From ace9429bb58fd418f0c81d4c2835699bddf6bde6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:27:49 +0200 Subject: Adding upstream version 6.6.15. Signed-off-by: Daniel Baumann --- kernel/workqueue.c | 6828 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 6828 insertions(+) create mode 100644 kernel/workqueue.c (limited to 'kernel/workqueue.c') diff --git a/kernel/workqueue.c b/kernel/workqueue.c new file mode 100644 index 000000000..e6a95bb74 --- /dev/null +++ b/kernel/workqueue.c @@ -0,0 +1,6828 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * kernel/workqueue.c - generic async execution with shared worker pool + * + * Copyright (C) 2002 Ingo Molnar + * + * Derived from the taskqueue/keventd code by: + * David Woodhouse + * Andrew Morton + * Kai Petzke + * Theodore Ts'o + * + * Made to use alloc_percpu by Christoph Lameter. + * + * Copyright (C) 2010 SUSE Linux Products GmbH + * Copyright (C) 2010 Tejun Heo + * + * This is the generic async execution mechanism. Work items as are + * executed in process context. The worker pool is shared and + * automatically managed. There are two worker pools for each CPU (one for + * normal work items and the other for high priority ones) and some extra + * pools for workqueues which are not bound to any specific CPU - the + * number of these backing pools is dynamic. + * + * Please read Documentation/core-api/workqueue.rst for details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "workqueue_internal.h" + +enum { + /* + * worker_pool flags + * + * A bound pool is either associated or disassociated with its CPU. + * While associated (!DISASSOCIATED), all workers are bound to the + * CPU and none has %WORKER_UNBOUND set and concurrency management + * is in effect. + * + * While DISASSOCIATED, the cpu may be offline and all workers have + * %WORKER_UNBOUND set and concurrency management disabled, and may + * be executing on any CPU. The pool behaves as an unbound one. + * + * Note that DISASSOCIATED should be flipped only while holding + * wq_pool_attach_mutex to avoid changing binding state while + * worker_attach_to_pool() is in progress. + */ + POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ + POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ + + /* worker flags */ + WORKER_DIE = 1 << 1, /* die die die */ + WORKER_IDLE = 1 << 2, /* is idle */ + WORKER_PREP = 1 << 3, /* preparing to run works */ + WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ + WORKER_UNBOUND = 1 << 7, /* worker is unbound */ + WORKER_REBOUND = 1 << 8, /* worker was rebound */ + + WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | + WORKER_UNBOUND | WORKER_REBOUND, + + NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ + + UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ + BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ + + MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ + IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ + + MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, + /* call for help after 10ms + (min two ticks) */ + MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ + CREATE_COOLDOWN = HZ, /* time to breath after fail */ + + /* + * Rescue workers are used only on emergencies and shared by + * all cpus. Give MIN_NICE. + */ + RESCUER_NICE_LEVEL = MIN_NICE, + HIGHPRI_NICE_LEVEL = MIN_NICE, + + WQ_NAME_LEN = 24, +}; + +/* + * Structure fields follow one of the following exclusion rules. + * + * I: Modifiable by initialization/destruction paths and read-only for + * everyone else. + * + * P: Preemption protected. Disabling preemption is enough and should + * only be modified and accessed from the local cpu. + * + * L: pool->lock protected. Access with pool->lock held. + * + * K: Only modified by worker while holding pool->lock. Can be safely read by + * self, while holding pool->lock or from IRQ context if %current is the + * kworker. + * + * S: Only modified by worker self. + * + * A: wq_pool_attach_mutex protected. + * + * PL: wq_pool_mutex protected. + * + * PR: wq_pool_mutex protected for writes. RCU protected for reads. + * + * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. + * + * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or + * RCU for reads. + * + * WQ: wq->mutex protected. + * + * WR: wq->mutex protected for writes. RCU protected for reads. + * + * MD: wq_mayday_lock protected. + * + * WD: Used internally by the watchdog. + */ + +/* struct worker is defined in workqueue_internal.h */ + +struct worker_pool { + raw_spinlock_t lock; /* the pool lock */ + int cpu; /* I: the associated cpu */ + int node; /* I: the associated node ID */ + int id; /* I: pool ID */ + unsigned int flags; /* L: flags */ + + unsigned long watchdog_ts; /* L: watchdog timestamp */ + bool cpu_stall; /* WD: stalled cpu bound pool */ + + /* + * The counter is incremented in a process context on the associated CPU + * w/ preemption disabled, and decremented or reset in the same context + * but w/ pool->lock held. The readers grab pool->lock and are + * guaranteed to see if the counter reached zero. + */ + int nr_running; + + struct list_head worklist; /* L: list of pending works */ + + int nr_workers; /* L: total number of workers */ + int nr_idle; /* L: currently idle workers */ + + struct list_head idle_list; /* L: list of idle workers */ + struct timer_list idle_timer; /* L: worker idle timeout */ + struct work_struct idle_cull_work; /* L: worker idle cleanup */ + + struct timer_list mayday_timer; /* L: SOS timer for workers */ + + /* a workers is either on busy_hash or idle_list, or the manager */ + DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); + /* L: hash of busy workers */ + + struct worker *manager; /* L: purely informational */ + struct list_head workers; /* A: attached workers */ + struct list_head dying_workers; /* A: workers about to die */ + struct completion *detach_completion; /* all workers detached */ + + struct ida worker_ida; /* worker IDs for task name */ + + struct workqueue_attrs *attrs; /* I: worker attributes */ + struct hlist_node hash_node; /* PL: unbound_pool_hash node */ + int refcnt; /* PL: refcnt for unbound pools */ + + /* + * Destruction of pool is RCU protected to allow dereferences + * from get_work_pool(). + */ + struct rcu_head rcu; +}; + +/* + * Per-pool_workqueue statistics. These can be monitored using + * tools/workqueue/wq_monitor.py. + */ +enum pool_workqueue_stats { + PWQ_STAT_STARTED, /* work items started execution */ + PWQ_STAT_COMPLETED, /* work items completed execution */ + PWQ_STAT_CPU_TIME, /* total CPU time consumed */ + PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ + PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ + PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ + PWQ_STAT_MAYDAY, /* maydays to rescuer */ + PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ + + PWQ_NR_STATS, +}; + +/* + * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS + * of work_struct->data are used for flags and the remaining high bits + * point to the pwq; thus, pwqs need to be aligned at two's power of the + * number of flag bits. + */ +struct pool_workqueue { + struct worker_pool *pool; /* I: the associated pool */ + struct workqueue_struct *wq; /* I: the owning workqueue */ + int work_color; /* L: current color */ + int flush_color; /* L: flushing color */ + int refcnt; /* L: reference count */ + int nr_in_flight[WORK_NR_COLORS]; + /* L: nr of in_flight works */ + + /* + * nr_active management and WORK_STRUCT_INACTIVE: + * + * When pwq->nr_active >= max_active, new work item is queued to + * pwq->inactive_works instead of pool->worklist and marked with + * WORK_STRUCT_INACTIVE. + * + * All work items marked with WORK_STRUCT_INACTIVE do not participate + * in pwq->nr_active and all work items in pwq->inactive_works are + * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE + * work items are in pwq->inactive_works. Some of them are ready to + * run in pool->worklist or worker->scheduled. Those work itmes are + * only struct wq_barrier which is used for flush_work() and should + * not participate in pwq->nr_active. For non-barrier work item, it + * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. + */ + int nr_active; /* L: nr of active works */ + int max_active; /* L: max active works */ + struct list_head inactive_works; /* L: inactive works */ + struct list_head pwqs_node; /* WR: node on wq->pwqs */ + struct list_head mayday_node; /* MD: node on wq->maydays */ + + u64 stats[PWQ_NR_STATS]; + + /* + * Release of unbound pwq is punted to a kthread_worker. See put_pwq() + * and pwq_release_workfn() for details. pool_workqueue itself is also + * RCU protected so that the first pwq can be determined without + * grabbing wq->mutex. + */ + struct kthread_work release_work; + struct rcu_head rcu; +} __aligned(1 << WORK_STRUCT_FLAG_BITS); + +/* + * Structure used to wait for workqueue flush. + */ +struct wq_flusher { + struct list_head list; /* WQ: list of flushers */ + int flush_color; /* WQ: flush color waiting for */ + struct completion done; /* flush completion */ +}; + +struct wq_device; + +/* + * The externally visible workqueue. It relays the issued work items to + * the appropriate worker_pool through its pool_workqueues. + */ +struct workqueue_struct { + struct list_head pwqs; /* WR: all pwqs of this wq */ + struct list_head list; /* PR: list of all workqueues */ + + struct mutex mutex; /* protects this wq */ + int work_color; /* WQ: current work color */ + int flush_color; /* WQ: current flush color */ + atomic_t nr_pwqs_to_flush; /* flush in progress */ + struct wq_flusher *first_flusher; /* WQ: first flusher */ + struct list_head flusher_queue; /* WQ: flush waiters */ + struct list_head flusher_overflow; /* WQ: flush overflow list */ + + struct list_head maydays; /* MD: pwqs requesting rescue */ + struct worker *rescuer; /* MD: rescue worker */ + + int nr_drainers; /* WQ: drain in progress */ + int saved_max_active; /* WQ: saved pwq max_active */ + + struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ + struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ + +#ifdef CONFIG_SYSFS + struct wq_device *wq_dev; /* I: for sysfs interface */ +#endif +#ifdef CONFIG_LOCKDEP + char *lock_name; + struct lock_class_key key; + struct lockdep_map lockdep_map; +#endif + char name[WQ_NAME_LEN]; /* I: workqueue name */ + + /* + * Destruction of workqueue_struct is RCU protected to allow walking + * the workqueues list without grabbing wq_pool_mutex. + * This is used to dump all workqueues from sysrq. + */ + struct rcu_head rcu; + + /* hot fields used during command issue, aligned to cacheline */ + unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ + struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ +}; + +static struct kmem_cache *pwq_cache; + +/* + * Each pod type describes how CPUs should be grouped for unbound workqueues. + * See the comment above workqueue_attrs->affn_scope. + */ +struct wq_pod_type { + int nr_pods; /* number of pods */ + cpumask_var_t *pod_cpus; /* pod -> cpus */ + int *pod_node; /* pod -> node */ + int *cpu_pod; /* cpu -> pod */ +}; + +static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; +static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; + +static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { + [WQ_AFFN_DFL] = "default", + [WQ_AFFN_CPU] = "cpu", + [WQ_AFFN_SMT] = "smt", + [WQ_AFFN_CACHE] = "cache", + [WQ_AFFN_NUMA] = "numa", + [WQ_AFFN_SYSTEM] = "system", +}; + +/* + * Per-cpu work items which run for longer than the following threshold are + * automatically considered CPU intensive and excluded from concurrency + * management to prevent them from noticeably delaying other per-cpu work items. + * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. + * The actual value is initialized in wq_cpu_intensive_thresh_init(). + */ +static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; +module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); + +/* see the comment above the definition of WQ_POWER_EFFICIENT */ +static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); +module_param_named(power_efficient, wq_power_efficient, bool, 0444); + +static bool wq_online; /* can kworkers be created yet? */ + +/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ +static struct workqueue_attrs *wq_update_pod_attrs_buf; + +static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ +static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ +static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ +/* wait for manager to go away */ +static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); + +static LIST_HEAD(workqueues); /* PR: list of all workqueues */ +static bool workqueue_freezing; /* PL: have wqs started freezing? */ + +/* PL&A: allowable cpus for unbound wqs and work items */ +static cpumask_var_t wq_unbound_cpumask; + +/* for further constrain wq_unbound_cpumask by cmdline parameter*/ +static struct cpumask wq_cmdline_cpumask __initdata; + +/* CPU where unbound work was last round robin scheduled from this CPU */ +static DEFINE_PER_CPU(int, wq_rr_cpu_last); + +/* + * Local execution of unbound work items is no longer guaranteed. The + * following always forces round-robin CPU selection on unbound work items + * to uncover usages which depend on it. + */ +#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU +static bool wq_debug_force_rr_cpu = true; +#else +static bool wq_debug_force_rr_cpu = false; +#endif +module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); + +/* the per-cpu worker pools */ +static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); + +static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ + +/* PL: hash of all unbound pools keyed by pool->attrs */ +static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); + +/* I: attributes used when instantiating standard unbound pools on demand */ +static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; + +/* I: attributes used when instantiating ordered pools on demand */ +static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; + +/* + * I: kthread_worker to release pwq's. pwq release needs to be bounced to a + * process context while holding a pool lock. Bounce to a dedicated kthread + * worker to avoid A-A deadlocks. + */ +static struct kthread_worker *pwq_release_worker; + +struct workqueue_struct *system_wq __read_mostly; +EXPORT_SYMBOL(system_wq); +struct workqueue_struct *system_highpri_wq __read_mostly; +EXPORT_SYMBOL_GPL(system_highpri_wq); +struct workqueue_struct *system_long_wq __read_mostly; +EXPORT_SYMBOL_GPL(system_long_wq); +struct workqueue_struct *system_unbound_wq __read_mostly; +EXPORT_SYMBOL_GPL(system_unbound_wq); +struct workqueue_struct *system_freezable_wq __read_mostly; +EXPORT_SYMBOL_GPL(system_freezable_wq); +struct workqueue_struct *system_power_efficient_wq __read_mostly; +EXPORT_SYMBOL_GPL(system_power_efficient_wq); +struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; +EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); + +static int worker_thread(void *__worker); +static void workqueue_sysfs_unregister(struct workqueue_struct *wq); +static void show_pwq(struct pool_workqueue *pwq); +static void show_one_worker_pool(struct worker_pool *pool); + +#define CREATE_TRACE_POINTS +#include + +#define assert_rcu_or_pool_mutex() \ + RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ + !lockdep_is_held(&wq_pool_mutex), \ + "RCU or wq_pool_mutex should be held") + +#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ + RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ + !lockdep_is_held(&wq->mutex) && \ + !lockdep_is_held(&wq_pool_mutex), \ + "RCU, wq->mutex or wq_pool_mutex should be held") + +#define for_each_cpu_worker_pool(pool, cpu) \ + for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ + (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ + (pool)++) + +/** + * for_each_pool - iterate through all worker_pools in the system + * @pool: iteration cursor + * @pi: integer used for iteration + * + * This must be called either with wq_pool_mutex held or RCU read + * locked. If the pool needs to be used beyond the locking in effect, the + * caller is responsible for guaranteeing that the pool stays online. + * + * The if/else clause exists only for the lockdep assertion and can be + * ignored. + */ +#define for_each_pool(pool, pi) \ + idr_for_each_entry(&worker_pool_idr, pool, pi) \ + if (({ assert_rcu_or_pool_mutex(); false; })) { } \ + else + +/** + * for_each_pool_worker - iterate through all workers of a worker_pool + * @worker: iteration cursor + * @pool: worker_pool to iterate workers of + * + * This must be called with wq_pool_attach_mutex. + * + * The if/else clause exists only for the lockdep assertion and can be + * ignored. + */ +#define for_each_pool_worker(worker, pool) \ + list_for_each_entry((worker), &(pool)->workers, node) \ + if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ + else + +/** + * for_each_pwq - iterate through all pool_workqueues of the specified workqueue + * @pwq: iteration cursor + * @wq: the target workqueue + * + * This must be called either with wq->mutex held or RCU read locked. + * If the pwq needs to be used beyond the locking in effect, the caller is + * responsible for guaranteeing that the pwq stays online. + * + * The if/else clause exists only for the lockdep assertion and can be + * ignored. + */ +#define for_each_pwq(pwq, wq) \ + list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ + lockdep_is_held(&(wq->mutex))) + +#ifdef CONFIG_DEBUG_OBJECTS_WORK + +static const struct debug_obj_descr work_debug_descr; + +static void *work_debug_hint(void *addr) +{ + return ((struct work_struct *) addr)->func; +} + +static bool work_is_static_object(void *addr) +{ + struct work_struct *work = addr; + + return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); +} + +/* + * fixup_init is called when: + * - an active object is initialized + */ +static bool work_fixup_init(void *addr, enum debug_obj_state state) +{ + struct work_struct *work = addr; + + switch (state) { + case ODEBUG_STATE_ACTIVE: + cancel_work_sync(work); + debug_object_init(work, &work_debug_descr); + return true; + default: + return false; + } +} + +/* + * fixup_free is called when: + * - an active object is freed + */ +static bool work_fixup_free(void *addr, enum debug_obj_state state) +{ + struct work_struct *work = addr; + + switch (state) { + case ODEBUG_STATE_ACTIVE: + cancel_work_sync(work); + debug_object_free(work, &work_debug_descr); + return true; + default: + return false; + } +} + +static const struct debug_obj_descr work_debug_descr = { + .name = "work_struct", + .debug_hint = work_debug_hint, + .is_static_object = work_is_static_object, + .fixup_init = work_fixup_init, + .fixup_free = work_fixup_free, +}; + +static inline void debug_work_activate(struct work_struct *work) +{ + debug_object_activate(work, &work_debug_descr); +} + +static inline void debug_work_deactivate(struct work_struct *work) +{ + debug_object_deactivate(work, &work_debug_descr); +} + +void __init_work(struct work_struct *work, int onstack) +{ + if (onstack) + debug_object_init_on_stack(work, &work_debug_descr); + else + debug_object_init(work, &work_debug_descr); +} +EXPORT_SYMBOL_GPL(__init_work); + +void destroy_work_on_stack(struct work_struct *work) +{ + debug_object_free(work, &work_debug_descr); +} +EXPORT_SYMBOL_GPL(destroy_work_on_stack); + +void destroy_delayed_work_on_stack(struct delayed_work *work) +{ + destroy_timer_on_stack(&work->timer); + debug_object_free(&work->work, &work_debug_descr); +} +EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); + +#else +static inline void debug_work_activate(struct work_struct *work) { } +static inline void debug_work_deactivate(struct work_struct *work) { } +#endif + +/** + * worker_pool_assign_id - allocate ID and assign it to @pool + * @pool: the pool pointer of interest + * + * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned + * successfully, -errno on failure. + */ +static int worker_pool_assign_id(struct worker_pool *pool) +{ + int ret; + + lockdep_assert_held(&wq_pool_mutex); + + ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, + GFP_KERNEL); + if (ret >= 0) { + pool->id = ret; + return 0; + } + return ret; +} + +static unsigned int work_color_to_flags(int color) +{ + return color << WORK_STRUCT_COLOR_SHIFT; +} + +static int get_work_color(unsigned long work_data) +{ + return (work_data >> WORK_STRUCT_COLOR_SHIFT) & + ((1 << WORK_STRUCT_COLOR_BITS) - 1); +} + +static int work_next_color(int color) +{ + return (color + 1) % WORK_NR_COLORS; +} + +/* + * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data + * contain the pointer to the queued pwq. Once execution starts, the flag + * is cleared and the high bits contain OFFQ flags and pool ID. + * + * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() + * and clear_work_data() can be used to set the pwq, pool or clear + * work->data. These functions should only be called while the work is + * owned - ie. while the PENDING bit is set. + * + * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq + * corresponding to a work. Pool is available once the work has been + * queued anywhere after initialization until it is sync canceled. pwq is + * available only while the work item is queued. + * + * %WORK_OFFQ_CANCELING is used to mark a work item which is being + * canceled. While being canceled, a work item may have its PENDING set + * but stay off timer and worklist for arbitrarily long and nobody should + * try to steal the PENDING bit. + */ +static inline void set_work_data(struct work_struct *work, unsigned long data, + unsigned long flags) +{ + WARN_ON_ONCE(!work_pending(work)); + atomic_long_set(&work->data, data | flags | work_static(work)); +} + +static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, + unsigned long extra_flags) +{ + set_work_data(work, (unsigned long)pwq, + WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); +} + +static void set_work_pool_and_keep_pending(struct work_struct *work, + int pool_id) +{ + set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, + WORK_STRUCT_PENDING); +} + +static void set_work_pool_and_clear_pending(struct work_struct *work, + int pool_id) +{ + /* + * The following wmb is paired with the implied mb in + * test_and_set_bit(PENDING) and ensures all updates to @work made + * here are visible to and precede any updates by the next PENDING + * owner. + */ + smp_wmb(); + set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); + /* + * The following mb guarantees that previous clear of a PENDING bit + * will not be reordered with any speculative LOADS or STORES from + * work->current_func, which is executed afterwards. This possible + * reordering can lead to a missed execution on attempt to queue + * the same @work. E.g. consider this case: + * + * CPU#0 CPU#1 + * ---------------------------- -------------------------------- + * + * 1 STORE event_indicated + * 2 queue_work_on() { + * 3 test_and_set_bit(PENDING) + * 4 } set_..._and_clear_pending() { + * 5 set_work_data() # clear bit + * 6 smp_mb() + * 7 work->current_func() { + * 8 LOAD event_indicated + * } + * + * Without an explicit full barrier speculative LOAD on line 8 can + * be executed before CPU#0 does STORE on line 1. If that happens, + * CPU#0 observes the PENDING bit is still set and new execution of + * a @work is not queued in a hope, that CPU#1 will eventually + * finish the queued @work. Meanwhile CPU#1 does not see + * event_indicated is set, because speculative LOAD was executed + * before actual STORE. + */ + smp_mb(); +} + +static void clear_work_data(struct work_struct *work) +{ + smp_wmb(); /* see set_work_pool_and_clear_pending() */ + set_work_data(work, WORK_STRUCT_NO_POOL, 0); +} + +static inline struct pool_workqueue *work_struct_pwq(unsigned long data) +{ + return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK); +} + +static struct pool_workqueue *get_work_pwq(struct work_struct *work) +{ + unsigned long data = atomic_long_read(&work->data); + + if (data & WORK_STRUCT_PWQ) + return work_struct_pwq(data); + else + return NULL; +} + +/** + * get_work_pool - return the worker_pool a given work was associated with + * @work: the work item of interest + * + * Pools are created and destroyed under wq_pool_mutex, and allows read + * access under RCU read lock. As such, this function should be + * called under wq_pool_mutex or inside of a rcu_read_lock() region. + * + * All fields of the returned pool are accessible as long as the above + * mentioned locking is in effect. If the returned pool needs to be used + * beyond the critical section, the caller is responsible for ensuring the + * returned pool is and stays online. + * + * Return: The worker_pool @work was last associated with. %NULL if none. + */ +static struct worker_pool *get_work_pool(struct work_struct *work) +{ + unsigned long data = atomic_long_read(&work->data); + int pool_id; + + assert_rcu_or_pool_mutex(); + + if (data & WORK_STRUCT_PWQ) + return work_struct_pwq(data)->pool; + + pool_id = data >> WORK_OFFQ_POOL_SHIFT; + if (pool_id == WORK_OFFQ_POOL_NONE) + return NULL; + + return idr_find(&worker_pool_idr, pool_id); +} + +/** + * get_work_pool_id - return the worker pool ID a given work is associated with + * @work: the work item of interest + * + * Return: The worker_pool ID @work was last associated with. + * %WORK_OFFQ_POOL_NONE if none. + */ +static int get_work_pool_id(struct work_struct *work) +{ + unsigned long data = atomic_long_read(&work->data); + + if (data & WORK_STRUCT_PWQ) + return work_struct_pwq(data)->pool->id; + + return data >> WORK_OFFQ_POOL_SHIFT; +} + +static void mark_work_canceling(struct work_struct *work) +{ + unsigned long pool_id = get_work_pool_id(work); + + pool_id <<= WORK_OFFQ_POOL_SHIFT; + set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); +} + +static bool work_is_canceling(struct work_struct *work) +{ + unsigned long data = atomic_long_read(&work->data); + + return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); +} + +/* + * Policy functions. These define the policies on how the global worker + * pools are managed. Unless noted otherwise, these functions assume that + * they're being called with pool->lock held. + */ + +/* + * Need to wake up a worker? Called from anything but currently + * running workers. + * + * Note that, because unbound workers never contribute to nr_running, this + * function will always return %true for unbound pools as long as the + * worklist isn't empty. + */ +static bool need_more_worker(struct worker_pool *pool) +{ + return !list_empty(&pool->worklist) && !pool->nr_running; +} + +/* Can I start working? Called from busy but !running workers. */ +static bool may_start_working(struct worker_pool *pool) +{ + return pool->nr_idle; +} + +/* Do I need to keep working? Called from currently running workers. */ +static bool keep_working(struct worker_pool *pool) +{ + return !list_empty(&pool->worklist) && (pool->nr_running <= 1); +} + +/* Do we need a new worker? Called from manager. */ +static bool need_to_create_worker(struct worker_pool *pool) +{ + return need_more_worker(pool) && !may_start_working(pool); +} + +/* Do we have too many workers and should some go away? */ +static bool too_many_workers(struct worker_pool *pool) +{ + bool managing = pool->flags & POOL_MANAGER_ACTIVE; + int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ + int nr_busy = pool->nr_workers - nr_idle; + + return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; +} + +/** + * worker_set_flags - set worker flags and adjust nr_running accordingly + * @worker: self + * @flags: flags to set + * + * Set @flags in @worker->flags and adjust nr_running accordingly. + */ +static inline void worker_set_flags(struct worker *worker, unsigned int flags) +{ + struct worker_pool *pool = worker->pool; + + lockdep_assert_held(&pool->lock); + + /* If transitioning into NOT_RUNNING, adjust nr_running. */ + if ((flags & WORKER_NOT_RUNNING) && + !(worker->flags & WORKER_NOT_RUNNING)) { + pool->nr_running--; + } + + worker->flags |= flags; +} + +/** + * worker_clr_flags - clear worker flags and adjust nr_running accordingly + * @worker: self + * @flags: flags to clear + * + * Clear @flags in @worker->flags and adjust nr_running accordingly. + */ +static inline void worker_clr_flags(struct worker *worker, unsigned int flags) +{ + struct worker_pool *pool = worker->pool; + unsigned int oflags = worker->flags; + + lockdep_assert_held(&pool->lock); + + worker->flags &= ~flags; + + /* + * If transitioning out of NOT_RUNNING, increment nr_running. Note + * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask + * of multiple flags, not a single flag. + */ + if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) + if (!(worker->flags & WORKER_NOT_RUNNING)) + pool->nr_running++; +} + +/* Return the first idle worker. Called with pool->lock held. */ +static struct worker *first_idle_worker(struct worker_pool *pool) +{ + if (unlikely(list_empty(&pool->idle_list))) + return NULL; + + return list_first_entry(&pool->idle_list, struct worker, entry); +} + +/** + * worker_enter_idle - enter idle state + * @worker: worker which is entering idle state + * + * @worker is entering idle state. Update stats and idle timer if + * necessary. + * + * LOCKING: + * raw_spin_lock_irq(pool->lock). + */ +static void worker_enter_idle(struct worker *worker) +{ + struct worker_pool *pool = worker->pool; + + if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || + WARN_ON_ONCE(!list_empty(&worker->entry) && + (worker->hentry.next || worker->hentry.pprev))) + return; + + /* can't use worker_set_flags(), also called from create_worker() */ + worker->flags |= WORKER_IDLE; + pool->nr_idle++; + worker->last_active = jiffies; + + /* idle_list is LIFO */ + list_add(&worker->entry, &pool->idle_list); + + if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) + mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); + + /* Sanity check nr_running. */ + WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); +} + +/** + * worker_leave_idle - leave idle state + * @worker: worker which is leaving idle state + * + * @worker is leaving idle state. Update stats. + * + * LOCKING: + * raw_spin_lock_irq(pool->lock). + */ +static void worker_leave_idle(struct worker *worker) +{ + struct worker_pool *pool = worker->pool; + + if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) + return; + worker_clr_flags(worker, WORKER_IDLE); + pool->nr_idle--; + list_del_init(&worker->entry); +} + +/** + * find_worker_executing_work - find worker which is executing a work + * @pool: pool of interest + * @work: work to find worker for + * + * Find a worker which is executing @work on @pool by searching + * @pool->busy_hash which is keyed by the address of @work. For a worker + * to match, its current execution should match the address of @work and + * its work function. This is to avoid unwanted dependency between + * unrelated work executions through a work item being recycled while still + * being executed. + * + * This is a bit tricky. A work item may be freed once its execution + * starts and nothing prevents the freed area from being recycled for + * another work item. If the same work item address ends up being reused + * before the original execution finishes, workqueue will identify the + * recycled work item as currently executing and make it wait until the + * current execution finishes, introducing an unwanted dependency. + * + * This function checks the work item address and work function to avoid + * false positives. Note that this isn't complete as one may construct a + * work function which can introduce dependency onto itself through a + * recycled work item. Well, if somebody wants to shoot oneself in the + * foot that badly, there's only so much we can do, and if such deadlock + * actually occurs, it should be easy to locate the culprit work function. + * + * CONTEXT: + * raw_spin_lock_irq(pool->lock). + * + * Return: + * Pointer to worker which is executing @work if found, %NULL + * otherwise. + */ +static struct worker *find_worker_executing_work(struct worker_pool *pool, + struct work_struct *work) +{ + struct worker *worker; + + hash_for_each_possible(pool->busy_hash, worker, hentry, + (unsigned long)work) + if (worker->current_work == work && + worker->current_func == work->func) + return worker; + + return NULL; +} + +/** + * move_linked_works - move linked works to a list + * @work: start of series of works to be scheduled + * @head: target list to append @work to + * @nextp: out parameter for nested worklist walking + * + * Schedule linked works starting from @work to @head. Work series to be + * scheduled starts at @work and includes any consecutive work with + * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on + * @nextp. + * + * CONTEXT: + * raw_spin_lock_irq(pool->lock). + */ +static void move_linked_works(struct work_struct *work, struct list_head *head, + struct work_struct **nextp) +{ + struct work_struct *n; + + /* + * Linked worklist will always end before the end of the list, + * use NULL for list head. + */ + list_for_each_entry_safe_from(work, n, NULL, entry) { + list_move_tail(&work->entry, head); + if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) + break; + } + + /* + * If we're already inside safe list traversal and have moved + * multiple works to the scheduled queue, the next position + * needs to be updated. + */ + if (nextp) + *nextp = n; +} + +/** + * assign_work - assign a work item and its linked work items to a worker + * @work: work to assign + * @worker: worker to assign to + * @nextp: out parameter for nested worklist walking + * + * Assign @work and its linked work items to @worker. If @work is already being + * executed by another worker in the same pool, it'll be punted there. + * + * If @nextp is not NULL, it's updated to point to the next work of the last + * scheduled work. This allows assign_work() to be nested inside + * list_for_each_entry_safe(). + * + * Returns %true if @work was successfully assigned to @worker. %false if @work + * was punted to another worker already executing it. + */ +static bool assign_work(struct work_struct *work, struct worker *worker, + struct work_struct **nextp) +{ + struct worker_pool *pool = worker->pool; + struct worker *collision; + + lockdep_assert_held(&pool->lock); + + /* + * A single work shouldn't be executed concurrently by multiple workers. + * __queue_work() ensures that @work doesn't jump to a different pool + * while still running in the previous pool. Here, we should ensure that + * @work is not executed concurrently by multiple workers from the same + * pool. Check whether anyone is already processing the work. If so, + * defer the work to the currently executing one. + */ + collision = find_worker_executing_work(pool, work); + if (unlikely(collision)) { + move_linked_works(work, &collision->scheduled, nextp); + return false; + } + + move_linked_works(work, &worker->scheduled, nextp); + return true; +} + +/** + * kick_pool - wake up an idle worker if necessary + * @pool: pool to kick + * + * @pool may have pending work items. Wake up worker if necessary. Returns + * whether a worker was woken up. + */ +static bool kick_pool(struct worker_pool *pool) +{ + struct worker *worker = first_idle_worker(pool); + struct task_struct *p; + + lockdep_assert_held(&pool->lock); + + if (!need_more_worker(pool) || !worker) + return false; + + p = worker->task; + +#ifdef CONFIG_SMP + /* + * Idle @worker is about to execute @work and waking up provides an + * opportunity to migrate @worker at a lower cost by setting the task's + * wake_cpu field. Let's see if we want to move @worker to improve + * execution locality. + * + * We're waking the worker that went idle the latest and there's some + * chance that @worker is marked idle but hasn't gone off CPU yet. If + * so, setting the wake_cpu won't do anything. As this is a best-effort + * optimization and the race window is narrow, let's leave as-is for + * now. If this becomes pronounced, we can skip over workers which are + * still on cpu when picking an idle worker. + * + * If @pool has non-strict affinity, @worker might have ended up outside + * its affinity scope. Repatriate. + */ + if (!pool->attrs->affn_strict && + !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { + struct work_struct *work = list_first_entry(&pool->worklist, + struct work_struct, entry); + p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask); + get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; + } +#endif + wake_up_process(p); + return true; +} + +#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT + +/* + * Concurrency-managed per-cpu work items that hog CPU for longer than + * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, + * which prevents them from stalling other concurrency-managed work items. If a + * work function keeps triggering this mechanism, it's likely that the work item + * should be using an unbound workqueue instead. + * + * wq_cpu_intensive_report() tracks work functions which trigger such conditions + * and report them so that they can be examined and converted to use unbound + * workqueues as appropriate. To avoid flooding the console, each violating work + * function is tracked and reported with exponential backoff. + */ +#define WCI_MAX_ENTS 128 + +struct wci_ent { + work_func_t func; + atomic64_t cnt; + struct hlist_node hash_node; +}; + +static struct wci_ent wci_ents[WCI_MAX_ENTS]; +static int wci_nr_ents; +static DEFINE_RAW_SPINLOCK(wci_lock); +static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); + +static struct wci_ent *wci_find_ent(work_func_t func) +{ + struct wci_ent *ent; + + hash_for_each_possible_rcu(wci_hash, ent, hash_node, + (unsigned long)func) { + if (ent->func == func) + return ent; + } + return NULL; +} + +static void wq_cpu_intensive_report(work_func_t func) +{ + struct wci_ent *ent; + +restart: + ent = wci_find_ent(func); + if (ent) { + u64 cnt; + + /* + * Start reporting from the fourth time and back off + * exponentially. + */ + cnt = atomic64_inc_return_relaxed(&ent->cnt); + if (cnt >= 4 && is_power_of_2(cnt)) + printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", + ent->func, wq_cpu_intensive_thresh_us, + atomic64_read(&ent->cnt)); + return; + } + + /* + * @func is a new violation. Allocate a new entry for it. If wcn_ents[] + * is exhausted, something went really wrong and we probably made enough + * noise already. + */ + if (wci_nr_ents >= WCI_MAX_ENTS) + return; + + raw_spin_lock(&wci_lock); + + if (wci_nr_ents >= WCI_MAX_ENTS) { + raw_spin_unlock(&wci_lock); + return; + } + + if (wci_find_ent(func)) { + raw_spin_unlock(&wci_lock); + goto restart; + } + + ent = &wci_ents[wci_nr_ents++]; + ent->func = func; + atomic64_set(&ent->cnt, 1); + hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); + + raw_spin_unlock(&wci_lock); +} + +#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ +static void wq_cpu_intensive_report(work_func_t func) {} +#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ + +/** + * wq_worker_running - a worker is running again + * @task: task waking up + * + * This function is called when a worker returns from schedule() + */ +void wq_worker_running(struct task_struct *task) +{ + struct worker *worker = kthread_data(task); + + if (!READ_ONCE(worker->sleeping)) + return; + + /* + * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check + * and the nr_running increment below, we may ruin the nr_running reset + * and leave with an unexpected pool->nr_running == 1 on the newly unbound + * pool. Protect against such race. + */ + preempt_disable(); + if (!(worker->flags & WORKER_NOT_RUNNING)) + worker->pool->nr_running++; + preempt_enable(); + + /* + * CPU intensive auto-detection cares about how long a work item hogged + * CPU without sleeping. Reset the starting timestamp on wakeup. + */ + worker->current_at = worker->task->se.sum_exec_runtime; + + WRITE_ONCE(worker->sleeping, 0); +} + +/** + * wq_worker_sleeping - a worker is going to sleep + * @task: task going to sleep + * + * This function is called from schedule() when a busy worker is + * going to sleep. + */ +void wq_worker_sleeping(struct task_struct *task) +{ + struct worker *worker = kthread_data(task); + struct worker_pool *pool; + + /* + * Rescuers, which may not have all the fields set up like normal + * workers, also reach here, let's not access anything before + * checking NOT_RUNNING. + */ + if (worker->flags & WORKER_NOT_RUNNING) + return; + + pool = worker->pool; + + /* Return if preempted before wq_worker_running() was reached */ + if (READ_ONCE(worker->sleeping)) + return; + + WRITE_ONCE(worker->sleeping, 1); + raw_spin_lock_irq(&pool->lock); + + /* + * Recheck in case unbind_workers() preempted us. We don't + * want to decrement nr_running after the worker is unbound + * and nr_running has been reset. + */ + if (worker->flags & WORKER_NOT_RUNNING) { + raw_spin_unlock_irq(&pool->lock); + return; + } + + pool->nr_running--; + if (kick_pool(pool)) + worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; + + raw_spin_unlock_irq(&pool->lock); +} + +/** + * wq_worker_tick - a scheduler tick occurred while a kworker is running + * @task: task currently running + * + * Called from scheduler_tick(). We're in the IRQ context and the current + * worker's fields which follow the 'K' locking rule can be accessed safely. + */ +void wq_worker_tick(struct task_struct *task) +{ + struct worker *worker = kthread_data(task); + struct pool_workqueue *pwq = worker->current_pwq; + struct worker_pool *pool = worker->pool; + + if (!pwq) + return; + + pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; + + if (!wq_cpu_intensive_thresh_us) + return; + + /* + * If the current worker is concurrency managed and hogged the CPU for + * longer than wq_cpu_intensive_thresh_us, it's automatically marked + * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. + * + * Set @worker->sleeping means that @worker is in the process of + * switching out voluntarily and won't be contributing to + * @pool->nr_running until it wakes up. As wq_worker_sleeping() also + * decrements ->nr_running, setting CPU_INTENSIVE here can lead to + * double decrements. The task is releasing the CPU anyway. Let's skip. + * We probably want to make this prettier in the future. + */ + if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || + worker->task->se.sum_exec_runtime - worker->current_at < + wq_cpu_intensive_thresh_us * NSEC_PER_USEC) + return; + + raw_spin_lock(&pool->lock); + + worker_set_flags(worker, WORKER_CPU_INTENSIVE); + wq_cpu_intensive_report(worker->current_func); + pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; + + if (kick_pool(pool)) + pwq->stats[PWQ_STAT_CM_WAKEUP]++; + + raw_spin_unlock(&pool->lock); +} + +/** + * wq_worker_last_func - retrieve worker's last work function + * @task: Task to retrieve last work function of. + * + * Determine the last function a worker executed. This is called from + * the scheduler to get a worker's last known identity. + * + * CONTEXT: + * raw_spin_lock_irq(rq->lock) + * + * This function is called during schedule() when a kworker is going + * to sleep. It's used by psi to identify aggregation workers during + * dequeuing, to allow periodic aggregation to shut-off when that + * worker is the last task in the system or cgroup to go to sleep. + * + * As this function doesn't involve any workqueue-related locking, it + * only returns stable values when called from inside the scheduler's + * queuing and dequeuing paths, when @task, which must be a kworker, + * is guaranteed to not be processing any works. + * + * Return: + * The last work function %current executed as a worker, NULL if it + * hasn't executed any work yet. + */ +work_func_t wq_worker_last_func(struct task_struct *task) +{ + struct worker *worker = kthread_data(task); + + return worker->last_func; +} + +/** + * get_pwq - get an extra reference on the specified pool_workqueue + * @pwq: pool_workqueue to get + * + * Obtain an extra reference on @pwq. The caller should guarantee that + * @pwq has positive refcnt and be holding the matching pool->lock. + */ +static void get_pwq(struct pool_workqueue *pwq) +{ + lockdep_assert_held(&pwq->pool->lock); + WARN_ON_ONCE(pwq->refcnt <= 0); + pwq->refcnt++; +} + +/** + * put_pwq - put a pool_workqueue reference + * @pwq: pool_workqueue to put + * + * Drop a reference of @pwq. If its refcnt reaches zero, schedule its + * destruction. The caller should be holding the matching pool->lock. + */ +static void put_pwq(struct pool_workqueue *pwq) +{ + lockdep_assert_held(&pwq->pool->lock); + if (likely(--pwq->refcnt)) + return; + /* + * @pwq can't be released under pool->lock, bounce to a dedicated + * kthread_worker to avoid A-A deadlocks. + */ + kthread_queue_work(pwq_release_worker, &pwq->release_work); +} + +/** + * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock + * @pwq: pool_workqueue to put (can be %NULL) + * + * put_pwq() with locking. This function also allows %NULL @pwq. + */ +static void put_pwq_unlocked(struct pool_workqueue *pwq) +{ + if (pwq) { + /* + * As both pwqs and pools are RCU protected, the + * following lock operations are safe. + */ + raw_spin_lock_irq(&pwq->pool->lock); + put_pwq(pwq); + raw_spin_unlock_irq(&pwq->pool->lock); + } +} + +static void pwq_activate_inactive_work(struct work_struct *work) +{ + struct pool_workqueue *pwq = get_work_pwq(work); + + trace_workqueue_activate_work(work); + if (list_empty(&pwq->pool->worklist)) + pwq->pool->watchdog_ts = jiffies; + move_linked_works(work, &pwq->pool->worklist, NULL); + __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); + pwq->nr_active++; +} + +static void pwq_activate_first_inactive(struct pool_workqueue *pwq) +{ + struct work_struct *work = list_first_entry(&pwq->inactive_works, + struct work_struct, entry); + + pwq_activate_inactive_work(work); +} + +/** + * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight + * @pwq: pwq of interest + * @work_data: work_data of work which left the queue + * + * A work either has completed or is removed from pending queue, + * decrement nr_in_flight of its pwq and handle workqueue flushing. + * + * CONTEXT: + * raw_spin_lock_irq(pool->lock). + */ +static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) +{ + int color = get_work_color(work_data); + + if (!