// SPDX-License-Identifier: GPL-2.0 /* * BPF JIT compiler for PA-RISC (32-bit) * * Copyright (c) 2023 Helge Deller * * The code is based on the BPF JIT compiler for RV64 by Björn Töpel and * the BPF JIT compiler for 32-bit ARM by Shubham Bansal and Mircea Gherzan. */ #include #include #include #include "bpf_jit.h" /* * Stack layout during BPF program execution (note: stack grows up): * * high * HPPA32 sp => +----------+ <= HPPA32 fp * | saved sp | * | saved rp | * | ... | HPPA32 callee-saved registers * | curr args| * | local var| * +----------+ <= (sp - 4 * NR_SAVED_REGISTERS) * | lo(R9) | * | hi(R9) | * | lo(FP) | JIT scratch space for BPF registers * | hi(FP) | * | ... | * +----------+ <= (sp - 4 * NR_SAVED_REGISTERS * | | - 4 * BPF_JIT_SCRATCH_REGS) * | | * | ... | BPF program stack * | | * | ... | Function call stack * | | * +----------+ * low */ enum { /* Stack layout - these are offsets from top of JIT scratch space. */ BPF_R8_HI, BPF_R8_LO, BPF_R9_HI, BPF_R9_LO, BPF_FP_HI, BPF_FP_LO, BPF_AX_HI, BPF_AX_LO, BPF_R0_TEMP_HI, BPF_R0_TEMP_LO, BPF_JIT_SCRATCH_REGS, }; /* Number of callee-saved registers stored to stack: rp, r3-r18. */ #define NR_SAVED_REGISTERS (18 - 3 + 1 + 8) /* Offset from fp for BPF registers stored on stack. */ #define STACK_OFFSET(k) (- (NR_SAVED_REGISTERS + k + 1)) #define STACK_ALIGN FRAME_SIZE #define EXIT_PTR_LOAD(reg) hppa_ldw(-0x08, HPPA_REG_SP, reg) #define EXIT_PTR_STORE(reg) hppa_stw(reg, -0x08, HPPA_REG_SP) #define EXIT_PTR_JUMP(reg, nop) hppa_bv(HPPA_REG_ZERO, reg, nop) #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) #define TMP_REG_R0 (MAX_BPF_JIT_REG + 2) static const s8 regmap[][2] = { /* Return value from in-kernel function, and exit value from eBPF. */ [BPF_REG_0] = {HPPA_REG_RET0, HPPA_REG_RET1}, /* HI/LOW */ /* Arguments from eBPF program to in-kernel function. */ [BPF_REG_1] = {HPPA_R(3), HPPA_R(4)}, [BPF_REG_2] = {HPPA_R(5), HPPA_R(6)}, [BPF_REG_3] = {HPPA_R(7), HPPA_R(8)}, [BPF_REG_4] = {HPPA_R(9), HPPA_R(10)}, [BPF_REG_5] = {HPPA_R(11), HPPA_R(12)}, [BPF_REG_6] = {HPPA_R(13), HPPA_R(14)}, [BPF_REG_7] = {HPPA_R(15), HPPA_R(16)}, /* * Callee-saved registers that in-kernel function will preserve. * Stored on the stack. */ [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)}, [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)}, /* Read-only frame pointer to access BPF stack. Not needed. */ [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)}, /* Temporary register for blinding constants. Stored on the stack. */ [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)}, /* * Temporary registers used by the JIT to operate on registers stored * on the stack. Save t0 and t1 to be used as temporaries in generated * code. */ [TMP_REG_1] = {HPPA_REG_T3, HPPA_REG_T2}, [TMP_REG_2] = {HPPA_REG_T5, HPPA_REG_T4}, /* temporary space for BPF_R0 during libgcc and millicode calls */ [TMP_REG_R0] = {STACK_OFFSET(BPF_R0_TEMP_HI), STACK_OFFSET(BPF_R0_TEMP_LO)}, }; static s8 hi(const s8 *r) { return r[0]; } static s8 lo(const s8 *r) { return r[1]; } static void emit_hppa_copy(const s8 rs, const s8 rd, struct hppa_jit_context *ctx) { REG_SET_SEEN(ctx, rd); if (OPTIMIZE_HPPA && (rs == rd)) return; REG_SET_SEEN(ctx, rs); emit(hppa_copy(rs, rd), ctx); } static void emit_hppa_xor(const s8 r1, const s8 r2, const s8 r3, struct hppa_jit_context *ctx) { REG_SET_SEEN(ctx, r1); REG_SET_SEEN(ctx, r2); REG_SET_SEEN(ctx, r3); if (OPTIMIZE_HPPA && (r1 == r2)) { emit(hppa_copy(HPPA_REG_ZERO, r3), ctx); } else { emit(hppa_xor(r1, r2, r3), ctx); } } static void emit_imm(const s8 rd, s32 imm, struct hppa_jit_context *ctx) { u32 lower = im11(imm); REG_SET_SEEN(ctx, rd); if (OPTIMIZE_HPPA && relative_bits_ok(imm, 14)) { emit(hppa_ldi(imm, rd), ctx); return; } emit(hppa_ldil(imm, rd), ctx); if (OPTIMIZE_HPPA && (lower == 0)) return; emit(hppa_ldo(lower, rd, rd), ctx); } static void emit_imm32(const s8 *rd, s32 imm, struct hppa_jit_context *ctx) { /* Emit immediate into lower bits. */ REG_SET_SEEN(ctx, lo(rd)); emit_imm(lo(rd), imm, ctx); /* Sign-extend into upper bits. */ REG_SET_SEEN(ctx, hi(rd)); if (imm >= 0) emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); else emit(hppa_ldi(-1, hi(rd)), ctx); } static void emit_imm64(const s8 *rd, s32 imm_hi, s32 imm_lo, struct hppa_jit_context *ctx) { emit_imm(hi(rd), imm_hi, ctx); emit_imm(lo(rd), imm_lo, ctx); } static void __build_epilogue(bool is_tail_call, struct hppa_jit_context *ctx) { const s8 *r0 = regmap[BPF_REG_0]; int i; if (is_tail_call) { /* * goto *(t0 + 4); * Skips first instruction of prologue which initializes tail * call counter. Assumes t0 contains address of target program, * see emit_bpf_tail_call. */ emit(hppa_ldo(1 * HPPA_INSN_SIZE, HPPA_REG_T0, HPPA_REG_T0), ctx); emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_T0, EXEC_NEXT_INSTR), ctx); /* in delay slot: */ emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_IN_INIT), ctx); return; } /* load