// SPDX-License-Identifier: GPL-2.0-only /* * MIPI DisCo for Imaging support. * * Copyright (C) 2023 Intel Corporation * * Support MIPI DisCo for Imaging by parsing ACPI _CRS CSI-2 records defined in * Section 6.4.3.8.2.4 "Camera Serial Interface (CSI-2) Connection Resource * Descriptor" of ACPI 6.5 and using device properties defined by the MIPI DisCo * for Imaging specification. * * The implementation looks for the information in the ACPI namespace (CSI-2 * resource descriptors in _CRS) and constructs software nodes compatible with * Documentation/firmware-guide/acpi/dsd/graph.rst to represent the CSI-2 * connection graph. The software nodes are then populated with the data * extracted from the _CRS CSI-2 resource descriptors and the MIPI DisCo * for Imaging device properties present in _DSD for the ACPI device objects * with CSI-2 connections. */ #include #include #include #include #include #include #include #include #include #include #include "internal.h" static LIST_HEAD(acpi_mipi_crs_csi2_list); static void acpi_mipi_data_tag(acpi_handle handle, void *context) { } /* Connection data extracted from one _CRS CSI-2 resource descriptor. */ struct crs_csi2_connection { struct list_head entry; struct acpi_resource_csi2_serialbus csi2_data; acpi_handle remote_handle; char remote_name[]; }; /* Data extracted from _CRS CSI-2 resource descriptors for one device. */ struct crs_csi2 { struct list_head entry; acpi_handle handle; struct acpi_device_software_nodes *swnodes; struct list_head connections; u32 port_count; }; struct csi2_resources_walk_data { acpi_handle handle; struct list_head connections; }; static acpi_status parse_csi2_resource(struct acpi_resource *res, void *context) { struct csi2_resources_walk_data *crwd = context; struct acpi_resource_csi2_serialbus *csi2_res; struct acpi_resource_source *csi2_res_src; u16 csi2_res_src_length; struct crs_csi2_connection *conn; acpi_handle remote_handle; if (res->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) return AE_OK; csi2_res = &res->data.csi2_serial_bus; if (csi2_res->type != ACPI_RESOURCE_SERIAL_TYPE_CSI2) return AE_OK; csi2_res_src = &csi2_res->resource_source; if (ACPI_FAILURE(acpi_get_handle(NULL, csi2_res_src->string_ptr, &remote_handle))) { acpi_handle_debug(crwd->handle, "unable to find resource source\n"); return AE_OK; } csi2_res_src_length = csi2_res_src->string_length; if (!csi2_res_src_length) { acpi_handle_debug(crwd->handle, "invalid resource source string length\n"); return AE_OK; } conn = kmalloc(struct_size(conn, remote_name, csi2_res_src_length + 1), GFP_KERNEL); if (!conn) return AE_OK; conn->csi2_data = *csi2_res; strscpy(conn->remote_name, csi2_res_src->string_ptr, csi2_res_src_length); conn->csi2_data.resource_source.string_ptr = conn->remote_name; conn->remote_handle = remote_handle; list_add(&conn->entry, &crwd->connections); return AE_OK; } static struct crs_csi2 *acpi_mipi_add_crs_csi2(acpi_handle handle, struct list_head *list) { struct crs_csi2 *csi2; csi2 = kzalloc(sizeof(*csi2), GFP_KERNEL); if (!csi2) return NULL; csi2->handle = handle; INIT_LIST_HEAD(&csi2->connections); csi2->port_count = 1; if (ACPI_FAILURE(acpi_attach_data(handle, acpi_mipi_data_tag, csi2))) { kfree(csi2); return NULL; } list_add(&csi2->entry, list); return csi2; } static struct crs_csi2 *acpi_mipi_get_crs_csi2(acpi_handle handle) { struct crs_csi2 *csi2; if (ACPI_FAILURE(acpi_get_data_full(handle, acpi_mipi_data_tag, (void **)&csi2, NULL))) return NULL; return csi2; } static void csi_csr2_release_connections(struct list_head *list) { struct crs_csi2_connection *conn, *conn_tmp; list_for_each_entry_safe(conn, conn_tmp, list, entry) { list_del(&conn->entry); kfree(conn); } } static