(work_data & WORK_STRUCT_INACTIVE)) { + pwq->nr_active--; + if (!list_empty(&pwq->inactive_works)) { + /* one down, submit an inactive one */ + if (pwq->nr_active < pwq->max_active) + pwq_activate_first_inactive(pwq); + } + } + + pwq->nr_in_flight[color]--; + + /* is flush in progress and are we at the flushing tip? */ + if (likely(pwq->flush_color != color)) + goto out_put; + + /* are there still in-flight works? */ + if (pwq->nr_in_flight[color]) + goto out_put; + + /* this pwq is done, clear flush_color */ + pwq->flush_color = -1; + + /* + * If this was the last pwq, wake up the first flusher. It + * will handle the rest. + */ + if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) + complete(&pwq->wq->first_flusher->done); +out_put: + put_pwq(pwq); +} + +/** + * try_to_grab_pending - steal work item from worklist and disable irq + * @work: work item to steal + * @is_dwork: @work is a delayed_work + * @flags: place to store irq state + * + * Try to grab PENDING bit of @work. This function can handle @work in any + * stable state - idle, on timer or on worklist. + * + * Return: + * + * ======== ================================================================ + * 1 if @work was pending and we successfully stole PENDING + * 0 if @work was idle and we claimed PENDING + * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry + * -ENOENT if someone else is canceling @work, this state may persist + * for arbitrarily long + * ======== ================================================================ + * + * Note: + * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting + * interrupted while holding PENDING and @work off queue, irq must be + * disabled on entry. This, combined with delayed_work->timer being + * irqsafe, ensures that we return -EAGAIN for finite short period of time. + * + * On successful return, >= 0, irq is disabled and the caller is + * responsible for releasing it using local_irq_restore(*@flags). + * + * This function is safe to call from any context including IRQ handler. + */ +static int try_to_grab_pending(struct work_struct *work, bool is_dwork, + unsigned long *flags) +{ + struct worker_pool *pool; + struct pool_workqueue *pwq; + + local_irq_save(*flags); + + /* try to steal the timer if it exists */ + if (is_dwork) { + struct delayed_work *dwork = to_delayed_work(work); + + /* + * dwork->timer is irqsafe. If del_timer() fails, it's + * guaranteed that the timer is not queued anywhere and not + * running on the local CPU. + */ + if (likely(del_timer(&dwork->timer))) + return 1; + } + + /* try to claim PENDING the normal way */ + if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) + return 0; + + rcu_read_lock(); + /* + * The queueing is in progress, or it is already queued. Try to + * steal it from ->worklist without clearing WORK_STRUCT_PENDING. + */ + pool = get_work_pool(work); + if (!pool) + goto fail; + + raw_spin_lock(&pool->lock); + /* + * work->data is guaranteed to point to pwq only while the work + * item is queued on pwq->wq, and both updating work->data to point + * to pwq on queueing and to pool on dequeueing are done under + * pwq->pool->lock. This in turn guarantees that, if work->data + * points to pwq which is associated with a locked pool, the work + * item is currently queued on that pool. + */ + pwq = get_work_pwq(work); + if (pwq && pwq->pool == pool) { + debug_work_deactivate(work); + + /* + * A cancelable inactive work item must be in the + * pwq->inactive_works since a queued barrier can't be + * canceled (see the comments in insert_wq_barrier()). + * + * An inactive work item cannot be grabbed directly because + * it might have linked barrier work items which, if left + * on the inactive_works list, will confuse pwq->nr_active + * management later on and cause stall. Make sure the work + * item is activated before grabbing. + */ + if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) + pwq_activate_inactive_work(work); + + list_del_init(&work->entry); + pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); + + /* work->data points to pwq iff queued, point to pool */ + set_work_pool_and_keep_pending(work, pool->id); + + raw_spin_unlock(&pool->lock); + rcu_read_unlock(); + return 1; + } + raw_spin_unlock(&pool->lock); +fail: + rcu_read_unlock(); + local_irq_restore(*flags); + if (work_is_canceling(work)) + return -ENOENT; + cpu_relax(); + return -EAGAIN; +} + +/** + * insert_work - insert a work into a pool + * @pwq: pwq @work belongs to + * @work: work to insert + * @head: insertion point + * @extra_flags: extra WORK_STRUCT_* flags to set + * + * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to + * work_struct flags. + * + * CONTEXT: + * raw_spin_lock_irq(pool->lock). + */ +static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, + struct list_head *head, unsigned int extra_flags) +{ + debug_work_activate(work); + + /* record the work call stack in order to print it in KASAN reports */ + kasan_record_aux_stack_noalloc(work); + + /* we own @work, set data and link */ + set_work_pwq(work, pwq, extra_flags); + list_add_tail(&work->entry, head); + get_pwq(pwq); +} + +/* + * Test whether @work is being queued from another work executing on the + * same workqueue. + */ +static bool is_chained_work(struct workqueue_struct *wq) +{ + struct worker *worker; + + worker = current_wq_worker(); + /* + * Return %true iff I'm a worker executing a work item on @wq. If + * I'm @worker, it's safe to dereference it without locking. + */ + return worker && worker->current_pwq->wq == wq; +} + +/* + * When queueing an unbound work item to a wq, prefer local CPU if allowed + * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to + * avoid perturbing sensitive tasks. + */ +static int wq_select_unbound_cpu(int cpu) +{ + int new_cpu; + + if (likely(!wq_debug_force_rr_cpu)) { + if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) + return cpu; + } else { + pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); + } + + new_cpu = __this_cpu_read(wq_rr_cpu_last); + new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); + if (unlikely(new_cpu >= nr_cpu_ids)) { + new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); + if (unlikely(new_cpu >= nr_cpu_ids)) + return cpu; + } + __this_cpu_write(wq_rr_cpu_last, new_cpu); + + return new_cpu; +} + +static void __queue_work(int cpu, struct workqueue_struct *wq, + struct work_struct *work) +{ + struct pool_workqueue *pwq; + struct worker_pool *last_pool, *pool; + unsigned int work_flags; + unsigned int req_cpu = cpu; + + /* + * While a work item is PENDING && off queue, a task trying to + * steal the PENDING will busy-loop waiting for it to either get + * queued or lose PENDING. Grabbing PENDING and queueing should + * happen with IRQ disabled. + */ + lockdep_assert_irqs_disabled(); + + + /* + * For a draining wq, only works from the same workqueue are + * allowed. The __WQ_DESTROYING helps to spot the issue that + * queues a new work item to a wq after destroy_workqueue(wq). + */ + if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && + WARN_ON_ONCE(!is_chained_work(wq)))) + return; + rcu_read_lock(); +retry: + /* pwq which will be used unless @work is executing elsewhere */ + if (req_cpu == WORK_CPU_UNBOUND) { + if (wq->flags & WQ_UNBOUND) + cpu = wq_select_unbound_cpu(raw_smp_processor_id()); + else + cpu = raw_smp_processor_id(); + } + + pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); + pool = pwq->pool; + + /* + * If @work was previously on a different pool, it might still be + * running there, in which case the work needs to be queued on that + * pool to guarantee non-reentrancy. + */ + last_pool = get_work_pool(work); + if (last_pool && last_pool != pool) { + struct worker *worker; + + raw_spin_lock(&last_pool->lock); + + worker = find_worker_executing_work(last_pool, work); + + if (worker && worker->current_pwq->wq == wq) { + pwq = worker->current_pwq; + pool = pwq->pool; + WARN_ON_ONCE(pool != last_pool); + } else { + /* meh... not running there, queue here */ + raw_spin_unlock(&last_pool->lock); + raw_spin_lock(&pool->lock); + } + } else { + raw_spin_lock(&pool->lock); + } + + /* + * pwq is determined and locked. For unbound pools, we could have raced + * with pwq release and it could already be dead. If its refcnt is zero, + * repeat pwq selection. Note that unbound pwqs never die without + * another pwq replacing it in cpu_pwq or while work items are executing + * on it, so the retrying is guaranteed to make forward-progress. + */ + if (unlikely(!pwq->refcnt)) { + if (wq->flags & WQ_UNBOUND) { + raw_spin_unlock(&pool->lock); + cpu_relax(); + goto retry; + } + /* oops */ + WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", + wq->name, cpu); + } + + /* pwq determined, queue */ + trace_workqueue_queue_work(req_cpu, pwq, work); + + if (WARN_ON(!list_empty(&work->entry))) + goto out; + + pwq->nr_in_flight[pwq->work_color]++; + work_flags = work_color_to_flags(pwq->work_color); + + if (likely(pwq->nr_active < pwq->max_active)) { + if (list_empty(&pool->worklist)) + pool->watchdog_ts = jiffies; + + trace_workqueue_activate_work(work); + pwq->nr_active++; + insert_work(pwq, work, &pool->worklist, work_flags); + kick_pool(pool); + } else { + work_flags |= WORK_STRUCT_INACTIVE; + insert_work(pwq, work, &pwq->inactive_works, work_flags); + } + +out: + raw_spin_unlock(&pool->lock); + rcu_read_unlock(); +} + +/** + * queue_work_on - queue work on specific cpu + * @cpu: CPU number to execute work on + * @wq: workqueue to use + * @work: work to queue + * + * We queue the work to a specific CPU, the caller must ensure it + * can't go away. Callers that fail to ensure that the specified + * CPU cannot go away will execute on a randomly chosen CPU. + * But note well that callers specifying a CPU that never has been + * online will get a splat. + * + * Return: %false if @work was already on a queue, %true otherwise. + */ +bool queue_work_on(int cpu, struct workqueue_struct *wq, + struct work_struct *work) +{ + bool ret = false; + unsigned long flags; + + local_irq_save(flags); + + if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { + __queue_work(cpu, wq, work); + ret = true; + } + + local_irq_restore(flags); + return ret; +} +EXPORT_SYMBOL(queue_work_on); + +/** + * select_numa_node_cpu - Select a CPU based on NUMA node + * @node: NUMA node ID that we want to select a CPU from + * + * This function will attempt to find a "random" cpu available on a given + * node. If there are no CPUs available on the given node it will return + * WORK_CPU_UNBOUND indicating that we should just schedule to any + * available CPU if we need to schedule this work. + */ +static int select_numa_node_cpu(int node) +{ + int cpu; + + /* Delay binding to CPU if node is not valid or online */ + if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) + return WORK_CPU_UNBOUND; + + /* Use local node/cpu if we are already there */ + cpu = raw_smp_processor_id(); + if (node == cpu_to_node(cpu)) + return cpu; + + /* Use "random" otherwise know as "first" online CPU of node */ + cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); + + /* If CPU is valid return that, otherwise just defer */ + return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; +} + +/** + * queue_work_node - queue work on a "random" cpu for a given NUMA node + * @node: NUMA node that we are targeting the work for + * @wq: workqueue to use + * @work: work to queue + * + * We queue the work to a "random" CPU within a given NUMA node. The basic + * idea here is to provide a way to somehow associate work with a given + * NUMA node. + * + * This function will only make a best effort attempt at getting this onto + * the right NUMA node. If no node is requested or the requested node is + * offline then we just fall back to standard queue_work behavior. + * + * Currently the "random" CPU ends up being the first available CPU in the + * intersection of cpu_online_mask and the cpumask of the node, unless we + * are running on the node. In that case we just use the current CPU. + * + * Return: %false if @work was already on a queue, %true otherwise. + */ +bool queue_work_node(int node, struct workqueue_struct *wq, + struct work_struct *work) +{ + unsigned long flags; + bool ret = false; + + /* + * This current implementation is specific to unbound workqueues. + * Specifically we only return the first available CPU for a given + * node instead of cycling through individual CPUs within the node. + * + * If this is used with a per-cpu workqueue then the logic in + * workqueue_select_cpu_near would need to be updated to allow for + * some round robin type logic. + */ + WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); + + local_irq_save(flags); + + if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { + int cpu = select_numa_node_cpu(node); + + __queue_work(cpu, wq, work); + ret = true; + } + + local_irq_restore(flags); + return ret; +} +EXPORT_SYMBOL_GPL(queue_work_node); + +void delayed_work_timer_fn(struct timer_list *t) +{ + struct delayed_work *dwork = from_timer(dwork, t, timer); + + /* should have been called from irqsafe timer with irq already off */ + __queue_work(dwork->cpu, dwork->wq, &dwork->work); +} +EXPORT_SYMBOL(delayed_work_timer_fn); + +static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, + struct delayed_work *dwork, unsigned long delay) +{ + struct timer_list *timer = &dwork->timer; + struct work_struct *work = &dwork->work; + + WARN_ON_ONCE(!wq); + WARN_ON_ONCE(timer->function != delayed_work_timer_fn); + WARN_ON_ONCE(timer_pending(timer)); + WARN_ON_ONCE(!list_empty(&work->entry)); + + /* + * If @delay is 0, queue @dwork->work immediately. This is for + * both optimization and correctness. The earliest @timer can + * expire is on the closest next tick and delayed_work users depend + * on that there's no such delay when @delay is 0. + */ + if (!delay) { + __queue_work(cpu, wq, &dwork->work); + return; + } + + dwork->wq = wq; + dwork->cpu = cpu; + timer->expires = jiffies + delay; + + if (unlikely(cpu != WORK_CPU_UNBOUND)) + add_timer_on(timer, cpu); + else + add_timer(timer); +} + +/** + * queue_delayed_work_on - queue work on specific CPU after delay + * @cpu: CPU number to execute work on + * @wq: workqueue to use + * @dwork: work to queue + * @delay: number of jiffies to wait before queueing + * + * Return: %false if @work was already on a queue, %true otherwise. If + * @delay is zero and @dwork is idle, it will be scheduled for immediate + * execution. + */ +bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, + struct delayed_work *dwork, unsigned long delay) +{ + struct work_struct *work = &dwork->work; + bool ret = false; + unsigned long flags; + + /* read the comment in __queue_work() */ + local_irq_save(flags); + + if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { + __queue_delayed_work(cpu, wq, dwork, delay); + ret = true; + } + + local_irq_restore(flags); + return ret; +} +EXPORT_SYMBOL(queue_delayed_work_on); + +/** + * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU + * @cpu: CPU number to execute work on + * @wq: workqueue to use + * @dwork: work to queue + * @delay: number of jiffies to wait before queueing + * + * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, + * modify @dwork's timer so that it expires after @delay. If @delay is + * zero, @work is guaranteed to be scheduled immediately regardless of its + * current state. + * + * Return: %false if @dwork was idle and queued, %true if @dwork was + * pending and its timer was modified. + * + * This function is safe to call from any context including IRQ handler. + * See try_to_grab_pending() for details. + */ +bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, + struct delayed_work *dwork, unsigned long delay) +{ + unsigned long flags; + int ret; + + do { + ret = try_to_grab_pending(&dwork->work, true, &flags); + } while (unlikely(ret == -EAGAIN)); + + if (likely(ret >= 0)) { + __queue_delayed_work(cpu, wq, dwork, delay); + local_irq_restore(flags); + } + + /* -ENOENT from try_to_grab_pending() becomes %true */ + return ret; +} +EXPORT_SYMBOL_GPL(mod_delayed_work_on); + +static void rcu_work_rcufn(struct rcu_head *rcu) +{ + struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); + + /* read the comment in __queue_work() */ + local_irq_disable(); + __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); + local_irq_enable(); +} + +/** + * queue_rcu_work - queue work after a RCU grace period + * @wq: workqueue to use + * @rwork: work to queue + * + * Return: %false if @rwork was already pending, %true otherwise. Note + * that a full RCU grace period is guaranteed only after a %true return. + * While @rwork is guaranteed to be executed after a %false return, the + * execution may happen before a full RCU grace period has passed. + */ +bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) +{ + struct work_struct *work = &rwork->work; + + if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { + rwork->wq = wq; + call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); + return true; + } + + return false; +} +EXPORT_SYMBOL(queue_rcu_work); + +static struct worker *alloc_worker(int node) +{ + struct worker *worker; + + worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); + if (worker) { + INIT_LIST_HEAD(&worker->entry); + INIT_LIST_HEAD(&worker->scheduled); + INIT_LIST_HEAD(&worker->node); + /* on creation a worker is in !idle && prep state */ + worker->flags = WORKER_PREP; + } + return worker; +} + +static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) +{ + if (pool->cpu < 0 && pool->attrs->affn_strict) + return pool->attrs->__pod_cpumask; + else + return pool->attrs->cpumask; +} + +/** + * worker_attach_to_pool() - attach a worker to a pool + * @worker: worker to be attached + * @pool: the target pool + * + * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and + * cpu-binding of @worker are kept coordinated with the pool across + * cpu-[un]hotplugs. + */ +static void worker_attach_to_pool(struct worker *worker, + struct worker_pool *pool) +{ + mutex_lock(&wq_pool_attach_mutex); + + /* + * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains + * stable across this function. See the comments above the flag + * definition for details. + */ + if (pool->flags & POOL_DISASSOCIATED) + worker->flags |= WORKER_UNBOUND; + else + kthread_set_per_cpu(worker->task, pool->cpu); + + if (worker->rescue_wq) + set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); + + list_add_tail(&worker->node, &pool->workers); + worker->pool = pool; + + mutex_unlock(&wq_pool_attach_mutex); +} + +/** + * worker_detach_from_pool() - detach a worker from its pool + * @worker: worker which is attached to its pool + * + * Undo the attaching which had been done in worker_attach_to_pool(). The + * caller worker shouldn't access to the pool after detached except it has + * other reference to the pool. + */ +static void worker_detach_from_pool(struct worker *worker) +{ + struct worker_pool *pool = worker->pool; + struct completion *detach_completion = NULL; + + mutex_lock(&wq_pool_attach_mutex); + + kthread_set_per_cpu(worker->task, -1); + list_del(&worker->node); + worker->pool = NULL; + + if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) + detach_completion = pool->detach_completion; + mutex_unlock(&wq_pool_attach_mutex); + + /* clear leftover flags without pool->lock after it is detached */ + worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); + + if (detach_completion) + complete(detach_completion); +} + +/** + * create_worker - create a new workqueue worker + * @pool: pool the new worker will belong to + * + * Create and start a new worker which is attached to @pool. + * + * CONTEXT: + * Might sleep. Does GFP_KERNEL allocations. + * + * Return: + * Pointer to the newly created worker. + */ +static struct worker *create_worker(struct worker_pool *pool) +{ + struct worker *worker; + int id; + char id_buf[23]; + + /* ID is needed to determine kthread name */ + id = ida_alloc(&pool->worker_ida, GFP_KERNEL); + if (id < 0) { + pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", + ERR_PTR(id)); + return NULL; + } + + worker = alloc_worker(pool->node); + if (!worker) { + pr_err_once("workqueue: Failed to allocate a worker\n"); + goto fail; + } + + worker->id = id; + + if (pool->cpu >= 0) + snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, + pool->attrs->nice < 0 ? "H" : ""); + else + snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); + + worker->task = kthread_create_on_node(worker_thread, worker, pool->node, + "kworker/%s", id_buf); + if (IS_ERR(worker->task)) { + if (PTR_ERR(worker->task) == -EINTR) { + pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", + id_buf); + } else { + pr_err_once("workqueue: Failed to create a worker thread: %pe", + worker->task); + } + goto fail; + } + + set_user_nice(worker->task, pool->attrs->nice); + kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); + + /* successful, attach the worker to the pool */ + worker_attach_to_pool(worker, pool); + + /* start the newly created worker */ + raw_spin_lock_irq(&pool->lock); + + worker->pool->nr_workers++; + worker_enter_idle(worker); + kick_pool(pool); + + /* + * @worker is waiting on a completion in kthread() and will trigger hung + * check if not woken up soon. As kick_pool() might not have waken it + * up, wake it up explicitly once more. + */ + wake_up_process(worker->task); + + raw_spin_unlock_irq(&pool->lock); + + return worker; + +fail: + ida_free(&pool->worker_ida, id); + kfree(worker); + return NULL; +} + +static void unbind_worker(struct worker *worker) +{ + lockdep_assert_held(&wq_pool_attach_mutex); + + kthread_set_per_cpu(worker->task, -1); + if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) + WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); + else + WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); +} + +static void wake_dying_workers(struct list_head *cull_list) +{ + struct worker *worker, *tmp; + + list_for_each_entry_safe(worker, tmp, cull_list, entry) { + list_del_init(&worker->entry); + unbind_worker(worker); + /* + * If the worker was somehow already running, then it had to be + * in pool->idle_list when set_worker_dying() happened or we + * wouldn't have gotten here. + * + * Thus, the worker must either have observed the WORKER_DIE + * flag, or have set its state to TASK_IDLE. Either way, the + * below will be observed by the worker and is safe to do + * outside of pool->lock. + */ + wake_up_process(worker->task); + } +} + +/** + * set_worker_dying - Tag a worker for destruction + * @worker: worker to be destroyed + * @list: transfer worker away from its pool->idle_list and into list + * + * Tag @worker for destruction and adjust @pool stats accordingly. The worker + * should be idle. + * + * CONTEXT: + * raw_spin_lock_irq(pool->lock). + */ +static void set_worker_dying(struct worker *worker, struct list_head *list) +{ + struct worker_pool *pool = worker->pool; + + lockdep_assert_held(&pool->lock); + lockdep_assert_held(&wq_pool_attach_mutex); + + /* sanity check frenzy */ + if (WARN_ON(worker->current_work) || + WARN_ON(!list_empty(&worker->scheduled)) || + WARN_ON(!