From 638a9e433ecd61e64761352dbec1fa4f5874c941 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 7 Aug 2024 15:18:06 +0200 Subject: Merging upstream version 6.10.3. Signed-off-by: Daniel Baumann --- drivers/char/tpm/tpm2-sessions.c | 1365 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 1365 insertions(+) create mode 100644 drivers/char/tpm/tpm2-sessions.c (limited to 'drivers/char/tpm/tpm2-sessions.c') diff --git a/drivers/char/tpm/tpm2-sessions.c b/drivers/char/tpm/tpm2-sessions.c new file mode 100644 index 0000000000..d3521aadd4 --- /dev/null +++ b/drivers/char/tpm/tpm2-sessions.c @@ -0,0 +1,1365 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright (C) 2018 James.Bottomley@HansenPartnership.com + * + * Cryptographic helper routines for handling TPM2 sessions for + * authorization HMAC and request response encryption. + * + * The idea is to ensure that every TPM command is HMAC protected by a + * session, meaning in-flight tampering would be detected and in + * addition all sensitive inputs and responses should be encrypted. + * + * The basic way this works is to use a TPM feature called salted + * sessions where a random secret used in session construction is + * encrypted to the public part of a known TPM key. The problem is we + * have no known keys, so initially a primary Elliptic Curve key is + * derived from the NULL seed (we use EC because most TPMs generate + * these keys much faster than RSA ones). The curve used is NIST_P256 + * because that's now mandated to be present in 'TCG TPM v2.0 + * Provisioning Guidance' + * + * Threat problems: the initial TPM2_CreatePrimary is not (and cannot + * be) session protected, so a clever Man in the Middle could return a + * public key they control to this command and from there intercept + * and decode all subsequent session based transactions. The kernel + * cannot mitigate this threat but, after boot, userspace can get + * proof this has not happened by asking the TPM to certify the NULL + * key. This certification would chain back to the TPM Endorsement + * Certificate and prove the NULL seed primary had not been tampered + * with and thus all sessions must have been cryptographically secure. + * To assist with this, the initial NULL seed public key name is made + * available in a sysfs file. + * + * Use of these functions: + * + * The design is all the crypto, hash and hmac gunk is confined in this + * file and never needs to be seen even by the kernel internal user. To + * the user there's an init function tpm2_sessions_init() that needs to + * be called once per TPM which generates the NULL seed primary key. + * + * These are the usage functions: + * + * tpm2_start_auth_session() which allocates the opaque auth structure + * and gets a session from the TPM. This must be called before + * any of the following functions. The session is protected by a + * session_key which is derived from a random salt value + * encrypted to the NULL seed. + * tpm2_end_auth_session() kills the session and frees the resources. + * Under normal operation this function is done by + * tpm_buf_check_hmac_response(), so this is only to be used on + * error legs where the latter is not executed. + * tpm_buf_append_name() to add a handle to the buffer. This must be + * used in place of the usual tpm_buf_append_u32() for adding + * handles because handles have to be processed specially when + * calculating the HMAC. In particular, for NV, volatile and + * permanent objects you now need to provide the name. + * tpm_buf_append_hmac_session() which appends the hmac session to the + * buf in the same way tpm_buf_append_auth does(). + * tpm_buf_fill_hmac_session() This calculates the correct hash and + * places it in the buffer. It must be called after the complete + * command buffer is finalized so it can fill in the correct HMAC + * based on the parameters. + * tpm_buf_check_hmac_response() which checks the session response in + * the buffer and calculates what it should be. If there's a + * mismatch it will log a warning and return an error. If + * tpm_buf_append_hmac_session() did not specify + * TPM_SA_CONTINUE_SESSION then the session will be closed (if it + * hasn't been consumed) and the auth structure freed. + */ + +#include "tpm.h" +#include +#include +#include +#include +#include +#include +#include + +/* maximum number of names the TPM must remember for authorization */ +#define AUTH_MAX_NAMES 3 + +#define AES_KEY_BYTES AES_KEYSIZE_128 +#define AES_KEY_BITS (AES_KEY_BYTES*8) + +/* + * This is the structure that carries all the auth information (like + * session handle, nonces, session key and auth) from use to use it is + * designed to be opaque to anything outside. + */ +struct tpm2_auth { + u32 handle; + /* + * This has two meanings: before tpm_buf_fill_hmac_session() + * it marks the offset in the buffer of the start of the + * sessions (i.e. after all the handles). Once the buffer has + * been filled it markes the session number of our auth + * session so we can find it again in the response buffer. + * + * The two cases are distinguished because the first offset + * must always be greater than TPM_HEADER_SIZE and the second + * must be less than or equal to 5. + */ + u32 session; + /* + * the size here is variable and set by the size