// SPDX-License-Identifier: GPL-2.0-or-later /* * acpi_bus.c - ACPI Bus Driver ($Revision: 80 $) * * Copyright (C) 2001, 2002 Paul Diefenbaugh */ #define pr_fmt(fmt) "ACPI: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86 #include #include #endif #include #include #include #include #include #include "internal.h" struct acpi_device *acpi_root; struct proc_dir_entry *acpi_root_dir; EXPORT_SYMBOL(acpi_root_dir); #ifdef CONFIG_X86 #ifdef CONFIG_ACPI_CUSTOM_DSDT static inline int set_copy_dsdt(const struct dmi_system_id *id) { return 0; } #else static int set_copy_dsdt(const struct dmi_system_id *id) { pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident); acpi_gbl_copy_dsdt_locally = 1; return 0; } #endif static const struct dmi_system_id dsdt_dmi_table[] __initconst = { /* * Invoke DSDT corruption work-around on all Toshiba Satellite. * https://bugzilla.kernel.org/show_bug.cgi?id=14679 */ { .callback = set_copy_dsdt, .ident = "TOSHIBA Satellite", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"), }, }, {} }; #endif /* -------------------------------------------------------------------------- Device Management -------------------------------------------------------------------------- */ acpi_status acpi_bus_get_status_handle(acpi_handle handle, unsigned long long *sta) { acpi_status status; status = acpi_evaluate_integer(handle, "_STA", NULL, sta); if (ACPI_SUCCESS(status)) return AE_OK; if (status == AE_NOT_FOUND) { *sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED | ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING; return AE_OK; } return status; } EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle); int acpi_bus_get_status(struct acpi_device *device) { acpi_status status; unsigned long long sta; if (acpi_device_override_status(device, &sta)) { acpi_set_device_status(device, sta); return 0; } /* Battery devices must have their deps met before calling _STA */ if (acpi_device_is_battery(device) && device->dep_unmet) { acpi_set_device_status(device, 0); return 0; } status = acpi_bus_get_status_handle(device->handle, &sta); if (ACPI_FAILURE(status)) return -ENODEV; acpi_set_device_status(device, sta); if (device->status.functional && !device->status.present) { pr_debug("Device [%s] status [%08x]: functional but not present\n", device->pnp.bus_id, (u32)sta); } pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta); return 0; } EXPORT_SYMBOL(acpi_bus_get_status); void acpi_bus_private_data_handler(acpi_handle handle, void *context) { return; } EXPORT_SYMBOL(acpi_bus_private_data_handler); int acpi_bus_attach_private_data(acpi_handle handle, void *data) { acpi_status status; status = acpi_attach_data(handle, acpi_bus_private_data_handler, data); if (ACPI_FAILURE(status)) { acpi_handle_debug(handle, "Error attaching device data\n"); return -ENODEV; } return 0; } EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data); int acpi_bus_get_private_data(acpi_handle handle, void **data) { acpi_status status; if (!data) return -EINVAL; status = acpi_get_data(handle, acpi_bus_private_data_handler, data); if (ACPI_FAILURE(status)) { acpi_handle_debug(handle, "No context for object\n"); return -ENODEV; } return 0; } EXPORT_SYMBOL_GPL(acpi_bus_get_private_data); void acpi_bus_detach_private_data(acpi_handle handle) { acpi_detach_data(handle, acpi_bus_private_data_handler); } EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data); static void acpi_print_osc_error(acpi_handle handle, struct acpi_osc_context *context, char *error) { int i; acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error); pr_debug("_OSC request data:"); for (i = 0; i < context->cap.length; i += sizeof(u32)) pr_debug(" %x", *((u32 *)(context->cap.pointer + i))); pr_debug("\n"); } acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context) { acpi_status status; struct acpi_object_list input; union acpi_object in_params[4]; union acpi_object *out_obj; guid_t guid; u32 errors; struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; if (!context) return AE_ERROR; if (guid_parse(context->uuid_str, &guid)) return AE_ERROR; context->ret.length = ACPI_ALLOCATE_BUFFER; context->ret.pointer = NULL; /* Setting up input parameters */ input.count = 4; input.pointer = in_params; in_params[0].type = ACPI_TYPE_BUFFER; in_params[0].buffer.length = 16; in_params[0].buffer.pointer = (u8 *)&guid; in_params[1].type = ACPI_TYPE_INTEGER; in_params[1].integer.value = context->rev; in_params[2].type = ACPI_TYPE_INTEGER; in_params[2].integer.value = context->cap.length/sizeof(u32); in_params[3].type = ACPI_TYPE_BUFFER; in_params[3].buffer.length = context->cap.length; in_params[3].buffer.pointer = context->cap.pointer; status = acpi_evaluate_object(handle, "_OSC", &input, &output); if (ACPI_FAILURE(status)) return status; if (!output.length) return AE_NULL_OBJECT; out_obj = output.pointer; if (out_obj->type != ACPI_TYPE_BUFFER || out_obj->buffer.length != context->cap.length) { acpi_print_osc_error(handle, context, "_OSC evaluation returned wrong type"); status = AE_TYPE; goto out_kfree; } /* Need to ignore the bit0 in result code */ errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0); if (errors) { if (errors & OSC_REQUEST_ERROR) acpi_print_osc_error(handle, context, "_OSC request failed"); if (errors & OSC_INVALID_UUID_ERROR) acpi_print_osc_error(handle, context, "_OSC invalid UUID"); if (errors & OSC_INVALID_REVISION_ERROR) acpi_print_osc_error(handle, context, "_OSC invalid revision"); if (errors & OSC_CAPABILITIES_MASK_ERROR) { if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD] & OSC_QUERY_ENABLE) goto out_success; status = AE_SUPPORT; goto out_kfree; } status = AE_ERROR; goto out_kfree; } out_success: context->ret.length = out_obj->buffer.length; context->ret.pointer = kmemdup(out_obj->buffer.pointer, context->ret.length, GFP_KERNEL); if (!context->ret.pointer) { status = AE_NO_MEMORY; goto out_kfree; } status = AE_OK; out_kfree: kfree(output.pointer); return status; } EXPORT_SYMBOL(acpi_run_osc); bool osc_sb_apei_support_acked; /* * ACPI 6.0 Section 8.4.4.2 Idle State Coordination * OSPM supports platform coordinated low power idle(LPI) states */ bool osc_pc_lpi_support_confirmed; EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed); /* * ACPI 6.2 Section 6.2.11.2 'Platform-Wide OSPM Capabilities': * Starting with ACPI Specification 6.2, all _CPC registers can be in * PCC, System Memory, System IO, or Functional Fixed Hardware address * spaces. OSPM support for this more flexible register space scheme is * indicated by the “Flexible Address Space for CPPC Registers” _OSC bit. * * Otherwise (cf ACPI 6.1, s8.4.7.1.1.X), _CPC registers must be in: * - PCC or Functional Fixed Hardware address space if defined * - SystemMemory address space (NULL register) if not defined */ bool osc_cpc_flexible_adr_space_confirmed; EXPORT_SYMBOL_GPL(osc_cpc_flexible_adr_space_confirmed); /* * ACPI 6.4 Operating System Capabilities for USB. */ bool osc_sb_native_usb4_support_confirmed; EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed); bool osc_sb_cppc2_support_acked; static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48"; static void acpi_bus_osc_negotiate_platform_control(void) { u32 capbuf[2], *capbuf_ret; struct acpi_osc_context context = { .uuid_str = sb_uuid_str, .rev = 1, .cap.length = 8, .cap.pointer = capbuf, }; acpi_handle handle; capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE; capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */ if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR)) capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT; if (IS_ENABLED(CONFIG_ACPI_PROCESSOR)) capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT; if (IS_ENABLED(CONFIG_ACPI_THERMAL)) capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FAST_THERMAL_SAMPLING_SUPPORT; capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT; capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT; capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_OVER_16_PSTATES_SUPPORT; capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GED_SUPPORT; capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_IRQ_RESOURCE_SOURCE_SUPPORT; if (IS_ENABLED(CONFIG_ACPI_PRMT)) capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PRM_SUPPORT; if (IS_ENABLED(CONFIG_ACPI_FFH)) capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FFH_OPR_SUPPORT; #ifdef CONFIG_ARM64 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; #endif #ifdef CONFIG_X86 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; #endif #ifdef CONFIG_ACPI_CPPC_LIB capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT; capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT; #endif capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_FLEXIBLE_ADR_SPACE; if (IS_ENABLED(CONFIG_SCHED_MC_PRIO)) capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT; if (IS_ENABLED(CONFIG_USB4)) capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_NATIVE_USB4_SUPPORT; if (!ghes_disable) capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT; if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) return; if (ACPI_FAILURE(acpi_run_osc(handle, &context))) return; capbuf_ret = context.ret.pointer; if (context.ret.length <= OSC_SUPPORT_DWORD) { kfree(context.ret.pointer); return; } /* * Now run _OSC again