void acpi_mipi_del_crs_csi2(struct crs_csi2 *csi2) { list_del(&csi2->entry); acpi_detach_data(csi2->handle, acpi_mipi_data_tag); kfree(csi2->swnodes); csi_csr2_release_connections(&csi2->connections); kfree(csi2); } /** * acpi_mipi_check_crs_csi2 - Look for CSI-2 resources in _CRS * @handle: Device object handle to evaluate _CRS for. * * Find all CSI-2 resource descriptors in the given device's _CRS * and collect them into a list. */ void acpi_mipi_check_crs_csi2(acpi_handle handle) { struct csi2_resources_walk_data crwd = { .handle = handle, .connections = LIST_HEAD_INIT(crwd.connections), }; struct crs_csi2 *csi2; /* * Avoid allocating _CRS CSI-2 objects for devices without any CSI-2 * resource descriptions in _CRS to reduce overhead. */ acpi_walk_resources(handle, METHOD_NAME__CRS, parse_csi2_resource, &crwd); if (list_empty(&crwd.connections)) return; /* * Create a _CRS CSI-2 entry to store the extracted connection * information and add it to the global list. */ csi2 = acpi_mipi_add_crs_csi2(handle, &acpi_mipi_crs_csi2_list); if (!csi2) { csi_csr2_release_connections(&crwd.connections); return; /* Nothing really can be done about this. */ } list_replace(&crwd.connections, &csi2->connections); } #define NO_CSI2_PORT (UINT_MAX - 1) static void alloc_crs_csi2_swnodes(struct crs_csi2 *csi2) { size_t port_count = csi2->port_count; struct acpi_device_software_nodes *swnodes; size_t alloc_size; unsigned int i; /* * Allocate memory for ports, node pointers (number of nodes + * 1 (guardian), nodes (root + number of ports * 2 (because for * every port there is an endpoint)). */ if (check_mul_overflow(sizeof(*swnodes->ports) + sizeof(*swnodes->nodes) * 2 + sizeof(*swnodes->nodeptrs) * 2, port_count, &alloc_size) || check_add_overflow(sizeof(*swnodes) + sizeof(*swnodes->nodes) + sizeof(*swnodes->nodeptrs) * 2, alloc_size, &alloc_size)) { acpi_handle_info(csi2->handle, "too many _CRS CSI-2 resource handles (%zu)", port_count); return; } swnodes = kmalloc(alloc_size, GFP_KERNEL); if (!swnodes) return; swnodes->ports = (struct acpi_device_software_node_port *)(swnodes + 1); swnodes->nodes = (struct software_node *)(swnodes->ports + port_count); swnodes->nodeptrs = (const struct software_node **)(swnodes->nodes + 1 + 2 * port_count); swnodes->num_ports = port_count; for (i = 0; i < 2 * port_count + 1; i++) swnodes->nodeptrs[i] = &swnodes->nodes[i]; swnodes->nodeptrs[i] = NULL; for (i = 0; i < port_count; i++) swnodes->ports[i].port_nr = NO_CSI2_PORT; csi2->swnodes = swnodes; } #define ACPI_CRS_CSI2_PHY_TYPE_C 0 #define ACPI_CRS_CSI2_PHY_TYPE_D 1 static unsigned int next_csi2_port_index(struct acpi_device_software_nodes *swnodes, unsigned int port_nr) { unsigned int i; for (i = 0; i < swnodes->num_ports; i++) { struct acpi_device_software_node_port *port = &swnodes->ports[i]; if (port->port_nr == port_nr) return i; if (port->port_nr == NO_CSI2_PORT) { port->port_nr = port_nr; return i; } } return NO_CSI2_PORT; } /* Print graph port name into a buffer, return non-zero on failure. */ #define GRAPH_PORT_NAME(var, num) \ (snprintf((var), sizeof(var), SWNODE_GRAPH_PORT_NAME_FMT, (num)) >= \ sizeof(var)) static void extract_crs_csi2_conn_info(acpi_handle local_handle, struct acpi_device_software_nodes *local_swnodes, struct crs_csi2_connection *conn) { struct crs_csi2 *remote_csi2 = acpi_mipi_get_crs_csi2(conn->remote_handle); struct acpi_device_software_nodes *remote_swnodes; struct acpi_device_software_node_port *local_port, *remote_port; struct software_node *local_node, *remote_node; unsigned int local_index, remote_index; unsigned int bus_type; /* * If the previous steps have failed to make room for a _CRS CSI-2 * representation for the remote end of the given connection, skip it. */ if (!remote_csi2) return; remote_swnodes = remote_csi2->swnodes; if (!remote_swnodes) return; switch (conn->csi2_data.phy_type) { case ACPI_CRS_CSI2_PHY_TYPE_C: bus_type = V4L2_FWNODE_BUS_TYPE_CSI2_CPHY; break; case ACPI_CRS_CSI2_PHY_TYPE_D: bus_type = V4L2_FWNODE_BUS_TYPE_CSI2_DPHY; break; default: acpi_handle_info(local_handle, "unknown CSI-2 PHY type %u\n", conn->csi2_data.phy_type); return; } local_index = next_csi2_port_index(local_swnodes, conn->csi2_data.local_port_instance); if (WARN_ON_ONCE(local_index >= local_swnodes->num_ports)) return; remote_index = next_csi2_port_index(remote_swnodes, conn->csi2_data.resource_source.index); if (WARN_ON_ONCE(remote_index >= remote_swnodes->num_ports)) return; local_port = &local_swnodes->ports[local_index]; local_node = &local_swnodes->nodes[ACPI_DEVICE_SWNODE_EP(local_index)]; local_port->crs_csi2_local = true; remote_port = &remote_swnodes->ports[remote_index]; remote_node = &remote_swnodes->nodes[ACPI_DEVICE_SWNODE_EP(remote_index)]; local_port->remote_ep[0] = SOFTWARE_NODE_REFERENCE(remote_node); remote_port->remote_ep[0] = SOFTWARE_NODE_REFERENCE(local_node); local_port->ep_props[ACPI_DEVICE_SWNODE_EP_REMOTE_EP] = PROPERTY_ENTRY_REF_ARRAY("remote-endpoint", local_port->remote_ep); local_port->ep_props[ACPI_DEVICE_SWNODE_EP_BUS_TYPE] = PROPERTY_ENTRY_U32("bus-type", bus_type); local_port->ep_props[ACPI_DEVICE_SWNODE_EP_REG] = PROPERTY_ENTRY_U32("reg", 0); local_port->port_props[ACPI_DEVICE_SWNODE_PORT_REG] = PROPERTY_ENTRY_U32("reg", conn->csi2_data.local_port_instance); if (GRAPH_PORT_NAME(local_port->port_name, conn->csi2_data.local_port_instance)) acpi_handle_info(local_handle, "local port %u name too long", conn->csi2_data.local_port_instance); remote_port->ep_props[ACPI_DEVICE_SWNODE_EP_REMOTE_EP] = PROPERTY_ENTRY_REF_ARRAY("remote-endpoint", remote_port->remote_ep); remote_port->ep_props[ACPI_DEVICE_SWNODE_EP_BUS_TYPE] = PROPERTY_ENTRY_U32("bus-type", bus_type); remote_port->ep_props[ACPI_DEVICE_SWNODE_EP_REG] = PROPERTY_ENTRY_U32("reg", 0); remote_port->port_props[ACPI_DEVICE_SWNODE_PORT_REG] = PROPERTY_ENTRY_U32("reg", conn->csi2_data.resource_source.index); if (GRAPH_PORT_NAME(remote_port->port_name, conn->csi2_data.resource_source.index)) acpi_handle_info(local_handle, "remote port %u name too long", conn->csi2_data.resource_source.index); } static void prepare_crs_csi2_swnodes(struct crs_csi2 *csi2) { struct acpi_device_software_nodes *local_swnodes = csi2->swnodes; acpi_handle local_handle = csi2->handle; struct crs_csi2_connection *conn; /* Bail out if the allocation of swnodes has failed. */ if (!local_swnodes) return; list_for_each_entry(conn, &csi2->connections, entry) extract_crs_csi2_conn_info(local_handle, local_swnodes, conn); } /** * acpi_mipi_scan_crs_csi2 - Create ACPI _CRS CSI-2 software nodes * * Note that this function must be called before any struct acpi_device objects * are bound to any ACPI drivers or scan handlers, so it cannot assume the * existence of struct acpi_device objects for every device present in the ACPI * namespace. * * acpi_scan_lock in scan.c must be held when calling this function. */ void acpi_mipi_scan_crs_csi2(void) { struct crs_csi2 *csi2; LIST_HEAD(aux_list); /* Count references to each ACPI handle in the CSI-2 connection graph. */ list_for_each_entry(csi2, &acpi_mipi_crs_csi2_list, entry) { struct crs_csi2_connection *conn; list_for_each_entry(conn, &csi2->connections, entry) { struct crs_csi2 *remote_csi2; csi2->port_count++; remote_csi2 = acpi_mipi_get_crs_csi2(conn->remote_handle); if (remote_csi2) { remote_csi2->port_count++; continue; } /* * The