of our_nonce + * which must be between 16 and the name hash length. we set + * the maximum sha256 size for the greatest protection + */ + u8 our_nonce[SHA256_DIGEST_SIZE]; + u8 tpm_nonce[SHA256_DIGEST_SIZE]; + /* + * the salt is only used across the session command/response + * after that it can be used as a scratch area + */ + union { + u8 salt[EC_PT_SZ]; + /* scratch for key + IV */ + u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE]; + }; + /* + * the session key and passphrase are the same size as the + * name digest (sha256 again). The session key is constant + * for the use of the session and the passphrase can change + * with every invocation. + * + * Note: these fields must be adjacent and in this order + * because several HMAC/KDF schemes use the combination of the + * session_key and passphrase. + */ + u8 session_key[SHA256_DIGEST_SIZE]; + u8 passphrase[SHA256_DIGEST_SIZE]; + int passphrase_len; + struct crypto_aes_ctx aes_ctx; + /* saved session attributes: */ + u8 attrs; + __be32 ordinal; + + /* + * memory for three authorization handles. We know them by + * handle, but they are part of the session by name, which + * we must compute and remember + */ + u32 name_h[AUTH_MAX_NAMES]; + u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE]; +}; + +#ifdef CONFIG_TCG_TPM2_HMAC +/* + * Name Size based on TPM algorithm (assumes no hash bigger than 255) + */ +static u8 name_size(const u8 *name) +{ + static u8 size_map[] = { + [TPM_ALG_SHA1] = SHA1_DIGEST_SIZE, + [TPM_ALG_SHA256] = SHA256_DIGEST_SIZE, + [TPM_ALG_SHA384] = SHA384_DIGEST_SIZE, + [TPM_ALG_SHA512] = SHA512_DIGEST_SIZE, + }; + u16 alg = get_unaligned_be16(name); + return size_map[alg] + 2; +} + +static int tpm2_parse_read_public(char *name, struct tpm_buf *buf) +{ + struct tpm_header *head = (struct tpm_header *)buf->data; + off_t offset = TPM_HEADER_SIZE; + u32 tot_len = be32_to_cpu(head->length); + u32 val; + + /* we're starting after the header so adjust the length */ + tot_len -= TPM_HEADER_SIZE; + + /* skip public */ + val = tpm_buf_read_u16(buf, &offset); + if (val > tot_len) + return -EINVAL; + offset += val; + /* name */ + val = tpm_buf_read_u16(buf, &offset); + if (val != name_size(&buf->data[offset])) + return -EINVAL; + memcpy(name, &buf->data[offset], val); + /* forget the rest */ + return 0; +} + +static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name) +{ + struct tpm_buf buf; + int rc; + + rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC); + if (rc) + return rc; + + tpm_buf_append_u32(&buf, handle); + rc = tpm_transmit_cmd(chip, &buf, 0, "read public"); + if (rc == TPM2_RC_SUCCESS) + rc = tpm2_parse_read_public(name, &buf); + + tpm_buf_destroy(&buf); + + return rc; +} +#endif /* CONFIG_TCG_TPM2_HMAC */ + +/** + * tpm_buf_append_name() - add a handle area to the buffer + * @chip: the TPM chip structure + * @buf: The buffer to be appended + * @handle: The handle to be appended + * @name: The name of the handle (may be NULL) + * + * In order to compute session HMACs, we need to know the names of the + * objects pointed to by the handles. For most objects, this is simply + * the actual 4 byte handle or an empty buf (in these cases @name + * should be NULL) but for volatile objects, permanent objects and NV + * areas, the name is defined as the hash (according to the name + * algorithm which should be set to sha256) of the public area to + * which the two byte algorithm id has been appended. For these + * objects, the @name pointer should point to this. If a name is + * required but @name is NULL, then TPM2_ReadPublic() will be called + * on the handle to obtain the name. + * + * As with most tpm_buf operations, success is assumed because failure + * will be caused by an incorrect programming model and indicated by a + * kernel message. + */ +void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf, + u32 handle, u8 *name) +{ +#ifdef CONFIG_TCG_TPM2_HMAC + enum tpm2_mso_type mso = tpm2_handle_mso(handle); + struct tpm2_auth *auth; + int slot; +#endif + + if (!tpm2_chip_auth(chip)) { + tpm_buf_append_u32(buf, handle); + /* count the number of handles in the upper bits of flags */ + buf->handles++; + return; + } + +#ifdef CONFIG_TCG_TPM2_HMAC + slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4; + if (slot >= AUTH_MAX_NAMES) { + dev_err(&chip->dev, "TPM: too many handles\n"); + return; + } + auth = chip->auth; + WARN(auth->session != tpm_buf_length(buf), + "name added in wrong place\n"); + tpm_buf_append_u32(buf, handle); + auth->session += 4; + + if (mso == TPM2_MSO_PERSISTENT || + mso == TPM2_MSO_VOLATILE || + mso == TPM2_MSO_NVRAM) { + if (!name) + tpm2_read_public(chip, handle, auth->name[slot]); + } else { + if (name) + dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n"); + } + + auth->name_h[slot] = handle; + if (name) + memcpy(auth->name[slot], name, name_size(name)); +#endif +} +EXPORT_SYMBOL_GPL(tpm_buf_append_name); + +/** + * tpm_buf_append_hmac_session() - Append a TPM session element + * @chip: the TPM chip structure + * @buf: The buffer to be appended + * @attributes: The session attributes + * @passphrase: The session authority (NULL if none) + * @passphrase_len: The length of the session authority (0 if none) + * + * This fills in a session structure in the TPM