with query flag clear and with the caps * supported by both the OS and the platform. */ capbuf[OSC_QUERY_DWORD] = 0; capbuf[OSC_SUPPORT_DWORD] = capbuf_ret[OSC_SUPPORT_DWORD]; kfree(context.ret.pointer); if (ACPI_FAILURE(acpi_run_osc(handle, &context))) return; capbuf_ret = context.ret.pointer; if (context.ret.length > OSC_SUPPORT_DWORD) { #ifdef CONFIG_ACPI_CPPC_LIB osc_sb_cppc2_support_acked = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPCV2_SUPPORT; #endif osc_sb_apei_support_acked = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT; osc_pc_lpi_support_confirmed = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT; osc_sb_native_usb4_support_confirmed = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_NATIVE_USB4_SUPPORT; osc_cpc_flexible_adr_space_confirmed = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPC_FLEXIBLE_ADR_SPACE; } kfree(context.ret.pointer); } /* * Native control of USB4 capabilities. If any of the tunneling bits is * set it means OS is in control and we use software based connection * manager. */ u32 osc_sb_native_usb4_control; EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control); static void acpi_bus_decode_usb_osc(const char *msg, u32 bits) { pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg, (bits & OSC_USB_USB3_TUNNELING) ? '+' : '-', (bits & OSC_USB_DP_TUNNELING) ? '+' : '-', (bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-', (bits & OSC_USB_XDOMAIN) ? '+' : '-'); } static u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A"; static void acpi_bus_osc_negotiate_usb_control(void) { u32 capbuf[3], *capbuf_ret; struct acpi_osc_context context = { .uuid_str = sb_usb_uuid_str, .rev = 1, .cap.length = sizeof(capbuf), .cap.pointer = capbuf, }; acpi_handle handle; acpi_status status; u32 control; if (!osc_sb_native_usb4_support_confirmed) return; if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) return; control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING | OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN; /* * Run _OSC first with query bit set, trying to get control over * all tunneling. The platform can then clear out bits in the * control dword that it does not want to grant to the OS. */ capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE; capbuf[OSC_SUPPORT_DWORD] = 0; capbuf[OSC_CONTROL_DWORD] = control; status = acpi_run_osc(handle, &context); if (ACPI_FAILURE(status)) return; if (context.ret.length != sizeof(capbuf)) { pr_info("USB4 _OSC: returned invalid length buffer\n"); goto out_free; } /* * Run _OSC again now with query bit clear and the control dword * matching what the platform granted (which may not have all * the control bits set). */ capbuf_ret = context.ret.pointer; capbuf[OSC_QUERY_DWORD] = 0; capbuf[OSC_CONTROL_DWORD] = capbuf_ret[OSC_CONTROL_DWORD]; kfree(context.ret.pointer); status = acpi_run_osc(handle, &context); if (ACPI_FAILURE(status)) return; if (context.ret.length != sizeof(capbuf)) { pr_info("USB4 _OSC: returned invalid length buffer\n"); goto out_free; } osc_sb_native_usb4_control = control & acpi_osc_ctx_get_pci_control(&context); acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control); acpi_bus_decode_usb_osc("USB4 _OSC: OS controls", osc_sb_native_usb4_control); out_free: kfree(context.ret.pointer); } /* -------------------------------------------------------------------------- Notification Handling -------------------------------------------------------------------------- */ /** * acpi_bus_notify - Global system-level (0x00-0x7F) notifications handler * @handle: Target ACPI object. * @type: Notification type. * @data: Ignored. * * This only handles notifications related to device hotplug. */ static void acpi_bus_notify(acpi_handle handle, u32 type, void *data) { struct acpi_device *adev; switch (type) { case ACPI_NOTIFY_BUS_CHECK: acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n"); break; case ACPI_NOTIFY_DEVICE_CHECK: acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n"); break; case ACPI_NOTIFY_DEVICE_WAKE: acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n"); return; case ACPI_NOTIFY_EJECT_REQUEST: acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n"); break; case ACPI_NOTIFY_DEVICE_CHECK_LIGHT: acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n"); /* TBD: Exactly what does 'light' mean? */ return; case ACPI_NOTIFY_FREQUENCY_MISMATCH: acpi_handle_err(handle, "Device cannot be configured due " "to a frequency mismatch\n"); return; case ACPI_NOTIFY_BUS_MODE_MISMATCH: acpi_handle_err(handle, "Device cannot be configured due " "to a bus mode mismatch\n"); return; case ACPI_NOTIFY_POWER_FAULT: acpi_handle_err(handle, "Device