/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ /* FILE POLICY AND INTENDED USAGE: * * This file implements generic display communication protocols such as i2c, aux * and scdc. The file should not contain any specific applications of these * protocols such as display capability query, detection, or handshaking such as * link training. */ #include "link_ddc.h" #include "vector.h" #include "dce/dce_aux.h" #include "dal_asic_id.h" #include "link_dpcd.h" #include "dm_helpers.h" #include "atomfirmware.h" #define DC_LOGGER_INIT(logger) static const uint8_t DP_VGA_DONGLE_BRANCH_DEV_NAME[] = "DpVga"; /* DP to Dual link DVI converter */ static const uint8_t DP_DVI_CONVERTER_ID_4[] = "m2DVIa"; static const uint8_t DP_DVI_CONVERTER_ID_5[] = "3393N2"; struct i2c_payloads { struct vector payloads; }; struct aux_payloads { struct vector payloads; }; static bool i2c_payloads_create( struct dc_context *ctx, struct i2c_payloads *payloads, uint32_t count) { if (dal_vector_construct( &payloads->payloads, ctx, count, sizeof(struct i2c_payload))) return true; return false; } static struct i2c_payload *i2c_payloads_get(struct i2c_payloads *p) { return (struct i2c_payload *)p->payloads.container; } static uint32_t i2c_payloads_get_count(struct i2c_payloads *p) { return p->payloads.count; } static void i2c_payloads_destroy(struct i2c_payloads *p) { if (!p) return; dal_vector_destruct(&p->payloads); } #define DDC_MIN(a, b) (((a) < (b)) ? (a) : (b)) static void i2c_payloads_add( struct i2c_payloads *payloads, uint32_t address, uint32_t len, uint8_t *data, bool write) { uint32_t payload_size = EDID_SEGMENT_SIZE; uint32_t pos; for (pos = 0; pos < len; pos += payload_size) { struct i2c_payload payload = { .write = write, .address = address, .length = DDC_MIN(payload_size, len - pos), .data = data + pos }; dal_vector_append(&payloads->payloads, &payload); } } static void ddc_service_construct( struct ddc_service *ddc_service, struct ddc_service_init_data *init_data) { enum connector_id connector_id = dal_graphics_object_id_get_connector_id(init_data->id); struct gpio_service *gpio_service = init_data->ctx->gpio_service; struct graphics_object_i2c_info i2c_info; struct gpio_ddc_hw_info hw_info; struct dc_bios *dcb = init_data->ctx->dc_bios; ddc_service->link = init_data->link; ddc_service->ctx = init_data->ctx; if (init_data->is_dpia_link || dcb->funcs->get_i2c_info(dcb, init_data->id, &i2c_info) != BP_RESULT_OK) { ddc_service->ddc_pin = NULL; } else { DC_LOGGER_INIT(ddc_service->ctx->logger); DC_LOG_DC("BIOS object table - i2c_line: %d", i2c_info.i2c_line); DC_LOG_DC("BIOS object table - i2c_engine_id: %d", i2c_info.i2c_engine_id); hw_info.ddc_channel = i2c_info.i2c_line; if (ddc_service->link != NULL) hw_info.hw_supported = i2c_info.i2c_hw_assist; else hw_info.hw_supported = false; ddc_service->ddc_pin = dal_gpio_create_ddc( gpio_service, i2c_info.gpio_info.clk_a_register_index, 1 << i2c_info.gpio_info.clk_a_shift, &hw_info); } ddc_service->flags.EDID_QUERY_DONE_ONCE = false; ddc_service->flags.FORCE_READ_REPEATED_START = false; ddc_service->flags.EDID_STRESS_READ = false; ddc_service->flags.IS_INTERNAL_DISPLAY = connector_id == CONNECTOR_ID_EDP || connector_id == CONNECTOR_ID_LVDS; ddc_service->wa.raw = 0; } struct ddc_service *link_create_ddc_service( struct ddc_service_init_data *init_data) { struct ddc_service *ddc_service; ddc_service = kzalloc(sizeof(struct ddc_service), GFP_KERNEL); if (!ddc_service) return NULL; ddc_service_construct(ddc_service, init_data); return ddc_service; } static void ddc_service_destruct(struct ddc_service *ddc) { if (ddc->ddc_pin) dal_gpio_destroy_ddc(&ddc->ddc_pin); } void link_destroy_ddc_service(struct ddc_service **ddc) { if (!ddc || !