epilogue function pointer and jump to it. */ /* exit point is either directly below, or the outest TCC exit function */ emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); /* NOTE: we are 32-bit and big-endian, so return lower 32-bit value */ emit_hppa_copy(lo(r0), HPPA_REG_RET0, ctx); /* Restore callee-saved registers. */ for (i = 3; i <= 18; i++) { if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i))) continue; emit(hppa_ldw(-REG_SIZE * (8 + (i-3)), HPPA_REG_SP, HPPA_R(i)), ctx); } /* load original return pointer (stored by outest TCC function) */ emit(hppa_ldw(-0x14, HPPA_REG_SP, HPPA_REG_RP), ctx); emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_RP, EXEC_NEXT_INSTR), ctx); /* in delay slot: */ emit(hppa_ldw(-0x04, HPPA_REG_SP, HPPA_REG_SP), ctx); } static bool is_stacked(s8 reg) { return reg < 0; } static const s8 *bpf_get_reg64_offset(const s8 *reg, const s8 *tmp, u16 offset_sp, struct hppa_jit_context *ctx) { if (is_stacked(hi(reg))) { emit(hppa_ldw(REG_SIZE * hi(reg) - offset_sp, HPPA_REG_SP, hi(tmp)), ctx); emit(hppa_ldw(REG_SIZE * lo(reg) - offset_sp, HPPA_REG_SP, lo(tmp)), ctx); reg = tmp; } REG_SET_SEEN(ctx, hi(reg)); REG_SET_SEEN(ctx, lo(reg)); return reg; } static const s8 *bpf_get_reg64(const s8 *reg, const s8 *tmp, struct hppa_jit_context *ctx) { return bpf_get_reg64_offset(reg, tmp, 0, ctx); } static const s8 *bpf_get_reg64_ref(const s8 *reg, const s8 *tmp, bool must_load, struct hppa_jit_context *ctx) { if (!OPTIMIZE_HPPA) return bpf_get_reg64(reg, tmp, ctx); if (is_stacked(hi(reg))) { if (must_load) emit(hppa_ldw(REG_SIZE * hi(reg), HPPA_REG_SP, hi(tmp)), ctx); reg = tmp; } REG_SET_SEEN(ctx, hi(reg)); REG_SET_SEEN(ctx, lo(reg)); return reg; } static void bpf_put_reg64(const s8 *reg, const s8 *src, struct hppa_jit_context *ctx) { if (is_stacked(hi(reg))) { emit(hppa_stw(hi(src), REG_SIZE * hi(reg), HPPA_REG_SP), ctx); emit(hppa_stw(lo(src), REG_SIZE * lo(reg), HPPA_REG_SP), ctx); } } static void bpf_save_R0(struct hppa_jit_context *ctx) { bpf_put_reg64(regmap[TMP_REG_R0], regmap[BPF_REG_0], ctx); } static void bpf_restore_R0(struct hppa_jit_context *ctx) { bpf_get_reg64(regmap[TMP_REG_R0], regmap[BPF_REG_0], ctx); } static const s8 *bpf_get_reg32(const s8 *reg, const s8 *tmp, struct hppa_jit_context *ctx) { if (is_stacked(lo(reg))) { emit(hppa_ldw(REG_SIZE * lo(reg), HPPA_REG_SP, lo(tmp)), ctx); reg = tmp; } REG_SET_SEEN(ctx, lo(reg)); return reg; } static const s8 *bpf_get_reg32_ref(const s8 *reg, const s8 *tmp, struct hppa_jit_context *ctx) { if (!OPTIMIZE_HPPA) return bpf_get_reg32(reg, tmp, ctx); if (is_stacked(hi(reg))) { reg = tmp; } REG_SET_SEEN(ctx, lo(reg)); return reg; } static void bpf_put_reg32(const s8 *reg, const s8 *src, struct hppa_jit_context *ctx) { if (is_stacked(lo(reg))) { REG_SET_SEEN(ctx, lo(src)); emit(hppa_stw(lo(src), REG_SIZE * lo(reg), HPPA_REG_SP), ctx); if (1 && !ctx->prog->aux->verifier_zext) { REG_SET_SEEN(ctx, hi(reg)); emit(hppa_stw(HPPA_REG_ZERO, REG_SIZE * hi(reg), HPPA_REG_SP), ctx); } } else if (1 && !ctx->prog->aux->verifier_zext) { REG_SET_SEEN(ctx, hi(reg)); emit_hppa_copy(HPPA_REG_ZERO, hi(reg), ctx); } } /* extern hppa millicode functions */ extern void $$mulI(void); extern void $$divU(void); extern void $$remU(void); static void emit_call_millicode(void *func, const s8 arg0, const s8 arg1, u8 opcode, struct hppa_jit_context *ctx) { u32 func_addr; emit_hppa_copy(arg0, HPPA_REG_ARG0, ctx); emit_hppa_copy(arg1, HPPA_REG_ARG1, ctx); /* libcgcc overwrites HPPA_REG_RET0/1, save temp. in dest. */ if (arg0 != HPPA_REG_RET1) bpf_save_R0(ctx); func_addr = (uintptr_t) dereference_function_descriptor(func); emit(hppa_ldil(func_addr, HPPA_REG_R31), ctx); /* skip the following be_l instruction if divisor is zero. */ if (BPF_OP(opcode) == BPF_DIV || BPF_OP(opcode) == BPF_MOD) { if (BPF_OP(opcode) == BPF_DIV) emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET1, ctx); else emit_hppa_copy(HPPA_REG_ARG0, HPPA_REG_RET1, ctx); emit(hppa_or_cond(HPPA_REG_ARG1, HPPA_REG_ZERO, 1, 0, HPPA_REG_ZERO), ctx); } /* Note: millicode functions use r31 as return pointer instead of rp */ emit(hppa_be_l(im11(func_addr) >> 2, HPPA_REG_R31, NOP_NEXT_INSTR), ctx); emit(hppa_nop(), ctx); /* this nop is needed here for delay slot */ /* Note: millicode functions return result in RET1, not RET0 */ emit_hppa_copy(HPPA_REG_RET1, arg0, ctx); /* restore HPPA_REG_RET0/1, temp. save in dest. */ if (arg0 != HPPA_REG_RET1) bpf_restore_R0(ctx); } static void emit_call_libgcc_ll(void *func, const s8 *arg0, const s8 *arg1, u8 opcode, struct hppa_jit_context *ctx) { u32 func_addr; emit_hppa_copy(lo(arg0), HPPA_REG_ARG0, ctx); emit_hppa_copy(hi(arg0), HPPA_REG_ARG1, ctx); emit_hppa_copy(lo(arg1), HPPA_REG_ARG2, ctx); emit_hppa_copy(hi(arg1), HPPA_REG_ARG3, ctx); /* libcgcc overwrites HPPA_REG_RET0/_RET1, so keep copy of R0 on stack */ if (hi(arg0) != HPPA_REG_RET0) bpf_save_R0(ctx); /* prepare stack */ emit(hppa_ldo(2 * FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); func_addr = (uintptr_t) dereference_function_descriptor(func); emit(hppa_ldil(func_addr, HPPA_REG_R31), ctx); /* zero out the following be_l instruction if divisor is 0 (and set default values) */ if (BPF_OP(opcode) == BPF_DIV || BPF_OP(opcode) == BPF_MOD) { emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET0, ctx); if (BPF_OP(opcode) == BPF_DIV) emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET1, ctx); else emit_hppa_copy(HPPA_REG_ARG0, HPPA_REG_RET1, ctx); emit(hppa_or_cond(HPPA_REG_ARG2, HPPA_REG_ARG3, 1, 0, HPPA_REG_ZERO), ctx); } emit(hppa_be_l(im11(func_addr) >> 2, HPPA_REG_R31, EXEC_NEXT_INSTR), ctx); emit_hppa_copy(HPPA_REG_R31, HPPA_REG_RP, ctx); /* restore stack */ emit(hppa_ldo(-2 * FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); emit_hppa_copy(HPPA_REG_RET0, hi(arg0), ctx); emit_hppa_copy(HPPA_REG_RET1, lo(arg0), ctx); /* restore HPPA_REG_RET0/_RET1 */ if (hi(arg0) != HPPA_REG_RET0) bpf_restore_R0(ctx); } static void emit_jump(s32 paoff, bool force_far, struct hppa_jit_context *ctx) { unsigned long pc, addr; /* Note: allocate 2 instructions for jumps if force_far is set. */ if (relative_bits_ok(paoff - HPPA_BRANCH_DISPLACEMENT, 17)) { /* use BL,short branch followed by nop() */ emit(hppa_bl(paoff - HPPA_BRANCH_DISPLACEMENT, HPPA_REG_ZERO), ctx); if (force_far) emit(hppa_nop(), ctx); return; } pc = (uintptr_t) &ctx->insns[ctx->ninsns]; addr = pc + (paoff * HPPA_INSN_SIZE); emit(hppa_ldil(addr, HPPA_REG_R31), ctx); emit(hppa_be_l(im11(addr) >> 2, HPPA_REG_R31, NOP_NEXT_INSTR), ctx); // be,l,n addr(sr4,r31), %sr0, %r31 } static void emit_alu_i64(const s8 *dst, s32 imm, struct hppa_jit_context *ctx, const u8 op) { const s8 *tmp1 = regmap[TMP_REG_1]; const s8 *rd; if (0 && op == BPF_MOV) rd = bpf_get_reg64_ref(dst, tmp1, false, ctx); else rd = bpf_get_reg64(dst, tmp1, ctx); /* dst = dst OP imm */ switch (op) { case BPF_MOV: emit_imm32(rd, imm, ctx); break; case BPF_AND: emit_imm(HPPA_REG_T0, imm, ctx); emit(hppa_and(lo(rd), HPPA_REG_T0, lo(rd)), ctx); if (imm >= 0) emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); break; case BPF_OR: emit_imm(HPPA_REG_T0, imm, ctx); emit(hppa_or(lo(rd), HPPA_REG_T0, lo(rd)), ctx); if (imm < 0) emit_imm(hi(rd), -1, ctx); break; case BPF_XOR: emit_imm(HPPA_REG_T0, imm, ctx); emit_hppa_xor(lo(rd), HPPA_REG_T0, lo(rd), ctx); if (imm < 0) { emit_imm(HPPA_REG_T0, -1, ctx); emit_hppa_xor(hi(rd), HPPA_REG_T0, hi(rd), ctx); } break; case BPF_LSH: if (imm == 0) break; if (imm > 32) { imm -= 32; emit(hppa_zdep(lo(rd), imm, imm, hi(rd)), ctx); emit_hppa_copy(HPPA_REG_ZERO, lo(rd), ctx); } else if (imm == 32) { emit_hppa_copy(lo(rd), hi(rd), ctx); emit_hppa_copy(HPPA_REG_ZERO, lo(rd), ctx); } else { emit(hppa_shd(hi(rd), lo(rd), 32 - imm, hi(rd)), ctx); emit(hppa_zdep(lo(rd), imm, imm, lo(rd)), ctx); } break; case BPF_RSH: if (imm == 0) break; if (imm > 32) { imm -= 32; emit(hppa_shr(hi(rd), imm, lo(rd)), ctx); emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); } else if (imm == 32) { emit_hppa_copy(hi(rd), lo(rd), ctx); emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); } else { emit(hppa_shrpw(hi(rd), lo(rd), imm, lo(rd)), ctx); emit(hppa_shr(hi(rd), imm, hi(rd)), ctx); } break; case BPF_ARSH: if (imm == 0) break; if (imm > 32) { imm -= 32; emit(hppa_extrws(hi(rd), 31 - imm, imm, lo(rd)), ctx); emit(hppa_extrws(hi(rd), 0, 31, hi(rd)), ctx); } else if (imm == 32) { emit_hppa_copy(hi(rd), lo(rd), ctx); emit(hppa_extrws(hi(rd), 0, 31, hi(rd)), ctx); } else { emit(hppa_shrpw(hi(rd), lo(rd), imm, lo(rd)), ctx); emit(hppa_extrws(hi(rd), 31 - imm, imm, hi(rd)), ctx); } break; default: WARN_ON(1); } bpf_put_reg64(dst, rd, ctx); } static void emit_alu_i32(const s8 *dst, s32 imm, struct hppa_jit_context *ctx, const u8 op) { const s8 *tmp1 = regmap[TMP_REG_1]; const s8 *rd = bpf_get_reg32(dst, tmp1, ctx); if (op == BPF_MOV) rd = bpf_get_reg32_ref(dst, tmp1, ctx); else rd = bpf_get_reg32(dst, tmp1, ctx); /* dst = dst OP imm */ switch (op) { case BPF_MOV: emit_imm(lo(rd), imm, ctx); break; case BPF_ADD: emit_imm(HPPA_REG_T0, imm, ctx); emit(hppa_add(lo(rd), HPPA_REG_T0, lo(rd)), ctx); break; case BPF_SUB: emit_imm(HPPA_REG_T0, imm, ctx); emit(hppa_sub(lo(rd), HPPA_REG_T0, lo(rd)), ctx); break; case BPF_AND: emit_imm(HPPA_REG_T0, imm, ctx); emit(hppa_and(lo(rd), HPPA_REG_T0, lo(rd)), ctx); break; case BPF_OR: emit_imm(HPPA_REG_T0, imm, ctx); emit(hppa_or(lo(rd), HPPA_REG_T0, lo(rd)), ctx); break; case BPF_XOR: emit_imm(HPPA_REG_T0, imm, ctx); emit_hppa_xor(lo(rd), HPPA_REG_T0, lo(rd), ctx); break; case BPF_LSH: if (imm != 0) emit(hppa_zdep(lo(rd), imm, imm, lo(rd)), ctx); break; case BPF_RSH: if (imm != 0) emit(hppa_shr(lo(rd), imm, lo(rd)), ctx); break; case BPF_ARSH: if (imm != 0) emit(hppa_extrws(lo(rd), 31 - imm, imm, lo(rd)), ctx); break; default: WARN_ON(1); } bpf_put_reg32(dst, rd, ctx); } static void emit_alu_r64(const s8 *dst, const s8 *src, struct hppa_jit_context *ctx, const u8 op) { const s8 *tmp1 = regmap[TMP_REG_1]; const s8 *tmp2 = regmap[TMP_REG_2]; const s8 *rd; const s8 *rs = bpf_get_reg64(src, tmp2, ctx); if (op == BPF_MOV) rd = bpf_get_reg64_ref(dst, tmp1, false, ctx); else rd = bpf_get_reg64(dst, tmp1, ctx); /* dst = dst OP src */ switch (op) { case BPF_MOV: emit_hppa_copy(lo(rs), lo(rd), ctx); emit_hppa_copy(hi(rs), hi(rd), ctx); break; case BPF_ADD: emit(hppa_add(lo(rd), lo(rs), lo(rd)), ctx); emit(hppa_addc(hi(rd), hi(rs), hi(rd)), ctx); break; case BPF_SUB: emit(hppa_sub(lo(rd), lo(rs), lo(rd)), ctx); emit(hppa_subb(hi(rd), hi(rs), hi(rd)), ctx); break; case BPF_AND: emit(hppa_and(lo(rd), lo(rs), lo(rd)), ctx); emit(hppa_and(hi(rd), hi(rs), hi(rd)), ctx); break; case BPF_OR: emit(hppa_or(lo(rd), lo(rs), lo(rd)), ctx); emit(hppa_or(hi(rd), hi(rs), hi(rd)), ctx); break; case BPF_XOR: emit_hppa_xor(lo(rd), lo(rs), lo(rd), ctx); emit_hppa_xor(hi(rd), hi(rs), hi(rd), ctx); break; case BPF_MUL: emit_call_libgcc_ll(__muldi3, rd, rs, op, ctx); break; case BPF_DIV: emit_call_libgcc_ll(&hppa_div64, rd, rs, op, ctx); break; case BPF_MOD: emit_call_libgcc_ll(&hppa_div64_rem, rd, rs, op, ctx); break; case BPF_LSH: emit_call_libgcc_ll(__ashldi3, rd, rs, op, ctx); break; case BPF_RSH: emit_call_libgcc_ll(__lshrdi3, rd, rs, op, ctx); break; case BPF_ARSH: emit_call_libgcc_ll(__ashrdi3, rd, rs, op, ctx); break; case BPF_NEG: emit(hppa_sub(HPPA_REG_ZERO, lo(rd), lo(rd)), ctx); emit(hppa_subb(HPPA_REG_ZERO, hi(rd), hi(rd)), ctx); break; default: WARN_ON(1); } bpf_put_reg64(dst, rd, ctx); } static void emit_alu_r32(const s8 *dst, const s8 *src, struct hppa_jit_context *ctx, const u8 op) { const s8 *tmp1 = regmap[TMP_REG_1]; const s8 *tmp2 = regmap[TMP_REG_2]; const s8 *rd; const s8 *rs = bpf_get_reg32(src, tmp2, ctx); if (op == BPF_MOV) rd = bpf_get_reg32_ref(dst, tmp1, ctx); else rd = bpf_get_reg32(dst, tmp1, ctx); /* dst = dst OP src */ switch (op) { case BPF_MOV: emit_hppa_copy(lo(rs), lo(rd), ctx); break; case BPF_ADD: emit(hppa_add(lo(rd), lo(rs), lo(rd)), ctx); break; case BPF_SUB: emit(hppa_sub(lo(rd), lo(rs), lo(rd)), ctx); break; case BPF_AND: emit(hppa_and(lo(rd), lo(rs), lo(rd)), ctx); break; case BPF_OR: emit(hppa_or(lo(rd), lo(rs), lo(rd)), ctx); break; case BPF_XOR: emit_hppa_xor(lo(rd), lo(rs), lo(rd), ctx); break; case BPF_MUL: emit_call_millicode($$mulI, lo(rd), lo(rs), op, ctx); break; case BPF_DIV: emit_call_millicode($$divU, lo(rd), lo(rs), op, ctx); break; case BPF_MOD: emit_call_millicode($$remU, lo(rd), lo(rs), op, ctx); break; case BPF_LSH: emit(hppa_subi(0x1f, lo(rs), HPPA_REG_T0), ctx); emit(hppa_mtsar(HPPA_REG_T0), ctx); emit(hppa_depwz_sar(lo(rd), lo(rd)), ctx); break; case BPF_RSH: emit(hppa_mtsar(lo(rs)), ctx); emit(hppa_shrpw_sar(lo(rd), lo(rd)), ctx); break; case BPF_ARSH: /* sign extending arithmetic shift right */ // emit(hppa_beq(lo(rs), HPPA_REG_ZERO, 2), ctx); emit(hppa_subi(0x1f, lo(rs), HPPA_REG_T0), ctx); emit(hppa_mtsar(HPPA_REG_T0), ctx); emit(hppa_extrws_sar(lo(rd), lo(rd)), ctx); break; case BPF_NEG: emit(hppa_sub(HPPA_REG_ZERO, lo(rd), lo(rd)), ctx); // sub r0,rd,rd break; default: WARN_ON(1); } bpf_put_reg32(dst, rd, ctx); } static int emit_branch_r64(const s8 *src1, const s8 *src2, s32 paoff, struct hppa_jit_context *ctx, const u8 op) { int e, s = ctx->ninsns; const s8 *tmp1 = regmap[TMP_REG_1]; const s8 *tmp2 = regmap[TMP_REG_2]; const s8 *rs1 = bpf_get_reg64(src1, tmp1, ctx); const s8 *rs2 = bpf_get_reg64(src2, tmp2, ctx); /* * NO_JUMP skips over the rest of the instructions and the * emit_jump, meaning the BPF branch is not taken. * JUMP skips directly to the emit_jump, meaning * the BPF branch is taken. * * The fallthrough case results in the BPF branch being taken. */ #define NO_JUMP(idx) (2 + (idx) - 1) #define JUMP(idx) (0 + (idx) - 1) switch (op) { case BPF_JEQ: emit(hppa_bne(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(hppa_bne(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JGT: emit(hppa_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(hppa_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(hppa_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JLT: emit(hppa_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(hppa_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(hppa_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JGE: emit(hppa_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(hppa_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(hppa_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JLE: emit(hppa_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(hppa_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(hppa_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JNE: emit(hppa_bne(hi(rs1), hi(rs2), JUMP(1)), ctx); emit(hppa_beq(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSGT: emit(hppa_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(hppa_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(hppa_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSLT: emit(hppa_blt(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(hppa_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(hppa_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSGE: emit(hppa_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(hppa_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(hppa_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSLE: emit(hppa_blt(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(hppa_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(hppa_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSET: emit(hppa_and(hi(rs1), hi(rs2), HPPA_REG_T0), ctx); emit(hppa_and(lo(rs1), lo(rs2), HPPA_REG_T1), ctx); emit(hppa_bne(HPPA_REG_T0, HPPA_REG_ZERO, JUMP(1)), ctx); emit(hppa_beq(HPPA_REG_T1, HPPA_REG_ZERO, NO_JUMP(0)), ctx); break; default: WARN_ON(1); } #undef NO_JUMP #undef JUMP e = ctx->ninsns; /* Adjust for extra insns. */ paoff -= (e - s); emit_jump(paoff, true, ctx); return 0; } static int emit_bcc(u8 op, u8 rd, u8 rs, int paoff, struct hppa_jit_context *ctx) { int e, s; bool far = false; int off; if (op == BPF_JSET) { /* * BPF_JSET is a special case: it has no inverse so we always * treat it as a far branch. */ emit(hppa_and(rd, rs, HPPA_REG_T0), ctx); paoff -= 1; /* reduce offset due to hppa_and() above */ rd = HPPA_REG_T0; rs = HPPA_REG_ZERO; op = BPF_JNE; } s = ctx->ninsns; if (!relative_bits_ok(paoff - HPPA_BRANCH_DISPLACEMENT, 12)) { op = invert_bpf_cond(op); far = true; } /* * For a far branch, the condition is negated and we jump over the * branch itself, and the three instructions from emit_jump. * For a near branch, just use paoff. */ off = far ? (HPPA_BRANCH_DISPLACEMENT - 1) : paoff - HPPA_BRANCH_DISPLACEMENT; switch (op) { /* IF (dst COND src) JUMP off */ case BPF_JEQ: emit(hppa_beq(rd, rs, off), ctx); break; case BPF_JGT: emit(hppa_bgtu(rd, rs, off), ctx); break; case BPF_JLT: emit(hppa_bltu(rd, rs, off), ctx); break; case BPF_JGE: emit(hppa_bgeu(rd, rs, off), ctx); break; case BPF_JLE: emit(hppa_bleu(rd, rs, off), ctx); break; case BPF_JNE: emit(hppa_bne(rd, rs, off), ctx); break; case BPF_JSGT: emit(hppa_bgt(rd, rs, off), ctx); break; case BPF_JSLT: emit(hppa_blt(rd, rs, off), ctx); break; case BPF_JSGE: emit(hppa_bge(rd, rs, off), ctx); break; case BPF_JSLE: emit(hppa_ble(rd, rs, off), ctx); break; default: WARN_ON(1); } if (far) { e = ctx->ninsns; /* Adjust for extra insns. */ paoff -= (e - s); emit_jump(paoff, true, ctx); } return 0; } static int emit_branch_r32(const s8 *src1, const s8 *src2, s32 paoff, struct hppa_jit_context *ctx, const u8 op) { int e, s = ctx->ninsns; const s8 *tmp1 = regmap[TMP_REG_1]; const s8 *tmp2 = regmap[TMP_REG_2]; const s8 *rs1 = bpf_get_reg32(src1, tmp1, ctx); const s8 *rs2 = bpf_get_reg32(src2, tmp2, ctx); e = ctx->ninsns; /* Adjust for extra insns. */ paoff -= (e - s); if (emit_bcc(op, lo(rs1), lo(rs2), paoff, ctx)) return -1; return 0; } static void emit_call(bool fixed, u64 addr, struct hppa_jit_context *ctx) { const s8 *tmp = regmap[TMP_REG_1]; const s8 *r0 = regmap[BPF_REG_0]; const s8 *reg; const int offset_sp = 2 * STACK_ALIGN; /* prepare stack */ emit(hppa_ldo(offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx); /* load R1 & R2 in registers, R3-R5 to stack. */ reg = bpf_get_reg64_offset(regmap[BPF_REG_5], tmp, offset_sp, ctx); emit(hppa_stw(hi(reg), -0x48, HPPA_REG_SP), ctx); emit(hppa_stw(lo(reg), -0x44, HPPA_REG_SP), ctx); reg = bpf_get_reg64_offset(regmap[BPF_REG_4], tmp, offset_sp, ctx); emit(hppa_stw(hi(reg), -0x40, HPPA_REG_SP), ctx); emit(hppa_stw(lo(reg), -0x3c, HPPA_REG_SP), ctx); reg = bpf_get_reg64_offset(regmap[BPF_REG_3], tmp, offset_sp, ctx); emit(hppa_stw(hi(reg), -0x38, HPPA_REG_SP), ctx); emit(hppa_stw(lo(reg), -0x34, HPPA_REG_SP), ctx); reg = bpf_get_reg64_offset(regmap[BPF_REG_2], tmp, offset_sp, ctx); emit_hppa_copy(hi(reg), HPPA_REG_ARG3, ctx); emit_hppa_copy(lo(reg), HPPA_REG_ARG2, ctx); reg = bpf_get_reg64_offset(regmap[BPF_REG_1], tmp, offset_sp, ctx); emit_hppa_copy(hi(reg), HPPA_REG_ARG1, ctx); emit_hppa_copy(lo(reg), HPPA_REG_ARG0, ctx); /* backup TCC */ if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_SAVED), ctx); /* * Use ldil() to load absolute address. Don't use emit_imm as the * number of emitted instructions should not depend on the value of * addr. */ emit(hppa_ldil(addr, HPPA_REG_R31), ctx); emit(hppa_be_l(im11(addr) >> 2, HPPA_REG_R31, EXEC_NEXT_INSTR), ctx); /* set return address in delay slot */ emit_hppa_copy(HPPA_REG_R31, HPPA_REG_RP, ctx); /* restore TCC */ if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_TCC), ctx); /* restore stack */ emit(hppa_ldo(-offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx); /* set return value. */ emit_hppa_copy(HPPA_REG_RET0, hi(r0), ctx); emit_hppa_copy(HPPA_REG_RET1, lo(r0), ctx); } static int emit_bpf_tail_call(int insn, struct hppa_jit_context *ctx) { /* * R1 -> &ctx * R2 -> &array * R3 -> index */ int off; const s8 *arr_reg = regmap[BPF_REG_2]; const s8 *idx_reg = regmap[BPF_REG_3]; struct bpf_array bpfa; struct bpf_prog bpfp; /* get address of TCC main exit function for error case into rp */ emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); /* max_entries = array->map.max_entries; */ off = offsetof(struct bpf_array, map.max_entries); BUILD_BUG_ON(sizeof(bpfa.map.max_entries) != 4); emit(hppa_ldw(off, lo(arr_reg), HPPA_REG_T1), ctx); /* * if (index >= max_entries) * goto out; */ emit(hppa_bltu(lo(idx_reg), HPPA_REG_T1, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); /* * if (--tcc < 0) * goto out; */ REG_FORCE_SEEN(ctx, HPPA_REG_TCC); emit(hppa_ldo(-1, HPPA_REG_TCC, HPPA_REG_TCC), ctx); emit(hppa_bge(HPPA_REG_TCC, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); /* * prog = array->ptrs[index]; * if (!prog) * goto out; */ BUILD_BUG_ON(sizeof(bpfa.ptrs[0]) != 4); emit(hppa_sh2add(lo(idx_reg), lo(arr_reg), HPPA_REG_T0), ctx); off = offsetof(struct bpf_array, ptrs); BUILD_BUG_ON(!relative_bits_ok(off, 11)); emit(hppa_ldw(off, HPPA_REG_T0, HPPA_REG_T0), ctx); emit(hppa_bne(HPPA_REG_T0, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); /* * tcc = temp_tcc; * goto *(prog->bpf_func + 4); */ off = offsetof(struct bpf_prog, bpf_func); BUILD_BUG_ON(!relative_bits_ok(off, 11)); BUILD_BUG_ON(sizeof(bpfp.bpf_func) != 4); emit(hppa_ldw(off, HPPA_REG_T0, HPPA_REG_T0), ctx); /* Epilogue jumps to *(t0 + 4). */ __build_epilogue(true, ctx); return 0; } static int emit_load_r64(const s8 *dst, const s8 *src, s16 off, struct hppa_jit_context *ctx, const u8 size) { const s8 *tmp1 = regmap[TMP_REG_1]; const s8 *tmp2 = regmap[TMP_REG_2]; const s8 *rd = bpf_get_reg64_ref(dst, tmp1, ctx->prog->aux->verifier_zext, ctx); const s8 *rs = bpf_get_reg64(src, tmp2, ctx); s8 srcreg; /* need to calculate address since offset does not fit in 14 bits? */ if (relative_bits_ok(off, 14)) srcreg = lo(rs); else { /* need to use R1 here, since addil puts result into R1 */ srcreg = HPPA_REG_R1; emit(hppa_addil(off, lo(rs)), ctx); off = im11(off); } /* LDX: dst = *(size *)(src + off) */ switch (size) { case BPF_B: emit(hppa_ldb(off + 0, srcreg, lo(rd)), ctx); if (!ctx->prog->aux->verifier_zext) emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); break; case BPF_H: emit(hppa_ldh(off + 0, srcreg, lo(rd)), ctx); if (!ctx->prog->aux->verifier_zext) emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); break; case BPF_W: emit(hppa_ldw(off + 0, srcreg, lo(rd)), ctx); if (!ctx->prog->aux->verifier_zext) emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); break; case BPF_DW: emit(hppa_ldw(off + 0, srcreg, hi(rd)), ctx); emit(hppa_ldw(off + 4, srcreg, lo(rd)), ctx); break; } bpf_put_reg64(dst, rd, ctx); return 0; } static int emit_store_r64(const s8 *dst, const s8 *src, s16 off, struct hppa_jit_context *ctx, const u8 size, const u8 mode) { const s8 *tmp1 = regmap[TMP_REG_1]; const s8 *tmp2 = regmap[TMP_REG_2]; const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); const s8 *rs = bpf_get_reg64(src, tmp2, ctx); s8 dstreg; /* need to calculate address since offset does not fit in 14 bits? */ if (relative_bits_ok(off, 14)) dstreg = lo(rd); else { /* need to use R1 here, since addil puts result into R1 */ dstreg = HPPA_REG_R1; emit(hppa_addil(off, lo(rd)), ctx); off = im11(off); } /* ST: *(size *)(dst + off) = imm */ switch (size) { case BPF_B: emit(hppa_stb(lo(rs), off + 0, dstreg), ctx); break; case BPF_H: emit(hppa_sth(lo(rs), off + 0, dstreg), ctx); break; case BPF_W: emit(hppa_stw(lo(rs), off + 0, dstreg), ctx); break; case BPF_DW: emit(hppa_stw(hi(rs), off + 0, dstreg), ctx); emit(hppa_stw(lo(rs), off + 4, dstreg), ctx); break; } return 0; } static void emit_rev16(const s8 rd, struct hppa_jit_context *ctx) { emit(hppa_extru(rd, 23, 8, HPPA_REG_T1), ctx); emit(hppa_depwz(rd, 23, 8, HPPA_REG_T1), ctx); emit(hppa_extru(HPPA_REG_T1, 31, 16, rd), ctx); } static void emit_rev32(const s8 rs, const s8 rd, struct hppa_jit_context *ctx) { emit(hppa_shrpw(rs, rs, 16, HPPA_REG_T1), ctx); emit(hppa_depwz(HPPA_REG_T1, 15, 8, HPPA_REG_T1), ctx); emit(hppa_shrpw(rs, HPPA_REG_T1, 8, rd), ctx); } static void emit_zext64(const s8 *dst, struct hppa_jit_context *ctx) { const s8 *rd; const s8 *tmp1 = regmap[TMP_REG_1]; rd = bpf_get_reg64(dst, tmp1, ctx); emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); bpf_put_reg64(dst, rd, ctx); } int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx, bool extra_pass) { bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 || BPF_CLASS(insn->code) == BPF_JMP; int s, e, paoff, i = insn - ctx->prog->insnsi; u8 code = insn->code; s16 off = insn->off; s32 imm = insn->imm; const s8 *dst = regmap[insn->dst_reg]; const s8 *src = regmap[insn->src_reg]; const s8 *tmp1 = regmap[TMP_REG_1]; const s8 *tmp2 = regmap[TMP_REG_2]; if (0) printk("CLASS %03d CODE %#02x ALU64:%d BPF_SIZE %#02x " "BPF_CODE %#02x src_reg %d dst_reg %d\n", BPF_CLASS(code), code, (code & BPF_ALU64) ? 