace and performing I/O but there + * doesn't seem to be a real use-case behind such requests, just return + * KVM_EXIT_INTERNAL_ERROR for now. + */ + kvm_prepare_emulation_failure_exit(vcpu); + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); + +int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) +{ + bool pcid_enabled; + struct x86_exception e; + struct { + u64 pcid; + u64 gla; + } operand; + int r; + + r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); + if (r != X86EMUL_CONTINUE) + return kvm_handle_memory_failure(vcpu, r, &e); + + if (operand.pcid >> 12 != 0) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); + + switch (type) { + case INVPCID_TYPE_INDIV_ADDR: + if ((!pcid_enabled && (operand.pcid != 0)) || + is_noncanonical_address(operand.gla, vcpu)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); + return kvm_skip_emulated_instruction(vcpu); + + case INVPCID_TYPE_SINGLE_CTXT: + if (!pcid_enabled && (operand.pcid != 0)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + kvm_invalidate_pcid(vcpu, operand.pcid); + return kvm_skip_emulated_instruction(vcpu); + + case INVPCID_TYPE_ALL_NON_GLOBAL: + /* + * Currently, KVM doesn't mark global entries in the shadow + * page tables, so a non-global flush just degenerates to a + * global flush. If needed, we could optimize this later by + * keeping track of global entries in shadow page tables. + */ + + fallthrough; + case INVPCID_TYPE_ALL_INCL_GLOBAL: + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + return kvm_skip_emulated_instruction(vcpu); + + default: + kvm_inject_gp(vcpu, 0); + return 1; + } +} +EXPORT_SYMBOL_GPL(kvm_handle_invpcid); + +static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + struct kvm_mmio_fragment *frag; + unsigned int len; + + BUG_ON(!vcpu->mmio_needed); + + /* Complete previous fragment */ + frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; + len = min(8u, frag->len); + if (!vcpu->mmio_is_write) + memcpy(frag->data, run->mmio.data, len); + + if (frag->len <= 8) { + /* Switch to the next fragment. */ + frag++; + vcpu->mmio_cur_fragment++; + } else { + /* Go forward to the next mmio piece. */ + frag->data += len; + frag->gpa += len; + frag->len -= len; + } + + if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { + vcpu->mmio_needed = 0; + + // VMG change, at this point, we're always done + // RIP has already been advanced + return 1; + } + + // More MMIO is needed + run->mmio.phys_addr = frag->gpa; + run->mmio.len = min(8u, frag->len); + run->mmio.is_write = vcpu->mmio_is_write; + if (run->mmio.is_write) + memcpy(run->mmio.data, frag->data, min(8u, frag->len)); + run->exit_reason = KVM_EXIT_MMIO; + + vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; + + return 0; +} + +int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, + void *data) +{ + int handled; + struct kvm_mmio_fragment *frag; + + if (!data) + return -EINVAL; + + handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); + if (handled == bytes) + return 1; + + bytes -= handled; + gpa += handled; + data += handled; + + /*TODO: Check if need to increment number of frags */ + frag = vcpu->mmio_fragments; + vcpu->mmio_nr_fragments = 1; + frag->len = bytes; + frag->gpa = gpa; + frag->data = data; + + vcpu->mmio_needed = 1; + vcpu->mmio_cur_fragment = 0; + + vcpu->run->mmio.phys_addr = gpa; + vcpu->run->mmio.len = min(8u, frag->len); + vcpu->run->mmio.is_write = 1; + memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); + vcpu->run->exit_reason = KVM_EXIT_MMIO; + + vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); + +int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, + void *data) +{ + int handled; + struct kvm_mmio_fragment *frag; + + if (!data) + return -EINVAL; + + handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); + if (handled == bytes) + return 1; + + bytes -= handled; + gpa += handled; + data += handled; + + /*TODO: Check if need to increment number of frags */ + frag = vcpu->mmio_fragments; + vcpu->mmio_nr_fragments = 1; + frag->len = bytes; + frag->gpa = gpa; + frag->data = data; + + vcpu->mmio_needed = 1; + vcpu->mmio_cur_fragment = 0; + + vcpu->run->mmio.phys_addr = gpa; + vcpu->run->mmio.len = min(8u, frag->len); + vcpu->run->mmio.is_write = 0; + vcpu->run->exit_reason = KVM_EXIT_MMIO; + + vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; + + return 0; +} +EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); + +static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) +{ + vcpu->arch.sev_pio_count -= count; + vcpu->arch.sev_pio_data += count * size; +} + +static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, + unsigned int port); + +static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) +{ + int size = vcpu->arch.pio.size; + int port = vcpu->arch.pio.port; + + vcpu->arch.pio.count = 0; + if (vcpu->arch.sev_pio_count) + return kvm_sev_es_outs(vcpu, size, port); + return 1; +} + +static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, + unsigned int port) +{ + for (;;) { + unsigned int count = + min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); + int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); + + /* memcpy done already by emulator_pio_out. */ + advance_sev_es_emulated_pio(vcpu, count, size); + if (!ret) + break; + + /* Emulation done by the kernel. */ + if (!vcpu->arch.sev_pio_count) + return 1; + } + + vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; + return 0; +} + +static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, + unsigned int port); + +static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) +{ + unsigned count = vcpu->arch.pio.count; + int size = vcpu->arch.pio.size; + int port = vcpu->arch.pio.port; + + complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); + advance_sev_es_emulated_pio(vcpu, count, size); + if (vcpu->arch.sev_pio_count) + return kvm_sev_es_ins(vcpu, size, port); + return 1; +} + +static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, + unsigned int port) +{ + for (;;) { + unsigned int count = + min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); + if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) + break; + + /* Emulation done by the kernel. */ + advance_sev_es_emulated_pio(vcpu, count, size); + if (!vcpu->arch.sev_pio_count) + return 1; + } + + vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; + return 0; +} + +int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, + unsigned int port, void *data, unsigned int count, + int in) +{ + vcpu->arch.sev_pio_data = data; + vcpu->arch.sev_pio_count = count; + return in ? kvm_sev_es_ins(vcpu, size, port) + : kvm_sev_es_outs(vcpu, size, port); +} +EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); + +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); +EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); + +static int __init kvm_x86_init(void) +{ + kvm_mmu_x86_module_init(); + mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); + return 0; +} +module_init(kvm_x86_init); + +static void __exit kvm_x86_exit(void) +{ + /* + * If module_init() is implemented, module_exit() must also be + * implemented to allow module unload. + */ +} +module_exit(kvm_x86_exit); -- cgit v1.2.3