From ace9429bb58fd418f0c81d4c2835699bddf6bde6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:27:49 +0200 Subject: Adding upstream version 6.6.15. Signed-off-by: Daniel Baumann --- drivers/mtd/nand/raw/fsmc_nand.c | 1236 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 1236 insertions(+) create mode 100644 drivers/mtd/nand/raw/fsmc_nand.c (limited to 'drivers/mtd/nand/raw/fsmc_nand.c') diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c new file mode 100644 index 0000000000..811982da35 --- /dev/null +++ b/drivers/mtd/nand/raw/fsmc_nand.c @@ -0,0 +1,1236 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * ST Microelectronics + * Flexible Static Memory Controller (FSMC) + * Driver for NAND portions + * + * Copyright © 2010 ST Microelectronics + * Vipin Kumar + * Ashish Priyadarshi + * + * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) + * Copyright © 2007 STMicroelectronics Pvt. Ltd. + * Copyright © 2009 Alessandro Rubini + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* fsmc controller registers for NOR flash */ +#define CTRL 0x0 + /* ctrl register definitions */ + #define BANK_ENABLE BIT(0) + #define MUXED BIT(1) + #define NOR_DEV (2 << 2) + #define WIDTH_16 BIT(4) + #define RSTPWRDWN BIT(6) + #define WPROT BIT(7) + #define WRT_ENABLE BIT(12) + #define WAIT_ENB BIT(13) + +#define CTRL_TIM 0x4 + /* ctrl_tim register definitions */ + +#define FSMC_NOR_BANK_SZ 0x8 +#define FSMC_NOR_REG_SIZE 0x40 + +#define FSMC_NOR_REG(base, bank, reg) ((base) + \ + (FSMC_NOR_BANK_SZ * (bank)) + \ + (reg)) + +/* fsmc controller registers for NAND flash */ +#define FSMC_PC 0x00 + /* pc register definitions */ + #define FSMC_RESET BIT(0) + #define FSMC_WAITON BIT(1) + #define FSMC_ENABLE BIT(2) + #define FSMC_DEVTYPE_NAND BIT(3) + #define FSMC_DEVWID_16 BIT(4) + #define FSMC_ECCEN BIT(6) + #define FSMC_ECCPLEN_256 BIT(7) + #define FSMC_TCLR_SHIFT (9) + #define FSMC_TCLR_MASK (0xF) + #define FSMC_TAR_SHIFT (13) + #define FSMC_TAR_MASK (0xF) +#define STS 0x04 + /* sts register definitions */ + #define FSMC_CODE_RDY BIT(15) +#define COMM 0x08 + /* comm register definitions */ + #define FSMC_TSET_SHIFT 0 + #define FSMC_TSET_MASK 0xFF + #define FSMC_TWAIT_SHIFT 8 + #define FSMC_TWAIT_MASK 0xFF + #define FSMC_THOLD_SHIFT 16 + #define FSMC_THOLD_MASK 0xFF + #define FSMC_THIZ_SHIFT 24 + #define FSMC_THIZ_MASK 0xFF +#define ATTRIB 0x0C +#define IOATA 0x10 +#define ECC1 0x14 +#define ECC2 0x18 +#define ECC3 0x1C +#define FSMC_NAND_BANK_SZ 0x20 + +#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) + +/* + * According to SPEAr300 Reference Manual (RM0082) + * TOUDEL = 7ns (Output delay from the flip-flops to the board) + * TINDEL = 5ns (Input delay from the board to the flipflop) + */ +#define TOUTDEL 7000 +#define TINDEL 5000 + +struct fsmc_nand_timings { + u8 tclr; + u8 tar; + u8 thiz; + u8 thold; + u8 twait; + u8 tset; +}; + +enum access_mode { + USE_DMA_ACCESS = 1, + USE_WORD_ACCESS, +}; + +/** + * struct fsmc_nand_data - structure for FSMC NAND device state + * + * @base: Inherit from the nand_controller struct + * @pid: Part ID on the AMBA PrimeCell format + * @nand: Chip related info for a NAND flash. + * + * @bank: Bank number for probed device. + * @dev: Parent device + * @mode: Access mode + * @clk: Clock structure for FSMC. + * + * @read_dma_chan: DMA channel for read access + * @write_dma_chan: DMA channel for write access to NAND + * @dma_access_complete: Completion structure + * + * @dev_timings: NAND timings + * + * @data_pa: NAND Physical port for Data. + * @data_va: NAND port for Data. + * @cmd_va: NAND port for Command. + * @addr_va: NAND port for Address. + * @regs_va: Registers base address for a given bank. + */ +struct fsmc_nand_data { + struct nand_controller base; + u32 pid; + struct nand_chip nand; + + unsigned int bank; + struct device *dev; + enum access_mode mode; + struct clk *clk; + + /* DMA related objects */ + struct dma_chan *read_dma_chan; + struct dma_chan *write_dma_chan; + struct completion dma_access_complete; + + struct fsmc_nand_timings *dev_timings; + + dma_addr_t data_pa; + void __iomem *data_va; + void __iomem *cmd_va; + void __iomem *addr_va; + void __iomem *regs_va; +}; + +static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 2; + oobregion->length = 3; + + return 0; +} + +static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 8; + + if (section < chip->ecc.steps - 1) + oobregion->length = 8; + else + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { + .ecc = fsmc_ecc1_ooblayout_ecc, + .free = fsmc_ecc1_ooblayout_free, +}; + +/* + * ECC placement definitions in oobfree type format. + * There are 13 bytes of ecc for every 512 byte block and it has to be read + * consecutively and immediately after the 512 byte data block for hardware to + * generate the error bit offsets in 512 byte data. + */ +static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->length = chip->ecc.bytes; + + if (!section && mtd->writesize <= 512) + oobregion->offset = 0; + else + oobregion->offset = (section * 16) + 2; + + return 0; +} + +static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 15; + + if (section < chip->ecc.steps - 1) + oobregion->length = 3; + else + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { + .ecc = fsmc_ecc4_ooblayout_ecc, + .free = fsmc_ecc4_ooblayout_free, +}; + +static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip) +{ + return container_of(chip, struct fsmc_nand_data, nand); +} + +/* + * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine + * + * This routine initializes timing parameters related to NAND memory access in + * FSMC registers + */ +static void fsmc_nand_setup(struct fsmc_nand_data *host, + struct fsmc_nand_timings *tims) +{ + u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; + u32 tclr, tar, thiz, thold, twait, tset; + + tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; + tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; + thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; + thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; + twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; + tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; + + if (host->nand.options & NAND_BUSWIDTH_16) + value |= FSMC_DEVWID_16; + + writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC); + writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM); + writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB); +} + +static int fsmc_calc_timings(struct fsmc_nand_data *host, + const struct nand_sdr_timings *sdrt, + struct fsmc_nand_timings *tims) +{ + unsigned long hclk = clk_get_rate(host->clk); + unsigned long hclkn = NSEC_PER_SEC / hclk; + u32 thiz, thold, twait, tset, twait_min; + + if (sdrt->tRC_min < 30000) + return -EOPNOTSUPP; + + tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1; + if (tims->tar > FSMC_TAR_MASK) + tims->tar = FSMC_TAR_MASK; + tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1; + if (tims->tclr > FSMC_TCLR_MASK) + tims->tclr = FSMC_TCLR_MASK; + + thiz = sdrt->tCS_min - sdrt->tWP_min; + tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn); + + thold = sdrt->tDH_min; + if (thold < sdrt->tCH_min) + thold = sdrt->tCH_min; + if (thold < sdrt->tCLH_min) + thold = sdrt->tCLH_min; + if (thold < sdrt->tWH_min) + thold = sdrt->tWH_min; + if (thold < sdrt->tALH_min) + thold = sdrt->tALH_min; + if (thold < sdrt->tREH_min) + thold = sdrt->tREH_min; + tims->thold = DIV_ROUND_UP(thold / 1000, hclkn); + if (tims->thold == 0) + tims->thold = 1; + else if (tims->thold > FSMC_THOLD_MASK) + tims->thold = FSMC_THOLD_MASK; + + tset = max(sdrt->tCS_min - sdrt->tWP_min, + sdrt->tCEA_max - sdrt->tREA_max); + tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1; + if (tims->tset == 0) + tims->tset = 1; + else if (tims->tset > FSMC_TSET_MASK) + tims->tset = FSMC_TSET_MASK; + + /* + * According to SPEAr300 Reference Manual (RM0082) which gives more + * information related to FSMSC timings than the SPEAr600 one (RM0305), + * twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL + */ + twait_min = sdrt->tCEA_max - ((tims->tset + 1) * hclkn * 1000) + + TOUTDEL + TINDEL; + twait = max3(sdrt->tRP_min, sdrt->tWP_min, twait_min); + + tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1; + if (tims->twait == 0) + tims->twait = 1; + else if (tims->twait > FSMC_TWAIT_MASK) + tims->twait = FSMC_TWAIT_MASK; + + return 0; +} + +static int fsmc_setup_interface(struct nand_chip *nand, int csline, + const struct nand_interface_config *conf) +{ + struct fsmc_nand_data *host = nand_to_fsmc(nand); + struct fsmc_nand_timings tims; + const struct nand_sdr_timings *sdrt; + int ret; + + sdrt = nand_get_sdr_timings(conf); + if (IS_ERR(sdrt)) + return PTR_ERR(sdrt); + + ret = fsmc_calc_timings(host, sdrt, &tims); + if (ret) + return ret; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + fsmc_nand_setup(host, &tims); + + return 0; +} + +/* + * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers + */ +static void fsmc_enable_hwecc(struct nand_chip *chip, int mode) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + + writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256, + host->regs_va + FSMC_PC); + writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN, + host->regs_va + FSMC_PC); + writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN, + host->regs_va + FSMC_PC); +} + +/* + * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by + * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to + * max of 8-bits) + */ +static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data, + u8 *ecc) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + u32 ecc_tmp; + unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; + + do { + if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY) + break; + + cond_resched(); + } while (!time_after_eq(jiffies, deadline)); + + if (time_after_eq(jiffies, deadline)) { + dev_err(host->dev, "calculate ecc timed out\n"); + return -ETIMEDOUT; + } + + ecc_tmp = readl_relaxed(host->regs_va + ECC1); + ecc[0] = ecc_tmp; + ecc[1] = ecc_tmp >> 8; + ecc[2] = ecc_tmp >> 16; + ecc[3] = ecc_tmp >> 24; + + ecc_tmp = readl_relaxed(host->regs_va + ECC2); + ecc[4] = ecc_tmp; + ecc[5] = ecc_tmp >> 8; + ecc[6] = ecc_tmp >> 16; + ecc[7] = ecc_tmp >> 24; + + ecc_tmp = readl_relaxed(host->regs_va + ECC3); + ecc[8] = ecc_tmp; + ecc[9] = ecc_tmp >> 8; + ecc[10] = ecc_tmp >> 16; + ecc[11] = ecc_tmp >> 24; + + ecc_tmp = readl_relaxed(host->regs_va + STS); + ecc[12] = ecc_tmp >> 16; + + return 0; +} + +/* + * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by + * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to + * max of 1-bit) + */ +static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data, + u8 *ecc) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + u32 ecc_tmp; + + ecc_tmp = readl_relaxed(host->regs_va + ECC1); + ecc[0] = ecc_tmp; + ecc[1] = ecc_tmp >> 8; + ecc[2] = ecc_tmp >> 16; + + return 0; +} + +static int fsmc_correct_ecc1(struct nand_chip *chip, + unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER; + + return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, + chip->ecc.size, sm_order); +} + +/* Count the number of 0's in buff upto a max of max_bits */ +static int count_written_bits(u8 *buff, int size, int max_bits) +{ + int k, written_bits = 0; + + for (k = 0; k < size; k++) { + written_bits += hweight8(~buff[k]); + if (written_bits > max_bits) + break; + } + + return written_bits; +} + +static void dma_complete(void *param) +{ + struct fsmc_nand_data *host = param; + + complete(&host->dma_access_complete); +} + +static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, + enum dma_data_direction direction) +{ + struct dma_chan *chan; + struct dma_device *dma_dev; + struct dma_async_tx_descriptor *tx; + dma_addr_t dma_dst, dma_src, dma_addr; + dma_cookie_t cookie; + unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int ret; + unsigned long time_left; + + if (direction == DMA_TO_DEVICE) + chan = host->write_dma_chan; + else if (direction == DMA_FROM_DEVICE) + chan = host->read_dma_chan; + else + return -EINVAL; + + dma_dev = chan->device; + dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); + + if (direction == DMA_TO_DEVICE) { + dma_src = dma_addr; + dma_dst = host->data_pa; + } else { + dma_src = host->data_pa; + dma_dst = dma_addr; + } + + tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, + len, flags); + if (!tx) { + dev_err(host->dev, "device_prep_dma_memcpy error\n"); + ret = -EIO; + goto unmap_dma; + } + + tx->callback = dma_complete; + tx->callback_param = host; + cookie = tx->tx_submit(tx); + + ret = dma_submit_error(cookie); + if (ret) { + dev_err(host->dev, "dma_submit_error %d\n", cookie); + goto unmap_dma; + } + + dma_async_issue_pending(chan); + + time_left = + wait_for_completion_timeout(&host->dma_access_complete, + msecs_to_jiffies(3000)); + if (time_left == 0) { + dmaengine_terminate_all(chan); + dev_err(host->dev, "wait_for_completion_timeout\n"); + ret = -ETIMEDOUT; + goto unmap_dma; + } + + ret = 0; + +unmap_dma: + dma_unmap_single(dma_dev->dev, dma_addr, len, direction); + + return ret; +} + +/* + * fsmc_write_buf - write buffer to chip + * @host: FSMC NAND controller + * @buf: data buffer + * @len: number of bytes to write + */ +static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf, + int len) +{ + int i; + + if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && + IS_ALIGNED(len, sizeof(u32))) { + u32 *p = (u32 *)buf; + + len = len >> 2; + for (i = 0; i < len; i++) + writel_relaxed(p[i], host->data_va); + } else { + for (i = 0; i < len; i++) + writeb_relaxed(buf[i], host->data_va); + } +} + +/* + * fsmc_read_buf - read chip data into buffer + * @host: FSMC NAND controller + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len) +{ + int i; + + if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && + IS_ALIGNED(len, sizeof(u32))) { + u32 *p = (u32 *)buf; + + len = len >> 2; + for (i = 0; i < len; i++) + p[i] = readl_relaxed(host->data_va); + } else { + for (i = 0; i < len; i++) + buf[i] = readb_relaxed(host->data_va); + } +} + +/* + * fsmc_read_buf_dma - read chip data into buffer + * @host: FSMC NAND controller + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf, + int len) +{ + dma_xfer(host, buf, len, DMA_FROM_DEVICE); +} + +/* + * fsmc_write_buf_dma - write buffer to chip + * @host: FSMC NAND controller + * @buf: data buffer + * @len: number of bytes to write + */ +static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf, + int len) +{ + dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); +} + +/* + * fsmc_exec_op - hook called by the core to execute NAND operations + * + * This controller is simple enough and thus does not need to use the parser + * provided by the core, instead, handle every situation here. + */ +static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op, + bool check_only) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + const struct nand_op_instr *instr = NULL; + int ret = 0; + unsigned int op_id; + int i; + + if (check_only) + return 0; + + pr_debug("Executing operation [%d instructions]:\n", op->ninstrs); + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) + writeb_relaxed(instr->ctx.addr.addrs[i], + host->addr_va); + break; + + case NAND_OP_DATA_IN_INSTR: + if (host->mode == USE_DMA_ACCESS) + fsmc_read_buf_dma(host, instr->ctx.data.buf.in, + instr->ctx.data.len); + else + fsmc_read_buf(host, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + if (host->mode == USE_DMA_ACCESS) + fsmc_write_buf_dma(host, + instr->ctx.data.buf.out, + instr->ctx.data.len); + else + fsmc_write_buf(host, instr->ctx.data.buf.out, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + ret = nand_soft_waitrdy(chip, + instr->ctx.waitrdy.timeout_ms); + break; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); + } + + return ret; +} + +/* + * fsmc_read_page_hwecc + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller expects OOB data read to chip->oob_poi + * @page: page number to read + * + * This routine is needed for fsmc version 8 as reading from NAND chip has to be + * performed in a strict sequence as follows: + * data(512 byte) -> ecc(13 byte) + * After this read, fsmc hardware generates and reports error data bits(up to a + * max of 8 bits) + */ +static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i, j, s, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + u8 *p = buf; + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *ecc_code = chip->ecc.code_buf; + int off, len, ret, group = 0; + /* + * ecc_oob is intentionally taken as u16. In 16bit devices, we + * end up reading 14 bytes (7 words) from oob. The local array is + * to maintain word alignment + */ + u16 ecc_oob[7]; + u8 *oob = (u8 *)&ecc_oob[0]; + unsigned int max_bitflips = 0; + + for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { + nand_read_page_op(chip, page, s * eccsize, NULL, 0); + chip->ecc.hwctl(chip, NAND_ECC_READ); + ret = nand_read_data_op(chip, p, eccsize, false, false); + if (ret) + return ret; + + for (j = 0; j < eccbytes;) { + struct mtd_oob_region oobregion; + + ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); + if (ret) + return ret; + + off = oobregion.offset; + len = oobregion.length; + + /* + * length is intentionally kept a higher multiple of 2 + * to read at least 13 bytes even in case of 16 bit NAND + * devices + */ + if (chip->options & NAND_BUSWIDTH_16) + len = roundup(len, 2); + + nand_read_oob_op(chip, page, off, oob + j, len); + j += len; + } + + memcpy(&ecc_code[i], oob, chip->ecc.bytes); + chip->ecc.calculate(chip, p, &ecc_calc[i]); + + stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +/* + * fsmc_bch8_correct_data + * @mtd: mtd info structure + * @dat: buffer of read data + * @read_ecc: ecc read from device spare area + * @calc_ecc: ecc calculated from read data + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset information of 13 bits each in 512 bytes of read data. + */ +static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + struct fsmc_nand_data *host = nand_to_fsmc(chip); + u32 err_idx[8]; + u32 num_err, i; + u32 ecc1, ecc2, ecc3, ecc4; + + num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF; + + /* no bit flipping */ + if (likely(num_err == 0)) + return 0; + + /* too many errors */ + if (unlikely(num_err > 8)) { + /* + * This is a temporary erase check. A newly erased page read + * would result in an ecc error because the oob data is also + * erased to FF and the calculated ecc for an FF data is not + * FF..FF. + * This is a workaround to skip performing correction in case + * data is FF..FF + * + * Logic: + * For every page, each bit written as 0 is counted until these + * number of bits are greater than 8 (the maximum correction + * capability of FSMC for each 512 + 13 bytes) + */ + + int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); + int bits_data = count_written_bits(dat, chip->ecc.size, 8); + + if ((bits_ecc + bits_data) <= 8) { + if (bits_data) + memset(dat, 0xff, chip->ecc.size); + return bits_data; + } + + return -EBADMSG; + } + + /* + * ------------------- calc_ecc[] bit wise -----------|--13 bits--| + * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset information of 13 bits each. calc_ecc is copied into a + * u64 array and error offset indexes are populated in err_idx + * array + */ + ecc1 = readl_relaxed(host->regs_va + ECC1); + ecc2 = readl_relaxed(host->regs_va + ECC2); + ecc3 = readl_relaxed(host->regs_va + ECC3); + ecc4 = readl_relaxed(host->regs_va + STS); + + err_idx[0] = (ecc1 >> 0) & 0x1FFF; + err_idx[1] = (ecc1 >> 13) & 0x1FFF; + err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); + err_idx[3] = (ecc2 >> 7) & 0x1FFF; + err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); + err_idx[5] = (ecc3 >> 1) & 0x1FFF; + err_idx[6] = (ecc3 >> 14) & 0x1FFF; + err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); + + i = 0; + while (num_err--) { + err_idx[i] ^= 3; + + if (err_idx[i] < chip->ecc.size * 8) { + int err = err_idx[i]; + + dat[err >> 3] ^= BIT(err & 7); + i++; + } + } + return i; +} + +static bool filter(struct dma_chan *chan, void *slave) +{ + chan->private = slave; + return true; +} + +static int fsmc_nand_probe_config_dt(struct platform_device *pdev, + struct fsmc_nand_data *host, + struct nand_chip *nand) +{ + struct device_node *np = pdev->dev.of_node; + u32 val; + int ret; + + nand->options = 0; + + if (!of_property_read_u32(np, "bank-width", &val)) { + if (val == 2) { + nand->options |= NAND_BUSWIDTH_16; + } else if (val != 1) { + dev_err(&pdev->dev, "invalid bank-width %u\n", val); + return -EINVAL; + } + } + + if (of_property_read_bool(np, "nand-skip-bbtscan")) + nand->options |= NAND_SKIP_BBTSCAN; + + host->dev_timings = devm_kzalloc(&pdev->dev, + sizeof(*host->dev_timings), + GFP_KERNEL); + if (!host->dev_timings) + return -ENOMEM; + + ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, + sizeof(*host->dev_timings)); + if (ret) + host->dev_timings = NULL; + + /* Set default NAND bank to 0 */ + host->bank = 0; + if (!of_property_read_u32(np, "bank", &val)) { + if (val > 3) { + dev_err(&pdev->dev, "invalid bank %u\n", val); + return -EINVAL; + } + host->bank = val; + } + return 0; +} + +static int fsmc_nand_attach_chip(struct nand_chip *nand) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct fsmc_nand_data *host = nand_to_fsmc(nand); + + if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) + nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + if (!nand->ecc.size) + nand->ecc.size = 512; + + if (AMBA_REV_BITS(host->pid) >= 8) { + nand->ecc.read_page = fsmc_read_page_hwecc; + nand->ecc.calculate = fsmc_read_hwecc_ecc4; + nand->ecc.correct = fsmc_bch8_correct_data; + nand->ecc.bytes = 13; + nand->ecc.strength = 8; + } + + if (AMBA_REV_BITS(host->pid) >= 8) { + switch (mtd->oobsize) { + case 16: + case 64: + case 128: + case 224: + case 256: + break; + default: + dev_warn(host->dev, + "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); + + return 0; + } + + switch (nand->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + dev_info(host->dev, "Using 1-bit HW ECC scheme\n"); + nand->ecc.calculate = fsmc_read_hwecc_ecc1; + nand->ecc.correct = fsmc_correct_ecc1; + nand->ecc.hwctl = fsmc_enable_hwecc; + nand->ecc.bytes = 3; + nand->ecc.strength = 1; + nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; + break; + + case NAND_ECC_ENGINE_TYPE_SOFT: + if (nand->ecc.algo == NAND_ECC_ALGO_BCH) { + dev_info(host->dev, + "Using 4-bit SW BCH ECC scheme\n"); + break; + } + break; + + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + + default: + dev_err(host->dev, "Unsupported ECC mode!\n"); + return -ENOTSUPP; + } + + /* + * Don't set layout for BCH4 SW ECC. This will be + * generated later during BCH initialization. + */ + if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { + switch (mtd->oobsize) { + case 16: + case 64: + case 128: + mtd_set_ooblayout(mtd, + &fsmc_ecc1_ooblayout_ops); + break; + default: + dev_warn(host->dev, + "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + return -EINVAL; + } + } + + return 0; +} + +static const struct nand_controller_ops fsmc_nand_controller_ops = { + .attach_chip = fsmc_nand_attach_chip, + .exec_op = fsmc_exec_op, + .setup_interface = fsmc_setup_interface, +}; + +/** + * fsmc_nand_disable() - Disables the NAND bank + * @host: The instance to disable + */ +static void fsmc_nand_disable(struct fsmc_nand_data *host) +{ + u32 val; + + val = readl(host->regs_va + FSMC_PC); + val &= ~FSMC_ENABLE; + writel(val, host->regs_va + FSMC_PC); +} + +/* + * fsmc_nand_probe - Probe function + * @pdev: platform device structure + */ +static int __init fsmc_nand_probe(struct platform_device *pdev) +{ + struct fsmc_nand_data *host; + struct mtd_info *mtd; + struct nand_chip *nand; + struct resource *res; + void __iomem *base; + dma_cap_mask_t mask; + int ret = 0; + u32 pid; + int i; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + nand = &host->nand; + + ret = fsmc_nand_probe_config_dt(pdev, host, nand); + if (ret) + return ret; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); + host->data_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->data_va)) + return PTR_ERR(host->data_va); + + host->data_pa = (dma_addr_t)res->start; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); + host->addr_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->addr_va)) + return PTR_ERR(host->addr_va); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); + host->cmd_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->cmd_va)) + return