command buffer, except + * for the HMAC which cannot be computed until the command buffer is + * complete. The type of session is controlled by the @attributes, + * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the + * session won't terminate after tpm_buf_check_hmac_response(), + * TPM2_SA_DECRYPT which means this buffers first parameter should be + * encrypted with a session key and TPM2_SA_ENCRYPT, which means the + * response buffer's first parameter needs to be decrypted (confusing, + * but the defines are written from the point of view of the TPM). + * + * Any session appended by this command must be finalized by calling + * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect + * and the TPM will reject the command. + * + * As with most tpm_buf operations, success is assumed because failure + * will be caused by an incorrect programming model and indicated by a + * kernel message. + */ +void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf, + u8 attributes, u8 *passphrase, + int passphrase_len) +{ +#ifdef CONFIG_TCG_TPM2_HMAC + u8 nonce[SHA256_DIGEST_SIZE]; + struct tpm2_auth *auth; + u32 len; +#endif + + if (!tpm2_chip_auth(chip)) { + /* offset tells us where the sessions area begins */ + int offset = buf->handles * 4 + TPM_HEADER_SIZE; + u32 len = 9 + passphrase_len; + + if (tpm_buf_length(buf) != offset) { + /* not the first session so update the existing length */ + len += get_unaligned_be32(&buf->data[offset]); + put_unaligned_be32(len, &buf->data[offset]); + } else { + tpm_buf_append_u32(buf, len); + } + /* auth handle */ + tpm_buf_append_u32(buf, TPM2_RS_PW); + /* nonce */ + tpm_buf_append_u16(buf, 0); + /* attributes */ + tpm_buf_append_u8(buf, 0); + /* passphrase */ + tpm_buf_append_u16(buf, passphrase_len); + tpm_buf_append(buf, passphrase, passphrase_len); + return; + } + +#ifdef CONFIG_TCG_TPM2_HMAC + /* + * The Architecture Guide requires us to strip trailing zeros + * before computing the HMAC + */ + while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0') + passphrase_len--; + + auth = chip->auth; + auth->attrs = attributes; + auth->passphrase_len = passphrase_len; + if (passphrase_len) + memcpy(auth->passphrase, passphrase, passphrase_len); + + if (auth->session != tpm_buf_length(buf)) { + /* we're not the first session */ + len = get_unaligned_be32(&buf->data[auth->session]); + if (4 + len + auth->session != tpm_buf_length(buf)) { + WARN(1, "session length mismatch, cannot append"); + return; + } + + /* add our new session */ + len += 9 + 2 * SHA256_DIGEST_SIZE; + put_unaligned_be32(len, &buf->data[auth->session]); + } else { + tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE); + } + + /* random number for our nonce */ + get_random_bytes(nonce, sizeof(nonce)); + memcpy(auth->our_nonce, nonce, sizeof(nonce)); + tpm_buf_append_u32(buf, auth->handle); + /* our new nonce */ + tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); + tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); + tpm_buf_append_u8(buf, auth->attrs); + /* and put a placeholder for the hmac */ + tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); + tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); +#endif +} +EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session); + +#ifdef CONFIG_TCG_TPM2_HMAC + +static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, + u32 *handle, u8 *name); + +/* + * It turns out the crypto hmac(sha256) is hard for us to consume + * because it assumes a fixed key and the TPM seems to change the key + * on every operation, so we weld the hmac init and final functions in + * here to give it the same usage characteristics as a regular hash + */ +static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len) +{ + u8 pad[SHA256_BLOCK_SIZE]; + int i; + + sha256_init(sctx); + for (i = 0; i < sizeof(pad); i++) { + if (i < key_len) + pad[i] = key[i]; + else + pad[i] = 0; + pad[i] ^= HMAC_IPAD_VALUE; + } + sha256_update(sctx, pad, sizeof(pad)); +} + +static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len, + u8 *out) +{ + u8 pad[SHA256_BLOCK_SIZE]; + int i; + + for (i = 0; i < sizeof(pad); i++) { + if (i < key_len) + pad[i] = key[i]; + else + pad[i] = 0; + pad[i] ^= HMAC_OPAD_VALUE; + } + + /* collect the final hash; use out as temporary storage */ + sha256_final(sctx, out); + + sha256_init(sctx); + sha256_update(sctx, pad, sizeof(pad)); + sha256_update(sctx, out, SHA256_DIGEST_SIZE); + sha256_final(sctx, out); +} + +/* + * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but + * otherwise standard tpm2_KDFa. Note output is in bytes not bits. + */ +static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u, + u8 *v, u32 bytes, u8 *out) +{ + u32 counter = 1; + const __be32 bits = cpu_to_be32(bytes * 8); + + while (bytes > 0) { + struct sha256_state sctx; + __be32 c = cpu_to_be32(counter); + + tpm2_hmac_init(&sctx, key, key_len); + sha256_update(&sctx, (u8 *)&c, sizeof(c)); + sha256_update(&sctx, label, strlen(label)+1); + sha256_update(&sctx, u, SHA256_DIGEST_SIZE); + sha256_update(&sctx, v, SHA256_DIGEST_SIZE); + sha256_update(&sctx, (u8 *)&bits, sizeof(bits)); + tpm2_hmac_final(&sctx, key, key_len, out); + + bytes -= SHA256_DIGEST_SIZE; + counter++; + out += SHA256_DIGEST_SIZE; + } +} + +/* + * Somewhat of a bastardization