From ace9429bb58fd418f0c81d4c2835699bddf6bde6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:27:49 +0200 Subject: Adding upstream version 6.6.15. Signed-off-by: Daniel Baumann --- drivers/crypto/ccp/ccp-ops.c | 2515 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2515 insertions(+) create mode 100644 drivers/crypto/ccp/ccp-ops.c (limited to 'drivers/crypto/ccp/ccp-ops.c') diff --git a/drivers/crypto/ccp/ccp-ops.c b/drivers/crypto/ccp/ccp-ops.c new file mode 100644 index 0000000000..cb8e99936a --- /dev/null +++ b/drivers/crypto/ccp/ccp-ops.c @@ -0,0 +1,2515 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * AMD Cryptographic Coprocessor (CCP) driver + * + * Copyright (C) 2013-2019 Advanced Micro Devices, Inc. + * + * Author: Tom Lendacky + * Author: Gary R Hook + */ + +#include +#include +#include +#include +#include +#include +#include + +#include "ccp-dev.h" + +/* SHA initial context values */ +static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = { + cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), + cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), + cpu_to_be32(SHA1_H4), +}; + +static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { + cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), + cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), + cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), + cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), +}; + +static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { + cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), + cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), + cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), + cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), +}; + +static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { + cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1), + cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3), + cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5), + cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7), +}; + +static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { + cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1), + cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3), + cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5), + cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7), +}; + +#define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \ + ccp_gen_jobid(ccp) : 0) + +static u32 ccp_gen_jobid(struct ccp_device *ccp) +{ + return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK; +} + +static void ccp_sg_free(struct ccp_sg_workarea *wa) +{ + if (wa->dma_count) + dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir); + + wa->dma_count = 0; +} + +static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev, + struct scatterlist *sg, u64 len, + enum dma_data_direction dma_dir) +{ + memset(wa, 0, sizeof(*wa)); + + wa->sg = sg; + if (!sg) + return 0; + + wa->nents = sg_nents_for_len(sg, len); + if (wa->nents < 0) + return wa->nents; + + wa->bytes_left = len; + wa->sg_used = 0; + + if (len == 0) + return 0; + + if (dma_dir == DMA_NONE) + return 0; + + wa->dma_sg = sg; + wa->dma_sg_head = sg; + wa->dma_dev = dev; + wa->dma_dir = dma_dir; + wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir); + if (!wa->dma_count) + return -ENOMEM; + + return 0; +} + +static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len) +{ + unsigned int nbytes = min_t(u64, len, wa->bytes_left); + unsigned int sg_combined_len = 0; + + if (!wa->sg) + return; + + wa->sg_used += nbytes; + wa->bytes_left -= nbytes; + if (wa->sg_used == sg_dma_len(wa->dma_sg)) { + /* Advance to the next DMA scatterlist entry */ + wa->dma_sg = sg_next(wa->dma_sg); + + /* In the case that the DMA mapped scatterlist has entries + * that have been merged, the non-DMA mapped scatterlist + * must be advanced multiple times for each merged entry. + * This ensures that the current non-DMA mapped entry + * corresponds to the current DMA mapped entry. + */ + do { + sg_combined_len += wa->sg->length; + wa->sg = sg_next(wa->sg); + } while (wa->sg_used > sg_combined_len); + + wa->sg_used = 0; + } +} + +static void ccp_dm_free(struct ccp_dm_workarea *wa) +{ + if (wa->length <= CCP_DMAPOOL_MAX_SIZE) { + if (wa->address) + dma_pool_free(wa->dma_pool, wa->address, + wa->dma.address); + } else { + if (wa->dma.address) + dma_unmap_single(wa->dev, wa->dma.address, wa->length, + wa->dma.dir); + kfree(wa->address); + } + + wa->address = NULL; + wa->dma.address = 0; +} + +static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa, + struct ccp_cmd_queue *cmd_q, + unsigned int len, + enum dma_data_direction dir) +{ + memset(wa, 0, sizeof(*wa)); + + if (!len) + return 0; + + wa->dev = cmd_q->ccp->dev; + wa->length = len; + + if (len <= CCP_DMAPOOL_MAX_SIZE) { + wa->dma_pool = cmd_q->dma_pool; + + wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL, + &wa->dma.address); + if (!wa->address) + return -ENOMEM; + + wa->dma.length = CCP_DMAPOOL_MAX_SIZE; + + } else { + wa->address = kzalloc(len, GFP_KERNEL); + if (!wa->address) + return -ENOMEM; + + wa->dma.address = dma_map_single(wa->dev, wa->address, len, + dir); + if (dma_mapping_error(wa->dev, wa->dma.address)) { + kfree(wa->address); + wa->address = NULL; + return -ENOMEM; + } + + wa->dma.length = len; + } + wa->dma.dir = dir; + + return 0; +} + +static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, + struct scatterlist *sg, unsigned int sg_offset, + unsigned int len) +{ + WARN_ON(!wa->address); + + if (len > (wa->length - wa_offset)) + return -EINVAL; + + scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, + 0); + return 0; +} + +static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, + struct scatterlist *sg, unsigned int sg_offset, + unsigned int len) +{ + WARN_ON(!wa->address); + + scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, + 1); +} + +static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa, + unsigned int wa_offset, + struct scatterlist *sg, + unsigned int sg_offset, + unsigned int len) +{ + u8 *p, *q; + int rc; + + rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len); + if (rc) + return rc; + + p = wa->address + wa_offset; + q = p + len - 1; + while (p < q) { + *p = *p ^ *q; + *q = *p ^ *q; + *p = *p ^ *q; + p++; + q--; + } + return 0; +} + +static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa, + unsigned int wa_offset, + struct scatterlist *sg, + unsigned int sg_offset, + unsigned int len) +{ + u8 *p, *q; + + p = wa->address + wa_offset; + q = p + len - 1; + while (p < q) { + *p = *p ^ *q; + *q = *p ^ *q; + *p = *p ^ *q; + p++; + q--; + } + + ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len); +} + +static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q) +{ + ccp_dm_free(&data->dm_wa); + ccp_sg_free(&data->sg_wa); +} + +static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q, + struct scatterlist *sg, u64 sg_len, + unsigned int dm_len, + enum dma_data_direction dir) +{ + int ret; + + memset(data, 0, sizeof(*data)); + + ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len, + dir); + if (ret) + goto e_err; + + ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir); + if (ret) + goto e_err; + + return 0; + +e_err: + ccp_free_data(data, cmd_q); + + return ret; +} + +static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from) +{ + struct ccp_sg_workarea *sg_wa = &data->sg_wa; + struct ccp_dm_workarea *dm_wa = &data->dm_wa; + unsigned int buf_count, nbytes; + + /* Clear the buffer if setting it */ + if (!from) + memset(dm_wa->address, 