*ddc) { BREAK_TO_DEBUGGER(); return; } ddc_service_destruct(*ddc); kfree(*ddc); *ddc = NULL; } void set_ddc_transaction_type( struct ddc_service *ddc, enum ddc_transaction_type type) { ddc->transaction_type = type; } bool link_is_in_aux_transaction_mode(struct ddc_service *ddc) { switch (ddc->transaction_type) { case DDC_TRANSACTION_TYPE_I2C_OVER_AUX: case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_WITH_DEFER: case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_RETRY_DEFER: return true; default: break; } return false; } void set_dongle_type(struct ddc_service *ddc, enum display_dongle_type dongle_type) { ddc->dongle_type = dongle_type; } static uint32_t defer_delay_converter_wa( struct ddc_service *ddc, uint32_t defer_delay) { struct dc_link *link = ddc->link; if (link->dpcd_caps.dongle_type == DISPLAY_DONGLE_DP_VGA_CONVERTER && link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_0080E1 && (link->dpcd_caps.branch_fw_revision[0] < 0x01 || (link->dpcd_caps.branch_fw_revision[0] == 0x01 && link->dpcd_caps.branch_fw_revision[1] < 0x40)) && !memcmp(link->dpcd_caps.branch_dev_name, DP_VGA_DONGLE_BRANCH_DEV_NAME, sizeof(link->dpcd_caps.branch_dev_name))) return defer_delay > DPVGA_DONGLE_AUX_DEFER_WA_DELAY ? defer_delay : DPVGA_DONGLE_AUX_DEFER_WA_DELAY; if (link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_0080E1 && !memcmp(link->dpcd_caps.branch_dev_name, DP_DVI_CONVERTER_ID_4, sizeof(link->dpcd_caps.branch_dev_name))) return defer_delay > I2C_OVER_AUX_DEFER_WA_DELAY ? defer_delay : I2C_OVER_AUX_DEFER_WA_DELAY; if (link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_006037 && !memcmp(link->dpcd_caps.branch_dev_name, DP_DVI_CONVERTER_ID_5, sizeof(link->dpcd_caps.branch_dev_name))) return defer_delay > I2C_OVER_AUX_DEFER_WA_DELAY_1MS ? I2C_OVER_AUX_DEFER_WA_DELAY_1MS : defer_delay; return defer_delay; } #define DP_TRANSLATOR_DELAY 5 uint32_t link_get_aux_defer_delay(struct ddc_service *ddc) { uint32_t defer_delay = 0; switch (ddc->transaction_type) { case DDC_TRANSACTION_TYPE_I2C_OVER_AUX: if ((DISPLAY_DONGLE_DP_VGA_CONVERTER == ddc->dongle_type) || (DISPLAY_DONGLE_DP_DVI_CONVERTER == ddc->dongle_type) || (DISPLAY_DONGLE_DP_HDMI_CONVERTER == ddc->dongle_type)) { defer_delay = DP_TRANSLATOR_DELAY; defer_delay = defer_delay_converter_wa(ddc, defer_delay); } else /*sink has a delay different from an Active Converter*/ defer_delay = 0; break; case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_WITH_DEFER: defer_delay = DP_TRANSLATOR_DELAY; break; default: break; } return defer_delay; } static bool submit_aux_command(struct ddc_service *ddc, struct aux_payload *payload) { uint32_t retrieved = 0; bool ret = false; if (!ddc) return false; if (!payload) return false; do { struct aux_payload current_payload; bool is_end_of_payload = (retrieved + DEFAULT_AUX_MAX_DATA_SIZE) >= payload->length; uint32_t payload_length = is_end_of_payload ? payload->length - retrieved : DEFAULT_AUX_MAX_DATA_SIZE; current_payload.address = payload->address; current_payload.data = &payload->data[retrieved]; current_payload.defer_delay = payload->defer_delay; current_payload.i2c_over_aux = payload->i2c_over_aux; current_payload.length = payload_length; /* set mot (middle of transaction) to false if it is the last payload */ current_payload.mot = is_end_of_payload ? payload->mot:true; current_payload.write_status_update = false; current_payload.reply = payload->reply; current_payload.write = payload->write; ret = link_aux_transfer_with_retries_no_mutex(ddc, ¤t_payload); retrieved += payload_length; } while (retrieved < payload->length && ret == true); return ret; } bool link_query_ddc_data( struct ddc_service *ddc, uint32_t address, uint8_t *write_buf, uint32_t write_size, uint8_t *read_buf, uint32_t read_size) { bool success = true; uint32_t payload_size = link_is_in_aux_transaction_mode(ddc) ? DEFAULT_AUX_MAX_DATA_SIZE : EDID_SEGMENT_SIZE; uint32_t write_payloads = (write_size + payload_size - 1) / payload_size; uint32_t read_payloads = (read_size + payload_size - 1) / payload_size; uint32_t payloads_num = write_payloads + read_payloads; if (!payloads_num) return false; if (link_is_in_aux_transaction_mode(ddc)) { struct aux_payload payload; payload.i2c_over_aux = true; payload.address = address; payload.reply = NULL; payload.defer_delay = link_get_aux_defer_delay(ddc); payload.write_status_update = false; if (write_size != 0) { payload.write = true; /* should not set mot (middle of transaction) to 0 * if there are pending read payloads */ payload.mot = !(read_size == 0); payload.length = write_size; payload.data = write_buf; success = submit_aux_command(ddc, &payload); } if (read_size != 0 && success) { payload.write = false; /* should set mot (middle of transaction) to 0 * since it is the last payload to send */ payload.mot = false; payload.length = read_size; payload.data = read_buf; success = submit_aux_command(ddc, &payload); } } else { struct i2c_command command = {0}; struct i2c_payloads payloads; if (!i2c_payloads_create(ddc->ctx, &payloads, payloads_num)) return false; command.payloads = i2c_payloads_get(&payloads); command.number_of_payloads = 0; command.engine = DDC_I2C_COMMAND_ENGINE; command.speed = ddc->ctx->dc->caps.i2c_speed_in_khz; i2c_payloads_add( &payloads, address, write_size, write_buf, true); i2c_payloads_add( &payloads, address, read_size, read_buf, false); command.number_of_payloads = i2c_payloads_get_count(&payloads); success = dm_helpers_submit_i2c( ddc->ctx, ddc->link, &command); i2c_payloads_destroy(&payloads); } return success; } int link_aux_transfer_raw(struct ddc_service *ddc, struct aux_payload *payload, enum aux_return_code_type *operation_result) { if (ddc->ctx->dc->debug.enable_dmub_aux_for_legacy_ddc || !ddc->ddc_pin) { return dce_aux_transfer_dmub_raw(ddc, payload, operation_result); } else { return dce_aux_transfer_raw(ddc, payload, operation_result); } } uint32_t link_get_fixed_vs_pe_retimer_write_address(struct dc_link *link) { uint32_t vendor_lttpr_write_address = 0xF004F; uint8_t offset; switch (link->dpcd_caps.lttpr_caps.phy_repeater_cnt) { case 0x80: // 1 lttpr repeater offset = 1; break; case 0x40: // 2 lttpr repeaters offset = 2; break; case 0x20: // 3 lttpr repeaters offset = 3; break; case 0x10: // 4 lttpr repeaters offset = 4; break; case 0x08: // 5 lttpr repeaters offset = 5; break; case 0x04: // 6 lttpr repeaters offset = 6; break; case 0x02: // 7 lttpr repeaters offset = 7; break; case 0x01: // 8 lttpr repeaters offset = 8; break; default: offset = 0xFF; } if (offset != 0xFF) { vendor_lttpr_write_address += ((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1)); } return vendor_lttpr_write_address; } uint32_t link_get_fixed_vs_pe_retimer_read_address(struct dc_link *link) { return link_get_fixed_vs_pe_retimer_write_address(link) + 4; } bool link_configure_fixed_vs_pe_retimer(struct ddc_service *ddc, const uint8_t *data, uint32_t length) { struct aux_payload write_payload = { .i2c_over_aux = false, .write = true, .address = link_get_fixed_vs_pe_retimer_write_address(ddc->link), .length = length, .data = (uint8_t *) data, .reply = NULL, .mot = I2C_MOT_UNDEF, .write_status_update = false, .defer_delay = 0, }; return link_aux_transfer_with_retries_no_mutex(ddc, &write_payload); } bool link_query_fixed_vs_pe_retimer(struct ddc_service *ddc, uint8_t *data, uint32_t length) { struct aux_payload read_payload = { .i2c_over_aux = false, .write = false, .address = link_get_fixed_vs_pe_retimer_read_address(ddc->link), .length = length, .data = data, .reply = NULL, .mot = I2C_MOT_UNDEF, .write_status_update = false, .defer_delay = 0, }; return link_aux_transfer_with_retries_no_mutex(ddc, &read_payload); } bool link_aux_transfer_with_retries_no_mutex(struct ddc_service *ddc, struct aux_payload *payload) { return dce_aux_transfer_with_retries(ddc, payload); } bool try_to_configure_aux_timeout(struct ddc_service *ddc, uint32_t timeout) { bool result = false; struct ddc *ddc_pin = ddc->ddc_pin; if ((ddc->link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) && !ddc->link->dc->debug.disable_fixed_vs_aux_timeout_wa && ddc->ctx->dce_version == DCN_VERSION_3_1) { /* Fixed VS workaround for AUX timeout */ const uint32_t fixed_vs_address = 0xF004F; const uint8_t fixed_vs_data[4] = {0x1, 0x22, 0x63, 0xc}; core_link_write_dpcd(ddc->link, fixed_vs_address, fixed_vs_data, sizeof(fixed_vs_data)); timeout = 3072; } /* Do not try to access nonexistent DDC pin. */ if (ddc->link->ep_type != DISPLAY_ENDPOINT_PHY) return true; if (ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]->funcs->configure_timeout) { ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]->funcs->configure_timeout(ddc, timeout); result = true; } return result; } struct ddc *get_ddc_pin(struct ddc_service *ddc_service) { return ddc_service->ddc_pin; } void write_scdc_data(struct ddc_service *ddc_service, uint32_t pix_clk, bool lte_340_scramble) { bool over_340_mhz = pix_clk > 340000 ? 1 : 0; uint8_t slave_address = HDMI_SCDC_ADDRESS; uint8_t offset = HDMI_SCDC_SINK_VERSION; uint8_t sink_version = 0; uint8_t write_buffer[2] = {0}; /*Lower than 340 Scramble bit from SCDC caps*/ if (ddc_service->link->local_sink && ddc_service->link->local_sink->edid_caps.panel_patch.skip_scdc_overwrite) return; link_query_ddc_data(ddc_service, slave_address, &offset, sizeof(offset), &sink_version, sizeof(sink_version)); if (sink_version == 1) { /*Source Version = 1*/ write_buffer[0] = HDMI_SCDC_SOURCE_VERSION; write_buffer[1] = 1; link_query_ddc_data(ddc_service, slave_address, write_buffer, sizeof(write_buffer), NULL, 0); /*Read Request from SCDC caps*/ } write_buffer[0] = HDMI_SCDC_TMDS_CONFIG; if (over_340_mhz) { write_buffer[1] = 3; } else if (lte_340_scramble) { write_buffer[1] = 1; } else { write_buffer[1] = 0; } link_query_ddc_data(ddc_service, slave_address, write_buffer, sizeof(write_buffer), NULL, 0); } void read_scdc_data(struct ddc_service *ddc_service) { uint8_t slave_address = HDMI_SCDC_ADDRESS; uint8_t offset = HDMI_SCDC_TMDS_CONFIG; uint8_t tmds_config = 0; if (ddc_service->link->local_sink && ddc_service->link->local_sink->edid_caps.panel_patch.skip_scdc_overwrite) return; link_query_ddc_data(ddc_service, slave_address, &offset, sizeof(offset), &tmds_config, sizeof(tmds_config)); if (tmds_config & 0x1) { union hdmi_scdc_status_flags_data status_data = {0}; uint8_t scramble_status = 0; offset = HDMI_SCDC_SCRAMBLER_STATUS; link_query_ddc_data(ddc_service, slave_address, &offset, sizeof(offset), &scramble_status, sizeof(scramble_status)); offset = HDMI_SCDC_STATUS_FLAGS; link_query_ddc_data(ddc_service, slave_address, &offset, sizeof(offset), &status_data.byte, sizeof(status_data.byte)); } }