of the real KDFe. We're assuming + * we're working with known point sizes for the input parameters and + * the hash algorithm is fixed at sha256. Because we know that the + * point size is 32 bytes like the hash size, there's no need to loop + * in this KDF. + */ +static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v, + u8 *out) +{ + struct sha256_state sctx; + /* + * this should be an iterative counter, but because we know + * we're only taking 32 bytes for the point using a sha256 + * hash which is also 32 bytes, there's only one loop + */ + __be32 c = cpu_to_be32(1); + + sha256_init(&sctx); + /* counter (BE) */ + sha256_update(&sctx, (u8 *)&c, sizeof(c)); + /* secret value */ + sha256_update(&sctx, z, EC_PT_SZ); + /* string including trailing zero */ + sha256_update(&sctx, str, strlen(str)+1); + sha256_update(&sctx, pt_u, EC_PT_SZ); + sha256_update(&sctx, pt_v, EC_PT_SZ); + sha256_final(&sctx, out); +} + +static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip) +{ + struct crypto_kpp *kpp; + struct kpp_request *req; + struct scatterlist s[2], d[1]; + struct ecdh p = {0}; + u8 encoded_key[EC_PT_SZ], *x, *y; + unsigned int buf_len; + + /* secret is two sized points */ + tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2); + /* + * we cheat here and append uninitialized data to form + * the points. All we care about is getting the two + * co-ordinate pointers, which will be used to overwrite + * the uninitialized data + */ + tpm_buf_append_u16(buf, EC_PT_SZ); + x = &buf->data[tpm_buf_length(buf)]; + tpm_buf_append(buf, encoded_key, EC_PT_SZ); + tpm_buf_append_u16(buf, EC_PT_SZ); + y = &buf->data[tpm_buf_length(buf)]; + tpm_buf_append(buf, encoded_key, EC_PT_SZ); + sg_init_table(s, 2); + sg_set_buf(&s[0], x, EC_PT_SZ); + sg_set_buf(&s[1], y, EC_PT_SZ); + + kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0); + if (IS_ERR(kpp)) { + dev_err(&chip->dev, "crypto ecdh allocation failed\n"); + return; + } + + buf_len = crypto_ecdh_key_len(&p); + if (sizeof(encoded_key) < buf_len) { + dev_err(&chip->dev, "salt buffer too small needs %d\n", + buf_len); + goto out; + } + crypto_ecdh_encode_key(encoded_key, buf_len, &p); + /* this generates a random private key */ + crypto_kpp_set_secret(kpp, encoded_key, buf_len); + + /* salt is now the public point of this private key */ + req = kpp_request_alloc(kpp, GFP_KERNEL); + if (!req) + goto out; + kpp_request_set_input(req, NULL, 0); + kpp_request_set_output(req, s, EC_PT_SZ*2); + crypto_kpp_generate_public_key(req); + /* + * we're not done: now we have to compute the shared secret + * which is our private key multiplied by the tpm_key public + * point, we actually only take the x point and discard the y + * point and feed it through KDFe to get the final secret salt + */ + sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ); + sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ); + kpp_request_set_input(req, s, EC_PT_SZ*2); + sg_init_one(d, chip->auth->salt, EC_PT_SZ); + kpp_request_set_output(req, d, EC_PT_SZ); + crypto_kpp_compute_shared_secret(req); + kpp_request_free(req); + + /* + * pass the shared secret through KDFe for salt. Note salt + * area is used both for input shared secret and output salt. + * This works because KDFe fully consumes the secret before it + * writes the salt + */ + tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x, + chip->auth->salt); + + out: + crypto_free_kpp(kpp); +} + +/** + * tpm_buf_fill_hmac_session() - finalize the session HMAC + * @chip: the TPM chip structure + * @buf: The buffer to be appended + * + * This command must not be called until all of the parameters have + * been appended to @buf otherwise the computed HMAC will be + * incorrect. + * + * This function computes and fills in the session HMAC using the + * session key and, if TPM2_SA_DECRYPT was specified, computes the + * encryption key and encrypts the first parameter of the command + * buffer with it. + * + * As with most tpm_buf operations, success is assumed because failure + * will be caused by an incorrect programming model and indicated by a + * kernel message. + */ +void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf) +{ + u32 cc, handles, val; + struct tpm2_auth *auth = chip->auth; + int i; + struct tpm_header *head = (struct tpm_header *)buf->data; + off_t offset_s = TPM_HEADER_SIZE, offset_p; + u8 *hmac = NULL; + u32 attrs; + u8 cphash[SHA256_DIGEST_SIZE]; + struct sha256_state sctx; + + if (!auth) + return; + + /* save the command code in BE format */ + auth->ordinal = head->ordinal; + + cc = be32_to_cpu(head->ordinal); + + i = tpm2_find_cc(chip, cc); + if (i < 0) { + dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc); + return; + } + attrs = chip->cc_attrs_tbl[i]; + + handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0); + + /* + * just check the names, it's easy to make mistakes. This + * would happen if someone added a handle via + * tpm_buf_append_u32() instead of tpm_buf_append_name() + */ + for (i = 0; i < handles; i++) { + u32 handle = tpm_buf_read_u32(buf, &offset_s); + + if (auth->name_h[i] != handle) { + dev_err(&chip->dev, "TPM: handle %d wrong for name\n", + i); + return; + } + } + /* point offset_s to the start of the sessions */ + val = tpm_buf_read_u32(buf, &offset_s); + /* point