(worker->flags & WORKER_IDLE))) + return; + + pool->nr_workers--; + pool->nr_idle--; + + worker->flags |= WORKER_DIE; + + list_move(&worker->entry, list); + list_move(&worker->node, &pool->dying_workers); +} + +/** + * idle_worker_timeout - check if some idle workers can now be deleted. + * @t: The pool's idle_timer that just expired + * + * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in + * worker_leave_idle(), as a worker flicking between idle and active while its + * pool is at the too_many_workers() tipping point would cause too much timer + * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let + * it expire and re-evaluate things from there. + */ +static void idle_worker_timeout(struct timer_list *t) +{ + struct worker_pool *pool = from_timer(pool, t, idle_timer); + bool do_cull = false; + + if (work_pending(&pool->idle_cull_work)) + return; + + raw_spin_lock_irq(&pool->lock); + + if (too_many_workers(pool)) { + struct worker *worker; + unsigned long expires; + + /* idle_list is kept in LIFO order, check the last one */ + worker = list_entry(pool->idle_list.prev, struct worker, entry); + expires = worker->last_active + IDLE_WORKER_TIMEOUT; + do_cull = !time_before(jiffies, expires); + + if (!do_cull) + mod_timer(&pool->idle_timer, expires); + } + raw_spin_unlock_irq(&pool->lock); + + if (do_cull) + queue_work(system_unbound_wq, &pool->idle_cull_work); +} + +/** + * idle_cull_fn - cull workers that have been idle for too long. + * @work: the pool's work for handling these idle workers + * + * This goes through a pool's idle workers and gets rid of those that have been + * idle for at least IDLE_WORKER_TIMEOUT seconds. + * + * We don't want to disturb isolated CPUs because of a pcpu kworker being + * culled, so this also resets worker affinity. This requires a sleepable + * context, hence the split between timer callback and work item. + */ +static void idle_cull_fn(struct work_struct *work) +{ + struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); + LIST_HEAD(cull_list); + + /* + * Grabbing wq_pool_attach_mutex here ensures an already-running worker + * cannot proceed beyong worker_detach_from_pool() in its self-destruct + * path. This is required as a previously-preempted worker could run after + * set_worker_dying() has happened but before wake_dying_workers() did. + */ + mutex_lock(&wq_pool_attach_mutex); + raw_spin_lock_irq(&pool->lock); + + while (too_many_workers(pool)) { + struct worker *worker; + unsigned long expires; + + worker = list_entry(pool->idle_list.prev, struct worker, entry); + expires = worker->last_active + IDLE_WORKER_TIMEOUT; + + if (time_before(jiffies, expires)) { + mod_timer(&pool->idle_timer, expires); + break; + } + + set_worker_dying(worker, &cull_list); + } + + raw_spin_unlock_irq(&pool->lock); + wake_dying_workers(&cull_list); + mutex_unlock(&wq_pool_attach_mutex); +} + +static void send_mayday(struct work_struct *work) +{ + struct pool_workqueue *pwq = get_work_pwq(work); + struct workqueue_struct *wq = pwq->wq; + + lockdep_assert_held(&wq_mayday_lock); + + if (!wq->rescuer) + return; + + /* mayday mayday mayday */ + if (list_empty(&pwq->mayday_node)) { + /* + * If @pwq is for an unbound wq, its base ref may be put at + * any time due to an attribute change. Pin @pwq until the + * rescuer is done with it. + */ + get_pwq(pwq); + list_add_tail(&pwq->mayday_node, &wq->maydays); + wake_up_process(wq->rescuer->task); + pwq->stats[PWQ_STAT_MAYDAY]++; + } +} + +static void pool_mayday_timeout(struct timer_list *t) +{ + struct worker_pool *pool = from_timer(pool, t, mayday_timer); + struct work_struct *work; + + raw_spin_lock_irq(&pool->lock); + raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ + + if (need_to_create_worker(pool)) { + /* + * We've been trying to create a new worker but + * haven't been successful. We might be hitting an + * allocation deadlock. Send distress signals to + * rescuers. + */ + list_for_each_entry(work, &pool->worklist, entry) + send_mayday(work); + } + + raw_spin_unlock(&wq_mayday_lock); + raw_spin_unlock_irq(&pool->lock); + + mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); +} + +/** + * maybe_create_worker - create a new worker if necessary + * @pool: pool to create a new worker for + * + * Create a new worker for @pool if necessary. @pool is guaranteed to + * have at least one idle worker on return from this function. If + * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is + * sent to all rescuers with works scheduled on @pool to resolve + * possible allocation deadlock. + * + * On return, need_to_create_worker() is guaranteed to be %false and + * may_start_working() %true. + * + * LOCKING: + * raw_spin_lock_irq(pool->lock) which may be released and regrabbed + * multiple times. Does GFP_KERNEL allocations. Called only from + * manager. + */ +static void maybe_create_worker(struct worker_pool *pool) +__releases(&pool->lock) +__acquires(&pool->lock) +{ +restart: + raw_spin_unlock_irq(&pool->lock); + + /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ + mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); + + while (true) { + if (create_worker(pool) || !need_to_create_worker(pool)) + break; + + schedule_timeout_interruptible(CREATE_COOLDOWN); + + if (!need_to_create_worker(pool)) + break; + } + + del_timer_sync(&pool->mayday_timer); + raw_spin_lock_irq(&pool->lock); + /* + * This is necessary even after a new worker was just successfully + * created as @pool->lock was dropped and the new worker might have + * already become busy. + */ + if (need_to_create_worker(pool)) + goto restart; +} + +/** + * manage_workers - manage worker pool + * @worker: self + * + * Assume the manager role and manage the worker pool @worker belongs + * to. At any given time, there can be only zero or one manager per + * pool. The exclusion is handled automatically by this function. + * + * The caller can safely start processing works on false return. On + * true return, it's guaranteed that need_to_create_worker() is false + * and may_start_working() is true. + * + * CONTEXT: + * raw_spin_lock_irq(pool->lock) which may be released and regrabbed + * multiple times. Does GFP_KERNEL allocations. + * + * Return: + * %false if the pool doesn't need management and the caller can safely + * start processing works, %true if management function was performed and + * the conditions that the caller verified before calling the function may + * no longer be true. + */ +static bool manage_workers(struct worker *worker) +{ + struct worker_pool *pool = worker->pool; + + if (pool->flags & POOL_MANAGER_ACTIVE) + return false; + + pool->flags |= POOL_MANAGER_ACTIVE; + pool->manager = worker; + + maybe_create_worker(pool); + + pool->manager = NULL; + pool->flags &= ~POOL_MANAGER_ACTIVE; + rcuwait_wake_up(&manager_wait); + return true; +} + +/** + * process_one_work - process single work + * @worker: self + * @work: work to process + * + * Process @work. This function contains all the logics necessary to + * process a single work including synchronization against and + * interaction with other workers on the same cpu, queueing and + * flushing. As long as context requirement is met, any worker can + * call this function to process a work. + * + * CONTEXT: + * raw_spin_lock_irq(pool->lock) which is released and regrabbed. + */ +static void process_one_work(struct worker *worker, struct work_struct *work) +__releases(&pool->lock) +__acquires(&pool->lock) +{ + struct pool_workqueue *pwq = get_work_pwq(work); + struct worker_pool *pool = worker->pool; + unsigned long work_data; +#ifdef CONFIG_LOCKDEP + /* + * It is permissible to free the struct work_struct from + * inside the function that is called from it, this we need to + * take into account for lockdep too. To avoid bogus "held + * lock freed" warnings as well as problems when looking into + * work->lockdep_map, make a copy and use that here. + */ + struct lockdep_map lockdep_map; + + lockdep_copy_map(&lockdep_map, &work->lockdep_map); +#endif + /* ensure we're on the correct CPU */ + WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && + raw_smp_processor_id() != pool->cpu); + + /* claim and dequeue */ + debug_work_deactivate(work); + hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); + worker->current_work = work; + worker->current_func = work->func; + worker->current_pwq = pwq; + worker->current_at = worker->task->se.sum_exec_runtime; + work_data = *work_data_bits(work); + worker->current_color = get_work_color(work_data); + + /* + * Record wq name for cmdline and debug reporting, may get + * overridden through set_worker_desc(). + */ + strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); + + list_del_init(&work->entry); + + /* + * CPU intensive works don't participate in concurrency management. + * They're the scheduler's responsibility. This takes @worker out + * of concurrency management and the next code block will chain + * execution of the pending work items. + */ + if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) + worker_set_flags(worker, WORKER_CPU_INTENSIVE); + + /* + * Kick @pool if necessary. It's always noop for per-cpu worker pools + * since nr_running would always be >= 1 at this point. This is used to + * chain execution of the pending work items for WORKER_NOT_RUNNING + * workers such as the UNBOUND and CPU_INTENSIVE ones. + */ + kick_pool(pool); + + /* + * Record the last pool and clear PENDING which should be the last + * update to @work. Also, do this inside @pool->lock so that + * PENDING and queued state changes happen together while IRQ is + * disabled. + */ + set_work_pool_and_clear_pending(work, pool->id); + + pwq->stats[PWQ_STAT_STARTED]++; + raw_spin_unlock_irq(&pool->lock); + + lock_map_acquire(&pwq->wq->lockdep_map); + lock_map_acquire(&lockdep_map); + /* + * Strictly speaking we should mark the invariant state without holding + * any locks, that is, before these two lock_map_acquire()'s. + * + * However, that would result in: + * + * A(W1) + * WFC(C) + * A(W1) + * C(C) + * + * Which would create W1->C->W1 dependencies, even though there is no + * actual deadlock possible. There are two solutions, using a + * read-recursive acquire on the work(queue) 'locks', but this will then + * hit the lockdep limitation on recursive locks, or simply discard + * these locks. + * + * AFAICT there is no possible deadlock scenario between the + * flush_work() and complete() primitives (except for single-threaded + * workqueues), so hiding them isn't a problem. + */ + lockdep_invariant_state(true); + trace_workqueue_execute_start(work); + worker->current_func(work); + /* + * While we must be careful to not use "work" after this, the trace + * point will only record its address. + */ + trace_workqueue_execute_end(work, worker->current_func); + pwq->stats[PWQ_STAT_COMPLETED]++; + lock_map_release(&lockdep_map); + lock_map_release(&pwq->wq->lockdep_map); + + if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { + pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" + " last function: %ps\n", + current->comm, preempt_count(), task_pid_nr(current), + worker->current_func); + debug_show_held_locks(current); + dump_stack(); + } + + /* + * The following prevents a kworker from hogging CPU on !PREEMPTION + * kernels, where a requeueing work item waiting for something to + * happen could deadlock with stop_machine as such work item could + * indefinitely requeue itself while all other CPUs are trapped in + * stop_machine. At the same time, report a quiescent RCU state so + * the same condition doesn't freeze RCU. + */ + cond_resched(); + + raw_spin_lock_irq(&pool->lock); + + /* + * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked + * CPU intensive by wq_worker_tick() if @work hogged CPU longer than + * wq_cpu_intensive_thresh_us. Clear it. + */ + worker_clr_flags(worker, WORKER_CPU_INTENSIVE); + + /* tag the worker for identification in schedule() */ + worker->last_func = worker->current_func; + + /* we're done with it, release */ + hash_del(&worker->hentry); + worker->current_work = NULL; + worker->current_func = NULL; + worker->current_pwq = NULL; + worker->current_color = INT_MAX; + pwq_dec_nr_in_flight(pwq, work_data); +} + +/** + * process_scheduled_works - process scheduled works + * @worker: self + * + * Process all scheduled works. Please note that the scheduled list + * may change while processing a work, so this function repeatedly + * fetches a work from the top and executes it. + * + * CONTEXT: + * raw_spin_lock_irq(pool->lock) which may be released and regrabbed + * multiple times. + */ +static void process_scheduled_works(struct worker *worker) +{ + struct work_struct *work; + bool first = true; + + while ((work = list_first_entry_or_null(&worker->scheduled, + struct work_struct, entry))) { + if (first) { + worker->pool->watchdog_ts = jiffies; + first = false; + } + process_one_work(worker, work); + } +} + +static void set_pf_worker(bool val) +{ + mutex_lock(&wq_pool_attach_mutex); + if (val) + current->flags |= PF_WQ_WORKER; + else + current->flags &= ~PF_WQ_WORKER; + mutex_unlock(&wq_pool_attach_mutex); +} + +/** + * worker_thread - the worker thread function + * @__worker: self + * + * The worker thread function. All workers belong to a worker_pool - + * either a per-cpu one or dynamic unbound one. These workers process all + * work items regardless of their specific target workqueue. The only + * exception is work items which belong to workqueues with a rescuer which + * will be explained in rescuer_thread(). + * + * Return: 0 + */ +static int worker_thread(void *__worker) +{ + struct worker *worker = __worker; + struct worker_pool *pool = worker->pool; + + /* tell the scheduler that this is a workqueue worker */ + set_pf_worker(true); +woke_up: + raw_spin_lock_irq(&pool->lock); + + /* am I supposed to die? */ + if (unlikely(worker->flags & WORKER_DIE)) { + raw_spin_unlock_irq(&pool->lock); + set_pf_worker(false); + + set_task_comm(worker->task, "kworker/dying"); + ida_free(&pool->worker_ida, worker->id); + worker_detach_from_pool(worker); + WARN_ON_ONCE(!list_empty(&worker->entry)); + kfree(worker); + return 0; + } + + worker_leave_idle(worker); +recheck: + /* no more worker necessary? */ + if (!need_more_worker(pool)) + goto sleep; + + /* do we need to manage? */ + if (unlikely(!may_start_working(pool)) && manage_workers(worker)) + goto recheck; + + /* + * ->scheduled list can only be filled while a worker is + * preparing to process a work or actually processing it. + * Make sure nobody diddled with it while I was sleeping. + */ + WARN_ON_ONCE(!list_empty(&worker->scheduled)); + + /* + * Finish PREP stage. We're guaranteed to have at least one idle + * worker or that someone else has already assumed the manager + * role. This is where @worker starts participating in concurrency + * management if applicable and concurrency management is restored + * after being rebound. See rebind_workers() for details. + */ + worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); + + do { + struct work_struct *work = + list_first_entry(&pool->worklist, + struct work_struct, entry); + + if (assign_work(work, worker, NULL)) + process_scheduled_works(worker); + } while (keep_working(pool)); + + worker_set_flags(worker, WORKER_PREP); +sleep: + /* + * pool->lock is held and there's no work to process and no need to + * manage, sleep. Workers are woken up only while holding + * pool->lock or from local cpu, so setting the current state + * before releasing pool->lock is enough to prevent losing any + * event. + */ + worker_enter_idle(worker); + __set_current_state(TASK_IDLE); + raw_spin_unlock_irq(&pool->lock); + schedule(); + goto woke_up; +} + +/** + * rescuer_thread - the rescuer thread function + * @__rescuer: self + * + * Workqueue rescuer thread function. There's one rescuer for each + * workqueue which has WQ_MEM_RECLAIM set. + * + * Regular work processing on a pool may block trying to create a new + * worker which uses GFP_KERNEL allocation which has slight chance of + * developing into deadlock if some works currently on the same queue + * need to be processed to satisfy the GFP_KERNEL allocation. This is + * the problem rescuer solves. + * + * When such condition is possible, the pool summons rescuers of all + * workqueues which have works queued on the pool and let them process + * those works so that forward progress can be guaranteed. + * + * This should happen rarely. + * + * Return: 0 + */ +static int rescuer_thread(void *__rescuer) +{ + struct worker *rescuer = __rescuer; + struct workqueue_struct *wq = rescuer->rescue_wq; + bool should_stop; + + set_user_nice(current, RESCUER_NICE_LEVEL); + + /* + * Mark rescuer as worker too. As WORKER_PREP is never cleared, it + * doesn't participate in concurrency management. + */ + set_pf_worker(true); +repeat: + set_current_state(TASK_IDLE); + + /* + * By the time the rescuer is requested to stop, the workqueue + * shouldn't have any work pending, but @wq->maydays may still have + * pwq(s) queued. This can happen by non-rescuer workers consuming + * all the work items before the rescuer got to them. Go through + * @wq->maydays processing before acting on should_stop so that the + * list is always empty on exit. + */ + should_stop = kthread_should_stop(); + + /* see whether any pwq is asking for help */ + raw_spin_lock_irq(&wq_mayday_lock); + + while (!list_empty(&wq->maydays)) { + struct pool_workqueue *pwq = list_first_entry(&wq->maydays, + struct pool_workqueue, mayday_node); + struct worker_pool *pool = pwq->pool; + struct work_struct *work, *n; + + __set_current_state(TASK_RUNNING); + list_del_init(&pwq->mayday_node); + + raw_spin_unlock_irq(&wq_mayday_lock); + + worker_attach_to_pool(rescuer, pool); + + raw_spin_lock_irq(&pool->lock); + + /* + * Slurp in all works issued via this workqueue and + * process'em. + */ + WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); + list_for_each_entry_safe(work, n, &pool->worklist, entry) { + if (get_work_pwq(work) == pwq && + assign_work(work, rescuer, &n)) + pwq->stats[PWQ_STAT_RESCUED]++; + } + + if (!list_empty(&rescuer->scheduled)) { + process_scheduled_works(rescuer); + + /* + * The above execution of rescued work items could + * have created more to rescue through + * pwq_activate_first_inactive() or chained + * queueing. Let's put @pwq back on mayday list so + * that such back-to-back work items, which may be + * being used to relieve memory pressure, don't + * incur MAYDAY_INTERVAL delay inbetween. + */ + if (pwq->nr_active && need_to_create_worker(pool)) { + raw_spin_lock(&wq_mayday_lock); + /* + * Queue iff we aren't racing destruction + * and somebody else hasn't queued it already. + */ + if (wq->rescuer && list_empty(&pwq->mayday_node)) { + get_pwq(pwq); + list_add_tail(&pwq->mayday_node, &wq->maydays); + } + raw_spin_unlock(&wq_mayday_lock); + } + } + + /* + * Put the reference grabbed by send_mayday(). @pool won't + * go away while we're still attached to it. + */ + put_pwq(pwq); + + /* + * Leave this pool. Notify regular workers; otherwise, we end up + * with 0 concurrency and stalling the execution. + */ + kick_pool(pool); + + raw_spin_unlock_irq(&pool->lock); + + worker_detach_from_pool(rescuer); + + raw_spin_lock_irq(&wq_mayday_lock); + } + + raw_spin_unlock_irq(&wq_mayday_lock); + + if (should_stop) { + __set_current_state(TASK_RUNNING); + set_pf_worker(false); + return 0; + } + + /* rescuers should never participate in concurrency management */ + WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); + schedule(); + goto repeat; +} + +/** + * check_flush_dependency - check for flush dependency sanity + * @target_wq: workqueue being flushed + * @target_work: work item being flushed (NULL for workqueue flushes) + * + * %current is trying to flush the whole @target_wq or @target_work on it. + * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not + * reclaiming memory or running on a workqueue which doesn't have + * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to + * a deadlock. + */ +static void check_flush_dependency(struct workqueue_struct *target_wq, + struct work_struct *target_work) +{ + work_func_t target_func = target_work ? target_work->func : NULL; + struct worker *worker; + + if (target_wq->flags & WQ_MEM_RECLAIM) + return; + + worker = current_wq_worker(); + + WARN_ONCE(current->flags & PF_MEMALLOC, + "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", + current->pid, current->comm, target_wq->name, target_func); + WARN_ONCE(worker && ((worker->current_pwq->wq->flags & + (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), + "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", + worker->current_pwq->wq->name, worker->current_func, + target_wq->name, target_func); +} + +struct wq_barrier { + struct work_struct work; + struct completion done; + struct task_struct *task; /* purely informational */ +}; + +static void wq_barrier_func(struct work_struct *work) +{ + struct wq_barrier *barr = container_of(work, struct wq_barrier, work); + complete(&barr->done); +} + +/** + * insert_wq_barrier - insert a barrier work + * @pwq: pwq to insert barrier into + * @barr: wq_barrier to insert + * @target: target work to attach @barr to + * @worker: worker currently executing @target, NULL if @target is not executing + * + * @barr is linked to @target such that @barr is completed only after + * @target finishes execution. Please note that the ordering + * guarantee is observed only with respect to @target and on the local + * cpu. + * + * Currently, a queued barrier can't be canceled. This is because + * try_to_grab_pending() can't determine whether the work to be + * grabbed is at the head of the queue and thus can't clear LINKED + * flag of the previous work while there must be a valid next work + * after a work with LINKED flag set. + * + * Note that when @worker is non-NULL, @target may be modified + * underneath us, so we can't reliably determine pwq from @target. + * + * CONTEXT: + * raw_spin_lock_irq(pool->lock). + */ +static void insert_wq_barrier(struct pool_workqueue *pwq, + struct wq_barrier *barr, + struct work_struct *target, struct worker *worker) +{ + unsigned int work_flags = 0; + unsigned int work_color; + struct list_head *head; + + /* + * debugobject calls are safe here even with pool->lock locked + * as we know for sure that this will not trigger any of the + * checks and call back into the fixup functions where we + * might deadlock. + */ + INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); + __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); + + init_completion_map(&barr->done, &target->lockdep_map); + + barr->task = current; + + /* The barrier work item does not participate in pwq->nr_active. */ + work_flags |= WORK_STRUCT_INACTIVE; + + /* + * If @target is currently being executed, schedule the + * barrier to the worker; otherwise, put it after @target. + */ + if (worker) { + head = worker->scheduled.next; + work_color = worker->current_color; + } else { + unsigned long *bits = work_data_bits(target); + + head = target->entry.next; + /* there can already be other linked works, inherit and set */ + work_flags |= *bits & WORK_STRUCT_LINKED; + work_color = get_work_color(*bits); + __set_bit(WORK_STRUCT_LINKED_BIT, bits); + } + + pwq->nr_in_flight[work_color]++; + work_flags |= work_color_to_flags(work_color); + + insert_work(pwq, &barr->work, head, work_flags); +} + +/** + * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing + * @wq: workqueue being flushed + * @flush_color: new flush color, < 0 for no-op + * @work_color: new work color, < 0 for no-op + * + * Prepare pwqs for workqueue flushing. + * + * If @flush_color is non-negative, flush_color on all pwqs should be + * -1. If no pwq has in-flight commands at the specified color, all + * pwq->flush_color's stay at -1 and %false is returned. If any pwq + * has in flight commands, its pwq->flush_color is set to + * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq + * wakeup logic is armed and %true is returned. + * + * The caller should have initialized @wq->first_flusher prior to + * calling this function with non-negative @flush_color. If + * @flush_color is negative, no flush color update is done and %false + * is returned. + * + * If @work_color is non-negative, all pwqs should have the same + * work_color which is previous to @work_color and all will be + * advanced to @work_color. + * + * CONTEXT: + * mutex_lock(wq->mutex). + * + * Return: + * %true if @flush_color >= 0 and there's something to flush. %false + * otherwise. + */ +static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, + int flush_color, int work_color) +{ + bool wait = false; + struct pool_workqueue *pwq; + + if (flush_color >= 0) { + WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); + atomic_set(&wq->nr_pwqs_to_flush, 1); + } + + for_each_pwq(pwq, wq) { + struct worker_pool *pool = pwq->pool; + + raw_spin_lock_irq(&pool->lock); + + if (flush_color >= 0) { + WARN_ON_ONCE(pwq->flush_color != -1); + + if (pwq->nr_in_flight[flush_color]) { + pwq->flush_color = flush_color; + atomic_inc(&wq->nr_pwqs_to_flush); + wait = true; + } + } + + if (work_color >= 0) { + WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); + pwq->work_color = work_color; + } + + raw_spin_unlock_irq(&pool->lock); + } + + if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) + complete(&wq->first_flusher->done); + + return wait; +} + +/** + * __flush_workqueue - ensure that any scheduled work has run to completion. + * @wq: workqueue to flush + * + * This function sleeps until all work items which were queued on entry + * have finished execution, but it is not livelocked by new incoming ones. + */ +void __flush_workqueue(struct workqueue_struct *wq) +{ + struct wq_flusher this_flusher = { + .list = LIST_HEAD_INIT(this_flusher.list), + .flush_color = -1, + .