remote endpoint has no _CRS CSI-2 list entry yet, * so create one for it and add it to the list. */ acpi_mipi_add_crs_csi2(conn->remote_handle, &aux_list); } } list_splice(&aux_list, &acpi_mipi_crs_csi2_list); /* * Allocate software nodes for representing the CSI-2 information. * * This needs to be done for all of the list entries in one go, because * they may point to each other without restrictions and the next step * relies on the availability of swnodes memory for each list entry. */ list_for_each_entry(csi2, &acpi_mipi_crs_csi2_list, entry) alloc_crs_csi2_swnodes(csi2); /* * Set up software node properties using data from _CRS CSI-2 resource * descriptors. */ list_for_each_entry(csi2, &acpi_mipi_crs_csi2_list, entry) prepare_crs_csi2_swnodes(csi2); } /* * Get the index of the next property in the property array, with a given * maximum value. */ #define NEXT_PROPERTY(index, max) \ (WARN_ON((index) > ACPI_DEVICE_SWNODE_##max) ? \ ACPI_DEVICE_SWNODE_##max : (index)++) static void init_csi2_port_local(struct acpi_device *adev, struct acpi_device_software_node_port *port, struct fwnode_handle *port_fwnode, unsigned int index) { acpi_handle handle = acpi_device_handle(adev); unsigned int num_link_freqs; int ret; ret = fwnode_property_count_u64(port_fwnode, "mipi-img-link-frequencies"); if (ret <= 0) return; num_link_freqs = ret; if (num_link_freqs > ACPI_DEVICE_CSI2_DATA_LANES) { acpi_handle_info(handle, "Too many link frequencies: %u\n", num_link_freqs); num_link_freqs = ACPI_DEVICE_CSI2_DATA_LANES; } ret = fwnode_property_read_u64_array(port_fwnode, "mipi-img-link-frequencies", port->link_frequencies, num_link_freqs); if (ret) { acpi_handle_info(handle, "Unable to get link frequencies (%d)\n", ret); return; } port->ep_props[NEXT_PROPERTY(index, EP_LINK_FREQUENCIES)] = PROPERTY_ENTRY_U64_ARRAY_LEN("link-frequencies", port->link_frequencies, num_link_freqs); } static void init_csi2_port(struct acpi_device *adev, struct acpi_device_software_nodes *swnodes, struct acpi_device_software_node_port *port, struct fwnode_handle *port_fwnode, unsigned int port_index) { unsigned int ep_prop_index = ACPI_DEVICE_SWNODE_EP_CLOCK_LANES; acpi_handle handle = acpi_device_handle(adev); u8 val[ACPI_DEVICE_CSI2_DATA_LANES]; int num_lanes = 0; int ret; if (GRAPH_PORT_NAME(port->port_name, port->port_nr)) return; swnodes->nodes[ACPI_DEVICE_SWNODE_PORT(port_index)] = SOFTWARE_NODE(port->port_name, port->port_props, &swnodes->nodes[ACPI_DEVICE_SWNODE_ROOT]); ret = fwnode_property_read_u8(port_fwnode, "mipi-img-clock-lane", val); if (!ret) port->ep_props[NEXT_PROPERTY(ep_prop_index, EP_CLOCK_LANES)] = PROPERTY_ENTRY_U32("clock-lanes", val[0]); ret = fwnode_property_count_u8(port_fwnode, "mipi-img-data-lanes"); if (ret > 0) { num_lanes = ret; if (num_lanes > ACPI_DEVICE_CSI2_DATA_LANES) { acpi_handle_info(handle, "Too many data lanes: %u\n", num_lanes); num_lanes = ACPI_DEVICE_CSI2_DATA_LANES; } ret = fwnode_property_read_u8_array(port_fwnode, "mipi-img-data-lanes", val, num_lanes); if (!ret) { unsigned int i; for (i = 0; i < num_lanes; i++) port->data_lanes[i] = val[i]; port->ep_props[NEXT_PROPERTY(ep_prop_index, EP_DATA_LANES)] = PROPERTY_ENTRY_U32_ARRAY_LEN("data-lanes", port->data_lanes, num_lanes); } } ret = fwnode_property_count_u8(port_fwnode, "mipi-img-lane-polarities"); if (ret < 0) { acpi_handle_debug(handle, "Lane polarity bytes missing\n"); } else if (ret * BITS_PER_TYPE(u8) < num_lanes + 1) { acpi_handle_info(handle, "Too few lane polarity bits (%zu vs. %d)\n", ret * BITS_PER_TYPE(u8), num_lanes + 1); } else { unsigned long mask = 0; int byte_count = ret; unsigned int i; /* * The total number of lanes is ACPI_DEVICE_CSI2_DATA_LANES + 1 * (data lanes + clock lane). It is not expected to ever be * greater than the number of bits in an unsigned long * variable, but ensure that this is the case. */ BUILD_BUG_ON(BITS_PER_TYPE(unsigned long) <= ACPI_DEVICE_CSI2_DATA_LANES); if (byte_count > sizeof(mask)) { acpi_handle_info(handle, "Too many lane polarities: %d\n", byte_count); byte_count = sizeof(mask); } fwnode_property_read_u8_array(port_fwnode, "mipi-img-lane-polarities", val, byte_count); for (i = 0; i < byte_count; i++) mask |= (unsigned long)val[i] << BITS_PER_TYPE(u8) * i; for (i = 0; i <= num_lanes; i++) port->lane_polarities[i] = test_bit(i, &mask); port->ep_props[NEXT_PROPERTY(ep_prop_index, EP_LANE_POLARITIES)] = PROPERTY_ENTRY_U32_ARRAY_LEN("lane-polarities", port->lane_polarities, num_lanes + 1); } swnodes->nodes[ACPI_DEVICE_SWNODE_EP(port_index)] = SOFTWARE_NODE("endpoint@0", swnodes->ports[port_index].ep_props, &swnodes->nodes[ACPI_DEVICE_SWNODE_PORT(port_index)]); if (port->crs_csi2_local) init_csi2_port_local(adev, port, port_fwnode, ep_prop_index); } #define MIPI_IMG_PORT_PREFIX "mipi-img-port-" static struct fwnode_handle *get_mipi_port_handle(struct fwnode_handle *adev_fwnode, unsigned int port_nr) { char port_name[sizeof(MIPI_IMG_PORT_PREFIX) + 2]; if (snprintf(port_name, sizeof(port_name), "%s%u", MIPI_IMG_PORT_PREFIX, port_nr) >= sizeof(port_name)) return NULL; return fwnode_get_named_child_node(adev_fwnode, port_name); } static void init_crs_csi2_swnodes(struct crs_csi2 *csi2) { struct acpi_buffer buffer = { .length = ACPI_ALLOCATE_BUFFER }; struct acpi_device_software_nodes *swnodes = csi2->swnodes; acpi_handle handle = csi2->handle; unsigned int prop_index = 0; struct fwnode_handle *adev_fwnode; struct acpi_device *adev; acpi_status status; unsigned int i; u32 val; int ret; /* * Bail out if the swnodes are not available (either they have not been * allocated or they have been assigned to the device already). */ if (!swnodes) return; adev = acpi_fetch_acpi_dev(handle); if (!adev) return; adev_fwnode = acpi_fwnode_handle(adev); /* * If the "rotation" property is not present, but _PLD is there, * evaluate it to get the "rotation" value. */ if (!fwnode_property_present(adev_fwnode, "rotation")) { struct acpi_pld_info *pld; status = acpi_get_physical_device_location(handle, &pld); if (ACPI_SUCCESS(status)) { swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_ROTATION)] = PROPERTY_ENTRY_U32("rotation", pld->rotation * 45U); kfree(pld); } } if (!fwnode_property_read_u32(adev_fwnode, "mipi-img-clock-frequency", &val)) swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_CLOCK_FREQUENCY)] = PROPERTY_ENTRY_U32("clock-frequency", val); if (!fwnode_property_read_u32(adev_fwnode, "mipi-img-led-max-current", &val)) swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_LED_MAX_MICROAMP)] = PROPERTY_ENTRY_U32("led-max-microamp", val); if (!fwnode_property_read_u32(adev_fwnode, "mipi-img-flash-max-current", &val)) swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_FLASH_MAX_MICROAMP)] = PROPERTY_ENTRY_U32("flash-max-microamp", val); if (!fwnode_property_read_u32(adev_fwnode, "mipi-img-flash-max-timeout-us", &val)) swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_FLASH_MAX_TIMEOUT_US)] = PROPERTY_ENTRY_U32("flash-max-timeout-us", val); status = acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer); if (ACPI_FAILURE(status)) { acpi_handle_info(handle, "Unable to get the path name\n"); return; } swnodes->nodes[ACPI_DEVICE_SWNODE_ROOT] = SOFTWARE_NODE(buffer.pointer, swnodes->dev_props, NULL); for (i = 0; i < swnodes->num_ports; i++) { struct acpi_device_software_node_port *port = &swnodes->ports[i]; struct fwnode_handle *port_fwnode; /* * The MIPI DisCo for Imaging specification defines _DSD device * properties for providing CSI-2 port parameters that can be * accessed through the generic device properties framework. To * access them, it is first necessary to find the data node * representing the port under the given ACPI device object. */ port_fwnode = get_mipi_port_handle(adev_fwnode, port->port_nr); if (!port_fwnode) { acpi_handle_info(handle, "MIPI port name too long for port %u\n", port->port_nr); continue; } init_csi2_port(adev, swnodes, port, port_fwnode, i); fwnode_handle_put(port_fwnode); } ret = software_node_register_node_group(swnodes->nodeptrs); if (ret < 0) { acpi_handle_info(handle, "Unable to register software nodes (%d)\n", ret); return; } adev->swnodes = swnodes; adev_fwnode->secondary = software_node_fwnode(swnodes->nodes); /* * Prevents the swnodes from this csi2 entry from being assigned again * or freed prematurely. */ csi2->swnodes = NULL; } /** * acpi_mipi_init_crs_csi2_swnodes - Initialize _CRS CSI-2 software nodes * * Use MIPI DisCo for Imaging device properties to finalize the initialization * of CSI-2 software nodes for all ACPI device objects that have been already * enumerated. */ void acpi_mipi_init_crs_csi2_swnodes(void) { struct crs_csi2 *csi2, *csi2_tmp; list_for_each_entry_safe(csi2, csi2_tmp, &acpi_mipi_crs_csi2_list, entry) init_crs_csi2_swnodes(csi2); } /** * acpi_mipi_crs_csi2_cleanup - Free _CRS CSI-2 temporary data */ void acpi_mipi_crs_csi2_cleanup(void) { struct crs_csi2 *csi2, *csi2_tmp; list_for_each_entry_safe(csi2, csi2_tmp, &acpi_mipi_crs_csi2_list, entry) acpi_mipi_del_crs_csi2(csi2); } #ifdef CONFIG_X86 #include #include /* CPU matches for Dell generations with broken ACPI MIPI DISCO info */ static const struct x86_cpu_id dell_broken_mipi_disco_cpu_gens[] = { X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, NULL), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, NULL), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, NULL), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, NULL), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, NULL), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, NULL), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, NULL), {} }; static const char *strnext(const char *s1, const char *s2) { s1 = strstr(s1, s2); if (!s1) return NULL; return s1 + strlen(s2); } /** * acpi_graph_ignore_port - Tell whether a port node should be ignored * @handle: The ACPI handle of the node (which may be a port node) * * Return: true if a port node should be ignored and the data to that should * come from other sources instead (Windows ACPI definitions and * ipu-bridge). This is currently used to ignore bad port nodes related to IPU6 * ("IPU?") and camera sensor devices ("LNK?") in certain Dell systems with * Intel VSC. */ bool acpi_graph_ignore_port(acpi_handle handle) { const char *path = NULL, *orig_path; static bool dmi_tested, ignore_port; if (!dmi_tested) { if (dmi_name_in_vendors("Dell Inc.") && x86_match_cpu(dell_broken_mipi_disco_cpu_gens)) ignore_port = true; dmi_tested = true; } if (!ignore_port) return false; /* Check if the device is either "IPU" or "LNK" (sensor). */ orig_path = acpi_handle_path(handle); if (!orig_path) return false; path = strnext(orig_path, "IPU"); if (!path) path = strnext(orig_path, "LNK"); if (!path) goto out_free; if (!(isdigit(path[0]) && path[1] == '.')) goto out_free; /* Check if the node has a "PRT" prefix. */ path = strnext(path, "PRT"); if (path && isdigit(path[0]) && !path[1]) { acpi_handle_debug(handle, "ignoring data node\n"); kfree(orig_path); return true; } out_free: kfree(orig_path); return false; } #endif