0, dm_wa->length); + + if (!sg_wa->sg) + return 0; + + /* Perform the copy operation + * nbytes will always be <= UINT_MAX because dm_wa->length is + * an unsigned int + */ + nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length); + scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used, + nbytes, from); + + /* Update the structures and generate the count */ + buf_count = 0; + while (sg_wa->bytes_left && (buf_count < dm_wa->length)) { + nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used, + dm_wa->length - buf_count); + nbytes = min_t(u64, sg_wa->bytes_left, nbytes); + + buf_count += nbytes; + ccp_update_sg_workarea(sg_wa, nbytes); + } + + return buf_count; +} + +static unsigned int ccp_fill_queue_buf(struct ccp_data *data) +{ + return ccp_queue_buf(data, 0); +} + +static unsigned int ccp_empty_queue_buf(struct ccp_data *data) +{ + return ccp_queue_buf(data, 1); +} + +static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst, + struct ccp_op *op, unsigned int block_size, + bool blocksize_op) +{ + unsigned int sg_src_len, sg_dst_len, op_len; + + /* The CCP can only DMA from/to one address each per operation. This + * requires that we find the smallest DMA area between the source + * and destination. The resulting len values will always be <= UINT_MAX + * because the dma length is an unsigned int. + */ + sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used; + sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len); + + if (dst) { + sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used; + sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len); + op_len = min(sg_src_len, sg_dst_len); + } else { + op_len = sg_src_len; + } + + /* The data operation length will be at least block_size in length + * or the smaller of available sg room remaining for the source or + * the destination + */ + op_len = max(op_len, block_size); + + /* Unless we have to buffer data, there's no reason to wait */ + op->soc = 0; + + if (sg_src_len < block_size) { + /* Not enough data in the sg element, so it + * needs to be buffered into a blocksize chunk + */ + int cp_len = ccp_fill_queue_buf(src); + + op->soc = 1; + op->src.u.dma.address = src->dm_wa.dma.address; + op->src.u.dma.offset = 0; + op->src.u.dma.length = (blocksize_op) ? block_size : cp_len; + } else { + /* Enough data in the sg element, but we need to + * adjust for any previously copied data + */ + op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg); + op->src.u.dma.offset = src->sg_wa.sg_used; + op->src.u.dma.length = op_len & ~(block_size - 1); + + ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length); + } + + if (dst) { + if (sg_dst_len < block_size) { + /* Not enough room in the sg element or we're on the + * last piece of data (when using padding), so the + * output needs to be buffered into a blocksize chunk + */ + op->soc = 1; + op->dst.u.dma.address = dst->dm_wa.dma.address; + op->dst.u.dma.offset = 0; + op->dst.u.dma.length = op->src.u.dma.length; + } else { + /* Enough room in the sg element, but we need to + * adjust for any previously used area + */ + op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg); + op->dst.u.dma.offset = dst->sg_wa.sg_used; + op->dst.u.dma.length = op->src.u.dma.length; + } + } +} + +static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst, + struct ccp_op *op) +{ + op->init = 0; + + if (dst) { + if (op->dst.u.dma.address == dst->dm_wa.dma.address) + ccp_empty_queue_buf(dst); + else + ccp_update_sg_workarea(&dst->sg_wa, + op->dst.u.dma.length); + } +} + +static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q, + struct ccp_dm_workarea *wa, u32 jobid, u32 sb, + u32 byte_swap, bool from) +{ + struct ccp_op op; + + memset(&op, 0, sizeof(op)); + + op.cmd_q = cmd_q; + op.jobid = jobid; + op.eom = 1; + + if (from) { + op.soc = 1; + op.src.type = CCP_MEMTYPE_SB; + op.src.u.sb = sb; + op.dst.type = CCP_MEMTYPE_SYSTEM; + op.dst.u.dma.address = wa->dma.address; + op.dst.u.dma.length = wa->length; + } else { + op.src.type = CCP_MEMTYPE_SYSTEM; + op.src.u.dma.address = wa->dma.address; + op.src.u.dma.length = wa->length; + op.dst.type = CCP_MEMTYPE_SB; + op.dst.u.sb = sb; + } + + op.u.passthru.byte_swap = byte_swap; + + return cmd_q->ccp->vdata->perform->passthru(&op); +} + +static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q, + struct ccp_dm_workarea *wa, u32 jobid, u32 sb, + u32 byte_swap) +{ + return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false); +} + +static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q, + struct ccp_dm_workarea *wa, u32 jobid, u32 sb, + u32 byte_swap) +{ + return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true); +} + +static noinline_for_stack int +ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_aes_engine *aes = &cmd->u.aes; + struct ccp_dm_workarea key, ctx; + struct ccp_data src; + struct ccp_op op; + unsigned int dm_offset; + int ret; + + if (!((aes->key_len == AES_KEYSIZE_128) || + (aes->key_len == AES_KEYSIZE_192) || + (aes->key_len == AES_KEYSIZE_256))) + return -EINVAL; + + if (aes->src_len & (AES_BLOCK_SIZE - 1)) + return -EINVAL; + + if (aes->iv_len != AES_BLOCK_SIZE) + return -EINVAL; + + if (!aes->key || !aes->iv || !aes->src) + return -EINVAL; + + if (aes->cmac_final) { + if (aes->cmac_key_len != AES_BLOCK_SIZE) + return -EINVAL; + + if (!aes->cmac_key) + return -EINVAL; + } + + BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); + BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); + + ret = -EIO; + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + op.sb_key = cmd_q->sb_key; + op.sb_ctx = cmd_q->sb_ctx; + op.init = 1; + op.u.aes.type = aes->type; + op.u.aes.mode = aes->mode; + op.u.aes.action = aes->action; + + /* All supported key sizes fit in a single (32-byte) SB entry + * and must be in little endian format. Use the 256-bit byte + * swap passthru option to convert from big endian to little + * endian. + */ + ret = ccp_init_dm_workarea(&key, cmd_q, + CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, + DMA_TO_DEVICE); + if (ret) + return ret; + + dm_offset = CCP_SB_BYTES - aes->key_len; + ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); + if (ret) + goto e_key; + ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_key; + } + + /* The AES context fits in a single (32-byte) SB entry and + * must be in little endian format. Use the 256-bit byte swap + * passthru option to convert from big endian to little endian. + */ + ret = ccp_init_dm_workarea(&ctx, cmd_q, + CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, + DMA_BIDIRECTIONAL); + if (ret) + goto e_key; + + dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; + ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); + if (ret) + goto e_ctx; + ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_ctx; + } + + /* Send data to the CCP AES engine */ + ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, + AES_BLOCK_SIZE, DMA_TO_DEVICE); + if (ret) + goto e_ctx; + + while (src.sg_wa.bytes_left) { + ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true); + if (aes->cmac_final && !src.sg_wa.bytes_left) { + op.eom = 1; + + /* Push the K1/K2 key to the CCP now */ + ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, + op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_src; + } + + ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0, + aes->cmac_key_len); + if (ret) + goto e_src; + ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_src; + } + } + + ret = cmd_q->ccp->vdata->perform->aes(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_src; + } + + ccp_process_data(&src, NULL, &op); + } + + /* Retrieve the AES context - convert from LE to BE using + * 32-byte (256-bit) byteswapping + */ + ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_src; + } + + /* ...but we only need AES_BLOCK_SIZE bytes */ + dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; + ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); + +e_src: + ccp_free_data(&src, cmd_q); + +e_ctx: + ccp_dm_free(&ctx); + +e_key: + ccp_dm_free(&key); + + return ret; +} + +static noinline_for_stack int +ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_aes_engine *aes = &cmd->u.aes; + struct ccp_dm_workarea key, ctx, final_wa, tag; + struct ccp_data src, dst; + struct ccp_data aad; + struct ccp_op op; + unsigned int dm_offset; + unsigned int authsize; + unsigned int jobid; + unsigned int ilen; + bool in_place = true; /* Default value */ + __be64 *final; + int ret; + + struct scatterlist *p_inp, sg_inp[2]; + struct scatterlist *p_tag, sg_tag[2]; + struct scatterlist *p_outp, sg_outp[2]; + struct scatterlist *p_aad; + + if (!aes->iv) + return -EINVAL; + + if (!