offset_p to the start of the parameters */ + offset_p = offset_s + val; + for (i = 1; offset_s < offset_p; i++) { + u32 handle = tpm_buf_read_u32(buf, &offset_s); + u16 len; + u8 a; + + /* nonce (already in auth) */ + len = tpm_buf_read_u16(buf, &offset_s); + offset_s += len; + + a = tpm_buf_read_u8(buf, &offset_s); + + len = tpm_buf_read_u16(buf, &offset_s); + if (handle == auth->handle && auth->attrs == a) { + hmac = &buf->data[offset_s]; + /* + * save our session number so we know which + * session in the response belongs to us + */ + auth->session = i; + } + + offset_s += len; + } + if (offset_s != offset_p) { + dev_err(&chip->dev, "TPM session length is incorrect\n"); + return; + } + if (!hmac) { + dev_err(&chip->dev, "TPM could not find HMAC session\n"); + return; + } + + /* encrypt before HMAC */ + if (auth->attrs & TPM2_SA_DECRYPT) { + u16 len; + + /* need key and IV */ + tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE + + auth->passphrase_len, "CFB", auth->our_nonce, + auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, + auth->scratch); + + len = tpm_buf_read_u16(buf, &offset_p); + aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); + aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p], + &buf->data[offset_p], len, + auth->scratch + AES_KEY_BYTES); + /* reset p to beginning of parameters for HMAC */ + offset_p -= 2; + } + + sha256_init(&sctx); + /* ordinal is already BE */ + sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal)); + /* add the handle names */ + for (i = 0; i < handles; i++) { + enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]); + + if (mso == TPM2_MSO_PERSISTENT || + mso == TPM2_MSO_VOLATILE || + mso == TPM2_MSO_NVRAM) { + sha256_update(&sctx, auth->name[i], + name_size(auth->name[i])); + } else { + __be32 h = cpu_to_be32(auth->name_h[i]); + + sha256_update(&sctx, (u8 *)&h, 4); + } + } + if (offset_s != tpm_buf_length(buf)) + sha256_update(&sctx, &buf->data[offset_s], + tpm_buf_length(buf) - offset_s); + sha256_final(&sctx, cphash); + + /* now calculate the hmac */ + tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) + + auth->passphrase_len); + sha256_update(&sctx, cphash, sizeof(cphash)); + sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); + sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); + sha256_update(&sctx, &auth->attrs, 1); + tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) + + auth->passphrase_len, hmac); +} +EXPORT_SYMBOL(tpm_buf_fill_hmac_session); + +/** + * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness + * @chip: the TPM chip structure + * @buf: the original command buffer (which now contains the response) + * @rc: the return code from tpm_transmit_cmd + * + * If @rc is non zero, @buf may not contain an actual return, so @rc + * is passed through as the return and the session cleaned up and + * de-allocated if required (this is required if + * TPM2_SA_CONTINUE_SESSION was not specified as a session flag). + * + * If @rc is zero, the response HMAC is computed against the returned + * @buf and matched to the TPM one in the session area. If there is a + * mismatch, an error is logged and -EINVAL returned. + * + * The reason for this is that the command issue and HMAC check + * sequence should look like: + * + * rc = tpm_transmit_cmd(...); + * rc = tpm_buf_check_hmac_response(&buf, auth, rc); + * if (rc) + * ... + * + * Which is easily layered into the current contrl flow. + * + * Returns: 0 on success or an error. + */ +int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf, + int rc) +{ + struct tpm_header *head = (struct tpm_header *)buf->data; + struct tpm2_auth *auth = chip->auth; + off_t offset_s, offset_p; + u8 rphash[SHA256_DIGEST_SIZE]; + u32 attrs, cc; + struct sha256_state sctx; + u16 tag = be16_to_cpu(head->tag); + int parm_len, len, i, handles; + + if (!auth) + return rc; + + cc = be32_to_cpu(auth->ordinal); + + if (auth->session >= TPM_HEADER_SIZE) { + WARN(1, "tpm session not filled correctly\n"); + goto out; + } + + if (rc != 0) + /* pass non success rc through and close the session */ + goto out; + + rc = -EINVAL; + if (tag != TPM2_ST_SESSIONS) { + dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n"); + goto out; + } + + i = tpm2_find_cc(chip, cc); + if (i < 0) + goto out; + attrs = chip->cc_attrs_tbl[i]; + handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1; + + /* point to area beyond handles */ + offset_s = TPM_HEADER_SIZE + handles * 4; + parm_len = tpm_buf_read_u32(buf, &offset_s); + offset_p = offset_s; + offset_s += parm_len; + /* skip over any sessions before ours */ + for (i = 0; i < auth->session - 1; i++) { + len = tpm_buf_read_u16(buf, &offset_s); + offset_s += len + 1; + len = tpm_buf_read_u16(buf, &offset_s); + offset_s += len; + } + /* TPM nonce */ + len = tpm_buf_read_u16(buf, &offset_s); + if (offset_s + len > tpm_buf_length(buf)) + goto out; + if (len != SHA256_DIGEST_SIZE) + goto out; + memcpy(auth->tpm_nonce, &buf->data[offset_s], len); + offset_s += len; + attrs = tpm_buf_read_u8(buf, &offset_s); + len = tpm_buf_read_u16(buf, &offset_s); + if (offset_s + len != tpm_buf_length(buf)) + goto out; + if (len != SHA256_DIGEST_SIZE) + goto out; + /* + * offset_s points to the HMAC. now calculate comparison, beginning + * with rphash + */ + sha256_init(&sctx); + /* yes, I know this is now zero, but it's what the standard says */ + sha256_update(&sctx, (u8 *)&head->return_code, + sizeof(head->return_code)); + /* ordinal is already BE */ + sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal)); + sha256_update(&sctx, &buf->data[offset_p], parm_len); + sha256_final(&sctx, rphash); + + /* now calculate the hmac */ + tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) + + auth->passphrase_len); + sha256_update(&sctx, rphash, sizeof(rphash)); + sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); + sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); + sha256_update(&sctx, &auth->attrs, 1); + /* we're done with the rphash, so put our idea of the hmac there */ + tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) + + auth->passphrase_len, rphash); + if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) { + rc = 0; + } else { + dev_err(&chip->dev, "TPM: HMAC check failed\n"); + goto out; + } + + /* now do response decryption */ + if (auth->attrs & TPM2_SA_ENCRYPT) { + /* need key and IV */ + tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE + + auth->passphrase_len, "CFB", auth->tpm_nonce, + auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, + auth->scratch); + + len = tpm_buf_read_u16(buf, &offset_p); + aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); + aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p], + &buf->data[offset_p], len, + auth->scratch + AES_KEY_BYTES); + } + + out: + if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) { + if (rc) + /* manually close the session if it wasn't consumed */ + tpm2_flush_context(chip, auth->handle); + memzero_explicit(auth, sizeof(*auth)); + } else { + /* reset for next use */ + auth->session = TPM_HEADER_SIZE; + } + + return rc; +} +EXPORT_SYMBOL(tpm_buf_check_hmac_response); + +/** + * tpm2_end_auth_session() - kill the allocated auth session + * @chip: the TPM chip structure + * + * ends the session started by tpm2_start_auth_session and frees all + * the resources. Under normal conditions, + * tpm_buf_check_hmac_response() will correctly end the session if + * required, so this function is only for use in error legs that will + * bypass the normal invocation of tpm_buf_check_hmac_response(). + */ +void tpm2_end_auth_session(struct tpm_chip *chip) +{ + struct tpm2_auth *auth = chip->auth; + + if (!auth) + return; + + tpm2_flush_context(chip, auth->handle); + memzero_explicit(auth, sizeof(*auth)); +} +EXPORT_SYMBOL(tpm2_end_auth_session); + +static int tpm2_parse_start_auth_session(struct tpm2_auth *auth, + struct tpm_buf *buf) +{ + struct tpm_header *head = (struct tpm_header *)buf->data; + u32 tot_len = be32_to_cpu(head->length); + off_t offset = TPM_HEADER_SIZE; + u32 val; + + /* we're starting after the header so adjust the length */ + tot_len -= TPM_HEADER_SIZE; + + /* should have handle plus nonce */ + if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce)) + return -EINVAL; + + auth->handle = tpm_buf_read_u32(buf, &offset); + val = tpm_buf_read_u16(buf, &offset); + if (val != sizeof(auth->tpm_nonce)) + return -EINVAL; + memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce)); + /* now compute the session key from the nonces */ + tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce, + auth->our_nonce, sizeof(auth->session_key), + auth->session_key); + + return 0; +} + +static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key) +{ + int rc; + unsigned int offset = 0; /* dummy offset for null seed context */ + u8 name[SHA256_DIGEST_SIZE + 2]; + + rc = tpm2_load_context(chip, chip->null_key_context, &offset, + null_key); + if (rc != -EINVAL) + return rc; + + /* an integrity failure may mean the TPM has been reset */ + dev_err(&chip->dev, "NULL key integrity failure!\n"); + /* check the null name against what we know */ + tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name); + if (memcmp(name, chip->null_key_name, sizeof(name)) == 0) + /* name unchanged, assume transient integrity failure */ + return rc; + /* + * Fatal TPM failure: the NULL seed has actually changed, so + * the TPM must have been illegally reset. All in-kernel TPM + * operations will fail because the NULL primary can't be + * loaded to salt the sessions, but disable the TPM anyway so + * userspace programmes can't be compromised by it. + */ + dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n"); + chip->flags |= TPM_CHIP_FLAG_DISABLE; + + return rc; +} + +/** + * tpm2_start_auth_session() - create a HMAC authentication session with the TPM + * @chip: the TPM chip structure to create the session with + * + * This function loads the NULL seed from its saved context and starts + * an authentication session on the null seed, fills in the + * @chip->auth structure to contain all the session details necessary + * for performing the HMAC, encrypt and decrypt operations and + * returns. The NULL seed is flushed before this function returns. + * + * Return: zero on success or actual error encountered. + */ +int tpm2_start_auth_session(struct tpm_chip *chip) +{ + struct tpm_buf buf; + struct tpm2_auth *auth = chip->auth; + int rc; + u32 null_key; + + if (!auth) { + dev_warn_once(&chip->dev, "auth session is not active\n"); + return 