From ace9429bb58fd418f0c81d4c2835699bddf6bde6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:27:49 +0200 Subject: Adding upstream version 6.6.15. Signed-off-by: Daniel Baumann --- drivers/infiniband/core/ib_core_uverbs.c | 367 +++++++++++++++++++++++++++++++ 1 file changed, 367 insertions(+) create mode 100644 drivers/infiniband/core/ib_core_uverbs.c (limited to 'drivers/infiniband/core/ib_core_uverbs.c') diff --git a/drivers/infiniband/core/ib_core_uverbs.c b/drivers/infiniband/core/ib_core_uverbs.c new file mode 100644 index 0000000000..b51bd7087a --- /dev/null +++ b/drivers/infiniband/core/ib_core_uverbs.c @@ -0,0 +1,367 @@ +// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB +/* + * Copyright (c) 2005 Mellanox Technologies. All rights reserved. + * Copyright 2018-2019 Amazon.com, Inc. or its affiliates. All rights reserved. + * Copyright 2019 Marvell. All rights reserved. + */ +#include +#include "uverbs.h" +#include "core_priv.h" + +/** + * rdma_umap_priv_init() - Initialize the private data of a vma + * + * @priv: The already allocated private data + * @vma: The vm area struct that needs private data + * @entry: entry into the mmap_xa that needs to be linked with + * this vma + * + * Each time we map IO memory into user space this keeps track of the + * mapping. When the device is hot-unplugged we 'zap' the mmaps in user space + * to point to the zero page and allow the hot unplug to proceed. + * + * This is necessary for cases like PCI physical hot unplug as the actual BAR + * memory may vanish after this and access to it from userspace could MCE. + * + * RDMA drivers supporting disassociation must have their user space designed + * to cope in some way with their IO pages going to the zero page. + * + */ +void rdma_umap_priv_init(struct rdma_umap_priv *priv, + struct vm_area_struct *vma, + struct rdma_user_mmap_entry *entry) +{ + struct ib_uverbs_file *ufile = vma->vm_file->private_data; + + priv->vma = vma; + if (entry) { + kref_get(&entry->ref); + priv->entry = entry; + } + vma->vm_private_data = priv; + /* vm_ops is setup in ib_uverbs_mmap() to avoid module dependencies */ + + mutex_lock(&ufile->umap_lock); + list_add(&priv->list, &ufile->umaps); + mutex_unlock(&ufile->umap_lock); +} +EXPORT_SYMBOL(rdma_umap_priv_init); + +/** + * rdma_user_mmap_io() - Map IO memory into a process + * + * @ucontext: associated user context + * @vma: the vma related to the current mmap call + * @pfn: pfn to map + * @size: size to map + * @prot: pgprot to use in remap call + * @entry: mmap_entry retrieved from rdma_user_mmap_entry_get(), or NULL + * if mmap_entry is not used by the driver + * + * This is to be called by drivers as part of their mmap() functions if they + * wish to send something like PCI-E BAR memory to userspace. + * + * Return -EINVAL on wrong flags or size, -EAGAIN on failure to map. 0 on + * success. + */ +int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, + unsigned long pfn, unsigned long size, pgprot_t prot, + struct rdma_user_mmap_entry *entry) +{ + struct ib_uverbs_file *ufile = ucontext->ufile; + struct rdma_umap_priv *priv; + + if (!(vma->vm_flags & VM_SHARED)) + return -EINVAL; + + if (vma->vm_end - vma->vm_start != size) + return -EINVAL; + + /* Driver is using this wrong, must be called by ib_uverbs_mmap */ + if (WARN_ON(!vma->vm_file || + vma->vm_file->private_data != ufile)) + return -EINVAL; + lockdep_assert_held(&ufile->device->disassociate_srcu); + + priv = kzalloc(sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + vma->vm_page_prot = prot; + if (io_remap_pfn_range(vma, vma->vm_start, pfn, size, prot)) { + kfree(priv); + return -EAGAIN; + } + + rdma_umap_priv_init(priv, vma, entry); + return 0; +} +EXPORT_SYMBOL(rdma_user_mmap_io); + +/** + * rdma_user_mmap_entry_get_pgoff() - Get an entry from the mmap_xa + * + * @ucontext: associated user context + * @pgoff: The mmap offset >> PAGE_SHIFT + * + * This function is called when a user tries to mmap with an offset (returned + * by rdma_user_mmap_get_offset()) it initially