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), + }; + int next_color; + + if (WARN_ON(!wq_online)) + return; + + lock_map_acquire(&wq->lockdep_map); + lock_map_release(&wq->lockdep_map); + + mutex_lock(&wq->mutex); + + /* + * Start-to-wait phase + */ + next_color = work_next_color(wq->work_color); + + if (next_color != wq->flush_color) { + /* + * Color space is not full. The current work_color + * becomes our flush_color and work_color is advanced + * by one. + */ + WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); + this_flusher.flush_color = wq->work_color; + wq->work_color = next_color; + + if (!wq->first_flusher) { + /* no flush in progress, become the first flusher */ + WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); + + wq->first_flusher = &this_flusher; + + if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, + wq->work_color)) { + /* nothing to flush, done */ + wq->flush_color = next_color; + wq->first_flusher = NULL; + goto out_unlock; + } + } else { + /* wait in queue */ + WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); + list_add_tail(&this_flusher.list, &wq->flusher_queue); + flush_workqueue_prep_pwqs(wq, -1, wq->work_color); + } + } else { + /* + * Oops, color space is full, wait on overflow queue. + * The next flush completion will assign us + * flush_color and transfer to flusher_queue. + */ + list_add_tail(&this_flusher.list, &wq->flusher_overflow); + } + + check_flush_dependency(wq, NULL); + + mutex_unlock(&wq->mutex); + + wait_for_completion(&this_flusher.done); + + /* + * Wake-up-and-cascade phase + * + * First flushers are responsible for cascading flushes and + * handling overflow. Non-first flushers can simply return. + */ + if (READ_ONCE(wq->first_flusher) != &this_flusher) + return; + + mutex_lock(&wq->mutex); + + /* we might have raced, check again with mutex held */ + if (wq->first_flusher != &this_flusher) + goto out_unlock; + + WRITE_ONCE(wq->first_flusher, NULL); + + WARN_ON_ONCE(!list_empty(&this_flusher.list)); + WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); + + while (true) { + struct wq_flusher *next, *tmp; + + /* complete all the flushers sharing the current flush color */ + list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { + if (next->flush_color != wq->flush_color) + break; + list_del_init(&next->list); + complete(&next->done); + } + + WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && + wq->flush_color != work_next_color(wq->work_color)); + + /* this flush_color is finished, advance by one */ + wq->flush_color = work_next_color(wq->flush_color); + + /* one color has been freed, handle overflow queue */ + if (!list_empty(&wq->flusher_overflow)) { + /* + * Assign the same color to all overflowed + * flushers, advance work_color and append to + * flusher_queue. This is the start-to-wait + * phase for these overflowed flushers. + */ + list_for_each_entry(tmp, &wq->flusher_overflow, list) + tmp->flush_color = wq->work_color; + + wq->work_color = work_next_color(wq->work_color); + + list_splice_tail_init(&wq->flusher_overflow, + &wq->flusher_queue); + flush_workqueue_prep_pwqs(wq, -1, wq->work_color); + } + + if (list_empty(&wq->flusher_queue)) { + WARN_ON_ONCE(wq->flush_color != wq->work_color); + break; + } + + /* + * Need to flush more colors. Make the next flusher + * the new first flusher and arm pwqs. + */ + WARN_ON_ONCE(wq->flush_color == wq->work_color); + WARN_ON_ONCE(wq->flush_color != next->flush_color); + + list_del_init(&next->list); + wq->first_flusher = next; + + if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) + break; + + /* + * Meh... this color is already done, clear first + * flusher and repeat cascading. + */ + wq->first_flusher = NULL; + } + +out_unlock: + mutex_unlock(&wq->mutex); +} +EXPORT_SYMBOL(__flush_workqueue); + +/** + * drain_workqueue - drain a workqueue + * @wq: workqueue to drain + * + * Wait until the workqueue becomes empty. While draining is in progress, + * only chain queueing is allowed. IOW, only currently pending or running + * work items on @wq can queue further work items on it. @wq is flushed + * repeatedly until it becomes empty. The number of flushing is determined + * by the depth of chaining and should be relatively short. Whine if it + * takes too long. + */ +void drain_workqueue(struct workqueue_struct *wq) +{ + unsigned int flush_cnt = 0; + struct pool_workqueue *pwq; + + /* + * __queue_work() needs to test whether there are drainers, is much + * hotter than drain_workqueue() and already looks at @wq->flags. + * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. + */ + mutex_lock(&wq->mutex); + if (!wq->nr_drainers++) + wq->flags |= __WQ_DRAINING; + mutex_unlock(&wq->mutex); +reflush: + __flush_workqueue(wq); + + mutex_lock(&wq->mutex); + + for_each_pwq(pwq, wq) { + bool drained; + + raw_spin_lock_irq(&pwq->pool->lock); + drained = !pwq->nr_active && list_empty(&pwq->inactive_works); + raw_spin_unlock_irq(&pwq->pool->lock); + + if (drained) + continue; + + if (++flush_cnt == 10 || + (flush_cnt % 100 == 0 && flush_cnt <= 1000)) + pr_warn("workqueue %s: %s() isn't complete after %u tries\n", + wq->name, __func__, flush_cnt); + + mutex_unlock(&wq->mutex); + goto reflush; + } + + if (!--wq->nr_drainers) + wq->flags &= ~__WQ_DRAINING; + mutex_unlock(&wq->mutex); +} +EXPORT_SYMBOL_GPL(drain_workqueue); + +static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, + bool from_cancel) +{ + struct worker *worker = NULL; + struct worker_pool *pool; + struct pool_workqueue *pwq; + + might_sleep(); + + rcu_read_lock(); + pool = get_work_pool(work); + if (!pool) { + rcu_read_unlock(); + return false; + } + + raw_spin_lock_irq(&pool->lock); + /* see the comment in try_to_grab_pending() with the same code */ + pwq = get_work_pwq(work); + if (pwq) { + if (unlikely(pwq->pool != pool)) + goto already_gone; + } else { + worker = find_worker_executing_work(pool, work); + if (!worker) + goto already_gone; + pwq = worker->current_pwq; + } + + check_flush_dependency(pwq->wq, work); + + insert_wq_barrier(pwq, barr, work, worker); + raw_spin_unlock_irq(&pool->lock); + + /* + * Force a lock recursion deadlock when using flush_work() inside a + * single-threaded or rescuer equipped workqueue. + * + * For single threaded workqueues the deadlock happens when the work + * is after the work issuing the flush_work(). For rescuer equipped + * workqueues the deadlock happens when the rescuer stalls, blocking + * forward progress. + */ + if (!from_cancel && + (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { + lock_map_acquire(&pwq->wq->lockdep_map); + lock_map_release(&pwq->wq->lockdep_map); + } + rcu_read_unlock(); + return true; +already_gone: + raw_spin_unlock_irq(&pool->lock); + rcu_read_unlock(); + return false; +} + +static bool __flush_work(struct work_struct *work, bool from_cancel) +{ + struct wq_barrier barr; + + if (WARN_ON(!wq_online)) + return false; + + if (WARN_ON(!work->func)) + return false; + + lock_map_acquire(&work->lockdep_map); + lock_map_release(&work->lockdep_map); + + if (start_flush_work(work, &barr, from_cancel)) { + wait_for_completion(&barr.done); + destroy_work_on_stack(&barr.work); + return true; + } else { + return false; + } +} + +/** + * flush_work - wait for a work to finish executing the last queueing instance + * @work: the work to flush + * + * Wait until @work has finished execution. @work is guaranteed to be idle + * on return if it hasn't been requeued since flush started. + * + * Return: + * %true if flush_work() waited for the work to finish execution, + * %false if it was already idle. + */ +bool flush_work(struct work_struct *work) +{ + return __flush_work(work, false); +} +EXPORT_SYMBOL_GPL(flush_work); + +struct cwt_wait { + wait_queue_entry_t wait; + struct work_struct *work; +}; + +static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) +{ + struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); + + if (cwait->work != key) + return 0; + return autoremove_wake_function(wait, mode, sync, key); +} + +static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) +{ + static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); + unsigned long flags; + int ret; + + do { + ret = try_to_grab_pending(work, is_dwork, &flags); + /* + * If someone else is already canceling, wait for it to + * finish. flush_work() doesn't work for PREEMPT_NONE + * because we may get scheduled between @work's completion + * and the other canceling task resuming and clearing + * CANCELING - flush_work() will return false immediately + * as @work is no longer busy, try_to_grab_pending() will + * return -ENOENT as @work is still being canceled and the + * other canceling task won't be able to clear CANCELING as + * we're hogging the CPU. + * + * Let's wait for completion using a waitqueue. As this + * may lead to the thundering herd problem, use a custom + * wake function which matches @work along with exclusive + * wait and wakeup. + */ + if (unlikely(ret == -ENOENT)) { + struct cwt_wait cwait; + + init_wait(&cwait.wait); + cwait.wait.func = cwt_wakefn; + cwait.work = work; + + prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, + TASK_UNINTERRUPTIBLE); + if (work_is_canceling(work)) + schedule(); + finish_wait(&cancel_waitq, &cwait.wait); + } + } while (unlikely(ret < 0)); + + /* tell other tasks trying to grab @work to back off */ + mark_work_canceling(work); + local_irq_restore(flags); + + /* + * This allows canceling during early boot. We know that @work + * isn't executing. + */ + if (wq_online) + __flush_work(work, true); + + clear_work_data(work); + + /* + * Paired with prepare_to_wait() above so that either + * waitqueue_active() is visible here or !work_is_canceling() is + * visible there. + */ + smp_mb(); + if (waitqueue_active(&cancel_waitq)) + __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); + + return ret; +} + +/** + * cancel_work_sync - cancel a work and wait for it to finish + * @work: the work to cancel + * + * Cancel @work and wait for its execution to finish. This function + * can be used even if the work re-queues itself or migrates to + * another workqueue. On return from this function, @work is + * guaranteed to be not pending or executing on any CPU. + * + * cancel_work_sync(&delayed_work->work) must not be used for + * delayed_work's. Use cancel_delayed_work_sync() instead. + * + * The caller must ensure that the workqueue on which @work was last + * queued can't be destroyed before this function returns. + * + * Return: + * %true if @work was pending, %false otherwise. + */ +bool cancel_work_sync(struct work_struct *work) +{ + return __cancel_work_timer(work, false); +} +EXPORT_SYMBOL_GPL(cancel_work_sync); + +/** + * flush_delayed_work - wait for a dwork to finish executing the last queueing + * @dwork: the delayed work to flush + * + * Delayed timer is cancelled and the pending work is queued for + * immediate execution. Like flush_work(), this function only + * considers the last queueing instance of @dwork. + * + * Return: + * %true if flush_work() waited for the work to finish execution, + * %false if it was already idle. + */ +bool flush_delayed_work(struct delayed_work *dwork) +{ + local_irq_disable(); + if (del_timer_sync(&dwork->timer)) + __queue_work(dwork->cpu, dwork->wq, &dwork->work); + local_irq_enable(); + return flush_work(&dwork->work); +} +EXPORT_SYMBOL(flush_delayed_work); + +/** + * flush_rcu_work - wait for a rwork to finish executing the last queueing + * @rwork: the rcu work to flush + * + * Return: + * %true if flush_rcu_work() waited for the work to finish execution, + * %false if it was already idle. + */ +bool flush_rcu_work(struct rcu_work *rwork) +{ + if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { + rcu_barrier(); + flush_work(&rwork->work); + return true; + } else { + return flush_work(&rwork->work); + } +} +EXPORT_SYMBOL(flush_rcu_work); + +static bool __cancel_work(struct work_struct *work, bool is_dwork) +{ + unsigned long flags; + int ret; + + do { + ret = try_to_grab_pending(work, is_dwork, &flags); + } while (unlikely(ret == -EAGAIN)); + + if (unlikely(ret < 0)) + return false; + + set_work_pool_and_clear_pending(work, get_work_pool_id(work)); + local_irq_restore(flags); + return ret; +} + +/* + * See cancel_delayed_work() + */ +bool cancel_work(struct work_struct *work) +{ + return __cancel_work(work, false); +} +EXPORT_SYMBOL(cancel_work); + +/** + * cancel_delayed_work - cancel a delayed work + * @dwork: delayed_work to cancel + * + * Kill off a pending delayed_work. + * + * Return: %true if @dwork was pending and canceled; %false if it wasn't + * pending. + * + * Note: + * The work callback function may still be running on return, unless + * it returns %true and the work doesn't re-arm itself. Explicitly flush or + * use cancel_delayed_work_sync() to wait on it. + * + * This function is safe to call from any context including IRQ handler. + */ +bool cancel_delayed_work(struct delayed_work *dwork) +{ + return __cancel_work(&dwork->work, true); +} +EXPORT_SYMBOL(cancel_delayed_work); + +/** + * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish + * @dwork: the delayed work cancel + * + * This is cancel_work_sync() for delayed works. + * + * Return: + * %true if @dwork was pending, %false otherwise. + */ +bool cancel_delayed_work_sync(struct delayed_work *dwork) +{ + return __cancel_work_timer(&dwork->work, true); +} +EXPORT_SYMBOL(cancel_delayed_work_sync); + +/** + * schedule_on_each_cpu - execute a function synchronously on each online CPU + * @func: the function to call + * + * schedule_on_each_cpu() executes @func on each online CPU using the + * system workqueue and blocks until all CPUs have completed. + * schedule_on_each_cpu() is very slow. + * + * Return: + * 0 on success, -errno on failure. + */ +int schedule_on_each_cpu(work_func_t func) +{ + int cpu; + struct work_struct __percpu *works; + + works = alloc_percpu(struct work_struct); + if (!works) + return -ENOMEM; + + cpus_read_lock(); + + for_each_online_cpu(cpu) { + struct work_struct *work = per_cpu_ptr(works, cpu); + + INIT_WORK(work, func); + schedule_work_on(cpu, work); + } + + for_each_online_cpu(cpu) + flush_work(per_cpu_ptr(works, cpu)); + + cpus_read_unlock(); + free_percpu(works); + return 0; +} + +/** + * execute_in_process_context - reliably execute the routine with user context + * @fn: the function to execute + * @ew: guaranteed storage for the execute work structure (must + * be available when the work executes) + * + * Executes the function immediately if process context is available, + * otherwise schedules the function for delayed execution. + * + * Return: 0 - function was executed + * 1 - function was scheduled for execution + */ +int execute_in_process_context(work_func_t fn, struct execute_work *ew) +{ + if (!in_interrupt()) { + fn(&ew->work); + return 0; + } + + INIT_WORK(&ew->work, fn); + schedule_work(&ew->work); + + return 1; +} +EXPORT_SYMBOL_GPL(execute_in_process_context); + +/** + * free_workqueue_attrs - free a workqueue_attrs + * @attrs: workqueue_attrs to free + * + * Undo alloc_workqueue_attrs(). + */ +void free_workqueue_attrs(struct workqueue_attrs *attrs) +{ + if (attrs) { + free_cpumask_var(attrs->cpumask); + free_cpumask_var(attrs->__pod_cpumask); + kfree(attrs); + } +} + +/** + * alloc_workqueue_attrs - allocate a workqueue_attrs + * + * Allocate a new workqueue_attrs, initialize with default settings and + * return it. + * + * Return: The allocated new workqueue_attr on success. %NULL on failure. + */ +struct workqueue_attrs *alloc_workqueue_attrs(void) +{ + struct workqueue_attrs *attrs; + + attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); + if (!attrs) + goto fail; + if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) + goto fail; + if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) + goto fail; + + cpumask_copy(attrs->cpumask, cpu_possible_mask); + attrs->affn_scope = WQ_AFFN_DFL; + return attrs; +fail: + free_workqueue_attrs(attrs); + return NULL; +} + +static void copy_workqueue_attrs(struct workqueue_attrs *to, + const struct workqueue_attrs *from) +{ + to->nice = from->nice; + cpumask_copy(to->cpumask, from->cpumask); + cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); + to->affn_strict = from->affn_strict; + + /* + * Unlike hash and equality test, copying shouldn't ignore wq-only + * fields as copying is used for both pool and wq attrs. Instead, + * get_unbound_pool() explicitly clears the fields. + */ + to->affn_scope = from->affn_scope; + to->ordered = from->ordered; +} + +/* + * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the + * comments in 'struct workqueue_attrs' definition. + */ +static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) +{ + attrs->affn_scope = WQ_AFFN_NR_TYPES; + attrs->ordered = false; +} + +/* hash value of the content of @attr */ +static u32 wqattrs_hash(const struct workqueue_attrs *attrs) +{ + u32 hash = 0; + + hash = jhash_1word(attrs->nice, hash); + hash = jhash(cpumask_bits(attrs->cpumask), + BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); + hash = jhash(cpumask_bits(attrs->__pod_cpumask), + BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); + hash = jhash_1word(attrs->affn_strict, hash); + return hash; +} + +/* content equality test */ +static bool wqattrs_equal(const struct workqueue_attrs *a, + const struct workqueue_attrs *b) +{ + if (a->nice != b->nice) + return false; + if (!cpumask_equal(a->cpumask, b->cpumask)) + return false; + if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) + return false; + if (a->affn_strict != b->affn_strict) + return false; + return true; +} + +/* Update @attrs with actually available CPUs */ +static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, + const cpumask_t *unbound_cpumask) +{ + /* + * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If + * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to + * @unbound_cpumask. + */ + cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); + if (unlikely(cpumask_empty(attrs->cpumask))) + cpumask_copy(attrs->cpumask, unbound_cpumask); +} + +/* find wq_pod_type to use for @attrs */ +static const struct wq_pod_type * +wqattrs_pod_type(const struct workqueue_attrs *attrs) +{ + enum wq_affn_scope scope; + struct wq_pod_type *pt; + + /* to synchronize access to wq_affn_dfl */ + lockdep_assert_held(&wq_pool_mutex); + + if (attrs->affn_scope == WQ_AFFN_DFL) + scope = wq_affn_dfl; + else + scope = attrs->affn_scope; + + pt = &wq_pod_types[scope]; + + if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && + likely(pt->nr_pods)) + return pt; + + /* + * Before workqueue_init_topology(), only SYSTEM is available which is + * initialized in workqueue_init_early(). + */ + pt = &wq_pod_types[WQ_AFFN_SYSTEM]; + BUG_ON(!pt->nr_pods); + return pt; +} + +/** + * init_worker_pool - initialize a newly zalloc'd worker_pool + * @pool: worker_pool to initialize + * + * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. + * + * Return: 0 on success, -errno on failure. Even on failure, all fields + * inside @pool proper are initialized and put_unbound_pool() can be called + * on @pool safely to release it. + */ +static int init_worker_pool(struct worker_pool *pool) +{ + raw_spin_lock_init(&pool->lock); + pool->id = -1; + pool->cpu = -1; + pool->node = NUMA_NO_NODE; + pool->flags |= POOL_DISASSOCIATED; + pool->watchdog_ts = jiffies; + INIT_LIST_HEAD(&pool->worklist); + INIT_LIST_HEAD(&pool->idle_list); + hash_init(pool->busy_hash); + + timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); + INIT_WORK(&pool->idle_cull_work, idle_cull_fn); + + timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); + + INIT_LIST_HEAD(&pool->workers); + INIT_LIST_HEAD(&pool->dying_workers); + + ida_init(&pool->worker_ida); + INIT_HLIST_NODE(&pool->hash_node); + pool->refcnt = 1; + + /* shouldn't fail above this point */ + pool->attrs = alloc_workqueue_attrs(); + if (!pool->attrs) + return -ENOMEM; + + wqattrs_clear_for_pool(pool->attrs); + + return 0; +} + +#ifdef CONFIG_LOCKDEP +static void wq_init_lockdep(struct workqueue_struct *wq) +{ + char *lock_name; + + lockdep_register_key(&wq->key); + lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); + if (!lock_name) + lock_name = wq->name; + + wq->lock_name = lock_name; + lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); +} + +static void wq_unregister_lockdep(struct workqueue_struct *wq) +{ + lockdep_unregister_key(&wq->key); +} + +static void wq_free_lockdep(struct workqueue_struct *wq) +{ + if (wq->lock_name != wq->name) + kfree(wq->lock_name); +} +#else +static void wq_init_lockdep(struct workqueue_struct *wq) +{ +} + +static void wq_unregister_lockdep(struct workqueue_struct *wq) +{ +} + +static void wq_free_lockdep(struct workqueue_struct *wq) +{ +} +#endif + +static void rcu_free_wq(struct rcu_head *rcu) +{ + struct workqueue_struct *wq = + container_of(rcu, struct workqueue_struct, rcu); + + wq_free_lockdep(wq); + free_percpu(wq->cpu_pwq); + free_workqueue_attrs(wq->unbound_attrs); + kfree(wq); +} + +static void rcu_free_pool(struct rcu_head *rcu) +{ + struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); + + ida_destroy(&pool->worker_ida); + free_workqueue_attrs(pool->attrs); + kfree(pool); +} + +/** + * put_unbound_pool - put a worker_pool + * @pool: worker_pool to put + * + * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU + * safe manner. get_unbound_pool() calls this function on its failure path + * and this function should be able to release pools which went through, + * successfully or not, init_worker_pool(). + * + * Should be called with wq_pool_mutex held. + */ +static void put_unbound_pool(struct worker_pool *pool) +{ + DECLARE_COMPLETION_ONSTACK(detach_completion); + struct worker *worker; + LIST_HEAD(cull_list); + + lockdep_assert_held(&wq_pool_mutex); + + if (--pool->refcnt) + return; + + /* sanity checks */ + if (WARN_ON(!(pool->cpu < 0)) || + WARN_ON(!list_empty(&pool->worklist))) + return; + + /* release id and unhash */ + if (pool->id >= 0) + idr_remove(&worker_pool_idr, pool->id); + hash_del(&pool->hash_node); + + /* + * Become the manager and destroy all workers. This prevents + * @pool's workers from blocking on attach_mutex. We're the last + * manager and @pool gets freed with the flag set. + * + * Having a concurrent manager is quite unlikely to happen as we can + * only get here with + * pwq->refcnt == pool->refcnt == 0 + * which implies no work queued to the pool, which implies no worker can + * become the manager. However a worker could have taken the role of + * manager before the refcnts dropped to 0, since maybe_create_worker() + * drops pool->lock + */ + while (true) { + rcuwait_wait_event(&manager_wait, + !(pool->flags & POOL_MANAGER_ACTIVE), + TASK_UNINTERRUPTIBLE); + + mutex_lock(&wq_pool_attach_mutex); + raw_spin_lock_irq(&pool->lock); + if (!