PTR_ERR(host->cmd_va); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); + base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(base)) + return PTR_ERR(base); + + host->regs_va = base + FSMC_NOR_REG_SIZE + + (host->bank * FSMC_NAND_BANK_SZ); + + host->clk = devm_clk_get_enabled(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "failed to fetch block clock\n"); + return PTR_ERR(host->clk); + } + + /* + * This device ID is actually a common AMBA ID as used on the + * AMBA PrimeCell bus. However it is not a PrimeCell. + */ + for (pid = 0, i = 0; i < 4; i++) + pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & + 255) << (i * 8); + + host->pid = pid; + + dev_info(&pdev->dev, + "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n", + AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), + AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); + + host->dev = &pdev->dev; + + if (host->mode == USE_DMA_ACCESS) + init_completion(&host->dma_access_complete); + + /* Link all private pointers */ + mtd = nand_to_mtd(&host->nand); + nand_set_flash_node(nand, pdev->dev.of_node); + + mtd->dev.parent = &pdev->dev; + + nand->badblockbits = 7; + + if (host->mode == USE_DMA_ACCESS) { + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + host->read_dma_chan = dma_request_channel(mask, filter, NULL); + if (!host->read_dma_chan) { + dev_err(&pdev->dev, "Unable to get read dma channel\n"); + ret = -ENODEV; + goto disable_fsmc; + } + host->write_dma_chan = dma_request_channel(mask, filter, NULL); + if (!host->write_dma_chan) { + dev_err(&pdev->dev, "Unable to get write dma channel\n"); + ret = -ENODEV; + goto release_dma_read_chan; + } + } + + if (host->dev_timings) { + fsmc_nand_setup(host, host->dev_timings); + nand->options |= NAND_KEEP_TIMINGS; + } + + nand_controller_init(&host->base); + host->base.ops = &fsmc_nand_controller_ops; + nand->controller = &host->base; + + /* + * Scan to find existence of the device + */ + ret = nand_scan(nand, 1); + if (ret) + goto release_dma_write_chan; + + mtd->name = "nand"; + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto cleanup_nand; + + platform_set_drvdata(pdev, host); + dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); + + return 0; + +cleanup_nand: + nand_cleanup(nand); +release_dma_write_chan: + if (host->mode == USE_DMA_ACCESS) + dma_release_channel(host->write_dma_chan); +release_dma_read_chan: + if (host->mode == USE_DMA_ACCESS) + dma_release_channel(host->read_dma_chan); +disable_fsmc: + fsmc_nand_disable(host); + + return ret; +} + +/* + * Clean up routine + */ +static void fsmc_nand_remove(struct platform_device *pdev) +{ + struct fsmc_nand_data *host = platform_get_drvdata(pdev); + + if (host) { + struct nand_chip *chip = &host->nand; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + fsmc_nand_disable(host); + + if (host->mode == USE_DMA_ACCESS) { + dma_release_channel(host->write_dma_chan); + dma_release_channel(host->read_dma_chan); + } + } +} + +#ifdef CONFIG_PM_SLEEP +static int fsmc_nand_suspend(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + + if (host) + clk_disable_unprepare(host->clk); + + return 0; +} + +static int fsmc_nand_resume(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + int ret; + + if (host) { + ret = clk_prepare_enable(host->clk); + if (ret) { + dev_err(dev, "failed to enable clk\n"); + return ret; + } + if (host->dev_timings) + fsmc_nand_setup(host, host->dev_timings); + nand_reset(&host->nand, 0); + } + + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); + +static const struct of_device_id fsmc_nand_id_table[] = { + { .compatible = "st,spear600-fsmc-nand" }, + { .compatible = "stericsson,fsmc-nand" }, + {} +}; +MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); + +static struct platform_driver fsmc_nand_driver = { + .remove_new = fsmc_nand_remove, + .driver = { + .name = "fsmc-nand", + .of_match_table = fsmc_nand_id_table, + .pm = &fsmc_nand_pm_ops, + }, +}; + +module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Vipin Kumar , Ashish Priyadarshi"); +MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); -- cgit v1.2.3