has suffered a power fault\n"); return; default: acpi_handle_debug(handle, "Unknown event type 0x%x\n", type); return; } adev = acpi_get_acpi_dev(handle); if (adev && ACPI_SUCCESS(acpi_hotplug_schedule(adev, type))) return; acpi_put_acpi_dev(adev); acpi_evaluate_ost(handle, type, ACPI_OST_SC_NON_SPECIFIC_FAILURE, NULL); } static void acpi_notify_device(acpi_handle handle, u32 event, void *data) { struct acpi_device *device = data; struct acpi_driver *acpi_drv = to_acpi_driver(device->dev.driver); acpi_drv->ops.notify(device, event); } static int acpi_device_install_notify_handler(struct acpi_device *device, struct acpi_driver *acpi_drv) { u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; acpi_status status; status = acpi_install_notify_handler(device->handle, type, acpi_notify_device, device); if (ACPI_FAILURE(status)) return -EINVAL; return 0; } static void acpi_device_remove_notify_handler(struct acpi_device *device, struct acpi_driver *acpi_drv) { u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; acpi_remove_notify_handler(device->handle, type, acpi_notify_device); acpi_os_wait_events_complete(); } int acpi_dev_install_notify_handler(struct acpi_device *adev, u32 handler_type, acpi_notify_handler handler, void *context) { acpi_status status; status = acpi_install_notify_handler(adev->handle, handler_type, handler, context); if (ACPI_FAILURE(status)) return -ENODEV; return 0; } EXPORT_SYMBOL_GPL(acpi_dev_install_notify_handler); void acpi_dev_remove_notify_handler(struct acpi_device *adev, u32 handler_type, acpi_notify_handler handler) { acpi_remove_notify_handler(adev->handle, handler_type, handler); acpi_os_wait_events_complete(); } EXPORT_SYMBOL_GPL(acpi_dev_remove_notify_handler); /* Handle events targeting \_SB device (at present only graceful shutdown) */ #define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81 #define ACPI_SB_INDICATE_INTERVAL 10000 static void sb_notify_work(struct work_struct *dummy) { acpi_handle sb_handle; orderly_poweroff(true); /* * After initiating graceful shutdown, the ACPI spec requires OSPM * to evaluate _OST method once every 10seconds to indicate that * the shutdown is in progress */ acpi_get_handle(NULL, "\\_SB", &sb_handle); while (1) { pr_info("Graceful shutdown in progress.\n"); acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN, ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL); msleep(ACPI_SB_INDICATE_INTERVAL); } } static void acpi_sb_notify(acpi_handle handle, u32 event, void *data) { static DECLARE_WORK(acpi_sb_work, sb_notify_work); if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) { if (!work_busy(&acpi_sb_work)) schedule_work(&acpi_sb_work); } else { pr_warn("event %x is not supported by \\_SB device\n", event); } } static int __init acpi_setup_sb_notify_handler(void) { acpi_handle sb_handle; if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle))) return -ENXIO; if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY, acpi_sb_notify, NULL))) return -EINVAL; return 0; } /* -------------------------------------------------------------------------- Device Matching -------------------------------------------------------------------------- */ /** * acpi_get_first_physical_node - Get first physical node of an ACPI device * @adev: ACPI device in question * * Return: First physical node of ACPI device @adev */ struct device *acpi_get_first_physical_node(struct acpi_device *adev) { struct mutex *physical_node_lock = &adev->physical_node_lock; struct device *phys_dev; mutex_lock(physical_node_lock); if (list_empty(&adev->physical_node_list)) { phys_dev = NULL; } else { const struct acpi_device_physical_node *node; node = list_first_entry(&adev->physical_node_list, struct acpi_device_physical_node, node); phys_dev = node->dev; } mutex_unlock(physical_node_lock); return phys_dev; } EXPORT_SYMBOL_GPL(acpi_get_first_physical_node); static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev, const struct device *dev) { const struct device *phys_dev = acpi_get_first_physical_node(adev); return phys_dev && phys_dev == dev ? adev : NULL; } /** * acpi_device_is_first_physical_node - Is given dev first physical node * @adev: ACPI companion device * @dev: Physical device to check * * Function checks if given @dev is the first physical devices attached to * the ACPI companion device. This distinction is needed in some cases * where the same companion device is shared between many physical devices. * * Note that the caller have to provide valid @adev pointer. */ bool acpi_device_is_first_physical_node(struct acpi_device *adev, const struct device *dev) { return !!acpi_primary_dev_companion(adev, dev); } /* * acpi_companion_match() - Can