1:0, BPF_SIZE(code), BPF_OP(code), insn->src_reg, insn->dst_reg); switch (code) { /* dst = src */ case BPF_ALU64 | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_AND | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: if (BPF_SRC(code) == BPF_K) { emit_imm32(tmp2, imm, ctx); src = tmp2; } emit_alu_r64(dst, src, ctx, BPF_OP(code)); break; /* dst = -dst */ case BPF_ALU64 | BPF_NEG: emit_alu_r64(dst, tmp2, ctx, BPF_OP(code)); break; case BPF_ALU64 | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: emit_alu_i64(dst, imm, ctx, BPF_OP(code)); break; case BPF_ALU | BPF_MOV | BPF_X: if (imm == 1) { /* Special mov32 for zext. */ emit_zext64(dst, ctx); break; } fallthrough; /* dst = dst OP src */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_ARSH | BPF_X: if (BPF_SRC(code) == BPF_K) { emit_imm32(tmp2, imm, ctx); src = tmp2; } emit_alu_r32(dst, src, ctx, BPF_OP(code)); break; /* dst = dst OP imm */ case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_ARSH | BPF_K: /* * mul,div,mod are handled in the BPF_X case. */ emit_alu_i32(dst, imm, ctx, BPF_OP(code)); break; /* dst = -dst */ case BPF_ALU | BPF_NEG: /* * src is ignored---choose tmp2 as a dummy register since it * is not on the stack. */ emit_alu_r32(dst, tmp2, ctx, BPF_OP(code)); break; /* dst = BSWAP##imm(dst) */ case BPF_ALU | BPF_END | BPF_FROM_BE: { const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); switch (imm) { case 16: /* zero-extend 16 bits into 64 bits */ emit(hppa_extru(lo(rd), 31, 16, lo(rd)), ctx); fallthrough; case 32: /* zero-extend 32 bits into 64 bits */ if (!ctx->prog->aux->verifier_zext) emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); break; case 64: /* Do nothing. */ break; default: pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); return -1; } bpf_put_reg64(dst, rd, ctx); break; } case BPF_ALU | BPF_END | BPF_FROM_LE: { const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); switch (imm) { case 16: emit_rev16(lo(rd), ctx); if (!ctx->prog->aux->verifier_zext) emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); break; case 32: emit_rev32(lo(rd), lo(rd), ctx); if (!ctx->prog->aux->verifier_zext) emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); break; case 64: /* Swap upper and lower halves, then each half. */ emit_hppa_copy(hi(rd), HPPA_REG_T0, ctx); emit_rev32(lo(rd), hi(rd), ctx); emit_rev32(HPPA_REG_T0, lo(rd), ctx); break; default: pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); return -1; } bpf_put_reg64(dst, rd, ctx); break; } /* JUMP off */ case BPF_JMP | BPF_JA: paoff = hppa_offset(i, off, ctx); emit_jump(paoff, false, ctx); break; /* function call */ case BPF_JMP | BPF_CALL: { bool fixed; int ret; u64 addr; ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr, &fixed); if (ret < 0) return ret; emit_call(fixed, addr, ctx); break; } /* tail call */ case BPF_JMP | BPF_TAIL_CALL: REG_SET_SEEN_ALL(ctx); if (emit_bpf_tail_call(i, ctx)) return -1; break; /* IF (dst COND imm) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_K: paoff = hppa_offset(i, off, ctx); if (BPF_SRC(code) == BPF_K) { s = ctx->ninsns; emit_imm32(tmp2, imm, ctx); src = tmp2; e = ctx->ninsns; paoff -= (e - s); } if (is64) emit_branch_r64(dst, src, paoff, ctx, BPF_OP(code)); else emit_branch_r32(dst, src, paoff, ctx, BPF_OP(code)); break; /* function return */ case BPF_JMP | BPF_EXIT: if (i == ctx->prog->len - 1) break; /* load epilogue function pointer and jump to it. */ emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: { struct bpf_insn insn1 = insn[1]; u32 upper = insn1.imm; u32 lower = imm; const s8 *rd = bpf_get_reg64_ref(dst, tmp1, false, ctx); if (0 && bpf_pseudo_func(insn)) { WARN_ON(upper); /* we are 32-bit! */ upper = 0; lower = (uintptr_t) dereference_function_descriptor(lower); } emit_imm64(rd, upper, lower, ctx); bpf_put_reg64(dst, rd, ctx); return 1; } /* LDX: dst = *(size *)(src + off) */ case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_DW: if (emit_load_r64(dst, src, off, ctx, BPF_SIZE(code))) return -1; break; /* speculation barrier */ case BPF_ST | BPF_NOSPEC: break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_B: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_DW: case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_DW: if (BPF_CLASS(code) == BPF_ST) { emit_imm32(tmp2, imm, ctx); src = tmp2; } if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code), BPF_MODE(code))) return -1; break; case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: pr_info_once( "bpf-jit: not supported: atomic operation %02x ***\n", insn->imm); return -EFAULT; default: pr_err("bpf-jit: unknown