(pool->flags & POOL_MANAGER_ACTIVE)) { + pool->flags |= POOL_MANAGER_ACTIVE; + break; + } + raw_spin_unlock_irq(&pool->lock); + mutex_unlock(&wq_pool_attach_mutex); + } + + while ((worker = first_idle_worker(pool))) + set_worker_dying(worker, &cull_list); + WARN_ON(pool->nr_workers || pool->nr_idle); + raw_spin_unlock_irq(&pool->lock); + + wake_dying_workers(&cull_list); + + if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) + pool->detach_completion = &detach_completion; + mutex_unlock(&wq_pool_attach_mutex); + + if (pool->detach_completion) + wait_for_completion(pool->detach_completion); + + /* shut down the timers */ + del_timer_sync(&pool->idle_timer); + cancel_work_sync(&pool->idle_cull_work); + del_timer_sync(&pool->mayday_timer); + + /* RCU protected to allow dereferences from get_work_pool() */ + call_rcu(&pool->rcu, rcu_free_pool); +} + +/** + * get_unbound_pool - get a worker_pool with the specified attributes + * @attrs: the attributes of the worker_pool to get + * + * Obtain a worker_pool which has the same attributes as @attrs, bump the + * reference count and return it. If there already is a matching + * worker_pool, it will be used; otherwise, this function attempts to + * create a new one. + * + * Should be called with wq_pool_mutex held. + * + * Return: On success, a worker_pool with the same attributes as @attrs. + * On failure, %NULL. + */ +static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) +{ + struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; + u32 hash = wqattrs_hash(attrs); + struct worker_pool *pool; + int pod, node = NUMA_NO_NODE; + + lockdep_assert_held(&wq_pool_mutex); + + /* do we already have a matching pool? */ + hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { + if (wqattrs_equal(pool->attrs, attrs)) { + pool->refcnt++; + return pool; + } + } + + /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ + for (pod = 0; pod < pt->nr_pods; pod++) { + if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { + node = pt->pod_node[pod]; + break; + } + } + + /* nope, create a new one */ + pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); + if (!pool || init_worker_pool(pool) < 0) + goto fail; + + pool->node = node; + copy_workqueue_attrs(pool->attrs, attrs); + wqattrs_clear_for_pool(pool->attrs); + + if (worker_pool_assign_id(pool) < 0) + goto fail; + + /* create and start the initial worker */ + if (wq_online && !create_worker(pool)) + goto fail; + + /* install */ + hash_add(unbound_pool_hash, &pool->hash_node, hash); + + return pool; +fail: + if (pool) + put_unbound_pool(pool); + return NULL; +} + +static void rcu_free_pwq(struct rcu_head *rcu) +{ + kmem_cache_free(pwq_cache, + container_of(rcu, struct pool_workqueue, rcu)); +} + +/* + * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero + * refcnt and needs to be destroyed. + */ +static void pwq_release_workfn(struct kthread_work *work) +{ + struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, + release_work); + struct workqueue_struct *wq = pwq->wq; + struct worker_pool *pool = pwq->pool; + bool is_last = false; + + /* + * When @pwq is not linked, it doesn't hold any reference to the + * @wq, and @wq is invalid to access. + */ + if (!list_empty(&pwq->pwqs_node)) { + mutex_lock(&wq->mutex); + list_del_rcu(&pwq->pwqs_node); + is_last = list_empty(&wq->pwqs); + mutex_unlock(&wq->mutex); + } + + if (wq->flags & WQ_UNBOUND) { + mutex_lock(&wq_pool_mutex); + put_unbound_pool(pool); + mutex_unlock(&wq_pool_mutex); + } + + call_rcu(&pwq->rcu, rcu_free_pwq); + + /* + * If we're the last pwq going away, @wq is already dead and no one + * is gonna access it anymore. Schedule RCU free. + */ + if (is_last) { + wq_unregister_lockdep(wq); + call_rcu(&wq->rcu, rcu_free_wq); + } +} + +/** + * pwq_adjust_max_active - update a pwq's max_active to the current setting + * @pwq: target pool_workqueue + * + * If @pwq isn't freezing, set @pwq->max_active to the associated + * workqueue's saved_max_active and activate inactive work items + * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. + */ +static void pwq_adjust_max_active(struct pool_workqueue *pwq) +{ + struct workqueue_struct *wq = pwq->wq; + bool freezable = wq->flags & WQ_FREEZABLE; + unsigned long flags; + + /* for @wq->saved_max_active */ + lockdep_assert_held(&wq->mutex); + + /* fast exit for non-freezable wqs */ + if (!freezable && pwq->max_active == wq->saved_max_active) + return; + + /* this function can be called during early boot w/ irq disabled */ + raw_spin_lock_irqsave(&pwq->pool->lock, flags); + + /* + * During [un]freezing, the caller is responsible for ensuring that + * this function is called at least once after @workqueue_freezing + * is updated and visible. + */ + if (!freezable || !workqueue_freezing) { + pwq->max_active = wq->saved_max_active; + + while (!list_empty(&pwq->inactive_works) && + pwq->nr_active < pwq->max_active) + pwq_activate_first_inactive(pwq); + + kick_pool(pwq->pool); + } else { + pwq->max_active = 0; + } + + raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); +} + +/* initialize newly allocated @pwq which is associated with @wq and @pool */ +static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, + struct worker_pool *pool) +{ + BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); + + memset(pwq, 0, sizeof(*pwq)); + + pwq->pool = pool; + pwq->wq = wq; + pwq->flush_color = -1; + pwq->refcnt = 1; + INIT_LIST_HEAD(&pwq->inactive_works); + INIT_LIST_HEAD(&pwq->pwqs_node); + INIT_LIST_HEAD(&pwq->mayday_node); + kthread_init_work(&pwq->release_work, pwq_release_workfn); +} + +/* sync @pwq with the current state of its associated wq and link it */ +static void link_pwq(struct pool_workqueue *pwq) +{ + struct workqueue_struct *wq = pwq->wq; + + lockdep_assert_held(&wq->mutex); + + /* may be called multiple times, ignore if already linked */ + if (!list_empty(&pwq->pwqs_node)) + return; + + /* set the matching work_color */ + pwq->work_color = wq->work_color; + + /* sync max_active to the current setting */ + pwq_adjust_max_active(pwq); + + /* link in @pwq */ + list_add_rcu(&pwq->pwqs_node, &wq->pwqs); +} + +/* obtain a pool matching @attr and create a pwq associating the pool and @wq */ +static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, + const struct workqueue_attrs *attrs) +{ + struct worker_pool *pool; + struct pool_workqueue *pwq; + + lockdep_assert_held(&wq_pool_mutex); + + pool = get_unbound_pool(attrs); + if (!pool) + return NULL; + + pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); + if (!pwq) { + put_unbound_pool(pool); + return NULL; + } + + init_pwq(pwq, wq, pool); + return pwq; +} + +/** + * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod + * @attrs: the wq_attrs of the default pwq of the target workqueue + * @cpu: the target CPU + * @cpu_going_down: if >= 0, the CPU to consider as offline + * + * Calculate the cpumask a workqueue with @attrs should use on @pod. If + * @cpu_going_down is >= 0, that cpu is considered offline during calculation. + * The result is stored in @attrs->__pod_cpumask. + * + * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled + * and @pod has online CPUs requested by @attrs, the returned cpumask is the + * intersection of the possible CPUs of @pod and @attrs->cpumask. + * + * The caller is responsible for ensuring that the cpumask of @pod stays stable. + */ +static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, + int cpu_going_down) +{ + const struct wq_pod_type *pt = wqattrs_pod_type(attrs); + int pod = pt->cpu_pod[cpu]; + + /* does @pod have any online CPUs @attrs wants? */ + cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); + cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); + if (cpu_going_down >= 0) + cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); + + if (cpumask_empty(attrs->__pod_cpumask)) { + cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); + return; + } + + /* yeap, return possible CPUs in @pod that @attrs wants */ + cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); + + if (cpumask_empty(attrs->__pod_cpumask)) + pr_warn_once("WARNING: workqueue cpumask: online intersect > " + "possible intersect\n"); +} + +/* install @pwq into @wq's cpu_pwq and return the old pwq */ +static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, + int cpu, struct pool_workqueue *pwq) +{ + struct pool_workqueue *old_pwq; + + lockdep_assert_held(&wq_pool_mutex); + lockdep_assert_held(&wq->mutex); + + /* link_pwq() can handle duplicate calls */ + link_pwq(pwq); + + old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu)); + rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq); + return old_pwq; +} + +/* context to store the prepared attrs & pwqs before applying */ +struct apply_wqattrs_ctx { + struct workqueue_struct *wq; /* target workqueue */ + struct workqueue_attrs *attrs; /* attrs to apply */ + struct list_head list; /* queued for batching commit */ + struct pool_workqueue *dfl_pwq; + struct pool_workqueue *pwq_tbl[]; +}; + +/* free the resources after success or abort */ +static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) +{ + if (ctx) { + int cpu; + + for_each_possible_cpu(cpu) + put_pwq_unlocked(ctx->pwq_tbl[cpu]); + put_pwq_unlocked(ctx->dfl_pwq); + + free_workqueue_attrs(ctx->attrs); + + kfree(ctx); + } +} + +/* allocate the attrs and pwqs for later installation */ +static struct apply_wqattrs_ctx * +apply_wqattrs_prepare(struct workqueue_struct *wq, + const struct workqueue_attrs *attrs, + const cpumask_var_t unbound_cpumask) +{ + struct apply_wqattrs_ctx *ctx; + struct workqueue_attrs *new_attrs; + int cpu; + + lockdep_assert_held(&wq_pool_mutex); + + if (WARN_ON(attrs->affn_scope < 0 || + attrs->affn_scope >= WQ_AFFN_NR_TYPES)) + return ERR_PTR(-EINVAL); + + ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); + + new_attrs = alloc_workqueue_attrs(); + if (!ctx || !new_attrs) + goto out_free; + + /* + * If something goes wrong during CPU up/down, we'll fall back to + * the default pwq covering whole @attrs->cpumask. Always create + * it even if we don't use it immediately. + */ + copy_workqueue_attrs(new_attrs, attrs); + wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); + cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); + ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); + if (!ctx->dfl_pwq) + goto out_free; + + for_each_possible_cpu(cpu) { + if (new_attrs->ordered) { + ctx->dfl_pwq->refcnt++; + ctx->pwq_tbl[cpu] = ctx->dfl_pwq; + } else { + wq_calc_pod_cpumask(new_attrs, cpu, -1); + ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); + if (!ctx->pwq_tbl[cpu]) + goto out_free; + } + } + + /* save the user configured attrs and sanitize it. */ + copy_workqueue_attrs(new_attrs, attrs); + cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); + cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); + ctx->attrs = new_attrs; + + ctx->wq = wq; + return ctx; + +out_free: + free_workqueue_attrs(new_attrs); + apply_wqattrs_cleanup(ctx); + return ERR_PTR(-ENOMEM); +} + +/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ +static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) +{ + int cpu; + + /* all pwqs have been created successfully, let's install'em */ + mutex_lock(&ctx->wq->mutex); + + copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); + + /* save the previous pwq and install the new one */ + for_each_possible_cpu(cpu) + ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, + ctx->pwq_tbl[cpu]); + + /* @dfl_pwq might not have been used, ensure it's linked */ + link_pwq(ctx->dfl_pwq); + swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); + + mutex_unlock(&ctx->wq->mutex); +} + +static void apply_wqattrs_lock(void) +{ + /* CPUs should stay stable across pwq creations and installations */ + cpus_read_lock(); + mutex_lock(&wq_pool_mutex); +} + +static void apply_wqattrs_unlock(void) +{ + mutex_unlock(&wq_pool_mutex); + cpus_read_unlock(); +} + +static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, + const struct workqueue_attrs *attrs) +{ + struct apply_wqattrs_ctx *ctx; + + /* only unbound workqueues can change attributes */ + if (WARN_ON(!(wq->flags & WQ_UNBOUND))) + return -EINVAL; + + /* creating multiple pwqs breaks ordering guarantee */ + if (!list_empty(&wq->pwqs)) { + if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) + return -EINVAL; + + wq->flags &= ~__WQ_ORDERED; + } + + ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); + if (IS_ERR(ctx)) + return PTR_ERR(ctx); + + /* the ctx has been prepared successfully, let's commit it */ + apply_wqattrs_commit(ctx); + apply_wqattrs_cleanup(ctx); + + return 0; +} + +/** + * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue + * @wq: the target workqueue + * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() + * + * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps + * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that + * work items are affine to the pod it was issued on. Older pwqs are released as + * in-flight work items finish. Note that a work item which repeatedly requeues + * itself back-to-back will stay on its current pwq. + * + * Performs GFP_KERNEL allocations. + * + * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). + * + * Return: 0 on success and -errno on failure. + */ +int apply_workqueue_attrs(struct workqueue_struct *wq, + const struct workqueue_attrs *attrs) +{ + int ret; + + lockdep_assert_cpus_held(); + + mutex_lock(&wq_pool_mutex); + ret = apply_workqueue_attrs_locked(wq, attrs); + mutex_unlock(&wq_pool_mutex); + + return ret; +} + +/** + * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug + * @wq: the target workqueue + * @cpu: the CPU to update pool association for + * @hotplug_cpu: the CPU coming up or going down + * @online: whether @cpu is coming up or going down + * + * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and + * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of + * @wq accordingly. + * + * + * If pod affinity can't be adjusted due to memory allocation failure, it falls + * back to @wq->dfl_pwq which may not be optimal but is always correct. + * + * Note that when the last allowed CPU of a pod goes offline for a workqueue + * with a cpumask spanning multiple pods, the workers which were already + * executing the work items for the workqueue will lose their CPU affinity and + * may execute on any CPU. This is similar to how per-cpu workqueues behave on + * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's + * responsibility to flush the work item from CPU_DOWN_PREPARE. + */ +static void wq_update_pod(struct workqueue_struct *wq, int cpu, + int hotplug_cpu, bool online) +{ + int off_cpu = online ? -1 : hotplug_cpu; + struct pool_workqueue *old_pwq = NULL, *pwq; + struct workqueue_attrs *target_attrs; + + lockdep_assert_held(&wq_pool_mutex); + + if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) + return; + + /* + * We don't wanna alloc/free wq_attrs for each wq for each CPU. + * Let's use a preallocated one. The following buf is protected by + * CPU hotplug exclusion. + */ + target_attrs = wq_update_pod_attrs_buf; + + copy_workqueue_attrs(target_attrs, wq->unbound_attrs); + wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); + + /* nothing to do if the target cpumask matches the current pwq */ + wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); + pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu), + lockdep_is_held(&wq_pool_mutex)); + if (wqattrs_equal(target_attrs, pwq->pool->attrs)) + return; + + /* create a new pwq */ + pwq = alloc_unbound_pwq(wq, target_attrs); + if (!pwq) { + pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", + wq->name); + goto use_dfl_pwq; + } + + /* Install the new pwq. */ + mutex_lock(&wq->mutex); + old_pwq = install_unbound_pwq(wq, cpu, pwq); + goto out_unlock; + +use_dfl_pwq: + mutex_lock(&wq->mutex); + raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); + get_pwq(wq->dfl_pwq); + raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); + old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq); +out_unlock: + mutex_unlock(&wq->mutex); + put_pwq_unlocked(old_pwq); +} + +static int alloc_and_link_pwqs(struct workqueue_struct *wq) +{ + bool highpri = wq->flags & WQ_HIGHPRI; + int cpu, ret; + + wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); + if (!wq->cpu_pwq) + goto enomem; + + if (!(wq->flags & WQ_UNBOUND)) { + for_each_possible_cpu(cpu) { + struct pool_workqueue **pwq_p = + per_cpu_ptr(wq->cpu_pwq, cpu); + struct worker_pool *pool = + &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]); + + *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, + pool->node); + if (!*pwq_p) + goto enomem; + + init_pwq(*pwq_p, wq, pool); + + mutex_lock(&wq->mutex); + link_pwq(*pwq_p); + mutex_unlock(&wq->mutex); + } + return 0; + } + + cpus_read_lock(); + if (wq->flags & __WQ_ORDERED) { + ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); + /* there should only be single pwq for ordering guarantee */ + WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || + wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), + "ordering guarantee broken for workqueue %s\n", wq->name); + } else { + ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); + } + cpus_read_unlock(); + + /* for unbound pwq, flush the pwq_release_worker ensures that the + * pwq_release_workfn() completes before calling kfree(wq). + */ + if (ret) + kthread_flush_worker(pwq_release_worker); + + return ret; + +enomem: + if (wq->cpu_pwq) { + for_each_possible_cpu(cpu) { + struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); + + if (pwq) + kmem_cache_free(pwq_cache, pwq); + } + free_percpu(wq->cpu_pwq); + wq->cpu_pwq = NULL; + } + return -ENOMEM; +} + +static int wq_clamp_max_active(int max_active, unsigned int flags, + const char *name) +{ + if (max_active < 1 || max_active > WQ_MAX_ACTIVE) + pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", + max_active, name, 1, WQ_MAX_ACTIVE); + + return clamp_val(max_active, 1, WQ_MAX_ACTIVE); +} + +/* + * Workqueues which may be used during memory reclaim should have a rescuer + * to guarantee forward progress. + */ +static int init_rescuer(struct workqueue_struct *wq) +{ + struct worker *rescuer; + int ret; + + if (!(wq->flags & WQ_MEM_RECLAIM)) + return 0; + + rescuer = alloc_worker(NUMA_NO_NODE); + if (!rescuer) { + pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", + wq->name); + return -ENOMEM; + } + + rescuer->rescue_wq = wq; + rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); + if (IS_ERR(rescuer->task)) { + ret = PTR_ERR(rescuer->task); + pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", + wq->name, ERR_PTR(ret)); + kfree(rescuer); + return ret; + } + + wq->rescuer = rescuer; + kthread_bind_mask(rescuer->task, cpu_possible_mask); + wake_up_process(rescuer->task); + + return 0; +} + +__printf(1, 4) +struct workqueue_struct *alloc_workqueue(const char *fmt, + unsigned int flags, + int max_active, ...) +{ + va_list args; + struct workqueue_struct *wq; + struct pool_workqueue *pwq; + + /* + * Unbound && max_active == 1 used to imply ordered, which is no longer + * the case on many machines due to per-pod pools. While + * alloc_ordered_workqueue() is the right way to create an ordered + * workqueue, keep the previous behavior to avoid subtle breakages. + */ + if ((flags & WQ_UNBOUND) && max_active == 1) + flags |= __WQ_ORDERED; + + /* see the comment above the definition of WQ_POWER_EFFICIENT */ + if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) + flags |= WQ_UNBOUND; + + /* allocate wq and format name */ + wq = kzalloc(sizeof(*wq), GFP_KERNEL); + if (!wq) + return NULL; + + if (flags & WQ_UNBOUND) { + wq->unbound_attrs = alloc_workqueue_attrs(); + if (!wq->unbound_attrs) + goto err_free_wq; + } + + va_start(args, max_active); + vsnprintf(wq->name, sizeof(wq->name), fmt, args); + va_end(args); + + max_active = max_active ?: WQ_DFL_ACTIVE; + max_active = wq_clamp_max_active(max_active, flags, wq->name); + + /* init wq */ + wq->flags = flags; + wq->saved_max_active = max_active; + mutex_init(&wq->mutex); + atomic_set(&wq->nr_pwqs_to_flush, 0); + INIT_LIST_HEAD(&wq->pwqs); + INIT_LIST_HEAD(&wq->flusher_queue); + INIT_LIST_HEAD(&wq->flusher_overflow); + INIT_LIST_HEAD(&wq->maydays); + + wq_init_lockdep(wq); + INIT_LIST_HEAD(&wq->list); + + if (alloc_and_link_pwqs(wq) < 0) + goto err_unreg_lockdep; + + if (wq_online && init_rescuer(wq) < 0) + goto err_destroy; + + if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) + goto err_destroy; + + /* + * wq_pool_mutex protects global freeze state and workqueues list. + * Grab it, adjust max_active and add the new @wq to workqueues + * list. + */ + mutex_lock(&wq_pool_mutex); + + mutex_lock(&wq->mutex); + for_each_pwq(pwq, wq) + pwq_adjust_max_active(pwq); + mutex_unlock(&wq->mutex); + + list_add_tail_rcu(&wq->list, &workqueues); + + mutex_unlock(&wq_pool_mutex); + + return wq; + +err_unreg_lockdep: + wq_unregister_lockdep(wq); + wq_free_lockdep(wq); +err_free_wq: + free_workqueue_attrs(wq->unbound_attrs); + kfree(wq); + return NULL; +err_destroy: + destroy_workqueue(wq); + return NULL; +} +EXPORT_SYMBOL_GPL(alloc_workqueue); + +static bool pwq_busy(struct pool_workqueue *pwq) +{ + int i; + + for (i = 0; i < WORK_NR_COLORS; i++) + if (pwq->nr_in_flight[i]) + return true; + + if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) + return true; + if (pwq->nr_active || !list_empty(&pwq->inactive_works)) + return true; + + return false; +} + +/** + * destroy_workqueue - safely terminate a workqueue + * @wq: target workqueue + * + * Safely destroy a workqueue. All work currently pending will be done first. + */ +void destroy_workqueue(struct workqueue_struct *wq) +{ + struct pool_workqueue *pwq; + int cpu; + + /* + * Remove it from sysfs first so that sanity check failure doesn't + * lead to sysfs name conflicts. + */ + workqueue_sysfs_unregister(wq); + + /* mark the workqueue destruction is in progress */ + mutex_lock(&wq->mutex); + wq->flags |= __WQ_DESTROYING; + mutex_unlock(&wq->mutex); + + /* drain it before proceeding with destruction */ + drain_workqueue(wq); + + /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ + if (wq->rescuer) { + struct worker *rescuer = wq->rescuer; + + /* this prevents new queueing */ + raw_spin_lock_irq(&wq_mayday_lock); + wq->rescuer = NULL; + raw_spin_unlock_irq(&wq_mayday_lock); + + /* rescuer will empty maydays list before exiting */ + kthread_stop(rescuer->task); + kfree(rescuer); + } + + /* + * Sanity checks - grab all the locks so that we wait for all + * in-flight operations which may do put_pwq(). + */ + mutex_lock(&wq_pool_mutex); + mutex_lock(&wq->mutex); + for_each_pwq(pwq, wq) { + raw_spin_lock_irq(&pwq->pool->lock); + if (WARN_ON(pwq_busy(pwq))) { + pr_warn("%s: %s has the following busy pwq\n", + __func__, wq->name); + show_pwq(pwq); + raw_spin_unlock_irq(&pwq->pool->lock); + mutex_unlock(&wq->mutex); + mutex_unlock(&wq_pool_mutex); + show_one_workqueue(wq); + return; + } + raw_spin_unlock_irq(&pwq->pool->lock); + } + mutex_unlock(&wq->mutex); + + /* + * wq list is used to freeze wq, remove from list after + * flushing is complete in case freeze races us. + */ + list_del_rcu(&wq->list); + mutex_unlock(&wq_pool_mutex); + + /* + * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq + * to put the base refs. @wq will be auto-destroyed from the last + * pwq_put. RCU read lock prevents @wq from going away from under us. + */ + rcu_read_lock(); + + for_each_possible_cpu(cpu) { + pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu)); + RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL); + put_pwq_unlocked(pwq); + } + + put_pwq_unlocked(wq->dfl_pwq); + wq->dfl_pwq = NULL; + + rcu_read_unlock(); +} +EXPORT_SYMBOL_GPL(destroy_workqueue); + +/** + * workqueue_set_max_active - adjust max_active of a workqueue + * @wq: target workqueue + * @max_active: new max_active value. + * + * Set max_active of @wq to @max_active. + * + * CONTEXT: + * Don't call from IRQ context. + */ +void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) +{ + struct pool_workqueue *pwq; + + /* disallow meddling with max_active for ordered workqueues */ + if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) + return; + + max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); + + mutex_lock(&wq->mutex); + + wq->flags &= ~__WQ_ORDERED; + wq->saved_max_active = max_active; + + for_each_pwq(pwq, wq) + pwq_adjust_max_active(pwq); + + mutex_unlock(&wq->mutex); +} +EXPORT_SYMBOL_GPL(workqueue_set_max_active); + +/** + * current_work - retrieve %current task's work struct + * + * Determine if %current task is a workqueue worker and what it's working on. + * Useful to find out the context that the %current task is running in. + * + * Return: work struct if %current task is a workqueue worker, %NULL otherwise. + */ +struct work_struct *current_work(void) +{ + struct worker *worker = current_wq_worker(); + + return worker ? worker->current_work : NULL; +} +EXPORT_SYMBOL(current_work); + +/** + * current_is_workqueue_rescuer - is %current workqueue rescuer? + * + * Determine whether %current is a workqueue rescuer. Can be used from + * work functions to determine whether it's being run off the rescuer task. + * + * Return: %true if %current is a workqueue rescuer. %false otherwise. + */ +bool current_is_workqueue_rescuer(void) +{ + struct worker *worker = current_wq_worker(); + + return worker && worker->rescue_wq; +} + +/** + * workqueue_congested - test whether a workqueue is congested + * @cpu: CPU in question + * @wq: target workqueue + * + * Test whether @wq's cpu workqueue for @cpu is congested. There is + * no synchronization around this function and the test result is + * unreliable and only useful as advisory hints or for debugging. + * + * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. + * + * With the exception of ordered workqueues, all workqueues have per-cpu + * pool_workqueues, each with its own congested state. A workqueue being + * congested on one CPU doesn't mean that the workqueue is contested on any + * other CPUs. + * + * Return: + * %true if congested, %false otherwise. + */ +bool workqueue_congested(int cpu, struct workqueue_struct *wq) +{ + struct pool_workqueue *pwq; + bool ret; + + rcu_read_lock(); + preempt_disable(); + + if (cpu == WORK_CPU_UNBOUND) + cpu = smp_processor_id(); + + pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); + ret = !list_empty(&pwq->inactive_works); + + preempt_enable(); + rcu_read_unlock(); + + return ret; +} +EXPORT_SYMBOL_GPL(workqueue_congested); + +/** + * work_busy - test whether a work is currently pending or running + * @work: the work to be tested + * + * Test whether @work is currently pending or running. There is no + * synchronization around this function and the test result is + * unreliable and only useful as advisory hints or for debugging. + * + * Return: + * OR'd bitmask of WORK_BUSY_* bits. + */ +unsigned int work_busy(struct work_struct *work) +{ + struct worker_pool *pool; + unsigned long flags; + unsigned int ret = 0; + + if (work_pending(work)) + ret |= WORK_BUSY_PENDING; + + rcu_read_lock(); + pool = get_work_pool(work); + if (pool) { + raw_spin_lock_irqsave(&pool->lock, flags); + if (find_worker_executing_work(pool, work)) + ret |= WORK_BUSY_RUNNING; + raw_spin_unlock_irqrestore(&pool->lock, flags); + } + rcu_read_unlock(); + + return ret; +} +EXPORT_SYMBOL_GPL(work_busy); + +/** + * set_worker_desc - set description for the current work item + * @fmt: printf-style format string + * @...: arguments for the format string + * + * This function can be called by a running work function to describe what + * the work item is about. If the worker task gets dumped, this + * information will be printed out together to help debugging. The + * description can be at most WORKER_DESC_LEN including the trailing '\0'. + */ +void set_worker_desc(const char *fmt, ...) +{ + struct worker *worker = current_wq_worker(); + va_list args; + + if (worker) { + va_start(args, fmt); + vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); + va_end(args); + } +} +EXPORT_SYMBOL_GPL(set_worker_desc); + +/** + * print_worker_info - print out worker information and description + * @log_lvl: the log level to use when printing + * @task: target task + * + * If @task is a worker and currently executing a work item, print out the + * name of the workqueue being serviced and worker description set with + * set_worker_desc() by the currently executing work item. + * + * This function can be safely called on any task as long as the + * task_struct itself is accessible. While safe, this function isn't + * synchronized and may print out mixups or garbages of limited length. + */ +void print_worker_info(const char *log_lvl, struct task_struct *task) +{ + work_func_t *fn = NULL; + char name[WQ_NAME_LEN] = { }; + char desc[WORKER_DESC_LEN] = { }; + struct pool_workqueue *pwq = NULL; + struct workqueue_struct *wq = NULL; + struct worker *worker; + + if (!