((aes->key_len == AES_KEYSIZE_128) || + (aes->key_len == AES_KEYSIZE_192) || + (aes->key_len == AES_KEYSIZE_256))) + return -EINVAL; + + if (!aes->key) /* Gotta have a key SGL */ + return -EINVAL; + + /* Zero defaults to 16 bytes, the maximum size */ + authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE; + switch (authsize) { + case 16: + case 15: + case 14: + case 13: + case 12: + case 8: + case 4: + break; + default: + return -EINVAL; + } + + /* First, decompose the source buffer into AAD & PT, + * and the destination buffer into AAD, CT & tag, or + * the input into CT & tag. + * It is expected that the input and output SGs will + * be valid, even if the AAD and input lengths are 0. + */ + p_aad = aes->src; + p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len); + p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len); + if (aes->action == CCP_AES_ACTION_ENCRYPT) { + ilen = aes->src_len; + p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen); + } else { + /* Input length for decryption includes tag */ + ilen = aes->src_len - authsize; + p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen); + } + + jobid = CCP_NEW_JOBID(cmd_q->ccp); + + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = jobid; + op.sb_key = cmd_q->sb_key; /* Pre-allocated */ + op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ + op.init = 1; + op.u.aes.type = aes->type; + + /* Copy the key to the LSB */ + ret = ccp_init_dm_workarea(&key, cmd_q, + CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, + DMA_TO_DEVICE); + if (ret) + return ret; + + dm_offset = CCP_SB_BYTES - aes->key_len; + ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); + if (ret) + goto e_key; + ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_key; + } + + /* Copy the context (IV) to the LSB. + * There is an assumption here that the IV is 96 bits in length, plus + * a nonce of 32 bits. If no IV is present, use a zeroed buffer. + */ + ret = ccp_init_dm_workarea(&ctx, cmd_q, + CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, + DMA_BIDIRECTIONAL); + if (ret) + goto e_key; + + dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len; + ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); + if (ret) + goto e_ctx; + + ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_ctx; + } + + op.init = 1; + if (aes->aad_len > 0) { + /* Step 1: Run a GHASH over the Additional Authenticated Data */ + ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len, + AES_BLOCK_SIZE, + DMA_TO_DEVICE); + if (ret) + goto e_ctx; + + op.u.aes.mode = CCP_AES_MODE_GHASH; + op.u.aes.action = CCP_AES_GHASHAAD; + + while (aad.sg_wa.bytes_left) { + ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true); + + ret = cmd_q->ccp->vdata->perform->aes(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_aad; + } + + ccp_process_data(&aad, NULL, &op); + op.init = 0; + } + } + + op.u.aes.mode = CCP_AES_MODE_GCTR; + op.u.aes.action = aes->action; + + if (ilen > 0) { + /* Step 2: Run a GCTR over the plaintext */ + in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false; + + ret = ccp_init_data(&src, cmd_q, p_inp, ilen, + AES_BLOCK_SIZE, + in_place ? DMA_BIDIRECTIONAL + : DMA_TO_DEVICE); + if (ret) + goto e_aad; + + if (in_place) { + dst = src; + } else { + ret = ccp_init_data(&dst, cmd_q, p_outp, ilen, + AES_BLOCK_SIZE, DMA_FROM_DEVICE); + if (ret) + goto e_src; + } + + op.soc = 0; + op.eom = 0; + op.init = 1; + while (src.sg_wa.bytes_left) { + ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); + if (!src.sg_wa.bytes_left) { + unsigned int nbytes = ilen % AES_BLOCK_SIZE; + + if (nbytes) { + op.eom = 1; + op.u.aes.size = (nbytes * 8) - 1; + } + } + + ret = cmd_q->ccp->vdata->perform->aes(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + ccp_process_data(&src, &dst, &op); + op.init = 0; + } + } + + /* Step 3: Update the IV portion of the context with the original IV */ + ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); + if (ret) + goto e_dst; + + ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + /* Step 4: Concatenate the lengths of the AAD and source, and + * hash that 16 byte buffer. + */ + ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE, + DMA_BIDIRECTIONAL); + if (ret) + goto e_dst; + final = (__be64 *)final_wa.address; + final[0] = cpu_to_be64(aes->aad_len * 8); + final[1] = cpu_to_be64(ilen * 8); + + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = jobid; + op.sb_key = cmd_q->sb_key; /* Pre-allocated */ + op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ + op.init = 1; + op.u.aes.type = aes->type; + op.u.aes.mode = CCP_AES_MODE_GHASH; + op.u.aes.action = CCP_AES_GHASHFINAL; + op.src.type = CCP_MEMTYPE_SYSTEM; + op.src.u.dma.address = final_wa.dma.address; + op.src.u.dma.length = AES_BLOCK_SIZE; + op.dst.type = CCP_MEMTYPE_SYSTEM; + op.dst.u.dma.address = final_wa.dma.address; + op.dst.u.dma.length = AES_BLOCK_SIZE; + op.eom = 1; + op.u.aes.size = 0; + ret = cmd_q->ccp->vdata->perform->aes(&op); + if (ret) + goto e_final_wa; + + if (aes->action == CCP_AES_ACTION_ENCRYPT) { + /* Put the ciphered tag after the ciphertext. */ + ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize); + } else { + /* Does this ciphered tag match the input? */ + ret = ccp_init_dm_workarea(&tag, cmd_q, authsize, + DMA_BIDIRECTIONAL); + if (ret) + goto e_final_wa; + ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize); + if (ret) { + ccp_dm_free(&tag); + goto e_final_wa; + } + + ret = crypto_memneq(tag.address, final_wa.address, + authsize) ? -EBADMSG : 0; + ccp_dm_free(&tag); + } + +e_final_wa: + ccp_dm_free(&final_wa); + +e_dst: + if (ilen > 0 && !in_place) + ccp_free_data(&dst, cmd_q); + +e_src: + if (ilen > 0) + ccp_free_data(&src, cmd_q); + +e_aad: + if (aes->aad_len) + ccp_free_data(&aad, cmd_q); + +e_ctx: + ccp_dm_free(&ctx); + +e_key: + ccp_dm_free(&key); + + return ret; +} + +static noinline_for_stack int +ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_aes_engine *aes = &cmd->u.aes; + struct ccp_dm_workarea key, ctx; + struct ccp_data src, dst; + struct ccp_op op; + unsigned int dm_offset; + bool in_place = false; + int ret; + + if (!