received from the driver. The + * rdma_user_mmap_entry was created by the function + * rdma_user_mmap_entry_insert(). This function increases the refcnt of the + * entry so that it won't be deleted from the xarray in the meantime. + * + * Return an reference to an entry if exists or NULL if there is no + * match. rdma_user_mmap_entry_put() must be called to put the reference. + */ +struct rdma_user_mmap_entry * +rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, + unsigned long pgoff) +{ + struct rdma_user_mmap_entry *entry; + + if (pgoff > U32_MAX) + return NULL; + + xa_lock(&ucontext->mmap_xa); + + entry = xa_load(&ucontext->mmap_xa, pgoff); + + /* + * If refcount is zero, entry is already being deleted, driver_removed + * indicates that the no further mmaps are possible and we waiting for + * the active VMAs to be closed. + */ + if (!entry || entry->start_pgoff != pgoff || entry->driver_removed || + !kref_get_unless_zero(&entry->ref)) + goto err; + + xa_unlock(&ucontext->mmap_xa); + + ibdev_dbg(ucontext->device, "mmap: pgoff[%#lx] npages[%#zx] returned\n", + pgoff, entry->npages); + + return entry; + +err: + xa_unlock(&ucontext->mmap_xa); + return NULL; +} +EXPORT_SYMBOL(rdma_user_mmap_entry_get_pgoff); + +/** + * rdma_user_mmap_entry_get() - Get an entry from the mmap_xa + * + * @ucontext: associated user context + * @vma: the vma being mmap'd into + * + * This function is like rdma_user_mmap_entry_get_pgoff() except that it also + * checks that the VMA is correct. + */ +struct rdma_user_mmap_entry * +rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, + struct vm_area_struct *vma) +{ + struct rdma_user_mmap_entry *entry; + + if (!(vma->vm_flags & VM_SHARED)) + return NULL; + entry = rdma_user_mmap_entry_get_pgoff(ucontext, vma->vm_pgoff); + if (!entry) + return NULL; + if (entry->npages * PAGE_SIZE != vma->vm_end - vma->vm_start) { + rdma_user_mmap_entry_put(entry); + return NULL; + } + return entry; +} +EXPORT_SYMBOL(rdma_user_mmap_entry_get); + +static void rdma_user_mmap_entry_free(struct kref *kref) +{ + struct rdma_user_mmap_entry *entry = + container_of(kref, struct rdma_user_mmap_entry, ref); + struct ib_ucontext *ucontext = entry->ucontext; + unsigned long i; + + /* + * Erase all entries occupied by this single entry, this is deferred + * until all VMA are closed so that the mmap offsets remain unique. + */ + xa_lock(&ucontext->mmap_xa); + for (i = 0; i < entry->npages; i++) + __xa_erase(&ucontext->mmap_xa, entry->start_pgoff + i); + xa_unlock(&ucontext->mmap_xa); + + ibdev_dbg(ucontext->device, "mmap: pgoff[%#lx] npages[%#zx] removed\n", + entry->start_pgoff, entry->npages); + + if (ucontext->device->ops.mmap_free) + ucontext->device->ops.mmap_free(entry); +} + +/** + * rdma_user_mmap_entry_put() - Drop reference to the mmap entry + * + * @entry: an entry in the mmap_xa + * + * This function is called when the mapping is closed if it was + * an io mapping or when the driver is done with the entry for + * some other reason. + * Should be called after rdma_user_mmap_entry_get was called + * and entry is no longer needed. This function will erase the + * entry and free it if its refcnt reaches zero. + */ +void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry) +{ + kref_put(&entry->ref, rdma_user_mmap_entry_free); +} +EXPORT_SYMBOL(rdma_user_mmap_entry_put); + +/** + * rdma_user_mmap_entry_remove() - Drop reference to entry and + * mark it as unmmapable + * + * @entry: the entry to insert into the mmap_xa + * + * Drivers can call this to prevent userspace from creating more mappings for + * entry, however existing mmaps continue to exist and ops->mmap_free() will + * not be called until all user mmaps are destroyed. + */ +void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry) +{ + if (!entry) + return; + + xa_lock(&entry->ucontext->mmap_xa); + entry->driver_removed = true; + xa_unlock(&entry->ucontext->mmap_xa); + kref_put(&entry->ref, rdma_user_mmap_entry_free); +} +EXPORT_SYMBOL(rdma_user_mmap_entry_remove); + +/** + * rdma_user_mmap_entry_insert_range() - Insert