(task->flags & PF_WQ_WORKER)) + return; + + /* + * This function is called without any synchronization and @task + * could be in any state. Be careful with dereferences. + */ + worker = kthread_probe_data(task); + + /* + * Carefully copy the associated workqueue's workfn, name and desc. + * Keep the original last '\0' in case the original is garbage. + */ + copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); + copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); + copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); + copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); + copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); + + if (fn || name[0] || desc[0]) { + printk("%sWorkqueue: %s %ps", log_lvl, name, fn); + if (strcmp(name, desc)) + pr_cont(" (%s)", desc); + pr_cont("\n"); + } +} + +static void pr_cont_pool_info(struct worker_pool *pool) +{ + pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); + if (pool->node != NUMA_NO_NODE) + pr_cont(" node=%d", pool->node); + pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); +} + +struct pr_cont_work_struct { + bool comma; + work_func_t func; + long ctr; +}; + +static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) +{ + if (!pcwsp->ctr) + goto out_record; + if (func == pcwsp->func) { + pcwsp->ctr++; + return; + } + if (pcwsp->ctr == 1) + pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); + else + pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); + pcwsp->ctr = 0; +out_record: + if ((long)func == -1L) + return; + pcwsp->comma = comma; + pcwsp->func = func; + pcwsp->ctr = 1; +} + +static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) +{ + if (work->func == wq_barrier_func) { + struct wq_barrier *barr; + + barr = container_of(work, struct wq_barrier, work); + + pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); + pr_cont("%s BAR(%d)", comma ? "," : "", + task_pid_nr(barr->task)); + } else { + if (!comma) + pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); + pr_cont_work_flush(comma, work->func, pcwsp); + } +} + +static void show_pwq(struct pool_workqueue *pwq) +{ + struct pr_cont_work_struct pcws = { .ctr = 0, }; + struct worker_pool *pool = pwq->pool; + struct work_struct *work; + struct worker *worker; + bool has_in_flight = false, has_pending = false; + int bkt; + + pr_info(" pwq %d:", pool->id); + pr_cont_pool_info(pool); + + pr_cont(" active=%d/%d refcnt=%d%s\n", + pwq->nr_active, pwq->max_active, pwq->refcnt, + !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); + + hash_for_each(pool->busy_hash, bkt, worker, hentry) { + if (worker->current_pwq == pwq) { + has_in_flight = true; + break; + } + } + if (has_in_flight) { + bool comma = false; + + pr_info(" in-flight:"); + hash_for_each(pool->busy_hash, bkt, worker, hentry) { + if (worker->current_pwq != pwq) + continue; + + pr_cont("%s %d%s:%ps", comma ? "," : "", + task_pid_nr(worker->task), + worker->rescue_wq ? "(RESCUER)" : "", + worker->current_func); + list_for_each_entry(work, &worker->scheduled, entry) + pr_cont_work(false, work, &pcws); + pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); + comma = true; + } + pr_cont("\n"); + } + + list_for_each_entry(work, &pool->worklist, entry) { + if (get_work_pwq(work) == pwq) { + has_pending = true; + break; + } + } + if (has_pending) { + bool comma = false; + + pr_info(" pending:"); + list_for_each_entry(work, &pool->worklist, entry) { + if (get_work_pwq(work) != pwq) + continue; + + pr_cont_work(comma, work, &pcws); + comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); + } + pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); + pr_cont("\n"); + } + + if (!list_empty(&pwq->inactive_works)) { + bool comma = false; + + pr_info(" inactive:"); + list_for_each_entry(work, &pwq->inactive_works, entry) { + pr_cont_work(comma, work, &pcws); + comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); + } + pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); + pr_cont("\n"); + } +} + +/** + * show_one_workqueue - dump state of specified workqueue + * @wq: workqueue whose state will be printed + */ +void show_one_workqueue(struct workqueue_struct *wq) +{ + struct pool_workqueue *pwq; + bool idle = true; + unsigned long flags; + + for_each_pwq(pwq, wq) { + if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { + idle = false; + break; + } + } + if (idle) /* Nothing to print for idle workqueue */ + return; + + pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); + + for_each_pwq(pwq, wq) { + raw_spin_lock_irqsave(&pwq->pool->lock, flags); + if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { + /* + * Defer printing to avoid deadlocks in console + * drivers that queue work while holding locks + * also taken in their write paths. + */ + printk_deferred_enter(); + show_pwq(pwq); + printk_deferred_exit(); + } + raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); + /* + * We could be printing a lot from atomic context, e.g. + * sysrq-t -> show_all_workqueues(). Avoid triggering + * hard lockup. + */ + touch_nmi_watchdog(); + } + +} + +/** + * show_one_worker_pool - dump state of specified worker pool + * @pool: worker pool whose state will be printed + */ +static void show_one_worker_pool(struct worker_pool *pool) +{ + struct worker *worker; + bool first = true; + unsigned long flags; + unsigned long hung = 0; + + raw_spin_lock_irqsave(&pool->lock, flags); + if (pool->nr_workers == pool->nr_idle) + goto next_pool; + + /* How long the first pending work is waiting for a worker. */ + if (!list_empty(&pool->worklist)) + hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; + + /* + * Defer printing to avoid deadlocks in console drivers that + * queue work while holding locks also taken in their write + * paths. + */ + printk_deferred_enter(); + pr_info("pool %d:", pool->id); + pr_cont_pool_info(pool); + pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); + if (pool->manager) + pr_cont(" manager: %d", + task_pid_nr(pool->manager->task)); + list_for_each_entry(worker, &pool->idle_list, entry) { + pr_cont(" %s%d", first ? "idle: " : "", + task_pid_nr(worker->task)); + first = false; + } + pr_cont("\n"); + printk_deferred_exit(); +next_pool: + raw_spin_unlock_irqrestore(&pool->lock, flags); + /* + * We could be printing a lot from atomic context, e.g. + * sysrq-t -> show_all_workqueues(). Avoid triggering + * hard lockup. + */ + touch_nmi_watchdog(); + +} + +/** + * show_all_workqueues - dump workqueue state + * + * Called from a sysrq handler and prints out all busy workqueues and pools. + */ +void show_all_workqueues(void) +{ + struct workqueue_struct *wq; + struct worker_pool *pool; + int pi; + + rcu_read_lock(); + + pr_info("Showing busy workqueues and worker pools:\n"); + + list_for_each_entry_rcu(wq, &workqueues, list) + show_one_workqueue(wq); + + for_each_pool(pool, pi) + show_one_worker_pool(pool); + + rcu_read_unlock(); +} + +/** + * show_freezable_workqueues - dump freezable workqueue state + * + * Called from try_to_freeze_tasks() and prints out all freezable workqueues + * still busy. + */ +void show_freezable_workqueues(void) +{ + struct workqueue_struct *wq; + + rcu_read_lock(); + + pr_info("Showing freezable workqueues that are still busy:\n"); + + list_for_each_entry_rcu(wq, &workqueues, list) { + if (!(wq->flags & WQ_FREEZABLE)) + continue; + show_one_workqueue(wq); + } + + rcu_read_unlock(); +} + +/* used to show worker information through /proc/PID/{comm,stat,status} */ +void wq_worker_comm(char *buf, size_t size, struct task_struct *task) +{ + int off; + + /* always show the actual comm */ + off = strscpy(buf, task->comm, size); + if (off < 0) + return; + + /* stabilize PF_WQ_WORKER and worker pool association */ + mutex_lock(&wq_pool_attach_mutex); + + if (task->flags & PF_WQ_WORKER) { + struct worker *worker = kthread_data(task); + struct worker_pool *pool = worker->pool; + + if (pool) { + raw_spin_lock_irq(&pool->lock); + /* + * ->desc tracks information (wq name or + * set_worker_desc()) for the latest execution. If + * current, prepend '+', otherwise '-'. + */ + if (worker->desc[0] != '\0') { + if (worker->current_work) + scnprintf(buf + off, size - off, "+%s", + worker->desc); + else + scnprintf(buf + off, size - off, "-%s", + worker->desc); + } + raw_spin_unlock_irq(&pool->lock); + } + } + + mutex_unlock(&wq_pool_attach_mutex); +} + +#ifdef CONFIG_SMP + +/* + * CPU hotplug. + * + * There are two challenges in supporting CPU hotplug. Firstly, there + * are a lot of assumptions on strong associations among work, pwq and + * pool which make migrating pending and scheduled works very + * difficult to implement without impacting hot paths. Secondly, + * worker pools serve mix of short, long and very long running works making + * blocked draining impractical. + * + * This is solved by allowing the pools to be disassociated from the CPU + * running as an unbound one and allowing it to be reattached later if the + * cpu comes back online. + */ + +static void unbind_workers(int cpu) +{ + struct worker_pool *pool; + struct worker *worker; + + for_each_cpu_worker_pool(pool, cpu) { + mutex_lock(&wq_pool_attach_mutex); + raw_spin_lock_irq(&pool->lock); + + /* + * We've blocked all attach/detach operations. Make all workers + * unbound and set DISASSOCIATED. Before this, all workers + * must be on the cpu. After this, they may become diasporas. + * And the preemption disabled section in their sched callbacks + * are guaranteed to see WORKER_UNBOUND since the code here + * is on the same cpu. + */ + for_each_pool_worker(worker, pool) + worker->flags |= WORKER_UNBOUND; + + pool->flags |= POOL_DISASSOCIATED; + + /* + * The handling of nr_running in sched callbacks are disabled + * now. Zap nr_running. After this, nr_running stays zero and + * need_more_worker() and keep_working() are always true as + * long as the worklist is not empty. This pool now behaves as + * an unbound (in terms of concurrency management) pool which + * are served by workers tied to the pool. + */ + pool->nr_running = 0; + + /* + * With concurrency management just turned off, a busy + * worker blocking could lead to lengthy stalls. Kick off + * unbound chain execution of currently pending work items. + */ + kick_pool(pool); + + raw_spin_unlock_irq(&pool->lock); + + for_each_pool_worker(worker, pool) + unbind_worker(worker); + + mutex_unlock(&wq_pool_attach_mutex); + } +} + +/** + * rebind_workers - rebind all workers of a pool to the associated CPU + * @pool: pool of interest + * + * @pool->cpu is coming online. Rebind all workers to the CPU. + */ +static void rebind_workers(struct worker_pool *pool) +{ + struct worker *worker; + + lockdep_assert_held(&wq_pool_attach_mutex); + + /* + * Restore CPU affinity of all workers. As all idle workers should + * be on the run-queue of the associated CPU before any local + * wake-ups for concurrency management happen, restore CPU affinity + * of all workers first and then clear UNBOUND. As we're called + * from CPU_ONLINE, the following shouldn't fail. + */ + for_each_pool_worker(worker, pool) { + kthread_set_per_cpu(worker->task, pool->cpu); + WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, + pool_allowed_cpus(pool)) < 0); + } + + raw_spin_lock_irq(&pool->lock); + + pool->flags &= ~POOL_DISASSOCIATED; + + for_each_pool_worker(worker, pool) { + unsigned int worker_flags = worker->flags; + + /* + * We want to clear UNBOUND but can't directly call + * worker_clr_flags() or adjust nr_running. Atomically + * replace UNBOUND with another NOT_RUNNING flag REBOUND. + * @worker will clear REBOUND using worker_clr_flags() when + * it initiates the next execution cycle thus restoring + * concurrency management. Note that when or whether + * @worker clears REBOUND doesn't affect correctness. + * + * WRITE_ONCE() is necessary because @worker->flags may be + * tested without holding any lock in + * wq_worker_running(). Without it, NOT_RUNNING test may + * fail incorrectly leading to premature concurrency + * management operations. + */ + WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); + worker_flags |= WORKER_REBOUND; + worker_flags &= ~WORKER_UNBOUND; + WRITE_ONCE(worker->flags, worker_flags); + } + + raw_spin_unlock_irq(&pool->lock); +} + +/** + * restore_unbound_workers_cpumask - restore cpumask of unbound workers + * @pool: unbound pool of interest + * @cpu: the CPU which is coming up + * + * An unbound pool may end up with a cpumask which doesn't have any online + * CPUs. When a worker of such pool get scheduled, the scheduler resets + * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any + * online CPU before, cpus_allowed of all its workers should be restored. + */ +static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) +{ + static cpumask_t cpumask; + struct worker *worker; + + lockdep_assert_held(&wq_pool_attach_mutex); + + /* is @cpu allowed for @pool? */ + if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) + return; + + cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); + + /* as we're called from CPU_ONLINE, the following shouldn't fail */ + for_each_pool_worker(worker, pool) + WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); +} + +int workqueue_prepare_cpu(unsigned int cpu) +{ + struct worker_pool *pool; + + for_each_cpu_worker_pool(pool, cpu) { + if (pool->nr_workers) + continue; + if (!create_worker(pool)) + return -ENOMEM; + } + return 0; +} + +int workqueue_online_cpu(unsigned int cpu) +{ + struct worker_pool *pool; + struct workqueue_struct *wq; + int pi; + + mutex_lock(&wq_pool_mutex); + + for_each_pool(pool, pi) { + mutex_lock(&wq_pool_attach_mutex); + + if (pool->cpu == cpu) + rebind_workers(pool); + else if (pool->cpu < 0) + restore_unbound_workers_cpumask(pool, cpu); + + mutex_unlock(&wq_pool_attach_mutex); + } + + /* update pod affinity of unbound workqueues */ + list_for_each_entry(wq, &workqueues, list) { + struct workqueue_attrs *attrs = wq->unbound_attrs; + + if (attrs) { + const struct wq_pod_type *pt = wqattrs_pod_type(attrs); + int tcpu; + + for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) + wq_update_pod(wq, tcpu, cpu, true); + } + } + + mutex_unlock(&wq_pool_mutex); + return 0; +} + +int workqueue_offline_cpu(unsigned int cpu) +{ + struct workqueue_struct *wq; + + /* unbinding per-cpu workers should happen on the local CPU */ + if (WARN_ON(cpu != smp_processor_id())) + return -1; + + unbind_workers(cpu); + + /* update pod affinity of unbound workqueues */ + mutex_lock(&wq_pool_mutex); + list_for_each_entry(wq, &workqueues, list) { + struct workqueue_attrs *attrs = wq->unbound_attrs; + + if (attrs) { + const struct wq_pod_type *pt = wqattrs_pod_type(attrs); + int tcpu; + + for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) + wq_update_pod(wq, tcpu, cpu, false); + } + } + mutex_unlock(&wq_pool_mutex); + + return 0; +} + +struct work_for_cpu { + struct work_struct work; + long (*fn)(void *); + void *arg; + long ret; +}; + +static void work_for_cpu_fn(struct work_struct *work) +{ + struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); + + wfc->ret = wfc->fn(wfc->arg); +} + +/** + * work_on_cpu_key - run a function in thread context on a particular cpu + * @cpu: the cpu to run on + * @fn: the function to run + * @arg: the function arg + * @key: The lock class key for lock debugging purposes + * + * It is up to the caller to ensure that the cpu doesn't go offline. + * The caller must not hold any locks which would prevent @fn from completing. + * + * Return: The value @fn returns. + */ +long work_on_cpu_key(int cpu, long (*fn)(void *), + void *arg, struct lock_class_key *key) +{ + struct work_for_cpu wfc = { .fn = fn, .arg = arg }; + + INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); + schedule_work_on(cpu, &wfc.work); + flush_work(&wfc.work); + destroy_work_on_stack(&wfc.work); + return wfc.ret; +} +EXPORT_SYMBOL_GPL(work_on_cpu_key); + +/** + * work_on_cpu_safe_key - run a function in thread context on a particular cpu + * @cpu: the cpu to run on + * @fn: the function to run + * @arg: the function argument + * @key: The lock class key for lock debugging purposes + * + * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold + * any locks which would prevent @fn from completing. + * + * Return: The value @fn returns. + */ +long work_on_cpu_safe_key(int cpu, long (*fn)(void *), + void *arg, struct lock_class_key *key) +{ + long ret = -ENODEV; + + cpus_read_lock(); + if (cpu_online(cpu)) + ret = work_on_cpu_key(cpu, fn, arg, key); + cpus_read_unlock(); + return ret; +} +EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_FREEZER + +/** + * freeze_workqueues_begin - begin freezing workqueues + * + * Start freezing workqueues. After this function returns, all freezable + * workqueues will queue new works to their inactive_works list instead of + * pool->worklist. + * + * CONTEXT: + * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. + */ +void freeze_workqueues_begin(void) +{ + struct workqueue_struct *wq; + struct pool_workqueue *pwq; + + mutex_lock(&wq_pool_mutex); + + WARN_ON_ONCE(workqueue_freezing); + workqueue_freezing = true; + + list_for_each_entry(wq, &workqueues, list) { + mutex_lock(&wq->mutex); + for_each_pwq(pwq, wq) + pwq_adjust_max_active(pwq); + mutex_unlock(&wq->mutex); + } + + mutex_unlock(&wq_pool_mutex); +} + +/** + * freeze_workqueues_busy - are freezable workqueues still busy? + * + * Check whether freezing is complete. This function must be called + * between freeze_workqueues_begin() and thaw_workqueues(). + * + * CONTEXT: + * Grabs and releases wq_pool_mutex. + * + * Return: + * %true if some freezable workqueues are still busy. %false if freezing + * is complete. + */ +bool freeze_workqueues_busy(void) +{ + bool busy = false; + struct workqueue_struct *wq; + struct pool_workqueue *pwq; + + mutex_lock(&wq_pool_mutex); + + WARN_ON_ONCE(!workqueue_freezing); + + list_for_each_entry(wq, &workqueues, list) { + if (!(wq->flags & WQ_FREEZABLE)) + continue; + /* + * nr_active is monotonically decreasing. It's safe + * to peek without lock. + */ + rcu_read_lock(); + for_each_pwq(pwq, wq) { + WARN_ON_ONCE(pwq->nr_active < 0); + if (pwq->nr_active) { + busy = true; + rcu_read_unlock(); + goto out_unlock; + } + } + rcu_read_unlock(); + } +out_unlock: + mutex_unlock(&wq_pool_mutex); + return busy; +} + +/** + * thaw_workqueues - thaw workqueues + * + * Thaw workqueues. Normal queueing is restored and all collected + * frozen works are transferred to their respective pool worklists. + * + * CONTEXT: + * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. + */ +void thaw_workqueues(void) +{ + struct workqueue_struct *wq; + struct pool_workqueue *pwq; + + mutex_lock(&wq_pool_mutex); + + if (!workqueue_freezing) + goto out_unlock; + + workqueue_freezing = false; + + /* restore max_active and repopulate worklist */ + list_for_each_entry(wq, &workqueues, list) { + mutex_lock(&wq->mutex); + for_each_pwq(pwq, wq) + pwq_adjust_max_active(pwq); + mutex_unlock(&wq->mutex); + } + +out_unlock: + mutex_unlock(&wq_pool_mutex); +} +#endif /* CONFIG_FREEZER */ + +static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) +{ + LIST_HEAD(ctxs); + int ret = 0; + struct workqueue_struct *wq; + struct apply_wqattrs_ctx *ctx, *n; + + lockdep_assert_held(&wq_pool_mutex); + + list_for_each_entry(wq, &workqueues, list) { + if (!