((aes->key_len == AES_KEYSIZE_128) || + (aes->key_len == AES_KEYSIZE_192) || + (aes->key_len == AES_KEYSIZE_256))) + return -EINVAL; + + if (((aes->mode == CCP_AES_MODE_ECB) || + (aes->mode == CCP_AES_MODE_CBC)) && + (aes->src_len & (AES_BLOCK_SIZE - 1))) + return -EINVAL; + + if (!aes->key || !aes->src || !aes->dst) + return -EINVAL; + + if (aes->mode != CCP_AES_MODE_ECB) { + if (aes->iv_len != AES_BLOCK_SIZE) + return -EINVAL; + + if (!aes->iv) + return -EINVAL; + } + + BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); + BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); + + ret = -EIO; + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + op.sb_key = cmd_q->sb_key; + op.sb_ctx = cmd_q->sb_ctx; + op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1; + op.u.aes.type = aes->type; + op.u.aes.mode = aes->mode; + op.u.aes.action = aes->action; + + /* All supported key sizes fit in a single (32-byte) SB entry + * and must be in little endian format. Use the 256-bit byte + * swap passthru option to convert from big endian to little + * endian. + */ + ret = ccp_init_dm_workarea(&key, cmd_q, + CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, + DMA_TO_DEVICE); + if (ret) + return ret; + + dm_offset = CCP_SB_BYTES - aes->key_len; + ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); + if (ret) + goto e_key; + ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_key; + } + + /* The AES context fits in a single (32-byte) SB entry and + * must be in little endian format. Use the 256-bit byte swap + * passthru option to convert from big endian to little endian. + */ + ret = ccp_init_dm_workarea(&ctx, cmd_q, + CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, + DMA_BIDIRECTIONAL); + if (ret) + goto e_key; + + if (aes->mode != CCP_AES_MODE_ECB) { + /* Load the AES context - convert to LE */ + dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; + ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); + if (ret) + goto e_ctx; + ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_ctx; + } + } + switch (aes->mode) { + case CCP_AES_MODE_CFB: /* CFB128 only */ + case CCP_AES_MODE_CTR: + op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1; + break; + default: + op.u.aes.size = 0; + } + + /* Prepare the input and output data workareas. For in-place + * operations we need to set the dma direction to BIDIRECTIONAL + * and copy the src workarea to the dst workarea. + */ + if (sg_virt(aes->src) == sg_virt(aes->dst)) + in_place = true; + + ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, + AES_BLOCK_SIZE, + in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); + if (ret) + goto e_ctx; + + if (in_place) { + dst = src; + } else { + ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len, + AES_BLOCK_SIZE, DMA_FROM_DEVICE); + if (ret) + goto e_src; + } + + /* Send data to the CCP AES engine */ + while (src.sg_wa.bytes_left) { + ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); + if (!src.sg_wa.bytes_left) { + op.eom = 1; + + /* Since we don't retrieve the AES context in ECB + * mode we have to wait for the operation to complete + * on the last piece of data + */ + if (aes->mode == CCP_AES_MODE_ECB) + op.soc = 1; + } + + ret = cmd_q->ccp->vdata->perform->aes(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + ccp_process_data(&src, &dst, &op); + } + + if (aes->mode != CCP_AES_MODE_ECB) { + /* Retrieve the AES context - convert from LE to BE using + * 32-byte (256-bit) byteswapping + */ + ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + /* ...but we only need AES_BLOCK_SIZE bytes */ + dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; + ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); + } + +e_dst: + if (!in_place) + ccp_free_data(&dst, cmd_q); + +e_src: + ccp_free_data(&src, cmd_q); + +e_ctx: + ccp_dm_free(&ctx); + +e_key: + ccp_dm_free(&key); + + return ret; +} + +static noinline_for_stack int +ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_xts_aes_engine *xts = &cmd->u.xts; + struct ccp_dm_workarea key, ctx; + struct ccp_data src, dst; + struct ccp_op op; + unsigned int unit_size, dm_offset; + bool in_place = false; + unsigned int sb_count; + enum ccp_aes_type aestype; + int ret; + + switch (xts->unit_size) { + case CCP_XTS_AES_UNIT_SIZE_16: + unit_size = 16; + break; + case CCP_XTS_AES_UNIT_SIZE_512: + unit_size = 512; + break; + case CCP_XTS_AES_UNIT_SIZE_1024: + unit_size = 1024; + break; + case CCP_XTS_AES_UNIT_SIZE_2048: + unit_size = 2048; + break; + case CCP_XTS_AES_UNIT_SIZE_4096: + unit_size = 4096; + break; + + default: + return -EINVAL; + } + + if (xts->key_len == AES_KEYSIZE_128) + aestype = CCP_AES_TYPE_128; + else if (xts->key_len == AES_KEYSIZE_256) + aestype = CCP_AES_TYPE_256; + else + return -EINVAL; + + if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1))) + return -EINVAL; + + if (xts->iv_len != AES_BLOCK_SIZE) + return -EINVAL; + + if (!xts->key || !xts->iv || !xts->src || !xts->dst) + return -EINVAL; + + BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1); + BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1); + + ret = -EIO; + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + op.sb_key = cmd_q->sb_key; + op.sb_ctx = cmd_q->sb_ctx; + op.init = 1; + op.u.xts.type = aestype; + op.u.xts.action = xts->action; + op.u.xts.unit_size = xts->unit_size; + + /* A version 3 device only supports 128-bit keys, which fits into a + * single SB entry. A version 5 device uses a 512-bit vector, so two + * SB entries. + */ + if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) + sb_count = CCP_XTS_AES_KEY_SB_COUNT; + else + sb_count = CCP5_XTS_AES_KEY_SB_COUNT; + ret = ccp_init_dm_workarea(&key, cmd_q, + sb_count * CCP_SB_BYTES, + DMA_TO_DEVICE); + if (ret) + return ret; + + if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { + /* All supported key sizes must be in little endian format. + * Use the 256-bit byte swap passthru option to convert from + * big endian to little endian. + */ + dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128; + ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len); + if (ret) + goto e_key; + ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len); + if (ret) + goto e_key; + } else { + /* Version 5 CCPs use a 512-bit space for the key: each portion + * occupies 256 bits, or one entire slot, and is zero-padded. + */ + unsigned int pad; + + dm_offset = CCP_SB_BYTES; + pad = dm_offset - xts->key_len; + ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len); + if (ret) + goto e_key; + ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key, + xts->key_len, xts->key_len); + if (ret) + goto e_key; + } + ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_key; + } + + /* The AES context fits in a single (32-byte) SB entry and + * for XTS is already in little endian format so no byte swapping + * is needed. + */ + ret = ccp_init_dm_workarea(&ctx, cmd_q, + CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES, + DMA_BIDIRECTIONAL); + if (ret) + goto e_key; + + ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len); + if (ret) + goto e_ctx; + ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_NOOP); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_ctx; + } + + /* Prepare the input and output data workareas. For in-place + * operations we need to set the dma direction to BIDIRECTIONAL + * and copy the src workarea to the dst workarea. + */ + if (sg_virt(xts->src) == sg_virt(xts->dst)) + in_place = true; + + ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len, + unit_size, + in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); + if (ret) + goto e_ctx; + + if (in_place) { + dst = src; + } else { + ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len, + unit_size, DMA_FROM_DEVICE); + if (ret) + goto e_src; + } + + /* Send data to the CCP AES engine */ + while (src.sg_wa.bytes_left) { + ccp_prepare_data(&src, &dst, &op, unit_size, true); + if (!src.sg_wa.bytes_left) + op.eom = 1; + + ret = cmd_q->ccp->vdata->perform->xts_aes(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + ccp_process_data(&src, &dst, &op); + } + + /* Retrieve the AES context - convert from LE to BE using + * 32-byte (256-bit) byteswapping + */ + ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + /* ...but we only need AES_BLOCK_SIZE bytes */ + dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; + ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len); + +e_dst: + if (!in_place) + ccp_free_data(&dst, cmd_q); + +e_src: + ccp_free_data(&src, cmd_q); + +e_ctx: + ccp_dm_free(&ctx); + +e_key: + ccp_dm_free(&key); + + return ret; +} + +static noinline_for_stack int +ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_des3_engine *des3 = &cmd->u.des3; + + struct ccp_dm_workarea key, ctx; + struct ccp_data src, dst; + struct ccp_op op; + unsigned int dm_offset; + unsigned int len_singlekey; + bool in_place = false; + int ret; + + /* Error checks */ + if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) + return -EINVAL; + + if (!cmd_q->ccp->vdata->perform->des3) + return -EINVAL; + + if (des3->key_len != DES3_EDE_KEY_SIZE) + return -EINVAL; + + if (((des3->mode == CCP_DES3_MODE_ECB) || + (des3->mode == CCP_DES3_MODE_CBC)) && + (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1))) + return -EINVAL; + + if (!des3->key || !des3->src || !des3->dst) + return -EINVAL; + + if (des3->mode != CCP_DES3_MODE_ECB) { + if (des3->iv_len != DES3_EDE_BLOCK_SIZE) + return -EINVAL; + + if (!des3->iv) + return -EINVAL; + } + + /* Zero out all the fields of the command desc */ + memset(&op, 0, sizeof(op)); + + /* Set up the Function field */ + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + op.sb_key = cmd_q->sb_key; + + op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1; + op.u.des3.type = des3->type; + op.u.des3.mode = des3->mode; + op.u.des3.action = des3->action; + + /* + * All supported key sizes fit in a single (32-byte) KSB entry and + * (like AES) must be in little endian format. Use the 256-bit byte + * swap passthru option to convert from big endian to little endian. + */ + ret = ccp_init_dm_workarea(&key, cmd_q, + CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES, + DMA_TO_DEVICE); + if (ret) + return ret; + + /* + * The contents of the key triplet are in the reverse order of what + * is required by the engine. Copy the 3 pieces individually to put + * them where they belong. + */ + dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */ + + len_singlekey = des3->key_len / 3; + ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey, + des3->key, 0, len_singlekey); + if (ret) + goto e_key; + ret = ccp_set_dm_area(&key, dm_offset + len_singlekey, + des3->key, len_singlekey, len_singlekey); + if (ret) + goto e_key; + ret = ccp_set_dm_area(&key, dm_offset, + des3->key, 2 * len_singlekey, len_singlekey); + if (ret) + goto e_key; + + /* Copy the key to the SB */ + ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_key; + } + + /* + * The DES3 context fits in a single (32-byte) KSB entry and + * must be in little endian format. Use the 256-bit byte swap + * passthru option to convert from big endian to little endian. + */ + if (des3->mode != CCP_DES3_MODE_ECB) { + op.sb_ctx = cmd_q->sb_ctx; + + ret = ccp_init_dm_workarea(&ctx, cmd_q, + CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES, + DMA_BIDIRECTIONAL); + if (ret) + goto e_key; + + /* Load the context into the LSB */ + dm_offset = CCP_SB_BYTES - des3->iv_len; + ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, + des3->iv_len); + if (ret) + goto e_ctx; + + ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_ctx; + } + } + + /* + * Prepare the input and output data workareas. For in-place + * operations we need to set the dma direction to BIDIRECTIONAL + * and copy the src workarea to the dst workarea. + */ + if (sg_virt(des3->src) == sg_virt(des3->dst)) + in_place = true; + + ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len, + DES3_EDE_BLOCK_SIZE, + in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); + if (ret) + goto e_ctx; + + if (in_place) + dst = src; + else { + ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len, + DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE); + if (ret) + goto e_src; + } + + /* Send data to the CCP DES3 engine */ + while (src.sg_wa.bytes_left) { + ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true); + if (!src.sg_wa.bytes_left) { + op.eom = 1; + + /* Since we don't retrieve the context in ECB mode + * we have to wait for the operation to complete + * on the last piece of data + */ + op.soc = 0; + } + + ret = cmd_q->ccp->vdata->perform->des3(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + ccp_process_data(&src, &dst, &op); + } + + if (des3->mode != CCP_DES3_MODE_ECB) { + /* Retrieve the context and make BE */ + ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */ + ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0, + DES3_EDE_BLOCK_SIZE); + } +e_dst: + if (!in_place) + ccp_free_data(&dst, cmd_q); + +e_src: + ccp_free_data(&src, cmd_q); + +e_ctx: + if (des3->mode != CCP_DES3_MODE_ECB) + ccp_dm_free(&ctx); + +e_key: + ccp_dm_free(&key); + + return ret; +} + +static noinline_for_stack int +ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_sha_engine *sha = &cmd->u.sha; + struct ccp_dm_workarea ctx; + struct ccp_data src; + struct ccp_op op; + unsigned int ioffset, ooffset; + unsigned int digest_size; + int sb_count; + const void *init; + u64 block_size; + int ctx_size; + int ret; + + switch (sha->type) { + case CCP_SHA_TYPE_1: + if (sha->ctx_len < SHA1_DIGEST_SIZE) + return -EINVAL; + block_size = SHA1_BLOCK_SIZE; + break; + case CCP_SHA_TYPE_224: + if (sha->ctx_len < SHA224_DIGEST_SIZE) + return -EINVAL; + block_size = SHA224_BLOCK_SIZE; + break; + case CCP_SHA_TYPE_256: + if (sha->ctx_len < SHA256_DIGEST_SIZE) + return -EINVAL; + block_size = SHA256_BLOCK_SIZE; + break; + case CCP_SHA_TYPE_384: + if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) + || sha->ctx_len < SHA384_DIGEST_SIZE) + return -EINVAL; + block_size = SHA384_BLOCK_SIZE; + break; + case CCP_SHA_TYPE_512: + if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) + || sha->ctx_len < SHA512_DIGEST_SIZE) + return -EINVAL; + block_size = SHA512_BLOCK_SIZE; + break; + default: + return -EINVAL; + } + + if (!sha->ctx) + return -EINVAL; + + if (!sha->final && (sha->src_len & (block_size - 1))) + return -EINVAL; + + /* The version 3 device can't handle zero-length input */ + if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { + + if (!sha->src_len) { + unsigned int digest_len; + const u8 *sha_zero; + + /* Not final, just return */ + if (!sha->final) + return 0; + + /* CCP can't do a zero length sha operation so the + * caller must buffer the data. + */ + if (sha->msg_bits) + return -EINVAL; + + /* The CCP cannot perform zero-length sha operations + * so the caller is required to buffer data for the + * final operation. However, a sha operation for a + * message with a total length of zero is valid so + * known values are required to supply the result. + */ + switch (sha->type) { + case CCP_SHA_TYPE_1: + sha_zero = sha1_zero_message_hash; + digest_len = SHA1_DIGEST_SIZE; + break; + case CCP_SHA_TYPE_224: + sha_zero = sha224_zero_message_hash; + digest_len = SHA224_DIGEST_SIZE; + break; + case CCP_SHA_TYPE_256: + sha_zero = sha256_zero_message_hash; + digest_len = SHA256_DIGEST_SIZE; + break; + default: + return -EINVAL; + } + + scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0, + digest_len, 1); + + return 0; + } + } + + /* Set variables used throughout */ + switch (sha->type) { + case CCP_SHA_TYPE_1: + digest_size = SHA1_DIGEST_SIZE; + init = (void *) ccp_sha1_init; + ctx_size = SHA1_DIGEST_SIZE; + sb_count = 1; + if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) + ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE; + else + ooffset = ioffset = 0; + break; + case CCP_SHA_TYPE_224: + digest_size = SHA224_DIGEST_SIZE; + init = (void *) ccp_sha224_init; + ctx_size = SHA256_DIGEST_SIZE; + sb_count = 1; + ioffset = 0; + if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) + ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE; + else + ooffset = 0; + break; + case CCP_SHA_TYPE_256: + digest_size = SHA256_DIGEST_SIZE; + init = (void *) ccp_sha256_init; + ctx_size = SHA256_DIGEST_SIZE; + sb_count = 1; + ooffset = ioffset = 0; + break; + case CCP_SHA_TYPE_384: + digest_size = SHA384_DIGEST_SIZE; + init = (void *) ccp_sha384_init; + ctx_size = SHA512_DIGEST_SIZE; + sb_count = 2; + ioffset = 0; + ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE; + break; + case CCP_SHA_TYPE_512: + digest_size = SHA512_DIGEST_SIZE; + init = (void *) ccp_sha512_init; + ctx_size = SHA512_DIGEST_SIZE; + sb_count = 2; + ooffset = ioffset = 0; + break; + default: + ret = -EINVAL; + goto e_data; + } + + /* For zero-length plaintext the src pointer is ignored; + * otherwise both parts must be valid + */ + if (sha->src_len && !sha->src) + return -EINVAL; + + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ + op.u.sha.type = sha->type; + op.u.sha.msg_bits = sha->msg_bits; + + /* For SHA1/224/256 the context fits in a single (32-byte) SB entry; + * SHA384/512 require 2 adjacent SB slots, with the right half in the + * first slot, and the left half in the second. Each portion must then + * be in little endian format: use the 256-bit byte swap option. + */ + ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES, + DMA_BIDIRECTIONAL); + if (ret) + return ret; + if (sha->first) { + switch (sha->type) { + case CCP_SHA_TYPE_1: + case CCP_SHA_TYPE_224: + case CCP_SHA_TYPE_256: + memcpy(ctx.address + ioffset, init, ctx_size); + break; + case CCP_SHA_TYPE_384: + case CCP_SHA_TYPE_512: + memcpy(ctx.address + ctx_size / 2, init, + ctx_size / 2); + memcpy(ctx.address, init + ctx_size / 2, + ctx_size / 2); + break; + default: + ret = -EINVAL; + goto e_ctx; + } + } else { + /* Restore the context */ + ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0, + sb_count * CCP_SB_BYTES); + if (ret) + goto e_ctx; + } + + ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_ctx; + } + + if (sha->src) { + /* Send data to the CCP SHA engine; block_size is set above */ + ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len, + block_size, DMA_TO_DEVICE); + if (ret) + goto e_ctx; + + while (src.sg_wa.bytes_left) { + ccp_prepare_data(&src, NULL, &op, block_size, false); + if (sha->final && !src.sg_wa.bytes_left) + op.eom = 1; + + ret = cmd_q->ccp->vdata->perform->sha(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_data; + } + + ccp_process_data(&src, NULL, &op); + } + } else { + op.eom = 1; + ret = cmd_q->ccp->vdata->perform->sha(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_data; + } + } + + /* Retrieve the SHA context - convert from LE to BE using + * 32-byte (256-bit) byteswapping to BE + */ + ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, + CCP_PASSTHRU_BYTESWAP_256BIT); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_data; + } + + if (sha->final) { + /* Finishing up, so get the digest */ + switch (sha->type) { + case CCP_SHA_TYPE_1: + case CCP_SHA_TYPE_224: + case CCP_SHA_TYPE_256: + ccp_get_dm_area(&ctx, ooffset, + sha->ctx, 0, + digest_size); + break; + case CCP_SHA_TYPE_384: + case CCP_SHA_TYPE_512: + ccp_get_dm_area(&ctx, 0, + sha->ctx, LSB_ITEM_SIZE - ooffset, + LSB_ITEM_SIZE); + ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset, + sha->ctx, 0, + LSB_ITEM_SIZE - ooffset); + break; + default: + ret = -EINVAL; + goto e_data; + } + } else { + /* Stash the context */ + ccp_get_dm_area(&ctx, 0, sha->ctx, 0, + sb_count * CCP_SB_BYTES); + } + + if (sha->final && sha->opad) { + /* HMAC operation, recursively perform final SHA */ + struct ccp_cmd hmac_cmd; + struct scatterlist sg; + u8 *hmac_buf; + + if (sha->opad_len != block_size) { + ret = -EINVAL; + goto e_data; + } + + hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL); + if (!hmac_buf) { + ret = -ENOMEM; + goto e_data; + } + sg_init_one(&sg, hmac_buf, block_size + digest_size); + + scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0); + switch (sha->type) { + case CCP_SHA_TYPE_1: + case CCP_SHA_TYPE_224: + case CCP_SHA_TYPE_256: + memcpy(hmac_buf + block_size, + ctx.address + ooffset, + digest_size); + break; + case CCP_SHA_TYPE_384: + case CCP_SHA_TYPE_512: + memcpy(hmac_buf + block_size, + ctx.address + LSB_ITEM_SIZE + ooffset, + LSB_ITEM_SIZE); + memcpy(hmac_buf + block_size + + (LSB_ITEM_SIZE - ooffset), + ctx.address, + LSB_ITEM_SIZE); + break; + default: + kfree(hmac_buf); + ret = -EINVAL; + goto e_data; + } + + memset(&hmac_cmd, 0, sizeof(hmac_cmd)); + hmac_cmd.engine = CCP_ENGINE_SHA; + hmac_cmd.u.sha.type = sha->type; + hmac_cmd.u.sha.ctx = sha->ctx; + hmac_cmd.u.sha.ctx_len = sha->ctx_len; + hmac_cmd.u.sha.src = &sg; + hmac_cmd.u.sha.src_len = block_size + digest_size; + hmac_cmd.u.sha.opad = NULL; + hmac_cmd.u.sha.opad_len = 0; + hmac_cmd.u.sha.first = 1; + hmac_cmd.u.sha.final = 1; + hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3; + + ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd); + if (ret) + cmd->engine_error = hmac_cmd.engine_error; + + kfree(hmac_buf); + } + +e_data: + if (sha->src) + ccp_free_data(&src, cmd_q); + +e_ctx: + ccp_dm_free(&ctx); + + return ret; +} + +static noinline_for_stack int +ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_rsa_engine *rsa = &cmd->u.rsa; + struct ccp_dm_workarea exp, src, dst; + struct ccp_op op; + unsigned int sb_count, i_len, o_len; + int ret; + + /* Check against the maximum allowable size, in bits */ + if (rsa->key_size > cmd_q->ccp->vdata->rsamax) + return -EINVAL; + + if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst) + return -EINVAL; + + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + + /* The RSA modulus must precede the message being acted upon, so + * it must be copied to a DMA area where the message and the + * modulus can be concatenated. Therefore the input buffer + * length required is twice the output buffer length (which + * must be a multiple of 256-bits). Compute o_len, i_len in bytes. + * Buffer sizes must be a multiple of 32 bytes; rounding up may be + * required. + */ + o_len = 32 * ((rsa->key_size + 255) / 256); + i_len = o_len * 2; + + sb_count = 0; + if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { + /* sb_count is the number of storage block slots required + * for the modulus. + */ + sb_count = o_len / CCP_SB_BYTES; + op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, + sb_count); + if (!op.sb_key) + return -EIO; + } else { + /* A version 5 device allows a modulus size that will not fit + * in the LSB, so the command will transfer it from memory. + * Set the sb key to the default, even though it's not used. + */ + op.sb_key = cmd_q->sb_key; + } + + /* The RSA exponent must be in little endian format. Reverse its + * byte order. + */ + ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE); + if (ret) + goto