an entry to the mmap_xa + * in a given range. + * + * @ucontext: associated user context. + * @entry: the entry to insert into the mmap_xa + * @length: length of the address that will be mmapped + * @min_pgoff: minimum pgoff to be returned + * @max_pgoff: maximum pgoff to be returned + * + * This function should be called by drivers that use the rdma_user_mmap + * interface for implementing their mmap syscall A database of mmap offsets is + * handled in the core and helper functions are provided to insert entries + * into the database and extract entries when the user calls mmap with the + * given offset. The function allocates a unique page offset in a given range + * that should be provided to user, the user will use the offset to retrieve + * information such as address to be mapped and how. + * + * Return: 0 on success and -ENOMEM on failure + */ +int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, + struct rdma_user_mmap_entry *entry, + size_t length, u32 min_pgoff, + u32 max_pgoff) +{ + struct ib_uverbs_file *ufile = ucontext->ufile; + XA_STATE(xas, &ucontext->mmap_xa, min_pgoff); + u32 xa_first, xa_last, npages; + int err; + u32 i; + + if (!entry) + return -EINVAL; + + kref_init(&entry->ref); + entry->ucontext = ucontext; + + /* + * We want the whole allocation to be done without interruption from a + * different thread. The allocation requires finding a free range and + * storing. During the xa_insert the lock could be released, possibly + * allowing another thread to choose the same range. + */ + mutex_lock(&ufile->umap_lock); + + xa_lock(&ucontext->mmap_xa); + + /* We want to find an empty range */ + npages = (u32)DIV_ROUND_UP(length, PAGE_SIZE); + entry->npages = npages; + while (true) { + /* First find an empty index */ + xas_find_marked(&xas, max_pgoff, XA_FREE_MARK); + if (xas.xa_node == XAS_RESTART) + goto err_unlock; + + xa_first = xas.xa_index; + + /* Is there enough room to have the range? */ + if (check_add_overflow(xa_first, npages, &xa_last)) + goto err_unlock; + + /* + * Now look for the next present entry. If an entry doesn't + * exist, we found an empty range and can proceed. + */ + xas_next_entry(&xas, xa_last - 1); + if (xas.xa_node == XAS_BOUNDS || xas.xa_index >= xa_last) + break; + } + + for (i = xa_first; i < xa_last; i++) { + err = __xa_insert(&ucontext->mmap_xa, i, entry, GFP_KERNEL); + if (err) + goto err_undo; + } + + /* + * Internally the kernel uses a page offset, in libc this is a byte + * offset. Drivers should not return pgoff to userspace. + */ + entry->start_pgoff = xa_first; + xa_unlock(&ucontext->mmap_xa); + mutex_unlock(&ufile->umap_lock); + + ibdev_dbg(ucontext->device, "mmap: pgoff[%#lx] npages[%#x] inserted\n", + entry->start_pgoff, npages); + + return 0; + +err_undo: + for (; i > xa_first; i--) + __xa_erase(&ucontext->mmap_xa, i - 1); + +err_unlock: + xa_unlock(&ucontext->mmap_xa); + mutex_unlock(&ufile->umap_lock); + return -ENOMEM; +} +EXPORT_SYMBOL(rdma_user_mmap_entry_insert_range); + +/** + * rdma_user_mmap_entry_insert() - Insert an entry to the mmap_xa. + * + * @ucontext: associated user context. + * @entry: the entry to insert into the mmap_xa + * @length: length of the address that will be mmapped + * + * This function should be called by drivers that use the rdma_user_mmap + * interface for handling user mmapped addresses. The database is handled in + * the core and helper functions are provided to insert entries into the + * database and extract entries when the user calls mmap with the given offset. + * The function allocates a unique page offset that should be provided to user, + * the user will use the offset to retrieve information such as address to + * be mapped and how. + * + * Return: 0 on success and -ENOMEM on failure + */ +int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, + struct rdma_user_mmap_entry *entry, + size_t length) +{ + return rdma_user_mmap_entry_insert_range(ucontext, entry, length, 0, + U32_MAX); +} +EXPORT_SYMBOL(rdma_user_mmap_entry_insert); -- cgit v1.2.3