we match via ACPI companion device * @dev: Device in question * * Check if the given device has an ACPI companion and if that companion has * a valid list of PNP IDs, and if the device is the first (primary) physical * device associated with it. Return the companion pointer if that's the case * or NULL otherwise. * * If multiple physical devices are attached to a single ACPI companion, we need * to be careful. The usage scenario for this kind of relationship is that all * of the physical devices in question use resources provided by the ACPI * companion. A typical case is an MFD device where all the sub-devices share * the parent's ACPI companion. In such cases we can only allow the primary * (first) physical device to be matched with the help of the companion's PNP * IDs. * * Additional physical devices sharing the ACPI companion can still use * resources available from it but they will be matched normally using functions * provided by their bus types (and analogously for their modalias). */ const struct acpi_device *acpi_companion_match(const struct device *dev) { struct acpi_device *adev; adev = ACPI_COMPANION(dev); if (!adev) return NULL; if (list_empty(&adev->pnp.ids)) return NULL; return acpi_primary_dev_companion(adev, dev); } /** * acpi_of_match_device - Match device object using the "compatible" property. * @adev: ACPI device object to match. * @of_match_table: List of device IDs to match against. * @of_id: OF ID if matched * * If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of * identifiers and a _DSD object with the "compatible" property, use that * property to match against the given list of identifiers. */ static bool acpi_of_match_device(const struct acpi_device *adev, const struct of_device_id *of_match_table, const struct of_device_id **of_id) { const union acpi_object *of_compatible, *obj; int i, nval; if (!adev) return false; of_compatible = adev->data.of_compatible; if (!of_match_table || !of_compatible) return false; if (of_compatible->type == ACPI_TYPE_PACKAGE) { nval = of_compatible->package.count; obj = of_compatible->package.elements; } else { /* Must be ACPI_TYPE_STRING. */ nval = 1; obj = of_compatible; } /* Now we can look for the driver DT compatible strings */ for (i = 0; i < nval; i++, obj++) { const struct of_device_id *id; for (id = of_match_table; id->compatible[0]; id++) if (!strcasecmp(obj->string.pointer, id->compatible)) { if (of_id) *of_id = id; return true; } } return false; } static bool acpi_of_modalias(struct acpi_device *adev, char *modalias, size_t len) { const union acpi_object *of_compatible; const union acpi_object *obj; const char *str, *chr; of_compatible = adev->data.of_compatible; if (!of_compatible) return false; if (of_compatible->type == ACPI_TYPE_PACKAGE) obj = of_compatible->package.elements; else /* Must be ACPI_TYPE_STRING. */ obj = of_compatible; str = obj->string.pointer; chr = strchr(str, ','); strscpy(modalias, chr ? chr + 1 : str, len); return true; } /** * acpi_set_modalias - Set modalias using "compatible" property or supplied ID * @adev: ACPI device object to match * @default_id: ID string to use as default if no compatible string found * @modalias: Pointer to buffer that modalias value will be copied into * @len: Length of modalias buffer * * This is a counterpart of of_alias_from_compatible() for struct acpi_device * objects. If there is a compatible string for @adev, it will be copied to * @modalias with the vendor prefix stripped; otherwise, @default_id will be * used. */ void acpi_set_modalias(struct acpi_device *adev, const char *default_id, char *modalias, size_t len) { if (!acpi_of_modalias(adev, modalias, len)) strscpy(modalias, default_id, len); } EXPORT_SYMBOL_GPL(acpi_set_modalias); static bool __acpi_match_device_cls(const struct acpi_device_id *id, struct acpi_hardware_id *hwid) { int i, msk, byte_shift; char buf[3]; if (!id->cls) return false; /* Apply class-code bitmask, before checking each class-code byte */ for (i = 1; i <= 3; i++) { byte_shift = 8 * (3 - i); msk = (id->cls_msk >> byte_shift) & 0xFF; if (!msk) continue; sprintf(buf, "%02x", (id->cls >> byte_shift) & msk); if (strncmp(buf, &hwid->id[(i - 1) * 2], 2)) return false; } return true; } static bool __acpi_match_device(const struct acpi_device *device, const struct acpi_device_id *acpi_ids, const struct of_device_id *of_ids, const struct acpi_device_id **acpi_id, const struct of_device_id **of_id) { const struct acpi_device_id *id; struct acpi_hardware_id *hwid; /* * If the device is not present, it is unnecessary to load device * driver for it. */ if (!device || !device->status.present) return