e_sb; + + ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len); + if (ret) + goto e_exp; + + if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { + /* Copy the exponent to the local storage block, using + * as many 32-byte blocks as were allocated above. It's + * already little endian, so no further change is required. + */ + ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key, + CCP_PASSTHRU_BYTESWAP_NOOP); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_exp; + } + } else { + /* The exponent can be retrieved from memory via DMA. */ + op.exp.u.dma.address = exp.dma.address; + op.exp.u.dma.offset = 0; + } + + /* Concatenate the modulus and the message. Both the modulus and + * the operands must be in little endian format. Since the input + * is in big endian format it must be converted. + */ + ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE); + if (ret) + goto e_exp; + + ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len); + if (ret) + goto e_src; + ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len); + if (ret) + goto e_src; + + /* Prepare the output area for the operation */ + ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE); + if (ret) + goto e_src; + + op.soc = 1; + op.src.u.dma.address = src.dma.address; + op.src.u.dma.offset = 0; + op.src.u.dma.length = i_len; + op.dst.u.dma.address = dst.dma.address; + op.dst.u.dma.offset = 0; + op.dst.u.dma.length = o_len; + + op.u.rsa.mod_size = rsa->key_size; + op.u.rsa.input_len = i_len; + + ret = cmd_q->ccp->vdata->perform->rsa(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len); + +e_dst: + ccp_dm_free(&dst); + +e_src: + ccp_dm_free(&src); + +e_exp: + ccp_dm_free(&exp); + +e_sb: + if (sb_count) + cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count); + + return ret; +} + +static noinline_for_stack int +ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_passthru_engine *pt = &cmd->u.passthru; + struct ccp_dm_workarea mask; + struct ccp_data src, dst; + struct ccp_op op; + bool in_place = false; + unsigned int i; + int ret = 0; + + if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) + return -EINVAL; + + if (!pt->src || !pt->dst) + return -EINVAL; + + if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { + if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) + return -EINVAL; + if (!pt->mask) + return -EINVAL; + } + + BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); + + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + + if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { + /* Load the mask */ + op.sb_key = cmd_q->sb_key; + + ret = ccp_init_dm_workarea(&mask, cmd_q, + CCP_PASSTHRU_SB_COUNT * + CCP_SB_BYTES, + DMA_TO_DEVICE); + if (ret) + return ret; + + ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len); + if (ret) + goto e_mask; + ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, + CCP_PASSTHRU_BYTESWAP_NOOP); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_mask; + } + } + + /* Prepare the input and output data workareas. For in-place + * operations we need to set the dma direction to BIDIRECTIONAL + * and copy the src workarea to the dst workarea. + */ + if (sg_virt(pt->src) == sg_virt(pt->dst)) + in_place = true; + + ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len, + CCP_PASSTHRU_MASKSIZE, + in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); + if (ret) + goto e_mask; + + if (in_place) { + dst = src; + } else { + ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len, + CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE); + if (ret) + goto e_src; + } + + /* Send data to the CCP Passthru engine + * Because the CCP engine works on a single source and destination + * dma address at a time, each entry in the source scatterlist + * (after the dma_map_sg call) must be less than or equal to the + * (remaining) length in the destination scatterlist entry and the + * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE + */ + dst.sg_wa.sg_used = 0; + for (i = 1; i <= src.sg_wa.dma_count; i++) { + if (!dst.sg_wa.sg || + (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) { + ret = -EINVAL; + goto e_dst; + } + + if (i == src.sg_wa.dma_count) { + op.eom = 1; + op.soc = 1; + } + + op.src.type = CCP_MEMTYPE_SYSTEM; + op.src.u.dma.address = sg_dma_address(src.sg_wa.sg); + op.src.u.dma.offset = 0; + op.src.u.dma.length = sg_dma_len(src.sg_wa.sg); + + op.dst.type = CCP_MEMTYPE_SYSTEM; + op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg); + op.dst.u.dma.offset = dst.sg_wa.sg_used; + op.dst.u.dma.length = op.src.u.dma.length; + + ret = cmd_q->ccp->vdata->perform->passthru(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg); + if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) { + dst.sg_wa.sg = sg_next(dst.sg_wa.sg); + dst.sg_wa.sg_used = 0; + } + src.sg_wa.sg = sg_next(src.sg_wa.sg); + } + +e_dst: + if (!in_place) + ccp_free_data(&dst, cmd_q); + +e_src: + ccp_free_data(&src, cmd_q); + +e_mask: + if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) + ccp_dm_free(&mask); + + return ret; +} + +static noinline_for_stack int +ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q, + struct ccp_cmd *cmd) +{ + struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap; + struct ccp_dm_workarea mask; + struct ccp_op op; + int ret; + + if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) + return -EINVAL; + + if (!pt->src_dma || !pt->dst_dma) + return -EINVAL; + + if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { + if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) + return -EINVAL; + if (!pt->mask) + return -EINVAL; + } + + BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); + + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + + if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { + /* Load the mask */ + op.sb_key = cmd_q->sb_key; + + mask.length = pt->mask_len; + mask.dma.address = pt->mask; + mask.dma.length = pt->mask_len; + + ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, + CCP_PASSTHRU_BYTESWAP_NOOP); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + return ret; + } + } + + /* Send data to the CCP Passthru engine */ + op.eom = 1; + op.soc = 1; + + op.src.type = CCP_MEMTYPE_SYSTEM; + op.src.u.dma.address = pt->src_dma; + op.src.u.dma.offset = 0; + op.src.u.dma.length = pt->src_len; + + op.dst.type = CCP_MEMTYPE_SYSTEM; + op.dst.u.dma.address = pt->dst_dma; + op.dst.u.dma.offset = 0; + op.dst.u.dma.length = pt->src_len; + + ret = cmd_q->ccp->vdata->perform->passthru(&op); + if (ret) + cmd->engine_error = cmd_q->cmd_error; + + return ret; +} + +static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_ecc_engine *ecc = &cmd->u.ecc; + struct ccp_dm_workarea src, dst; + struct ccp_op op; + int ret; + u8 *save; + + if (!ecc->u.mm.operand_1 || + (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES)) + return -EINVAL; + + if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) + if (!ecc->u.mm.operand_2 || + (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES)) + return -EINVAL; + + if (!ecc->u.mm.result || + (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES)) + return -EINVAL; + + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + + /* Concatenate the modulus and the operands. Both the modulus and + * the operands must be in little endian format. Since the input + * is in big endian format it must be converted and placed in a + * fixed length buffer. + */ + ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, + DMA_TO_DEVICE); + if (ret) + return ret; + + /* Save the workarea address since it is