// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include #include #include "../perf_event.h" /* Waste a full page so it can be mapped into the cpu_entry_area */ DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); /* The size of a BTS record in bytes: */ #define BTS_RECORD_SIZE 24 #define PEBS_FIXUP_SIZE PAGE_SIZE /* * pebs_record_32 for p4 and core not supported struct pebs_record_32 { u32 flags, ip; u32 ax, bc, cx, dx; u32 si, di, bp, sp; }; */ union intel_x86_pebs_dse { u64 val; struct { unsigned int ld_dse:4; unsigned int ld_stlb_miss:1; unsigned int ld_locked:1; unsigned int ld_data_blk:1; unsigned int ld_addr_blk:1; unsigned int ld_reserved:24; }; struct { unsigned int st_l1d_hit:1; unsigned int st_reserved1:3; unsigned int st_stlb_miss:1; unsigned int st_locked:1; unsigned int st_reserved2:26; }; struct { unsigned int st_lat_dse:4; unsigned int st_lat_stlb_miss:1; unsigned int st_lat_locked:1; unsigned int ld_reserved3:26; }; struct { unsigned int mtl_dse:5; unsigned int mtl_locked:1; unsigned int mtl_stlb_miss:1; unsigned int mtl_fwd_blk:1; unsigned int ld_reserved4:24; }; }; /* * Map PEBS Load Latency Data Source encodings to generic * memory data source information */ #define P(a, b) PERF_MEM_S(a, b) #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) #define LEVEL(x) P(LVLNUM, x) #define REM P(REMOTE, REMOTE) #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) /* Version for Sandy Bridge and later */ static u64 pebs_data_source[] = { P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ }; /* Patch up minor differences in the bits */ void __init intel_pmu_pebs_data_source_nhm(void) { pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); } static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source) { u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); } void __init intel_pmu_pebs_data_source_skl(bool pmem) { __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source); } static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source) { data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); } void __init intel_pmu_pebs_data_source_grt(void) { __intel_pmu_pebs_data_source_grt(pebs_data_source); } void __init intel_pmu_pebs_data_source_adl(void) { u64 *data_source; data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); __intel_pmu_pebs_data_source_skl(false, data_source); data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); __intel_pmu_pebs_data_source_grt(data_source); } static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source) { data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE); data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD); data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM); } void __init intel_pmu_pebs_data_source_mtl(void) { u64 *data_source; data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); __intel_pmu_pebs_data_source_skl(false, data_source); data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); __intel_pmu_pebs_data_source_cmt(data_source); } void __init intel_pmu_pebs_data_source_cmt(void) { __intel_pmu_pebs_data_source_cmt(pebs_data_source); } static u64 precise_store_data(u64 status) { union intel_x86_pebs_dse dse; u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); dse.val = status; /* * bit 4: TLB access * 1 = stored missed 2nd level TLB * * so it either hit the walker or the OS * otherwise hit 2nd level TLB */ if (dse.st_stlb_miss) val |= P(TLB, MISS); else val |= P(TLB, HIT); /* * bit 0: hit L1 data cache * if not set, then all we know is that * it missed L1D */ if (dse.st_l1d_hit) val |= P(LVL, HIT); else val |= P(LVL, MISS); /* * bit 5: Locked prefix */ if (dse.st_locked) val |= P(LOCK, LOCKED); return val; } static u64 precise_datala_hsw(struct perf_event *event, u64 status) { union perf_mem_data_src dse; dse.val = PERF_MEM_NA; if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) dse.mem_op = PERF_MEM_OP_STORE; else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) dse.mem_op = PERF_MEM_OP_LOAD; /* * L1 info only valid for following events: * * MEM_UOPS_RETIRED.STLB_MISS_STORES * MEM_UOPS_RETIRED.LOCK_STORES * MEM_UOPS_RETIRED.SPLIT_STORES * MEM_UOPS_RETIRED.ALL_STORES */ if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { if (status & 1) dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; else dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; } return dse.val; } static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock) { /* * TLB access * 0 = did not miss 2nd level TLB * 1 = missed 2nd level TLB */ if (tlb) *val |= P(TLB, MISS) | P(TLB, L2); else *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); /* locked prefix */ if (lock) *val |= P(LOCK, LOCKED); } /* Retrieve the latency data for e-core of ADL */ static u64 __adl_latency_data_small(struct perf_event *event, u64 status, u8 dse, bool tlb, bool lock, bool blk) { u64 val; WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big); dse &= PERF_PEBS_DATA_SOURCE_MASK; val = hybrid_var(event->pmu, pebs_data_source)[dse]; pebs_set_tlb_lock(&val, tlb, lock); if (blk) val |= P(BLK, DATA); else val |= P(BLK, NA); return val; } u64 adl_latency_data_small(struct perf_event *event, u64 status) { union intel_x86_pebs_dse dse; dse.val = status; return __adl_latency_data_small(event, status, dse.ld_dse, dse.ld_locked, dse.ld_stlb_miss, dse.ld_data_blk); } /* Retrieve the latency data for e-core of MTL */ u64 mtl_latency_data_small(struct perf_event *event, u64 status) { union intel_x86_pebs_dse dse; dse.val = status; return __adl_latency_data_small(event, status, dse.mtl_dse, dse.mtl_stlb_miss, dse.mtl_locked, dse.mtl_fwd_blk); } static u64 load_latency_data(struct perf_event *event, u64 status) { union intel_x86_pebs_dse dse; u64 val; dse.val = status; /* * use the mapping table for bit 0-3 */ val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; /* * Nehalem models do not support TLB, Lock infos */ if (x86_pmu.pebs_no_tlb) { val |= P(TLB, NA) | P(LOCK, NA); return val; } pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked); /* * Ice Lake and earlier models do not support block infos. */ if (!x86_pmu.pebs_block) { val |= P(BLK, NA); return val; } /* * bit 6: load was blocked since its data could not be forwarded * from a preceding store */ if (dse.ld_data_blk) val |= P(BLK, DATA); /* * bit 7: load was blocked due to potential address conflict with * a preceding store */ if (dse.ld_addr_blk) val |= P(BLK, ADDR); if (!dse.ld_data_blk && !dse.ld_addr_blk) val |= P(BLK, NA); return val; } static u64 store_latency_data(struct perf_event *event, u64 status) { union intel_x86_pebs_dse dse; union perf_mem_data_src src; u64 val; dse.val = status; /* * use the mapping table for bit 0-3 */ val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse]; pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked); val |= P(BLK, NA); /* * the pebs_data_source table is only for loads * so override the mem_op to say STORE instead */ src.val = val; src.mem_op = P(OP,STORE); return src.val; } struct pebs_record_core { u64 flags, ip; u64 ax, bx, cx, dx; u64 si, di, bp, sp; u64 r8, r9, r10, r11; u64 r12, r13, r14, r15; }; struct pebs_record_nhm { u64 flags, ip; u64 ax, bx, cx, dx; u64 si, di, bp, sp; u64 r8, r9, r10, r11; u64 r12, r13, r14, r15; u64 status, dla, dse, lat; }; /* * Same as pebs_record_nhm, with two additional fields. */ struct pebs_record_hsw { u64 flags, ip; u64 ax, bx, cx, dx; u64 si, di, bp, sp; u64 r8, r9, r10, r11; u64 r12, r13, r14, r15; u64 status, dla, dse, lat; u64 real_ip, tsx_tuning; }; union hsw_tsx_tuning { struct { u32 cycles_last_block : 32, hle_abort : 1, rtm_abort : 1, instruction_abort : 1, non_instruction_abort : 1, retry : 1, data_conflict : 1, capacity_writes : 1, capacity_reads : 1; }; u64 value; }; #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL /* Same as HSW, plus TSC */ struct pebs_record_skl { u64 flags, ip; u64 ax, bx, cx, dx; u64 si, di, bp, sp; u64 r8, r9, r10, r11; u64 r12, r13, r14, r15; u64 status, dla, dse, lat; u64 real_ip, tsx_tuning; u64 tsc; }; void init_debug_store_on_cpu(int cpu) { struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; if (!ds) return; wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, (u32)((u64)(unsigned long)ds), (u32)((u64)(unsigned long)ds >> 32)); } void fini_debug_store_on_cpu(int cpu) { if (!per_cpu(cpu_hw_events, cpu).ds) return; wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); } static DEFINE_PER_CPU(void *, insn_buffer); static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) { unsigned long start = (unsigned long)cea; phys_addr_t pa; size_t msz = 0; pa = virt_to_phys(addr); preempt_disable(); for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) cea_set_pte(cea, pa, prot); /* * This is a cross-CPU update of the cpu_entry_area, we must shoot down * all TLB entries for it. */ flush_tlb_kernel_range(start, start + size); preempt_enable(); } static void ds_clear_cea(void *cea, size_t size) { unsigned long start = (unsigned long)cea; size_t msz = 0; preempt_disable(); for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) cea_set_pte(cea, 0, PAGE_NONE); flush_tlb_kernel_range(start, start + size); preempt_enable(); } static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) { unsigned int order = get_order(size); int node = cpu_to_node(cpu); struct page *page; page = __alloc_pages_node(node, flags | __GFP_ZERO, order); return page ? page_address(page) : NULL; } static void dsfree_pages(const void *buffer, size_t size) { if (buffer) free_pages((unsigned long)buffer, get_order(size)); } static int alloc_pebs_buffer(int cpu) { struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); struct debug_store *ds = hwev->ds; size_t bsiz = x86_pmu.pebs_buffer_size; int max, node = cpu_to_node(cpu); void *buffer, *insn_buff, *cea; if (!x86_pmu.pebs) return 0; buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); if (unlikely(!buffer)) return -ENOMEM; /* * HSW+ already provides us the eventing ip; no need to allocate this * buffer then. */ if (x86_pmu.intel_cap.pebs_format < 2) { insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); if (!insn_buff) { dsfree_pages(buffer, bsiz); return -ENOMEM; } per_cpu(insn_buffer, cpu) = insn_buff; } hwev->ds_pebs_vaddr = buffer; /* Update the cpu entry area mapping */ cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; ds->pebs_buffer_base = (unsigned long) cea; ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); ds->pebs_index = ds->pebs_buffer_base; max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; return 0; } static void release_pebs_buffer(int cpu) { struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); void *cea; if (!x86_pmu.pebs) return; kfree(per_cpu(insn_buffer, cpu)); per_cpu(insn_buffer, cpu) = NULL; /* Clear the fixmap */ cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; ds_clear_cea(cea, x86_pmu.pebs_buffer_size); dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); hwev->ds_pebs_vaddr = NULL; } static int alloc_bts_buffer(int cpu) { struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); struct debug_store *ds = hwev->ds; void *buffer, *cea; int max; if (!x86_pmu.bts) return 0; buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); if (unlikely(!buffer)) { WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); return -ENOMEM; } hwev->ds_bts_vaddr = buffer; /* Update the fixmap */ cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; ds->bts_buffer_base = (unsigned long) cea; ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); ds->bts_index = ds->bts_buffer_base; max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; ds->bts_absolute_maximum = ds->bts_buffer_base + max * BTS_RECORD_SIZE; ds->bts_interrupt_threshold = ds->bts_absolute_maximum - (max / 16) * BTS_RECORD_SIZE; return 0; } static void release_bts_buffer(int cpu) { struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); void *cea; if (!x86_pmu.bts) return; /* Clear the fixmap */ cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; ds_clear_cea(cea, BTS_BUFFER_SIZE); dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); hwev->ds_bts_vaddr = NULL; } static int alloc_ds_buffer(int cpu) { struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; memset(ds, 0, sizeof(*ds)); per_cpu(cpu_hw_events, cpu).ds = ds; return 0; } static void release_ds_buffer(int cpu) { per_cpu(cpu_hw_events, cpu).ds = NULL; } void release_ds_buffers(void) { int cpu; if (!x86_pmu.bts && !x86_pmu.pebs) return; for_each_possible_cpu(cpu) release_ds_buffer(cpu); for_each_possible_cpu(cpu) { /* * Again, ignore errors from offline CPUs, they will no longer * observe cpu_hw_events.ds and not program the DS_AREA when * they come up. */ fini_debug_store_on_cpu(cpu); } for_each_possible_cpu(cpu) { release_pebs_buffer(cpu); release_bts_buffer(cpu); } } void reserve_ds_buffers(void) { int bts_err = 0, pebs_err = 0; int cpu; x86_pmu.bts_active = 0; x86_pmu.pebs_active = 0; if (!x86_pmu.bts && !x86_pmu.pebs) return; if (!x86_pmu.bts) bts_err = 1; if (!x86_pmu.pebs) pebs_err = 1; for_each_possible_cpu(cpu) { if (alloc_ds_buffer(cpu)) { bts_err = 1; pebs_err = 1; } if (!bts_err && alloc_bts_buffer(cpu)) bts_err = 1; if (!pebs_err && alloc_pebs_buffer(cpu)) pebs_err = 1; if (bts_err && pebs_err) break; } if (bts_err) { for_each_possible_cpu(cpu) release_bts_buffer(cpu); } if (pebs_err) { for_each_possible_cpu(cpu) release_pebs_buffer(cpu); } if (bts_err && pebs_err) { for_each_possible_cpu(cpu) release_ds_buffer(cpu); } else { if (x86_pmu.bts && !bts_err) x86_pmu.bts_active = 1; if (x86_pmu.pebs && !pebs_err) x86_pmu.pebs_active = 1; for_each_possible_cpu(cpu) { /* * Ignores wrmsr_on_cpu() errors for offline CPUs they * will get this call through intel_pmu_cpu_starting(). */ init_debug_store_on_cpu(cpu); } } } /* * BTS */ struct event_constraint bts_constraint = EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); void intel_pmu_enable_bts(u64 config) { unsigned long debugctlmsr; debugctlmsr = get_debugctlmsr(); debugctlmsr |= DEBUGCTLMSR_TR; debugctlmsr |= DEBUGCTLMSR_BTS; if (config & ARCH_PERFMON_EVENTSEL_INT) debugctlmsr |= DEBUGCTLMSR_BTINT; if (!(config & ARCH_PERFMON_EVENTSEL_OS)) debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; if (!(config & ARCH_PERFMON_EVENTSEL_USR)) debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; update_debugctlmsr(debugctlmsr); } void intel_pmu_disable_bts(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); unsigned long debugctlmsr; if (!cpuc->ds) return; debugctlmsr = get_debugctlmsr(); debugctlmsr &= ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); update_debugctlmsr(debugctlmsr); } int intel_pmu_drain_bts_buffer(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct debug_store *ds = cpuc->ds; struct bts_record { u64 from; u64 to; u64 flags; }; struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; struct bts_record *at, *base, *top; struct perf_output_handle handle; struct perf_event_header header; struct perf_sample_data data; unsigned long skip = 0; struct pt_regs regs; if (!event) return 0; if (!x86_pmu.bts_active) return 0; base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; top = (struct bts_record *)(unsigned long)ds->bts_index; if (top <= base) return 0; memset(®s, 0, sizeof(regs)); ds->bts_index = ds->bts_buffer_base; perf_sample_data_init(&data, 0, event->hw.last_period); /* * BTS leaks kernel addresses in branches across the cpl boundary, * such as traps or system calls, so unless the user is asking for * kernel tracing (and right now it's not possible), we'd need to * filter them out. But first we need to count how many of those we * have in the current batch. This is an extra O(n) pass, however, * it's much faster than the other one especially considering that * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the * alloc_bts_buffer()). */ for (at = base; at < top; at++) { /* * Note that right now *this* BTS code only works if * attr::exclude_kernel is set, but let's keep this extra * check here in case that changes. */ if (event->attr.exclude_kernel && (kernel_ip(at->from) || kernel_ip(at->to))) skip++; } /* * Prepare a generic sample, i.e. fill in the invariant fields. * We will overwrite the from and to address before we output * the sample. */ rcu_read_lock(); perf_prepare_sample(&data, event, ®s); perf_prepare_header(&header, &data, event, ®s); if (perf_output_begin(&handle, &data, event, header.size * (top - base - skip))) goto unlock; for (at = base; at < top; at++) { /* Filter out any records that contain kernel addresses. */ if (event->attr.exclude_kernel && (kernel_ip(at->from) || kernel_ip(at->to))) continue; data.ip = at->from; data.addr = at->to; perf_output_sample(&handle, &header, &data, event); } perf_output_end(&handle); /* There's new data available. */ event->hw.interrupts++; event->pending_kill = POLL_IN; unlock: rcu_read_unlock(); return 1; } static inline void intel_pmu_drain_pebs_buffer(void) { struct perf_sample_data data; x86_pmu.drain_pebs(NULL, &data); } /* * PEBS */ struct event_constraint intel_core2_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), EVENT_CONSTRAINT_END }; struct event_constraint intel_atom_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), EVENT_CONSTRAINT_END }; struct event_constraint intel_slm_pebs_event_constraints[] = { /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), EVENT_CONSTRAINT_END }; struct event_constraint intel_glm_pebs_event_constraints[] = { /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), EVENT_CONSTRAINT_END }; struct event_constraint intel_grt_pebs_event_constraints[] = { /* Allow all events as PEBS with no flags */ INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3), INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf), EVENT_CONSTRAINT_END }; struct event_constraint intel_nehalem_pebs_event_constraints[] = { INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), EVENT_CONSTRAINT_END }; struct event_constraint intel_westmere_pebs_event_constraints[] = { INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), EVENT_CONSTRAINT_END }; struct event_constraint intel_snb_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), EVENT_CONSTRAINT_END }; struct event_constraint intel_ivb_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), EVENT_CONSTRAINT_END }; struct event_constraint intel_hsw_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), EVENT_CONSTRAINT_END }; struct event_constraint intel_bdw_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), EVENT_CONSTRAINT_END }; struct event_constraint intel_skl_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), EVENT_CONSTRAINT_END }; struct event_constraint intel_icl_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ /* * Everything else is handled by PMU_FL_PEBS_ALL, because we * need the full constraints from the main table. */ EVENT_CONSTRAINT_END }; struct event_constraint intel_glc_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe), INTEL_PLD_CONSTRAINT(0x1cd, 0xfe), INTEL_PSD_CONSTRAINT(0x2cd, 0x1), INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* * Everything else is handled by