false; list_for_each_entry(hwid, &device->pnp.ids, list) { /* First, check the ACPI/PNP IDs provided by the caller. */ if (acpi_ids) { for (id = acpi_ids; id->id[0] || id->cls; id++) { if (id->id[0] && !strcmp((char *)id->id, hwid->id)) goto out_acpi_match; if (id->cls && __acpi_match_device_cls(id, hwid)) goto out_acpi_match; } } /* * Next, check ACPI_DT_NAMESPACE_HID and try to match the * "compatible" property if found. */ if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id)) return acpi_of_match_device(device, of_ids, of_id); } return false; out_acpi_match: if (acpi_id) *acpi_id = id; return true; } /** * acpi_match_acpi_device - Match an ACPI device against a given list of ACPI IDs * @ids: Array of struct acpi_device_id objects to match against. * @adev: The ACPI device pointer to match. * * Match the ACPI device @adev against a given list of ACPI IDs @ids. * * Return: * a pointer to the first matching ACPI ID on success or %NULL on failure. */ const struct acpi_device_id *acpi_match_acpi_device(const struct acpi_device_id *ids, const struct acpi_device *adev) { const struct acpi_device_id *id = NULL; __acpi_match_device(adev, ids, NULL, &id, NULL); return id; } EXPORT_SYMBOL_GPL(acpi_match_acpi_device); /** * acpi_match_device - Match a struct device against a given list of ACPI IDs * @ids: Array of struct acpi_device_id object to match against. * @dev: The device structure to match. * * Check if @dev has a valid ACPI handle and if there is a struct acpi_device * object for that handle and use that object to match against a given list of * device IDs. * * Return a pointer to the first matching ID on success or %NULL on failure. */ const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids, const struct device *dev) { return acpi_match_acpi_device(ids, acpi_companion_match(dev)); } EXPORT_SYMBOL_GPL(acpi_match_device); static const void *acpi_of_device_get_match_data(const struct device *dev) { struct acpi_device *adev = ACPI_COMPANION(dev); const struct of_device_id *match = NULL; if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match)) return NULL; return match->data; } const void *acpi_device_get_match_data(const struct device *dev) { const struct acpi_device_id *acpi_ids = dev->driver->acpi_match_table; const struct acpi_device_id *match; if (!acpi_ids) return acpi_of_device_get_match_data(dev); match = acpi_match_device(acpi_ids, dev); if (!match) return NULL; return (const void *)match->driver_data; } EXPORT_SYMBOL_GPL(acpi_device_get_match_data); int acpi_match_device_ids(struct acpi_device *device, const struct acpi_device_id *ids) { return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT; } EXPORT_SYMBOL(acpi_match_device_ids); bool acpi_driver_match_device(struct device *dev, const struct device_driver *drv) { const struct acpi_device_id *acpi_ids = drv->acpi_match_table; const struct of_device_id *of_ids = drv->of_match_table; if (!acpi_ids) return acpi_of_match_device(ACPI_COMPANION(dev), of_ids, NULL); return __acpi_match_device(acpi_companion_match(dev), acpi_ids, of_ids, NULL, NULL); } EXPORT_SYMBOL_GPL(acpi_driver_match_device); /* -------------------------------------------------------------------------- ACPI Driver Management -------------------------------------------------------------------------- */ /** * acpi_bus_register_driver - register a driver with the ACPI bus * @driver: driver being registered * * Registers a driver with the ACPI bus. Searches the namespace for all * devices that match the driver's criteria and binds. Returns zero for * success or a negative error status for failure. */ int acpi_bus_register_driver(struct acpi_driver *driver) { if (acpi_disabled) return -ENODEV; driver->drv.name = driver->name; driver->drv.bus = &acpi_bus_type; driver->drv.owner = driver->owner; return driver_register(&driver->drv); } EXPORT_SYMBOL(acpi_bus_register_driver); /** * acpi_bus_unregister_driver - unregisters a driver with the ACPI bus * @driver: driver to unregister * * Unregisters a driver with the ACPI bus. Searches the namespace for all * devices that match the driver's criteria and unbinds. */ void acpi_bus_unregister_driver(struct acpi_driver *driver) { driver_unregister(&driver->drv); } EXPORT_SYMBOL(acpi_bus_unregister_driver); /* -------------------------------------------------------------------------- ACPI Bus operations -------------------------------------------------------------------------- */ static int acpi_bus_match(struct device *dev, struct device_driver *drv) { struct acpi_device *acpi_dev = to_acpi_device(dev); struct acpi_driver *acpi_drv = to_acpi_driver(drv); return acpi_dev->flags.match_driver && !acpi_match_device_ids(acpi_dev, acpi_drv->ids); } static