// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2020 HabanaLabs, Ltd. * All Rights Reserved. */ #include "../habanalabs.h" #include "../../include/hw_ip/mmu/mmu_general.h" #include "../../include/hw_ip/mmu/mmu_v2_0.h" #include /** * hl_mmu_v2_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context. * Return: 0 on success, non-zero otherwise. */ static int hl_mmu_v2_ctx_init(struct hl_ctx *ctx) { hash_init(ctx->mmu_shadow_hash); return 0; } /* * hl_mmu_v2_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ static void hl_mmu_v2_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct pgt_info *pgt_info; struct hlist_node *tmp; int i; if (!hash_empty(ctx->mmu_shadow_hash)) dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", ctx->asid); hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { dev_err_ratelimited(hdev->dev, "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); hl_mmu_dr_free_pgt_node(ctx, pgt_info); } } static int hl_mmu_v2_unmap(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr) { u64 hop_addr[MMU_ARCH_6_HOPS] = { 0 }, hop_pte_addr[MMU_ARCH_6_HOPS] = { 0 }, curr_pte, scrambled_virt_addr; struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; bool is_huge = false; int i, hop_last; /* device resident in V2 are allowed only for HMMU */ if (!is_dram_addr) return -EINVAL; mmu_prop = &prop->dmmu; hop_last = mmu_prop->num_hops - 1; scrambled_virt_addr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); hop_addr[0] = hl_mmu_dr_get_hop0_addr(ctx); hop_pte_addr[0] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0, hop_addr[0], scrambled_virt_addr); if (hop_pte_addr[0] == U64_MAX) return -EFAULT; curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[0]; for (i = 1 ; i < mmu_prop->num_hops ; i++) { hop_addr[i] = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (hop_addr[i] == ULLONG_MAX) goto not_mapped; hop_pte_addr[i] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hop_addr[i], scrambled_virt_addr); if (hop_pte_addr[i] == U64_MAX) return -EFAULT; curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[i]; if ((i <= hop_last) && (curr_pte & mmu_prop->last_mask)) { hop_last = i; is_huge = true; break; } } if (is_dram_addr && !is_huge) { dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n"); return -EFAULT; } if (!(curr_pte & PAGE_PRESENT_MASK)) goto not_mapped; for (i = hop_last ; i > 0 ; i--) { hl_mmu_dr_clear_pte(ctx, hop_pte_addr[i]); if (hl_mmu_dr_put_pte(ctx, hop_addr[i])) goto mapped; } hl_mmu_dr_clear_pte(ctx, hop_pte_addr[0]); mapped: return 0; not_mapped: dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); return -EINVAL; } static int hl_mmu_v2_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool is_dram_addr) { u64 hop_addr[MMU_ARCH_6_HOPS] = { 0 }, hop_pte_addr[MMU_ARCH_6_HOPS] = { 0 }, curr_pte = 0, scrambled_virt_addr, scrambled_phys_addr; struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; bool hop_new[MMU_ARCH_6_HOPS] = { false }; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; int rc, i, hop_last; /* device resident in V2 are allowed only for HMMU */ if (!is_dram_addr) return -EINVAL; mmu_prop = &prop->dmmu; hop_last = mmu_prop->num_hops - 1; scrambled_virt_addr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); scrambled_phys_addr = hdev->asic_funcs->scramble_addr(hdev, phys_addr); /* First hop is preallocated therefore it is treated differently */ hop_addr[0] = hl_mmu_dr_get_hop0_addr(ctx); hop_pte_addr[0] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0, hop_addr[0], scrambled_virt_addr); curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[0]; /* Handle hop1 to hop_last */ for (i = 1 ; i <= hop_last ; i++) { hop_addr[i] = hl_mmu_dr_get_alloc_next_hop_addr(ctx, curr_pte, &hop_new[i]); if (hop_addr[i] == ULLONG_MAX) { rc = -ENOMEM; goto err; } hop_pte_addr[i] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hop_addr[i], scrambled_virt_addr); if (hop_pte_addr[i] == U64_MAX) { rc = -EINVAL; goto err; } if (!hop_pte_addr[i]) { rc = -EINVAL; goto err; } curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[i]; } if (curr_pte & PAGE_PRESENT_MASK) { dev_err(hdev->dev, "mapping already exists for virt_addr 0x%llx\n", virt_addr); for (i = 0 ; i <= hop_last ; i++) dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n", i, *(u64 *) (uintptr_t) hop_pte_addr[i], hop_pte_addr[i]); rc = -EINVAL; goto err; } curr_pte = (scrambled_phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | PAGE_PRESENT_MASK; /* Write the PTEs */ hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[hop_last], curr_pte); /* for each new hop, add its address to the table of previous-hop */ for (i = 1 ; i <= hop_last ; i++) { if (hop_new[i]) { curr_pte = (hop_addr[i] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hl_mmu_dr_write_pte(ctx, hop_pte_addr[i - 1], curr_pte); if (i - 1) hl_mmu_dr_get_pte(ctx, hop_addr[i - 1]); } } hl_mmu_dr_get_pte(ctx, hop_addr[hop_last]); return 0; err: for (i = 1 ; i <= hop_last ; i++) if (hop_new[i] && (hop_addr[i] != U64_MAX)) hl_mmu_dr_free_hop(ctx, hop_addr[i]); return rc; } /* * hl_mmu_v2_swap_out - marks all mapping of the given ctx as swapped out * * @ctx: pointer to the context structure * */ static void hl_mmu_v2_swap_out(struct hl_ctx *ctx) { } /* * hl_mmu_v2_swap_in - marks all mapping of the given ctx as swapped in * * @ctx: pointer to the context structure * */ static void hl_mmu_v2_swap_in(struct hl_ctx *ctx) { } static int hl_mmu_v2_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops) { struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; bool is_dram_addr; int i; is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); /* device resident in V2 are allowed only for HMMU */ if (!is_dram_addr) return -EINVAL; mmu_prop = &prop->dmmu; hops->range_type = HL_VA_RANGE_TYPE_DRAM; hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); hops->hop_info[0].hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx); hops->hop_info[0].hop_pte_addr = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0, hops->hop_info[0].hop_addr, hops->scrambled_vaddr); if (hops->hop_info[0].hop_pte_addr == U64_MAX) return -EFAULT; hops->hop_info[0].hop_pte_val = hdev->asic_funcs->read_pte(hdev, hops->hop_info[0].hop_pte_addr); if (hops->hop_info[0].hop_pte_val == U64_MAX) return -EFAULT; for (i = 1 ; i < mmu_prop->num_hops ; i++) { hops->hop_info[i].hop_addr = hl_mmu_get_next_hop_addr(ctx, hops->hop_info[i - 1].hop_pte_val); if (hops->hop_info[i].hop_addr == ULLONG_MAX) return -EFAULT; hops->hop_info[i].hop_pte_addr = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hops->hop_info[i].hop_addr, hops->scrambled_vaddr); if (hops->hop_info[i].hop_pte_addr == U64_MAX) return -EFAULT; hops->hop_info[i].hop_pte_val = hdev->asic_funcs->read_pte(hdev, hops->hop_info[i].hop_pte_addr); if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) return -EFAULT; if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) break; } /* if passed over all hops then no last hop was found */ if (i == mmu_prop->num_hops) return -EFAULT; if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) return -EFAULT; if (hops->scrambled_vaddr != virt_addr) hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr (hdev, hops->hop_info[i].hop_pte_val); else hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val; hops->used_hops = i + 1; return 0; } /* * hl_mmu_v2_prepare - prepare mmu_if for working with mmu v2 * * @hdev: pointer to the device structure * @mmu_if: pointer to the mmu interface structure */ void hl_mmu_v2_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu) { mmu->init = hl_mmu_dr_init; mmu->fini = hl_mmu_dr_fini; mmu->ctx_init = hl_mmu_v2_ctx_init; mmu->ctx_fini = hl_mmu_v2_ctx_fini; mmu->map = hl_mmu_v2_map; mmu->unmap = hl_mmu_v2_unmap; mmu->flush = hl_mmu_dr_flush; mmu->swap_out = hl_mmu_v2_swap_out; mmu->swap_in = hl_mmu_v2_swap_in; mmu->get_tlb_info = hl_mmu_v2_get_tlb_info; }