PMU_FL_PEBS_ALL, because we * need the full constraints from the main table. */ EVENT_CONSTRAINT_END }; struct event_constraint *intel_pebs_constraints(struct perf_event *event) { struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints); struct event_constraint *c; if (!event->attr.precise_ip) return NULL; if (pebs_constraints) { for_each_event_constraint(c, pebs_constraints) { if (constraint_match(c, event->hw.config)) { event->hw.flags |= c->flags; return c; } } } /* * Extended PEBS support * Makes the PEBS code search the normal constraints. */ if (x86_pmu.flags & PMU_FL_PEBS_ALL) return NULL; return &emptyconstraint; } /* * We need the sched_task callback even for per-cpu events when we use * the large interrupt threshold, such that we can provide PID and TID * to PEBS samples. */ static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) { if (cpuc->n_pebs == cpuc->n_pebs_via_pt) return false; return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); } void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (!sched_in && pebs_needs_sched_cb(cpuc)) intel_pmu_drain_pebs_buffer(); } static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) { struct debug_store *ds = cpuc->ds; int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); u64 threshold; int reserved; if (cpuc->n_pebs_via_pt) return; if (x86_pmu.flags & PMU_FL_PEBS_ALL) reserved = max_pebs_events + num_counters_fixed; else reserved = max_pebs_events; if (cpuc->n_pebs == cpuc->n_large_pebs) { threshold = ds->pebs_absolute_maximum - reserved * cpuc->pebs_record_size; } else { threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; } ds->pebs_interrupt_threshold = threshold; } static void adaptive_pebs_record_size_update(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); u64 pebs_data_cfg = cpuc->pebs_data_cfg; int sz = sizeof(struct pebs_basic); if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) sz += sizeof(struct pebs_meminfo); if (pebs_data_cfg & PEBS_DATACFG_GP) sz += sizeof(struct pebs_gprs); if (pebs_data_cfg & PEBS_DATACFG_XMMS) sz += sizeof(struct pebs_xmm); if (pebs_data_cfg & PEBS_DATACFG_LBRS) sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); cpuc->pebs_record_size = sz; } #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ PERF_SAMPLE_PHYS_ADDR | \ PERF_SAMPLE_WEIGHT_TYPE | \ PERF_SAMPLE_TRANSACTION | \ PERF_SAMPLE_DATA_PAGE_SIZE) static u64 pebs_update_adaptive_cfg(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; u64 sample_type = attr->sample_type; u64 pebs_data_cfg = 0; bool gprs, tsx_weight; if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && attr->precise_ip > 1) return pebs_data_cfg; if (sample_type & PERF_PEBS_MEMINFO_TYPE) pebs_data_cfg |= PEBS_DATACFG_MEMINFO; /* * We need GPRs when: * + user requested them * + precise_ip < 2 for the non event IP * + For RTM TSX weight we need GPRs for the abort code. */ gprs = (sample_type & PERF_SAMPLE_REGS_INTR) && (attr->sample_regs_intr & PEBS_GP_REGS); tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) && ((attr->config & INTEL_ARCH_EVENT_MASK) == x86_pmu.rtm_abort_event); if (gprs || (attr->precise_ip < 2) || tsx_weight) pebs_data_cfg |= PEBS_DATACFG_GP; if ((sample_type & PERF_SAMPLE_REGS_INTR) && (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) pebs_data_cfg |= PEBS_DATACFG_XMMS; if (sample_type & PERF_SAMPLE_BRANCH_STACK) { /* * For now always log all LBRs. Could configure this * later. */ pebs_data_cfg |= PEBS_DATACFG_LBRS | ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); } return pebs_data_cfg; } static void pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct perf_event *event, bool add) { struct pmu *pmu = event->pmu; /* * Make sure we get updated with the first PEBS event. * During removal, ->pebs_data_cfg is still valid for * the last PEBS event. Don't clear it. */ if ((cpuc->n_pebs == 1) && add) cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW; if (needed_cb != pebs_needs_sched_cb(cpuc)) { if (!needed_cb) perf_sched_cb_inc(pmu); else perf_sched_cb_dec(pmu); cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW; } /* * The PEBS record doesn't shrink on pmu::del(). Doing so would require * iterating all remaining PEBS events to reconstruct the config. */ if (x86_pmu.intel_cap.pebs_baseline && add) { u64 pebs_data_cfg; pebs_data_cfg = pebs_update_adaptive_cfg(event); /* * Be sure to update the thresholds when we change the record. */ if (pebs_data_cfg & ~cpuc->pebs_data_cfg) cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW; } } void intel_pmu_pebs_add(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; bool needed_cb = pebs_needs_sched_cb(cpuc); cpuc->n_pebs++; if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) cpuc->n_large_pebs++; if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) cpuc->n_pebs_via_pt++; pebs_update_state(needed_cb, cpuc, event, true); } static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (!is_pebs_pt(event)) return; if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; } static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; struct debug_store *ds = cpuc->ds; u64 value = ds->pebs_event_reset[hwc->idx]; u32 base = MSR_RELOAD_PMC0; unsigned int idx = hwc->idx; if (!is_pebs_pt(event)) return; if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; cpuc->pebs_enabled |= PEBS_OUTPUT_PT; if (hwc->idx >= INTEL_PMC_IDX_FIXED) { base = MSR_RELOAD_FIXED_CTR0; idx = hwc->idx - INTEL_PMC_IDX_FIXED; if (x86_pmu.intel_cap.pebs_format < 5) value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx]; else value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx]; } wrmsrl(base + idx, value); } static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc) { if (cpuc->n_pebs == cpuc->n_large_pebs && cpuc->n_pebs != cpuc->n_pebs_via_pt) intel_pmu_drain_pebs_buffer(); } void intel_pmu_pebs_enable(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW; struct hw_perf_event *hwc = &event->hw; struct debug_store *ds = cpuc->ds; unsigned int idx = hwc->idx; hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; cpuc->pebs_enabled |= 1ULL << hwc->idx; if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) cpuc->pebs_enabled |= 1ULL << 63; if (x86_pmu.intel_cap.pebs_baseline) { hwc->config |= ICL_EVENTSEL_ADAPTIVE; if (pebs_data_cfg != cpuc->active_pebs_data_cfg) { /* * drain_pebs() assumes uniform record size; * hence we need