0; + } + + rc = tpm2_load_null(chip, &null_key); + if (rc) + goto out; + + auth->session = TPM_HEADER_SIZE; + + rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS); + if (rc) + goto out; + + /* salt key handle */ + tpm_buf_append_u32(&buf, null_key); + /* bind key handle */ + tpm_buf_append_u32(&buf, TPM2_RH_NULL); + /* nonce caller */ + get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce)); + tpm_buf_append_u16(&buf, sizeof(auth->our_nonce)); + tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce)); + + /* append encrypted salt and squirrel away unencrypted in auth */ + tpm_buf_append_salt(&buf, chip); + /* session type (HMAC, audit or policy) */ + tpm_buf_append_u8(&buf, TPM2_SE_HMAC); + + /* symmetric encryption parameters */ + /* symmetric algorithm */ + tpm_buf_append_u16(&buf, TPM_ALG_AES); + /* bits for symmetric algorithm */ + tpm_buf_append_u16(&buf, AES_KEY_BITS); + /* symmetric algorithm mode (must be CFB) */ + tpm_buf_append_u16(&buf, TPM_ALG_CFB); + /* hash algorithm for session */ + tpm_buf_append_u16(&buf, TPM_ALG_SHA256); + + rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session"); + tpm2_flush_context(chip, null_key); + + if (rc == TPM2_RC_SUCCESS) + rc = tpm2_parse_start_auth_session(auth, &buf); + + tpm_buf_destroy(&buf); + + if (rc) + goto out; + + out: + return rc; +} +EXPORT_SYMBOL(tpm2_start_auth_session); + +/* + * A mask containing the object attributes for the kernel held null primary key + * used in HMAC encryption. For more information on specific attributes look up + * to "8.3 TPMA_OBJECT (Object Attributes)". + */ +#define TPM2_OA_NULL_KEY ( \ + TPM2_OA_NO_DA | \ + TPM2_OA_FIXED_TPM | \ + TPM2_OA_FIXED_PARENT | \ + TPM2_OA_SENSITIVE_DATA_ORIGIN | \ + TPM2_OA_USER_WITH_AUTH | \ + TPM2_OA_DECRYPT | \ + TPM2_OA_RESTRICTED) + +/** + * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY + * + * @chip: The TPM the primary was created under + * @buf: The response buffer from the chip + * @handle: pointer to be filled in with the return handle of the primary + * @hierarchy: The hierarchy the primary was created for + * @name: pointer to be filled in with the primary key name + * + * Return: + * * 0 - OK + * * -errno - A system error + * * TPM_RC - A TPM error + */ +static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf, + u32 *handle, u32 hierarchy, u8 *name) +{ + struct tpm_header *head = (struct tpm_header *)buf->data; + off_t offset_r = TPM_HEADER_SIZE, offset_t; + u16 len = TPM_HEADER_SIZE; + u32 total_len = be32_to_cpu(head->length); + u32 val, param_len, keyhandle; + + keyhandle = tpm_buf_read_u32(buf, &offset_r); + if (handle) + *handle = keyhandle; + else + tpm2_flush_context(chip, keyhandle); + + param_len = tpm_buf_read_u32(buf, &offset_r); + /* + * param_len doesn't include the header, but all the other + * lengths and offsets do, so add it to parm len to make + * the comparisons easier + */ + param_len += TPM_HEADER_SIZE; + + if (param_len + 8 > total_len) + return -EINVAL; + len = tpm_buf_read_u16(buf, &offset_r); + offset_t = offset_r; + if (name) { + /* + * now we have the public area, compute the name of + * the object + */ + put_unaligned_be16(TPM_ALG_SHA256, name); + sha256(&buf->data[offset_r], len, name + 2); + } + + /* validate the public key */ + val = tpm_buf_read_u16(buf, &offset_t); + + /* key type (must be what we asked for) */ + if (val != TPM_ALG_ECC) + return -EINVAL; + val = tpm_buf_read_u16(buf, &offset_t); + + /* name algorithm */ + if (val != TPM_ALG_SHA256) + return -EINVAL; + val = tpm_buf_read_u32(buf, &offset_t); + + /* object properties */ + if (val != TPM2_OA_NULL_KEY) + return -EINVAL; + + /* auth policy (empty) */ + val = tpm_buf_read_u16(buf, &offset_t); + if (val != 0) + return -EINVAL; + + /* symmetric key parameters */ + val = tpm_buf_read_u16(buf, &offset_t); + if (val != TPM_ALG_AES) + return -EINVAL; + + /* symmetric key length */ + val = tpm_buf_read_u16(buf, &offset_t); + if (val != AES_KEY_BITS) + return -EINVAL; + + /* symmetric encryption scheme */ + val = tpm_buf_read_u16(buf, &offset_t); + if (val != TPM_ALG_CFB) + return -EINVAL; + + /* signing scheme */ + val = tpm_buf_read_u16(buf, &offset_t); + if (val != TPM_ALG_NULL) + return -EINVAL; + + /* ECC Curve */ + val = tpm_buf_read_u16(buf, &offset_t); + if (val != TPM2_ECC_NIST_P256) + return -EINVAL; + + /* KDF Scheme */ + val = tpm_buf_read_u16(buf, &offset_t); + if (val != TPM_ALG_NULL) + return -EINVAL; + + /* extract public key (x and y points) */ + val = tpm_buf_read_u16(buf, &offset_t); + if (val != EC_PT_SZ) + return -EINVAL; + memcpy(chip->null_ec_key_x, &buf->data[offset_t], val); + offset_t += val; + val = tpm_buf_read_u16(buf, &offset_t); + if (val != EC_PT_SZ) + return -EINVAL; + memcpy(chip->null_ec_key_y, &buf->data[offset_t], val); + offset_t += val; + + /* original length of the whole TPM2B */ + offset_r += len; + + /* should have exactly consumed the TPM2B public structure */ + if (offset_t != offset_r) + return -EINVAL; + if (offset_r > param_len) + return -EINVAL; + + /* creation data (skip) */ + len = tpm_buf_read_u16(buf, &offset_r); + offset_r += len; + if (offset_r > param_len) + return -EINVAL; + + /* creation digest (must be sha256) */ + len = tpm_buf_read_u16(buf, &offset_r); + offset_r += len; + if (len != SHA256_DIGEST_SIZE || offset_r > param_len) + return -EINVAL; + + /* TPMT_TK_CREATION follows */ + /* tag, must be TPM_ST_CREATION (0x8021) */ + val = tpm_buf_read_u16(buf, &offset_r); + if (val != TPM2_ST_CREATION || offset_r > param_len) + return -EINVAL; + + /* hierarchy */ + val = tpm_buf_read_u32(buf, &offset_r); + if (val != hierarchy || offset_r > param_len) + return -EINVAL; + + /* the ticket digest HMAC (might not be sha256) */ + len = tpm_buf_read_u16(buf, &offset_r); + offset_r += len; + if (offset_r > param_len) + return -EINVAL; + + /* + * finally we have the name, which is a sha256 digest plus a 2 + * byte algorithm type + */ + len = tpm_buf_read_u16(buf, &offset_r); + if (offset_r + len != param_len + 8) + return -EINVAL; + if (len != SHA256_DIGEST_SIZE + 2) + return -EINVAL; + + if (memcmp(chip->null_key_name, &buf->data[offset_r], + SHA256_DIGEST_SIZE + 2) != 0) { + dev_err(&chip->dev, "NULL Seed name comparison failed\n"); + return -EINVAL; + } + + return 0; +} + +/** + * tpm2_create_primary() - create a primary key using a fixed P-256 template + * + * @chip: the TPM chip to create under + * @hierarchy: The hierarchy handle to create under + * @handle: The returned volatile handle on success + * @name: The name of the returned key + * + * For platforms that might not have a persistent primary, this can be + * used to create one quickly on the fly (it uses Elliptic Curve not + * RSA, so even slow TPMs can create one fast). The template uses the + * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256 + * elliptic curve (the only current one all TPM2s are required to + * have) a sha256 name hash and no policy. + * + * Return: + * * 0 - OK + * * -errno - A system error + * * TPM_RC - A TPM error + */ +static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, + u32 *handle, u8 *name) +{ + int rc; + struct tpm_buf buf; + struct tpm_buf template; + + rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY); + if (rc) + return rc; + + rc = tpm_buf_init_sized(&template); + if (rc) { + tpm_buf_destroy(&buf); + return rc; + } + + /* + * create the template. Note: in order for userspace to + * verify the security of the system, it will have to create + * and certify this NULL primary, meaning all the template + * parameters will have to be identical, so conform exactly to + * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC + * key H template (H has zero size unique points) + */ + + /* key type */ + tpm_buf_append_u16(&template, TPM_ALG_ECC); + + /* name algorithm */ + tpm_buf_append_u16(&template, TPM_ALG_SHA256); + + /* object properties */ + tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY); + + /* sauth policy (empty) */ + tpm_buf_append_u16(&template, 0); + + /* BEGIN parameters: key specific; for ECC*/ + + /* symmetric algorithm */ + tpm_buf_append_u16(&template, TPM_ALG_AES); + + /* bits for symmetric algorithm */ + tpm_buf_append_u16(&template, AES_KEY_BITS); + + /* algorithm mode (must be CFB) */ + tpm_buf_append_u16(&template, TPM_ALG_CFB); + + /* scheme (NULL means any scheme) */ + tpm_buf_append_u16(&template, TPM_ALG_NULL); + + /* ECC Curve ID */ + tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256); + + /* KDF Scheme */ + tpm_buf_append_u16(&template, TPM_ALG_NULL); + + /* unique: key specific; for ECC it is two zero size points */ + tpm_buf_append_u16(&template, 0); + tpm_buf_append_u16(&template, 0); + + /* END parameters */ + + /* primary handle */ + tpm_buf_append_u32(&buf, hierarchy); + tpm_buf_append_empty_auth(&buf, TPM2_RS_PW); + + /* sensitive create size is 4 for two empty buffers */ + tpm_buf_append_u16(&buf, 4); + + /* sensitive create auth data (empty) */ + tpm_buf_append_u16(&buf, 0); + + /* sensitive create sensitive data (empty) */ + tpm_buf_append_u16(&buf, 0); + + /* the public template */ + tpm_buf_append(&buf, template.data, template.length); + tpm_buf_destroy(&template); + + /* outside info (empty) */ + tpm_buf_append_u16(&buf, 0); + + /* creation PCR (none) */ + tpm_buf_append_u32(&buf, 0); + + rc = tpm_transmit_cmd(chip, &buf, 0, + "attempting to create NULL primary"); + + if (rc == TPM2_RC_SUCCESS) + rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy, + name); + + tpm_buf_destroy(&buf); + + return rc; +} + +static int tpm2_create_null_primary(struct tpm_chip *chip) +{ + u32 null_key; + int rc; + + rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key, + chip->null_key_name); + + if (rc == TPM2_RC_SUCCESS) { + unsigned int offset = 0; /* dummy offset for null key context */ + + rc = tpm2_save_context(chip, null_key, chip->null_key_context, + sizeof(chip->null_key_context), &offset); + tpm2_flush_context(chip, null_key); + } + + return rc; +} + +/** + * tpm2_sessions_init() - start of day initialization for the sessions code + * @chip: TPM chip + * + * Derive and context save the null primary and allocate memory in the + * struct tpm_chip for the authorizations. + */ +int tpm2_sessions_init(struct tpm_chip *chip) +{ + int rc; + + rc = tpm2_create_null_primary(chip); + if (rc) + dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc); + + chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL); + if (!chip->auth) + return -ENOMEM; + + return rc; +} +#endif /* CONFIG_TCG_TPM2_HMAC */ -- cgit v1.2.3