int acpi_device_uevent(const struct device *dev, struct kobj_uevent_env *env) { return __acpi_device_uevent_modalias(to_acpi_device(dev), env); } static int acpi_device_probe(struct device *dev) { struct acpi_device *acpi_dev = to_acpi_device(dev); struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); int ret; if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev)) return -EINVAL; if (!acpi_drv->ops.add) return -ENOSYS; ret = acpi_drv->ops.add(acpi_dev); if (ret) { acpi_dev->driver_data = NULL; return ret; } pr_debug("Driver [%s] successfully bound to device [%s]\n", acpi_drv->name, acpi_dev->pnp.bus_id); if (acpi_drv->ops.notify) { ret = acpi_device_install_notify_handler(acpi_dev, acpi_drv); if (ret) { if (acpi_drv->ops.remove) acpi_drv->ops.remove(acpi_dev); acpi_dev->driver_data = NULL; return ret; } } pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name, acpi_dev->pnp.bus_id); get_device(dev); return 0; } static void acpi_device_remove(struct device *dev) { struct acpi_device *acpi_dev = to_acpi_device(dev); struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); if (acpi_drv->ops.notify) acpi_device_remove_notify_handler(acpi_dev, acpi_drv); if (acpi_drv->ops.remove) acpi_drv->ops.remove(acpi_dev); acpi_dev->driver_data = NULL; put_device(dev); } struct bus_type acpi_bus_type = { .name = "acpi", .match = acpi_bus_match, .probe = acpi_device_probe, .remove = acpi_device_remove, .uevent = acpi_device_uevent, }; int acpi_bus_for_each_dev(int (*fn)(struct device *, void *), void *data) { return bus_for_each_dev(&acpi_bus_type, NULL, data, fn); } EXPORT_SYMBOL_GPL(acpi_bus_for_each_dev); struct acpi_dev_walk_context { int (*fn)(struct acpi_device *, void *); void *data; }; static int acpi_dev_for_one_check(struct device *dev, void *context) { struct acpi_dev_walk_context *adwc = context; if (dev->bus != &acpi_bus_type) return 0; return adwc->fn(to_acpi_device(dev), adwc->data); } EXPORT_SYMBOL_GPL(acpi_dev_for_each_child); int acpi_dev_for_each_child(struct acpi_device *adev, int (*fn)(struct acpi_device *, void *), void *data) { struct acpi_dev_walk_context adwc = { .fn = fn, .data = data, }; return device_for_each_child(&adev->dev, &adwc, acpi_dev_for_one_check); } int acpi_dev_for_each_child_reverse(struct acpi_device *adev, int (*fn)(struct acpi_device *, void *), void *data) { struct acpi_dev_walk_context adwc = { .fn = fn, .data = data, }; return device_for_each_child_reverse(&adev->dev, &adwc, acpi_dev_for_one_check); } /* -------------------------------------------------------------------------- Initialization/Cleanup -------------------------------------------------------------------------- */ static int __init acpi_bus_init_irq(void) { acpi_status status; char *message = NULL; /* * Let the system know what interrupt model we are using by * evaluating the \_PIC object, if exists. */ switch (acpi_irq_model) { case ACPI_IRQ_MODEL_PIC: message = "PIC"; break; case ACPI_IRQ_MODEL_IOAPIC: message = "IOAPIC"; break; case ACPI_IRQ_MODEL_IOSAPIC: message = "IOSAPIC"; break; case ACPI_IRQ_MODEL_GIC: message = "GIC"; break; case ACPI_IRQ_MODEL_PLATFORM: message = "platform specific model"; break; case ACPI_IRQ_MODEL_LPIC: message = "LPIC"; break; default: pr_info("Unknown interrupt routing model\n"); return -ENODEV; } pr_info("Using %s for interrupt routing\n", message); status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model); if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status)); return -ENODEV; } return 0; } /** * acpi_early_init - Initialize ACPICA and populate the ACPI namespace. * * The ACPI tables are accessible after this, but the handling of events has not * been initialized and the global lock is not available yet, so AML should not * be executed at this point. * * Doing this before switching the EFI runtime services to virtual mode allows * the EfiBootServices memory to be freed slightly earlier on boot. */ void __init acpi_early_init(void) { acpi_status status; if (acpi_disabled) return; pr_info("Core revision %08x\n", ACPI_CA_VERSION); /* enable workarounds, unless strict ACPI spec. compliance */ if (!acpi_strict) acpi_gbl_enable_interpreter_slack = TRUE; acpi_permanent_mmap = true; #ifdef CONFIG_X86 /* * If the machine falls into the DMI check table, * DSDT will be copied to memory. * Note that calling dmi_check_system() here on other architectures * would not be OK because only x86 initializes dmi early enough. * Thankfully only x86 systems need such quirks for now. */ dmi_check_system(dsdt_dmi_table); #endif status = acpi_reallocate_root_table(); if (ACPI_FAILURE(status)) { pr_err("Unable to reallocate ACPI