to drain when changing said * size. */ intel_pmu_drain_large_pebs(cpuc); adaptive_pebs_record_size_update(); wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg); cpuc->active_pebs_data_cfg = pebs_data_cfg; } } if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) { cpuc->pebs_data_cfg = pebs_data_cfg; pebs_update_threshold(cpuc); } if (idx >= INTEL_PMC_IDX_FIXED) { if (x86_pmu.intel_cap.pebs_format < 5) idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED); else idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); } /* * Use auto-reload if possible to save a MSR write in the PMI. * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. */ if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { ds->pebs_event_reset[idx] = (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; } else { ds->pebs_event_reset[idx] = 0; } intel_pmu_pebs_via_pt_enable(event); } void intel_pmu_pebs_del(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; bool needed_cb = pebs_needs_sched_cb(cpuc); cpuc->n_pebs--; if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) cpuc->n_large_pebs--; if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) cpuc->n_pebs_via_pt--; pebs_update_state(needed_cb, cpuc, event, false); } void intel_pmu_pebs_disable(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; intel_pmu_drain_large_pebs(cpuc); cpuc->pebs_enabled &= ~(1ULL << hwc->idx); if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) cpuc->pebs_enabled &= ~(1ULL << 63); intel_pmu_pebs_via_pt_disable(event); if (cpuc->enabled) wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); hwc->config |= ARCH_PERFMON_EVENTSEL_INT; } void intel_pmu_pebs_enable_all(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (cpuc->pebs_enabled) wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); } void intel_pmu_pebs_disable_all(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (cpuc->pebs_enabled) __intel_pmu_pebs_disable_all(); } static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); unsigned long from = cpuc->lbr_entries[0].from; unsigned long old_to, to = cpuc->lbr_entries[0].to; unsigned long ip = regs->ip; int is_64bit = 0; void *kaddr; int size; /* * We don't need to fixup if the PEBS assist is fault like */ if (!x86_pmu.intel_cap.pebs_trap) return 1; /* * No LBR entry, no basic block, no rewinding */ if (!cpuc->lbr_stack.nr || !from || !to) return 0; /* * Basic blocks should never cross user/kernel boundaries */ if (kernel_ip(ip) != kernel_ip(to)) return 0; /* * unsigned math, either ip is before the start (impossible) or * the basic block is larger than 1 page (sanity) */ if ((ip - to) > PEBS_FIXUP_SIZE) return 0; /* * We sampled a branch insn, rewind using the LBR stack */ if (ip == to) { set_linear_ip(regs, from); return 1; } size = ip - to; if (!kernel_ip(ip)) { int bytes; u8 *buf = this_cpu_read(insn_buffer); /* 'size' must fit our buffer, see above */ bytes = copy_from_user_nmi(buf, (void __user *)to, size); if (bytes != 0) return 0; kaddr = buf; } else { kaddr = (void *)to; } do { struct insn insn; old_to = to; #ifdef CONFIG_X86_64 is_64bit = kernel_ip(to) || any_64bit_mode(regs); #endif insn_init(&insn, kaddr, size, is_64bit); /* * Make sure there was not a problem decoding the instruction. * This is doubly important because we have an infinite loop if * insn.length=0. */ if (insn_get_length(&insn)) break; to += insn.length; kaddr += insn.length; size -= insn.length; } while (to < ip); if (to == ip) { set_linear_ip(regs, old_to); return 1; } /* * Even though we decoded the basic block, the instruction stream * never matched the given IP, either the TO or the IP got corrupted. */ return 0; } static inline u64 intel_get_tsx_weight(u64 tsx_tuning) { if (tsx_tuning) { union hsw_tsx_tuning tsx = { .value = tsx_tuning }; return tsx.cycles_last_block; } return 0; } static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) { u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; /* For RTM XABORTs also log the abort code from AX */ if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; return txn; } static inline u64 get_pebs_status(void *n) { if (x86_pmu.intel_cap.pebs_format < 4) return ((struct pebs_record_nhm *)n)->status; return ((struct pebs_basic *)n)->applicable_counters; } #define PERF_X86_EVENT_PEBS_HSW_PREC \ (PERF_X86_EVENT_PEBS_ST_HSW | \ PERF_X86_EVENT_PEBS_LD_HSW | \ PERF_X86_EVENT_PEBS_NA_HSW) static u64 get_data_src(struct perf_event *event, u64 aux) { u64 val = PERF_MEM_NA; int fl = event->hw.flags; bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); if (fl & PERF_X86_EVENT_PEBS_LDLAT) val = load_latency_data(event, aux); else if (fl & PERF_X86_EVENT_PEBS_STLAT) val = store_latency_data(event, aux); else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID) val = x86_pmu.pebs_latency_data(event, aux); else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) val = precise_datala_hsw(event, aux); else if (fst) val = precise_store_data(aux); return val; } static void setup_pebs_time(struct perf_event *event, struct perf_sample_data *data, u64 tsc) { /* Converting to a user-defined clock is not supported yet. */ if (event->attr.use_clockid != 0) return; /* * Doesn't support the conversion when the TSC is unstable. * The TSC unstable case is a corner case and very unlikely to * happen. If it happens, the TSC in a PEBS record will be * dropped and fall back to perf_event_clock(). */ if (!using_native_sched_clock() || !sched_clock_stable()) return; data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset; data->sample_flags |= PERF_SAMPLE_TIME; } #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ PERF_SAMPLE_PHYS_ADDR | \ PERF_SAMPLE_DATA_PAGE_SIZE) static void setup_pebs_fixed_sample_data(struct perf_event *event, struct pt_regs *iregs, void *__pebs, struct perf_sample_data *data, struct pt_regs *regs) { /* * We cast to the biggest pebs_record but are careful not to * unconditionally access the 'extra' entries. */ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct pebs_record_skl *pebs = __pebs; u64 sample_type; int fll; if (pebs == NULL) return; sample_type = event->attr.sample_type; fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; perf_sample_data_init(data, 0, event->hw.last_period); data->period = event->hw.last_period; /* * Use latency for weight (only avail with PEBS-LL) */ if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) { data->weight.full = pebs->lat; data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; } /* * data.data_src encodes the data source */ if (sample_type & PERF_SAMPLE_DATA_SRC) { data->data_src.val = get_data_src(event, pebs->dse); data->sample_flags |= PERF_SAMPLE_DATA_SRC; } /* * We must however always use iregs for the unwinder to stay sane; the * record BP,SP,IP can point into thin air when the record is from a * previous PMI context or an (I)RET happened between the record and * PMI. */ if (sample_type & PERF_SAMPLE_CALLCHAIN) perf_sample_save_callchain(data, event, iregs); /* * We use the interrupt regs as a base because the PEBS record does not * contain a full regs set, specifically it seems to lack segment * descriptors, which get used by things like user_mode(). * * In the simple case fix up only the IP for PERF_SAMPLE_IP. */ *regs = *iregs; /* * Initialize regs_>flags from PEBS, * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), * i.e., do not rely on it being zero: */ regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; if (sample_type & PERF_SAMPLE_REGS_INTR) { regs->ax = pebs->ax; regs->bx = pebs->bx; regs->cx = pebs->cx; regs->dx = pebs->dx; regs->si = pebs->si; regs->di = pebs->di; regs->bp = pebs->bp; regs->sp = pebs->sp; #ifndef CONFIG_X86_32 regs->r8 = pebs->r8; regs->r9 = pebs->r9; regs->r10 = pebs->r10; regs->r11 = pebs->r11; regs->r12 = pebs->r12; regs->r13 = pebs->r13; regs->r14 = pebs->r14; regs->r15 = pebs->r15; #endif } if (event->attr.precise_ip > 1) { /* * Haswell and later processors have an 'eventing IP' * (real IP) which fixes the off-by-1 skid in hardware. * Use it when precise_ip >= 2 : */ if (x86_pmu.intel_cap.pebs_format >= 2) { set_linear_ip(regs, pebs->real_ip); regs->flags |= PERF_EFLAGS_EXACT; } else { /* Otherwise, use PEBS off-by-1 IP: */ set_linear_ip(regs, pebs->ip); /* * With precise_ip >= 2, try to fix up the off-by-1 IP * using the LBR. If successful, the fixup function * corrects regs->ip and calls set_linear_ip() on regs: */ if (intel_pmu_pebs_fixup_ip(regs)) regs->flags |= PERF_EFLAGS_EXACT; } } else { /* * When precise_ip == 1, return the PEBS off-by-1 IP, * no fixup attempted: */ set_linear_ip(regs, pebs->ip); } if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && x86_pmu.intel_cap.pebs_format >= 1) { data->addr = pebs->dla; data->sample_flags |= PERF_SAMPLE_ADDR; } if (x86_pmu.intel_cap.pebs_format >= 2) { /* Only set the TSX weight when no memory weight. */ if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) { data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning); data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; } if (sample_type & PERF_SAMPLE_TRANSACTION) { data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, pebs->ax); data->sample_flags |= PERF_SAMPLE_TRANSACTION; } } /* * v3 supplies an accurate time stamp, so we use that * for the time stamp. * * We can only do this for the default trace clock. */ if (x86_pmu.intel_cap.pebs_format >= 3) setup_pebs_time(event, data, pebs->tsc); if (has_branch_stack(event)) perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL); } static void adaptive_pebs_save_regs(struct pt_regs *regs, struct pebs_gprs *gprs) { regs->ax = gprs->ax; regs->bx = gprs->bx; regs->cx = gprs->cx; regs->dx = gprs->dx; regs->si = gprs->si; regs->di = gprs->di; regs->bp = gprs->bp; regs->sp = gprs->sp; #ifndef CONFIG_X86_32 regs->r8 = gprs->r8; regs->r9 = gprs->r9; regs->r10 = gprs->r10; regs->r11 = gprs->r11; regs->r12 = gprs->r12; regs->r13 = gprs->r13; regs->r14 = gprs->r14; regs->r15 = gprs->r15; #endif } #define PEBS_LATENCY_MASK 0xffff #define PEBS_CACHE_LATENCY_OFFSET 32 #define PEBS_RETIRE_LATENCY_OFFSET 32 /* * With adaptive PEBS the layout depends on what fields are configured. */ static void setup_pebs_adaptive_sample_data(struct perf_event *event, struct pt_regs *iregs, void *__pebs, struct perf_sample_data *data, struct pt_regs *regs) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct pebs_basic *basic = __pebs; void *next_record = basic + 1; u64 sample_type; u64 format_size; struct pebs_meminfo *meminfo = NULL; struct pebs_gprs *gprs = NULL; struct x86_perf_regs *perf_regs; if (basic == NULL) return; perf_regs = container_of(regs, struct x86_perf_regs, regs); perf_regs->xmm_regs = NULL; sample_type = event->attr.sample_type; format_size = basic->format_size; perf_sample_data_init(data, 0, event->hw.last_period); data->period = event->hw.last_period; setup_pebs_time(event, data, basic->tsc); /* * We must however always use iregs for the unwinder to stay sane; the * record BP,SP,IP can point into thin air when the record is from a * previous PMI context or an (I)RET happened between the record and * PMI. */ if (sample_type & PERF_SAMPLE_CALLCHAIN) perf_sample_save_callchain(data, event, iregs); *regs = *iregs; /* The ip in basic is EventingIP */ set_linear_ip(regs, basic->ip); regs->flags = PERF_EFLAGS_EXACT; if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) { if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY) data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK; else data->weight.var3_w = 0; } /* * The record for MEMINFO is in front of GP * But PERF_SAMPLE_TRANSACTION needs gprs->ax. * Save the pointer here but process later. */ if (format_size & PEBS_DATACFG_MEMINFO) { meminfo = next_record; next_record = meminfo + 1; } if (format_size & PEBS_DATACFG_GP) { gprs = next_record; next_record = gprs + 1; if (event->attr.precise_ip < 2) { set_linear_ip(regs, gprs->ip); regs->flags &= ~PERF_EFLAGS_EXACT; } if (sample_type & PERF_SAMPLE_REGS_INTR) adaptive_pebs_save_regs(regs, gprs); } if (format_size & PEBS_DATACFG_MEMINFO) { if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { u64 weight = meminfo->latency; if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) { data->weight.var2_w = weight & PEBS_LATENCY_MASK; weight >>= PEBS_CACHE_LATENCY_OFFSET; } /* * Although meminfo::latency is defined as a u64, * only the lower 32 bits include the valid data * in practice on Ice Lake and earlier platforms. */ if (sample_type & PERF_SAMPLE_WEIGHT) { data->weight.full = weight ?: intel_get_tsx_weight(meminfo->tsx_tuning); } else { data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?: intel_get_tsx_weight(meminfo->tsx_tuning); } data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; } if (sample_type & PERF_SAMPLE_DATA_SRC) { data->data_src.val = get_data_src(event, meminfo->aux); data->sample_flags |= PERF_SAMPLE_DATA_SRC; } if (sample_type & PERF_SAMPLE_ADDR_TYPE) { data->addr = meminfo->address; data->sample_flags |= PERF_SAMPLE_ADDR; } if (sample_type & PERF_SAMPLE_TRANSACTION) { data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, gprs ? gprs->ax : 0); data->sample_flags |= PERF_SAMPLE_TRANSACTION; } } if (format_size & PEBS_DATACFG_XMMS) { struct pebs_xmm *xmm = next_record; next_record = xmm + 1; perf_regs->xmm_regs = xmm->xmm; } if (format_size & PEBS_DATACFG_LBRS) { struct lbr_entry *lbr = next_record; int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT) & 0xff) + 1; next_record = next_record + num_lbr * sizeof(struct lbr_entry); if (has_branch_stack(event)) { intel_pmu_store_pebs_lbrs(lbr); intel_pmu_lbr_save_brstack(data, cpuc, event); } } WARN_ONCE(next_record != __pebs + (format_size >> 48), "PEBS record size %llu, expected %llu, config %llx\n", format_size >> 48, (u64)(next_record - __pebs), basic->format_size); } static inline void * get_next_pebs_record_by_bit(void *base, void *top, int bit) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); void *at; u64 pebs_status; /* * fmt0 does not have a status bitfield (does not use * perf_record_nhm format) */ if (x86_pmu.intel_cap.pebs_format < 1) return base; if (base == NULL) return NULL; for (at = base; at < top; at += cpuc->pebs_record_size) { unsigned long status = get_pebs_status(at); if (test_bit(bit, (unsigned long *)&status)) { /* PEBS v3 has accurate status bits */ if (x86_pmu.intel_cap.pebs_format >= 3) return at; if (status == (1 << bit)) return at; /* clear non-PEBS bit and re-check */ pebs_status = status & cpuc->pebs_enabled; pebs_status &= PEBS_COUNTER_MASK; if (pebs_status == (1 << bit)) return at; } } return NULL; } void intel_pmu_auto_reload_read(struct perf_event *event) { WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); perf_pmu_disable(event->pmu); intel_pmu_drain_pebs_buffer(); perf_pmu_enable(event->pmu); } /* * Special variant of intel_pmu_save_and_restart() for auto-reload. */ static int intel_pmu_save_and_restart_reload(struct perf_event *event, int count) { struct hw_perf_event *hwc = &event->hw; int shift = 64 - x86_pmu.cntval_bits; u64 period = hwc->sample_period; u64 prev_raw_count, new_raw_count; s64 new, old; WARN_ON(!period); /* * drain_pebs() only happens when the PMU is disabled. */ WARN_ON(this_cpu_read(cpu_hw_events.enabled)); prev_raw_count = local64_read(&hwc->prev_count); rdpmcl(hwc->event_base_rdpmc, new_raw_count); local64_set(&hwc->prev_count, new_raw_count); /* * Since the counter increments a negative counter value and * overflows on the sign switch, giving the interval: * * [-period, 0] * * the difference between two consecutive reads is: * * A) value2 - value1; * when no overflows have happened in between, * * B) (0 - value1) + (value2 - (-period)); * when one overflow happened in between, * * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); * when @n overflows happened in between. * * Here A) is the obvious difference, B) is the extension to the * discrete interval, where the first term is to the top of the * interval and the second term is from the bottom of the next * interval and C) the extension to multiple intervals, where the * middle term is the whole intervals covered. * * An equivalent of C, by reduction, is: * * value2 - value1 + n * period */ new = ((s64)(new_raw_count << shift) >> shift); old = ((s64)(prev_raw_count << shift) >> shift); local64_add(new - old + count * period, &event->count); local64_set(&hwc->period_left, -new); perf_event_update_userpage(event); return 0; } static __always_inline void __intel_pmu_pebs_event(struct perf_event *event, struct pt_regs *iregs, struct perf_sample_data *data, void *base, void *top, int bit, int count, void (*setup_sample)(struct perf_event *, struct pt_regs *, void *, struct perf_sample_data *, struct pt_regs *)) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; struct x86_perf_regs perf_regs; struct pt_regs *regs = &perf_regs.regs; void *at = get_next_pebs_record_by_bit(base, top, bit); static struct pt_regs dummy_iregs; if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { /* * Now, auto-reload is only enabled in fixed period mode. * The reload value is always hwc->sample_period. * May need to change it, if auto-reload is enabled in * freq mode later. */ intel_pmu_save_and_restart_reload(event, count); } else if (!intel_pmu_save_and_restart(event)) return; if (!iregs) iregs = &dummy_iregs; while (count > 1) { setup_sample(event, iregs, at, data, regs); perf_event_output(event, data, regs); at += cpuc->pebs_record_size; at = get_next_pebs_record_by_bit(at, top, bit); count--; } setup_sample(event, iregs, at, data, regs); if (iregs == &dummy_iregs) { /* * The PEBS records may be drained in the non-overflow context, * e.g., large PEBS + context switch. Perf should treat the * last record the same as other PEBS records, and doesn't * invoke the generic overflow handler. */ perf_event_output(event, data, regs); } else { /* * All but the last records are processed. * The last one is left to be able to call the overflow handler. */ if (perf_event_overflow(event, data, regs)) x86_pmu_stop(event, 0); } } static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct debug_store *ds = cpuc->ds; struct perf_event *event = cpuc->events[0]; /* PMC0 only */ struct pebs_record_core *at, *top; int n; if (!x86_pmu.pebs_active) return; at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; /* * Whatever else happens, drain the thing */ ds->pebs_index = ds->pebs_buffer_base; if (!test_bit(0, cpuc->active_mask)) return; WARN_ON_ONCE(!event); if (!event->attr.precise_ip) return; n = top - at; if (n <= 0) { if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) intel_pmu_save_and_restart_reload(event, 0); return; } __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n, setup_pebs_fixed_sample_data); } static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size) { struct perf_event *event; int bit; /* * The drain_pebs() could be called twice in a short period * for auto-reload event in pmu::read(). There are no * overflows have happened in between. * It needs to call intel_pmu_save_and_restart_reload() to * update the event->count for this case. */ for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) { event = cpuc->events[bit]; if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) intel_pmu_save_and_restart_reload(event, 0); } } static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct debug_store *ds = cpuc->ds; struct perf_event *event; void *base, *at, *top; short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; int bit, i, size; u64 mask; if (!x86_pmu.pebs_active) return; base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; ds->pebs_index = ds->pebs_buffer_base; mask = (1ULL << x86_pmu.max_pebs_events) - 1; size = x86_pmu.max_pebs_events; if (x86_pmu.flags & PMU_FL_PEBS_ALL) { mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; } if (unlikely(base >= top)) { intel_pmu_pebs_event_update_no_drain(cpuc, size); return; } for (at = base; at < top; at += x86_pmu.pebs_record_size) { struct pebs_record_nhm *p = at; u64 pebs_status; pebs_status = p->status & cpuc->pebs_enabled; pebs_status &= mask; /* PEBS v3 has more accurate status bits */ if (x86_pmu.intel_cap.pebs_format >= 3) { for_each_set_bit(bit, (unsigned long *)&pebs_status, size) counts[bit]++; continue; } /* * On some CPUs the PEBS status can be zero when PEBS is * racing with clearing of GLOBAL_STATUS. * * Normally we would drop that record, but in the * case when there is only a single active PEBS event * we can assume it's for that event. */ if (!pebs_status && cpuc->pebs_enabled && !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) pebs_status = p->status = cpuc->pebs_enabled; bit = find_first_bit((unsigned long *)&pebs_status, x86_pmu.max_pebs_events); if (bit >= x86_pmu.max_pebs_events) continue; /* * The PEBS hardware does not deal well with the situation * when events happen near to each other and multiple bits * are set. But it should happen rarely. * * If these events include one PEBS and multiple non-PEBS * events, it doesn't impact PEBS record. The record will * be handled normally. (slow path) * * If these events include two or more PEBS events, the * records for the events can be collapsed into a single * one, and it's not possible to reconstruct all events * that caused the PEBS record. It's called collision. * If collision happened, the record will be dropped. */ if (pebs_status != (1ULL << bit)) { for_each_set_bit(i, (unsigned long *)&pebs_status, size) error[i]++; continue; } counts[bit]++; } for_each_set_bit(bit, (unsigned long *)&mask, size) { if ((counts[bit] == 0) && (error[bit] == 0)) continue; event = cpuc->events[bit]; if (WARN_ON_ONCE(!event)) continue; if (WARN_ON_ONCE(!event->attr.precise_ip)) continue; /* log dropped samples number */ if (error[bit]) { perf_log_lost_samples(event, error[bit]); if (iregs && perf_event_account_interrupt(event)) x86_pmu_stop(event, 0); } if (counts[bit]) { __intel_pmu_pebs_event(event, iregs, data, base, top, bit, counts[bit], setup_pebs_fixed_sample_data); } } } static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) { short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); struct debug_store *ds = cpuc->ds; struct perf_event *event; void *base, *at, *top; int bit, size; u64 mask; if (!x86_pmu.pebs_active) return; base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; top = (struct pebs_basic *)(unsigned long)ds->pebs_index; ds->pebs_index = ds->pebs_buffer_base; mask = ((1ULL << max_pebs_events) - 1) | (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED); size = INTEL_PMC_IDX_FIXED + num_counters_fixed; if (unlikely(base >= top)) { intel_pmu_pebs_event_update_no_drain(cpuc, size); return; } for (at = base; at < top; at += cpuc->pebs_record_size) { u64 pebs_status; pebs_status = get_pebs_status(at) & cpuc->pebs_enabled; pebs_status &= mask; for_each_set_bit(bit, (unsigned long *)&pebs_status, size) counts[bit]++; } for_each_set_bit(bit, (unsigned long *)&mask, size) { if (counts[bit] == 0) continue; event = cpuc->events[bit]; if (WARN_ON_ONCE(!event)) continue; if (WARN_ON_ONCE(!event->attr.precise_ip)) continue; __intel_pmu_pebs_event(event, iregs, data, base, top, bit, counts[bit], setup_pebs_adaptive_sample_data); } } /* * BTS, PEBS probe and setup */ void __init intel_ds_init(void) { /* * No support for 32bit formats */ if (!boot_cpu_has(X86_FEATURE_DTES64)) return; x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; if (x86_pmu.version <= 4) x86_pmu.pebs_no_isolation = 1; if (x86_pmu.pebs) { char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; char *pebs_qual = ""; int format = x86_pmu.intel_cap.pebs_format; if (format < 4) x86_pmu.intel_cap.pebs_baseline = 0; switch (format) { case 0: pr_cont("PEBS fmt0%c, ", pebs_type); x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); /* * Using >PAGE_SIZE buffers makes the WRMSR to * PERF_GLOBAL_CTRL in intel_pmu_enable_all() * mysteriously hang on Core2. * * As a workaround, we don't do this. */ x86_pmu.pebs_buffer_size = PAGE_SIZE; x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; break; case 1: pr_cont("PEBS fmt1%c, ", pebs_type); x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; break; case 2: pr_cont("PEBS fmt2%c, ", pebs_type); x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; break; case 3: pr_cont("PEBS fmt3%c, ", pebs_type); x86_pmu.pebs_record_size = sizeof(struct pebs_record_skl); x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; break; case 5: x86_pmu.pebs_ept = 1; fallthrough; case 4: x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; x86_pmu.pebs_record_size = sizeof(struct pebs_basic); if (x86_pmu.intel_cap.pebs_baseline) { x86_pmu.large_pebs_flags |= PERF_SAMPLE_BRANCH_STACK | PERF_SAMPLE_TIME; x86_pmu.flags |= PMU_FL_PEBS_ALL; x86_pmu.pebs_capable = ~0ULL; pebs_qual = "-baseline"; x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; } else { /* Only basic record supported */ x86_pmu.large_pebs_flags &= ~(PERF_SAMPLE_ADDR | PERF_SAMPLE_TIME | PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); } pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual); if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) { pr_cont("PEBS-via-PT, "); x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; } break; default: pr_cont("no PEBS fmt%d%c, ", format, pebs_type); x86_pmu.pebs = 0; } } } void perf_restore_debug_store(void) { struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); if (!x86_pmu.bts && !x86_pmu.pebs) return; wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); }