(wq->flags & WQ_UNBOUND)) + continue; + + /* creating multiple pwqs breaks ordering guarantee */ + if (!list_empty(&wq->pwqs)) { + if (wq->flags & __WQ_ORDERED_EXPLICIT) + continue; + wq->flags &= ~__WQ_ORDERED; + } + + ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); + if (IS_ERR(ctx)) { + ret = PTR_ERR(ctx); + break; + } + + list_add_tail(&ctx->list, &ctxs); + } + + list_for_each_entry_safe(ctx, n, &ctxs, list) { + if (!ret) + apply_wqattrs_commit(ctx); + apply_wqattrs_cleanup(ctx); + } + + if (!ret) { + mutex_lock(&wq_pool_attach_mutex); + cpumask_copy(wq_unbound_cpumask, unbound_cpumask); + mutex_unlock(&wq_pool_attach_mutex); + } + return ret; +} + +/** + * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask + * @cpumask: the cpumask to set + * + * The low-level workqueues cpumask is a global cpumask that limits + * the affinity of all unbound workqueues. This function check the @cpumask + * and apply it to all unbound workqueues and updates all pwqs of them. + * + * Return: 0 - Success + * -EINVAL - Invalid @cpumask + * -ENOMEM - Failed to allocate memory for attrs or pwqs. + */ +int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) +{ + int ret = -EINVAL; + + /* + * Not excluding isolated cpus on purpose. + * If the user wishes to include them, we allow that. + */ + cpumask_and(cpumask, cpumask, cpu_possible_mask); + if (!cpumask_empty(cpumask)) { + apply_wqattrs_lock(); + if (cpumask_equal(cpumask, wq_unbound_cpumask)) { + ret = 0; + goto out_unlock; + } + + ret = workqueue_apply_unbound_cpumask(cpumask); + +out_unlock: + apply_wqattrs_unlock(); + } + + return ret; +} + +static int parse_affn_scope(const char *val) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { + if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) + return i; + } + return -EINVAL; +} + +static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) +{ + struct workqueue_struct *wq; + int affn, cpu; + + affn = parse_affn_scope(val); + if (affn < 0) + return affn; + if (affn == WQ_AFFN_DFL) + return -EINVAL; + + cpus_read_lock(); + mutex_lock(&wq_pool_mutex); + + wq_affn_dfl = affn; + + list_for_each_entry(wq, &workqueues, list) { + for_each_online_cpu(cpu) { + wq_update_pod(wq, cpu, cpu, true); + } + } + + mutex_unlock(&wq_pool_mutex); + cpus_read_unlock(); + + return 0; +} + +static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) +{ + return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); +} + +static const struct kernel_param_ops wq_affn_dfl_ops = { + .set = wq_affn_dfl_set, + .get = wq_affn_dfl_get, +}; + +module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); + +#ifdef CONFIG_SYSFS +/* + * Workqueues with WQ_SYSFS flag set is visible to userland via + * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the + * following attributes. + * + * per_cpu RO bool : whether the workqueue is per-cpu or unbound + * max_active RW int : maximum number of in-flight work items + * + * Unbound workqueues have the following extra attributes. + * + * nice RW int : nice value of the workers + * cpumask RW mask : bitmask of allowed CPUs for the workers + * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) + * affinity_strict RW bool : worker CPU affinity is strict + */ +struct wq_device { + struct workqueue_struct *wq; + struct device dev; +}; + +static struct workqueue_struct *dev_to_wq(struct device *dev) +{ + struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); + + return wq_dev->wq; +} + +static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + + return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); +} +static DEVICE_ATTR_RO(per_cpu); + +static ssize_t max_active_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + + return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); +} + +static ssize_t max_active_store(struct device *dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + int val; + + if (sscanf(buf, "%d", &val) != 1 || val <= 0) + return -EINVAL; + + workqueue_set_max_active(wq, val); + return count; +} +static DEVICE_ATTR_RW(max_active); + +static struct attribute *wq_sysfs_attrs[] = { + &dev_attr_per_cpu.attr, + &dev_attr_max_active.attr, + NULL, +}; +ATTRIBUTE_GROUPS(wq_sysfs); + +static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + int written; + + mutex_lock(&wq->mutex); + written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); + mutex_unlock(&wq->mutex); + + return written; +} + +/* prepare workqueue_attrs for sysfs store operations */ +static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) +{ + struct workqueue_attrs *attrs; + + lockdep_assert_held(&wq_pool_mutex); + + attrs = alloc_workqueue_attrs(); + if (!attrs) + return NULL; + + copy_workqueue_attrs(attrs, wq->unbound_attrs); + return attrs; +} + +static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, + const char *buf, size_t count) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + struct workqueue_attrs *attrs; + int ret = -ENOMEM; + + apply_wqattrs_lock(); + + attrs = wq_sysfs_prep_attrs(wq); + if (!attrs) + goto out_unlock; + + if (sscanf(buf, "%d", &attrs->nice) == 1 && + attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) + ret = apply_workqueue_attrs_locked(wq, attrs); + else + ret = -EINVAL; + +out_unlock: + apply_wqattrs_unlock(); + free_workqueue_attrs(attrs); + return ret ?: count; +} + +static ssize_t wq_cpumask_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + int written; + + mutex_lock(&wq->mutex); + written = scnprintf(buf, PAGE_SIZE, "%*pb\n", + cpumask_pr_args(wq->unbound_attrs->cpumask)); + mutex_unlock(&wq->mutex); + return written; +} + +static ssize_t wq_cpumask_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + struct workqueue_attrs *attrs; + int ret = -ENOMEM; + + apply_wqattrs_lock(); + + attrs = wq_sysfs_prep_attrs(wq); + if (!attrs) + goto out_unlock; + + ret = cpumask_parse(buf, attrs->cpumask); + if (!ret) + ret = apply_workqueue_attrs_locked(wq, attrs); + +out_unlock: + apply_wqattrs_unlock(); + free_workqueue_attrs(attrs); + return ret ?: count; +} + +static ssize_t wq_affn_scope_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + int written; + + mutex_lock(&wq->mutex); + if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) + written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", + wq_affn_names[WQ_AFFN_DFL], + wq_affn_names[wq_affn_dfl]); + else + written = scnprintf(buf, PAGE_SIZE, "%s\n", + wq_affn_names[wq->unbound_attrs->affn_scope]); + mutex_unlock(&wq->mutex); + + return written; +} + +static ssize_t wq_affn_scope_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + struct workqueue_attrs *attrs; + int affn, ret = -ENOMEM; + + affn = parse_affn_scope(buf); + if (affn < 0) + return affn; + + apply_wqattrs_lock(); + attrs = wq_sysfs_prep_attrs(wq); + if (attrs) { + attrs->affn_scope = affn; + ret = apply_workqueue_attrs_locked(wq, attrs); + } + apply_wqattrs_unlock(); + free_workqueue_attrs(attrs); + return ret ?: count; +} + +static ssize_t wq_affinity_strict_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + + return scnprintf(buf, PAGE_SIZE, "%d\n", + wq->unbound_attrs->affn_strict); +} + +static ssize_t wq_affinity_strict_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct workqueue_struct *wq = dev_to_wq(dev); + struct workqueue_attrs *attrs; + int v, ret = -ENOMEM; + + if (sscanf(buf, "%d", &v) != 1) + return -EINVAL; + + apply_wqattrs_lock(); + attrs = wq_sysfs_prep_attrs(wq); + if (attrs) { + attrs->affn_strict = (bool)v; + ret = apply_workqueue_attrs_locked(wq, attrs); + } + apply_wqattrs_unlock(); + free_workqueue_attrs(attrs); + return ret ?: count; +} + +static struct device_attribute wq_sysfs_unbound_attrs[] = { + __ATTR(nice, 0644, wq_nice_show, wq_nice_store), + __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), + __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), + __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), + __ATTR_NULL, +}; + +static struct bus_type wq_subsys = { + .name = "workqueue", + .dev_groups = wq_sysfs_groups, +}; + +static ssize_t wq_unbound_cpumask_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + int written; + + mutex_lock(&wq_pool_mutex); + written = scnprintf(buf, PAGE_SIZE, "%*pb\n", + cpumask_pr_args(wq_unbound_cpumask)); + mutex_unlock(&wq_pool_mutex); + + return written; +} + +static ssize_t wq_unbound_cpumask_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + cpumask_var_t cpumask; + int ret; + + if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) + return -ENOMEM; + + ret = cpumask_parse(buf, cpumask); + if (!ret) + ret = workqueue_set_unbound_cpumask(cpumask); + + free_cpumask_var(cpumask); + return ret ? ret : count; +} + +static struct device_attribute wq_sysfs_cpumask_attr = + __ATTR(cpumask, 0644, wq_unbound_cpumask_show, + wq_unbound_cpumask_store); + +static int __init wq_sysfs_init(void) +{ + struct device *dev_root; + int err; + + err = subsys_virtual_register(&wq_subsys, NULL); + if (err) + return err; + + dev_root = bus_get_dev_root(&wq_subsys); + if (dev_root) { + err = device_create_file(dev_root, &wq_sysfs_cpumask_attr); + put_device(dev_root); + } + return err; +} +core_initcall(wq_sysfs_init); + +static void wq_device_release(struct device *dev) +{ + struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); + + kfree(wq_dev); +} + +/** + * workqueue_sysfs_register - make a workqueue visible in sysfs + * @wq: the workqueue to register + * + * Expose @wq in sysfs under /sys/bus/workqueue/devices. + * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set + * which is the preferred method. + * + * Workqueue user should use this function directly iff it wants to apply + * workqueue_attrs before making the workqueue visible in sysfs; otherwise, + * apply_workqueue_attrs() may race against userland updating the + * attributes. + * + * Return: 0 on success, -errno on failure. + */ +int workqueue_sysfs_register(struct workqueue_struct *wq) +{ + struct wq_device *wq_dev; + int ret; + + /* + * Adjusting max_active or creating new pwqs by applying + * attributes breaks ordering guarantee. Disallow exposing ordered + * workqueues. + */ + if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) + return -EINVAL; + + wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); + if (!wq_dev) + return -ENOMEM; + + wq_dev->wq = wq; + wq_dev->dev.bus = &wq_subsys; + wq_dev->dev.release = wq_device_release; + dev_set_name(&wq_dev->dev, "%s", wq->name); + + /* + * unbound_attrs are created separately. Suppress uevent until + * everything is ready. + */ + dev_set_uevent_suppress(&wq_dev->dev, true); + + ret = device_register(&wq_dev->dev); + if (ret) { + put_device(&wq_dev->dev); + wq->wq_dev = NULL; + return ret; + } + + if (wq->flags & WQ_UNBOUND) { + struct device_attribute *attr; + + for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { + ret = device_create_file(&wq_dev->dev, attr); + if (ret) { + device_unregister(&wq_dev->dev); + wq->wq_dev = NULL; + return ret; + } + } + } + + dev_set_uevent_suppress(&wq_dev->dev, false); + kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); + return 0; +} + +/** + * workqueue_sysfs_unregister - undo workqueue_sysfs_register() + * @wq: the workqueue to unregister + * + * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. + */ +static void workqueue_sysfs_unregister(struct workqueue_struct *wq) +{ + struct wq_device *wq_dev = wq->wq_dev; + + if (!wq->wq_dev) + return; + + wq->wq_dev = NULL; + device_unregister(&wq_dev->dev); +} +#else /* CONFIG_SYSFS */ +static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } +#endif /* CONFIG_SYSFS */ + +/* + * Workqueue watchdog. + * + * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal + * flush dependency, a concurrency managed work item which stays RUNNING + * indefinitely. Workqueue stalls can be very difficult to debug as the + * usual warning mechanisms don't trigger and internal workqueue state is + * largely opaque. + * + * Workqueue watchdog monitors all worker pools periodically and dumps + * state if some pools failed to make forward progress for a while where + * forward progress is defined as the first item on ->worklist changing. + * + * This mechanism is controlled through the kernel parameter + * "workqueue.watchdog_thresh" which can be updated at runtime through the + * corresponding sysfs parameter file. + */ +#ifdef CONFIG_WQ_WATCHDOG + +static unsigned long wq_watchdog_thresh = 30; +static struct timer_list wq_watchdog_timer; + +static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; +static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; + +/* + * Show workers that might prevent the processing of pending work items. + * The only candidates are CPU-bound workers in the running state. + * Pending work items should be handled by another idle worker + * in all other situations. + */ +static void show_cpu_pool_hog(struct worker_pool *pool) +{ + struct worker *worker; + unsigned long flags; + int bkt; + + raw_spin_lock_irqsave(&pool->lock, flags); + + hash_for_each(pool->busy_hash, bkt, worker, hentry) { + if (task_is_running(worker->task)) { + /* + * Defer printing to avoid deadlocks in console + * drivers that queue work while holding locks + * also taken in their write paths. + */ + printk_deferred_enter(); + + pr_info("pool %d:\n", pool->id); + sched_show_task(worker->task); + + printk_deferred_exit(); + } + } + + raw_spin_unlock_irqrestore(&pool->lock, flags); +} + +static void show_cpu_pools_hogs(void) +{ + struct worker_pool *pool; + int pi; + + pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); + + rcu_read_lock(); + + for_each_pool(pool, pi) { + if (pool->cpu_stall) + show_cpu_pool_hog(pool); + + } + + rcu_read_unlock(); +} + +static void wq_watchdog_reset_touched(void) +{ + int cpu; + + wq_watchdog_touched = jiffies; + for_each_possible_cpu(cpu) + per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; +} + +static void wq_watchdog_timer_fn(struct timer_list *unused) +{ + unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; + bool lockup_detected = false; + bool cpu_pool_stall = false; + unsigned long now = jiffies; + struct worker_pool *pool; + int pi; + + if (!thresh) + return; + + rcu_read_lock(); + + for_each_pool(pool, pi) { + unsigned long pool_ts, touched, ts; + + pool->cpu_stall = false; + if (list_empty(&pool->worklist)) + continue; + + /* + * If a virtual machine is stopped by the host it can look to + * the watchdog like a stall. + */ + kvm_check_and_clear_guest_paused(); + + /* get the latest of pool and touched timestamps */ + if (pool->cpu >= 0) + touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); + else + touched = READ_ONCE(wq_watchdog_touched); + pool_ts = READ_ONCE(pool->watchdog_ts); + + if (time_after(pool_ts, touched)) + ts = pool_ts; + else + ts = touched; + + /* did we stall? */ + if (time_after(now, ts + thresh)) { + lockup_detected = true; + if (pool->cpu >= 0) { + pool->cpu_stall = true; + cpu_pool_stall = true; + } + pr_emerg("BUG: workqueue lockup - pool"); + pr_cont_pool_info(pool); + pr_cont(" stuck for %us!\n", + jiffies_to_msecs(now - pool_ts) / 1000); + } + + + } + + rcu_read_unlock(); + + if (lockup_detected) + show_all_workqueues(); + + if (cpu_pool_stall) + show_cpu_pools_hogs(); + + wq_watchdog_reset_touched(); + mod_timer(&wq_watchdog_timer, jiffies + thresh); +} + +notrace void wq_watchdog_touch(int cpu) +{ + if (cpu >= 0) + per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; + + wq_watchdog_touched = jiffies; +} + +static void wq_watchdog_set_thresh(unsigned long thresh) +{ + wq_watchdog_thresh = 0; + del_timer_sync(&wq_watchdog_timer); + + if (thresh) { + wq_watchdog_thresh = thresh; + wq_watchdog_reset_touched(); + mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); + } +} + +static int wq_watchdog_param_set_thresh(const char *val, + const struct kernel_param *kp) +{ + unsigned long thresh; + int ret; + + ret = kstrtoul(val, 0, &thresh); + if (ret) + return ret; + + if (system_wq) + wq_watchdog_set_thresh(thresh); + else + wq_watchdog_thresh = thresh; + + return 0; +} + +static const struct kernel_param_ops wq_watchdog_thresh_ops = { + .set = wq_watchdog_param_set_thresh, + .get = param_get_ulong, +}; + +module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, + 0644); + +static void wq_watchdog_init(void) +{ + timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); + wq_watchdog_set_thresh(wq_watchdog_thresh); +} + +#else /* CONFIG_WQ_WATCHDOG */ + +static inline void wq_watchdog_init(void) { } + +#endif /* CONFIG_WQ_WATCHDOG */ + +static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) +{ + if (!cpumask_intersects(wq_unbound_cpumask, mask)) { + pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", + cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); + return; + } + + cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); +} + +/** + * workqueue_init_early - early init for workqueue subsystem + * + * This is the first step of three-staged workqueue subsystem initialization and + * invoked as soon as the bare basics - memory allocation, cpumasks and idr are + * up. It sets up all the data structures and system workqueues and allows early + * boot code to create workqueues and queue/cancel work items. Actual work item + * execution starts only after kthreads can be created and scheduled right + * before early initcalls. + */ +void __init workqueue_init_early(void) +{ + struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; + int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; + int i, cpu; + + BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); + + BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); + cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); + restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); + restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); + if (!cpumask_empty(&wq_cmdline_cpumask)) + restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); + + pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); + + wq_update_pod_attrs_buf = alloc_workqueue_attrs(); + BUG_ON(!wq_update_pod_attrs_buf); + + /* initialize WQ_AFFN_SYSTEM pods */ + pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); + pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); + pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); + BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); + + BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); + + pt->nr_pods = 1; + cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); + pt->pod_node[0] = NUMA_NO_NODE; + pt->cpu_pod[0] = 0; + + /* initialize CPU pools */ + for_each_possible_cpu(cpu) { + struct worker_pool *pool; + + i = 0; + for_each_cpu_worker_pool(pool, cpu) { + BUG_ON(init_worker_pool(pool)); + pool->cpu = cpu; + cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); + cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); + pool->attrs->nice = std_nice[i++]; + pool->attrs->affn_strict = true; + pool->node = cpu_to_node(cpu); + + /* alloc pool ID */ + mutex_lock(&wq_pool_mutex); + BUG_ON(worker_pool_assign_id(pool)); + mutex_unlock(&wq_pool_mutex); + } + } + + /* create default unbound and ordered wq attrs */ + for (i = 0; i < NR_STD_WORKER_POOLS; i++) { + struct workqueue_attrs *attrs; + + BUG_ON(!(attrs = alloc_workqueue_attrs())); + attrs->nice = std_nice[i]; + unbound_std_wq_attrs[i] = attrs; + + /* + * An ordered wq should have only one pwq as ordering is + * guaranteed by max_active which is enforced by pwqs. + */ + BUG_ON(!(attrs = alloc_workqueue_attrs())); + attrs->nice = std_nice[i]; + attrs->ordered = true; + ordered_wq_attrs[i] = attrs; + } + + system_wq = alloc_workqueue("events", 0, 0); + system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); + system_long_wq = alloc_workqueue("events_long", 0, 0); + system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, + WQ_MAX_ACTIVE); + system_freezable_wq = alloc_workqueue("events_freezable", + WQ_FREEZABLE, 0); + system_power_efficient_wq = alloc_workqueue("events_power_efficient", + WQ_POWER_EFFICIENT, 0); + system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", + WQ_FREEZABLE | WQ_POWER_EFFICIENT, + 0); + BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || + !system_unbound_wq || !system_freezable_wq || + !system_power_efficient_wq || + !system_freezable_power_efficient_wq); +} + +static void __init wq_cpu_intensive_thresh_init(void) +{ + unsigned long thresh; + unsigned long bogo; + + pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); + BUG_ON(IS_ERR(pwq_release_worker)); + + /* if the user set it to a specific value, keep it */ + if (wq_cpu_intensive_thresh_us != ULONG_MAX) + return; + + /* + * The default of 10ms is derived from the fact that most modern (as of + * 2023) processors can do a lot in 10ms and that it's just below what + * most consider human-perceivable. However, the kernel also runs on a + * lot slower CPUs including microcontrollers where the threshold is way + * too low. + * + * Let's scale up the threshold upto 1 second if BogoMips is below 4000. + * This is by no means accurate but it doesn't have to be. The mechanism + * is still useful even when the threshold is fully scaled up. Also, as + * the reports would usually be applicable to everyone, some machines + * operating on longer thresholds won't significantly diminish their + * usefulness. + */ + thresh = 10 * USEC_PER_MSEC; + + /* see init/calibrate.c for lpj -> BogoMIPS calculation */ + bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); + if (bogo < 4000) + thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); + + pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", + loops_per_jiffy, bogo, thresh); + + wq_cpu_intensive_thresh_us = thresh; +} + +/** + * workqueue_init - bring workqueue subsystem fully online + * + * This is the second step of three-staged workqueue subsystem initialization + * and invoked as soon as kthreads can be created and scheduled. Workqueues have + * been created and work items queued on them, but there are no kworkers + * executing the work items yet. Populate the worker pools with the initial + * workers and enable future kworker creations. + */ +void __init workqueue_init(void) +{ + struct workqueue_struct *wq; + struct worker_pool *pool; + int cpu, bkt; + + wq_cpu_intensive_thresh_init(); + + mutex_lock(&wq_pool_mutex); + + /* + * Per-cpu pools created earlier could be missing node hint. Fix them + * up. Also, create a rescuer for workqueues that requested it. + */ + for_each_possible_cpu(cpu) { + for_each_cpu_worker_pool(pool, cpu) { + pool->node = cpu_to_node(cpu); + } + } + + list_for_each_entry(wq, &workqueues, list) { + WARN(init_rescuer(wq), + "workqueue: failed to create early rescuer for %s", + wq->name); + } + + mutex_unlock(&wq_pool_mutex); + + /* create the initial workers */ + for_each_online_cpu(cpu) { + for_each_cpu_worker_pool(pool, cpu) { + pool->flags &= ~POOL_DISASSOCIATED; + BUG_ON(!create_worker(pool)); + } + } + + hash_for_each(unbound_pool_hash, bkt, pool, hash_node) + BUG_ON(!create_worker(pool)); + + wq_online = true; + wq_watchdog_init(); +} + +/* + * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to + * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique + * and consecutive pod ID. The rest of @pt is initialized accordingly. + */ +static void __init init_pod_type(struct wq_pod_type *pt, + bool (*cpus_share_pod)(int, int)) +{ + int cur, pre, cpu, pod; + + pt->nr_pods = 0; + + /* init @pt->cpu_pod[] according to @cpus_share_pod() */ + pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); + BUG_ON(!pt->cpu_pod); + + for_each_possible_cpu(cur) { + for_each_possible_cpu(pre) { + if (pre >= cur) { + pt->cpu_pod[cur] = pt->nr_pods++; + break; + } + if (cpus_share_pod(cur, pre)) { + pt->cpu_pod[cur] = pt->cpu_pod[pre]; + break; + } + } + } + + /* init the rest to match @pt->cpu_pod[] */ + pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); + pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); + BUG_ON(!pt->pod_cpus || !pt->pod_node); + + for (pod = 0; pod < pt->nr_pods; pod++) + BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); + + for_each_possible_cpu(cpu) { + cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); + pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); + } +} + +static bool __init cpus_dont_share(int cpu0, int cpu1) +{ + return false; +} + +static bool __init cpus_share_smt(int cpu0, int cpu1) +{ +#ifdef CONFIG_SCHED_SMT + return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); +#else + return false; +#endif +} + +static bool __init cpus_share_numa(int cpu0, int cpu1) +{ + return cpu_to_node(cpu0) == cpu_to_node(cpu1); +} + +/** + * workqueue_init_topology - initialize CPU pods for unbound workqueues + * + * This is the third step of there-staged workqueue subsystem initialization and + * invoked after SMP and topology information are fully initialized. It + * initializes the unbound CPU pods accordingly. + */ +void __init workqueue_init_topology(void) +{ + struct workqueue_struct *wq; + int cpu; + + init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); + init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); + init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); + init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); + + mutex_lock(&wq_pool_mutex); + + /* + * Workqueues allocated earlier would have all CPUs sharing the default + * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU + * combinations to apply per-pod sharing. + */ + list_for_each_entry(wq, &workqueues, list) { + for_each_online_cpu(cpu) { + wq_update_pod(wq, cpu, cpu, true); + } + } + + mutex_unlock(&wq_pool_mutex); +} + +void __warn_flushing_systemwide_wq(void) +{ + pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); + dump_stack(); +} +EXPORT_SYMBOL(__warn_flushing_systemwide_wq); + +static int __init workqueue_unbound_cpus_setup(char *str) +{ + if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { + cpumask_clear(&wq_cmdline_cpumask); + pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); + } + + return 1; +} +__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); -- cgit v1.2.3