tables\n"); goto error0; } status = acpi_initialize_subsystem(); if (ACPI_FAILURE(status)) { pr_err("Unable to initialize the ACPI Interpreter\n"); goto error0; } #ifdef CONFIG_X86 if (!acpi_ioapic) { /* compatible (0) means level (3) */ if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) { acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK; acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL; } /* Set PIC-mode SCI trigger type */ acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt, (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2); } else { /* * now that acpi_gbl_FADT is initialized, * update it with result from INT_SRC_OVR parsing */ acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi; } #endif return; error0: disable_acpi(); } /** * acpi_subsystem_init - Finalize the early initialization of ACPI. * * Switch over the platform to the ACPI mode (if possible). * * Doing this too early is generally unsafe, but at the same time it needs to be * done before all things that really depend on ACPI. The right spot appears to * be before finalizing the EFI initialization. */ void __init acpi_subsystem_init(void) { acpi_status status; if (acpi_disabled) return; status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE); if (ACPI_FAILURE(status)) { pr_err("Unable to enable ACPI\n"); disable_acpi(); } else { /* * If the system is using ACPI then we can be reasonably * confident that any regulators are managed by the firmware * so tell the regulator core it has everything it needs to * know. */ regulator_has_full_constraints(); } } static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context) { if (event == ACPI_TABLE_EVENT_LOAD) acpi_scan_table_notify(); return acpi_sysfs_table_handler(event, table, context); } static int __init acpi_bus_init(void) { int result; acpi_status status; acpi_os_initialize1(); status = acpi_load_tables(); if (ACPI_FAILURE(status)) { pr_err("Unable to load the System Description Tables\n"); goto error1; } /* * ACPI 2.0 requires the EC driver to be loaded and work before the EC * device is found in the namespace. * * This is accomplished by looking for the ECDT table and getting the EC * parameters out of that. * * Do that before calling acpi_initialize_objects() which may trigger EC * address space accesses. */ acpi_ec_ecdt_probe(); status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE); if (ACPI_FAILURE(status)) { pr_err("Unable to start the ACPI Interpreter\n"); goto error1; } status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION); if (ACPI_FAILURE(status)) { pr_err("Unable to initialize ACPI objects\n"); goto error1; } /* * _OSC method may exist in module level code, * so it must be run after ACPI_FULL_INITIALIZATION */ acpi_bus_osc_negotiate_platform_control(); acpi_bus_osc_negotiate_usb_control(); /* * _PDC control method may load dynamic SSDT tables, * and we need to install the table handler before that. */ status = acpi_install_table_handler(acpi_bus_table_handler, NULL); acpi_sysfs_init(); acpi_early_processor_control_setup(); /* * Maybe EC region is required at bus_scan/acpi_get_devices. So it * is necessary to enable it as early as possible. */ acpi_ec_dsdt_probe(); pr_info("Interpreter enabled\n"); /* Initialize sleep structures */ acpi_sleep_init(); /* * Get the system interrupt model and evaluate \_PIC. */ result = acpi_bus_init_irq(); if (result) goto error1; /* * Register the for all standard device notifications. */ status = acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY, &acpi_bus_notify, NULL); if (ACPI_FAILURE(status)) { pr_err("Unable to register for system notifications\n"); goto error1; } /* * Create the top ACPI proc directory */ acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL); result = bus_register(&acpi_bus_type); if (!result) return 0; /* Mimic structured exception handling */ error1: acpi_terminate(); return -ENODEV; } struct kobject *acpi_kobj; EXPORT_SYMBOL_GPL(acpi_kobj); static int __init acpi_init(void) { int result; if (acpi_disabled) { pr_info("Interpreter disabled.\n"); return -ENODEV; } acpi_kobj = kobject_create_and_add("acpi", firmware_kobj); if (!acpi_kobj) pr_debug("%s: kset create error\n", __func__); init_prmt(); acpi_init_pcc(); result = acpi_bus_init(); if (result) { kobject_put(acpi_kobj); disable_acpi(); return result; } acpi_init_ffh(); pci_mmcfg_late_init(); acpi_viot_early_init(); acpi_hest_init(); acpi_ghes_init(); acpi_arm_init(); acpi_scan_init(); acpi_ec_init(); acpi_debugfs_init(); acpi_sleep_proc_init(); acpi_wakeup_device_init(); acpi_debugger_init(); acpi_setup_sb_notify_handler(); acpi_viot_init(); return 0; } subsys_initcall(acpi_init);