updated in order to perform + * the concatenation + */ + save = src.address; + + /* Copy the ECC modulus */ + ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + + /* Copy the first operand */ + ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0, + ecc->u.mm.operand_1_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + + if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) { + /* Copy the second operand */ + ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0, + ecc->u.mm.operand_2_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + } + + /* Restore the workarea address */ + src.address = save; + + /* Prepare the output area for the operation */ + ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, + DMA_FROM_DEVICE); + if (ret) + goto e_src; + + op.soc = 1; + op.src.u.dma.address = src.dma.address; + op.src.u.dma.offset = 0; + op.src.u.dma.length = src.length; + op.dst.u.dma.address = dst.dma.address; + op.dst.u.dma.offset = 0; + op.dst.u.dma.length = dst.length; + + op.u.ecc.function = cmd->u.ecc.function; + + ret = cmd_q->ccp->vdata->perform->ecc(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + ecc->ecc_result = le16_to_cpup( + (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); + if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { + ret = -EIO; + goto e_dst; + } + + /* Save the ECC result */ + ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0, + CCP_ECC_MODULUS_BYTES); + +e_dst: + ccp_dm_free(&dst); + +e_src: + ccp_dm_free(&src); + + return ret; +} + +static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_ecc_engine *ecc = &cmd->u.ecc; + struct ccp_dm_workarea src, dst; + struct ccp_op op; + int ret; + u8 *save; + + if (!ecc->u.pm.point_1.x || + (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) || + !ecc->u.pm.point_1.y || + (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES)) + return -EINVAL; + + if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { + if (!ecc->u.pm.point_2.x || + (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) || + !ecc->u.pm.point_2.y || + (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES)) + return -EINVAL; + } else { + if (!ecc->u.pm.domain_a || + (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES)) + return -EINVAL; + + if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) + if (!ecc->u.pm.scalar || + (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES)) + return -EINVAL; + } + + if (!ecc->u.pm.result.x || + (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) || + !ecc->u.pm.result.y || + (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES)) + return -EINVAL; + + memset(&op, 0, sizeof(op)); + op.cmd_q = cmd_q; + op.jobid = CCP_NEW_JOBID(cmd_q->ccp); + + /* Concatenate the modulus and the operands. Both the modulus and + * the operands must be in little endian format. Since the input + * is in big endian format it must be converted and placed in a + * fixed length buffer. + */ + ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, + DMA_TO_DEVICE); + if (ret) + return ret; + + /* Save the workarea address since it is updated in order to perform + * the concatenation + */ + save = src.address; + + /* Copy the ECC modulus */ + ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + + /* Copy the first point X and Y coordinate */ + ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0, + ecc->u.pm.point_1.x_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0, + ecc->u.pm.point_1.y_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + + /* Set the first point Z coordinate to 1 */ + *src.address = 0x01; + src.address += CCP_ECC_OPERAND_SIZE; + + if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { + /* Copy the second point X and Y coordinate */ + ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0, + ecc->u.pm.point_2.x_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0, + ecc->u.pm.point_2.y_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + + /* Set the second point Z coordinate to 1 */ + *src.address = 0x01; + src.address += CCP_ECC_OPERAND_SIZE; + } else { + /* Copy the Domain "a" parameter */ + ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0, + ecc->u.pm.domain_a_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + + if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) { + /* Copy the scalar value */ + ret = ccp_reverse_set_dm_area(&src, 0, + ecc->u.pm.scalar, 0, + ecc->u.pm.scalar_len); + if (ret) + goto e_src; + src.address += CCP_ECC_OPERAND_SIZE; + } + } + + /* Restore the workarea address */ + src.address = save; + + /* Prepare the output area for the operation */ + ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, + DMA_FROM_DEVICE); + if (ret) + goto e_src; + + op.soc = 1; + op.src.u.dma.address = src.dma.address; + op.src.u.dma.offset = 0; + op.src.u.dma.length = src.length; + op.dst.u.dma.address = dst.dma.address; + op.dst.u.dma.offset = 0; + op.dst.u.dma.length = dst.length; + + op.u.ecc.function = cmd->u.ecc.function; + + ret = cmd_q->ccp->vdata->perform->ecc(&op); + if (ret) { + cmd->engine_error = cmd_q->cmd_error; + goto e_dst; + } + + ecc->ecc_result = le16_to_cpup( + (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); + if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { + ret = -EIO; + goto e_dst; + } + + /* Save the workarea address since it is updated as we walk through + * to copy the point math result + */ + save = dst.address; + + /* Save the ECC result X and Y coordinates */ + ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0, + CCP_ECC_MODULUS_BYTES); + dst.address += CCP_ECC_OUTPUT_SIZE; + ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0, + CCP_ECC_MODULUS_BYTES); + + /* Restore the workarea address */ + dst.address = save; + +e_dst: + ccp_dm_free(&dst); + +e_src: + ccp_dm_free(&src); + + return ret; +} + +static noinline_for_stack int +ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + struct ccp_ecc_engine *ecc = &cmd->u.ecc; + + ecc->ecc_result = 0; + + if (!ecc->mod || + (ecc->mod_len > CCP_ECC_MODULUS_BYTES)) + return -EINVAL; + + switch (ecc->function) { + case CCP_ECC_FUNCTION_MMUL_384BIT: + case CCP_ECC_FUNCTION_MADD_384BIT: + case CCP_ECC_FUNCTION_MINV_384BIT: + return ccp_run_ecc_mm_cmd(cmd_q, cmd); + + case CCP_ECC_FUNCTION_PADD_384BIT: + case CCP_ECC_FUNCTION_PMUL_384BIT: + case CCP_ECC_FUNCTION_PDBL_384BIT: + return ccp_run_ecc_pm_cmd(cmd_q, cmd); + + default: + return -EINVAL; + } +} + +int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) +{ + int ret; + + cmd->engine_error = 0; + cmd_q->cmd_error = 0; + cmd_q->int_rcvd = 0; + cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q); + + switch (cmd->engine) { + case CCP_ENGINE_AES: + switch (cmd->u.aes.mode) { + case CCP_AES_MODE_CMAC: + ret = ccp_run_aes_cmac_cmd(cmd_q, cmd); + break; + case CCP_AES_MODE_GCM: + ret = ccp_run_aes_gcm_cmd(cmd_q, cmd); + break; + default: + ret = ccp_run_aes_cmd(cmd_q, cmd); + break; + } + break; + case CCP_ENGINE_XTS_AES_128: + ret = ccp_run_xts_aes_cmd(cmd_q, cmd); + break; + case CCP_ENGINE_DES3: + ret = ccp_run_des3_cmd(cmd_q, cmd); + break; + case CCP_ENGINE_SHA: + ret = ccp_run_sha_cmd(cmd_q, cmd); + break; + case CCP_ENGINE_RSA: + ret = ccp_run_rsa_cmd(cmd_q, cmd); + break; + case CCP_ENGINE_PASSTHRU: + if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP) + ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd); + else + ret = ccp_run_passthru_cmd(cmd_q, cmd); + break; + case CCP_ENGINE_ECC: + ret = ccp_run_ecc_cmd(cmd_q, cmd); + break; + default: + ret = -EINVAL; + } + + return ret; +} -- cgit v1.2.3