opcode %02x\n", code); return -EINVAL; } return 0; } void bpf_jit_build_prologue(struct hppa_jit_context *ctx) { const s8 *tmp = regmap[TMP_REG_1]; const s8 *dst, *reg; int stack_adjust = 0; int i; unsigned long addr; int bpf_stack_adjust; /* * stack on hppa grows up, so if tail calls are used we need to * allocate the maximum stack size */ if (REG_ALL_SEEN(ctx)) bpf_stack_adjust = MAX_BPF_STACK; else bpf_stack_adjust = ctx->prog->aux->stack_depth; bpf_stack_adjust = round_up(bpf_stack_adjust, STACK_ALIGN); /* make space for callee-saved registers. */ stack_adjust += NR_SAVED_REGISTERS * REG_SIZE; /* make space for BPF registers on stack. */ stack_adjust += BPF_JIT_SCRATCH_REGS * REG_SIZE; /* make space for BPF stack. */ stack_adjust += bpf_stack_adjust; /* round up for stack alignment. */ stack_adjust = round_up(stack_adjust, STACK_ALIGN); /* * The first instruction sets the tail-call-counter (TCC) register. * This instruction is skipped by tail calls. * Use a temporary register instead of a caller-saved register initially. */ emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC_IN_INIT), ctx); /* * skip all initializations when called as BPF TAIL call. */ emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_R1), ctx); emit(hppa_bne(HPPA_REG_TCC_IN_INIT, HPPA_REG_R1, ctx->prologue_len - 2 - HPPA_BRANCH_DISPLACEMENT), ctx); /* set up hppa stack frame. */ emit_hppa_copy(HPPA_REG_SP, HPPA_REG_R1, ctx); // copy sp,r1 (=prev_sp) emit(hppa_ldo(stack_adjust, HPPA_REG_SP, HPPA_REG_SP), ctx); // ldo stack_adjust(sp),sp (increase stack) emit(hppa_stw(HPPA_REG_R1, -REG_SIZE, HPPA_REG_SP), ctx); // stw prev_sp,-0x04(sp) emit(hppa_stw(HPPA_REG_RP, -0x14, HPPA_REG_SP), ctx); // stw rp,-0x14(sp) REG_FORCE_SEEN(ctx, HPPA_REG_T0); REG_FORCE_SEEN(ctx, HPPA_REG_T1); REG_FORCE_SEEN(ctx, HPPA_REG_T2); REG_FORCE_SEEN(ctx, HPPA_REG_T3); REG_FORCE_SEEN(ctx, HPPA_REG_T4); REG_FORCE_SEEN(ctx, HPPA_REG_T5); /* save callee-save registers. */ for (i = 3; i <= 18; i++) { if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i))) continue; emit(hppa_stw(HPPA_R(i), -REG_SIZE * (8 + (i-3)), HPPA_REG_SP), ctx); // stw ri,-save_area(sp) } /* * now really set the tail call counter (TCC) register. */ if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC), ctx); /* * save epilogue function pointer for outer TCC call chain. * The main TCC call stores the final RP on stack. */ addr = (uintptr_t) &ctx->insns[ctx->epilogue_offset]; /* skip first two instructions of exit function, which jump to exit */ addr += 2 * HPPA_INSN_SIZE; emit(hppa_ldil(addr, HPPA_REG_T2), ctx); emit(hppa_ldo(im11(addr), HPPA_REG_T2, HPPA_REG_T2), ctx); emit(EXIT_PTR_STORE(HPPA_REG_T2), ctx); /* load R1 & R2 from registers, R3-R5 from stack. */ /* use HPPA_REG_R1 which holds the old stack value */ dst = regmap[BPF_REG_5]; reg = bpf_get_reg64_ref(dst, tmp, false, ctx); if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { if (REG_WAS_SEEN(ctx, hi(reg))) emit(hppa_ldw(-0x48, HPPA_REG_R1, hi(reg)), ctx); if (REG_WAS_SEEN(ctx, lo(reg))) emit(hppa_ldw(-0x44, HPPA_REG_R1, lo(reg)), ctx); bpf_put_reg64(dst, tmp, ctx); } dst = regmap[BPF_REG_4]; reg = bpf_get_reg64_ref(dst, tmp, false, ctx); if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { if (REG_WAS_SEEN(ctx, hi(reg))) emit(hppa_ldw(-0x40, HPPA_REG_R1, hi(reg)), ctx); if (REG_WAS_SEEN(ctx, lo(reg))) emit(hppa_ldw(-0x3c, HPPA_REG_R1, lo(reg)), ctx); bpf_put_reg64(dst, tmp, ctx); } dst = regmap[BPF_REG_3]; reg = bpf_get_reg64_ref(dst, tmp, false, ctx); if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { if (REG_WAS_SEEN(ctx, hi(reg))) emit(hppa_ldw(-0x38, HPPA_REG_R1, hi(reg)), ctx); if (REG_WAS_SEEN(ctx, lo(reg))) emit(hppa_ldw(-0x34, HPPA_REG_R1, lo(reg)), ctx); bpf_put_reg64(dst, tmp, ctx); } dst = regmap[BPF_REG_2]; reg = bpf_get_reg64_ref(dst, tmp, false, ctx); if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { if (REG_WAS_SEEN(ctx, hi(reg))) emit_hppa_copy(HPPA_REG_ARG3, hi(reg), ctx); if (REG_WAS_SEEN(ctx, lo(reg))) emit_hppa_copy(HPPA_REG_ARG2, lo(reg), ctx); bpf_put_reg64(dst, tmp, ctx); } dst = regmap[BPF_REG_1]; reg = bpf_get_reg64_ref(dst, tmp, false, ctx); if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { if (REG_WAS_SEEN(ctx, hi(reg))) emit_hppa_copy(HPPA_REG_ARG1, hi(reg), ctx); if (REG_WAS_SEEN(ctx, lo(reg))) emit_hppa_copy(HPPA_REG_ARG0, lo(reg), ctx); bpf_put_reg64(dst, tmp, ctx); } /* Set up BPF frame pointer. */ dst = regmap[BPF_REG_FP]; reg = bpf_get_reg64_ref(dst, tmp, false, ctx); if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { if (REG_WAS_SEEN(ctx, lo(reg))) emit(hppa_ldo(-REG_SIZE * (NR_SAVED_REGISTERS + BPF_JIT_SCRATCH_REGS), HPPA_REG_SP, lo(reg)), ctx); if (REG_WAS_SEEN(ctx, hi(reg))) emit_hppa_copy(HPPA_REG_ZERO, hi(reg), ctx); bpf_put_reg64(dst, tmp, ctx); } emit(hppa_nop(), ctx); } void bpf_jit_build_epilogue(struct hppa_jit_context *ctx) { __build_epilogue(false, ctx); }