// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2022,2023 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* DPHY PLL configuration registers */ #define DSI_REG 0x4c #define CFGCLKFREQRANGE_MASK GENMASK(5, 0) #define CFGCLKFREQRANGE(x) FIELD_PREP(CFGCLKFREQRANGE_MASK, (x)) #define CLKSEL_MASK GENMASK(7, 6) #define CLKSEL_STOP FIELD_PREP(CLKSEL_MASK, 0) #define CLKSEL_GEN FIELD_PREP(CLKSEL_MASK, 1) #define CLKSEL_EXT FIELD_PREP(CLKSEL_MASK, 2) #define HSFREQRANGE_MASK GENMASK(14, 8) #define HSFREQRANGE(x) FIELD_PREP(HSFREQRANGE_MASK, (x)) #define UPDATE_PLL BIT(17) #define SHADOW_CLR BIT(18) #define CLK_EXT BIT(19) #define DSI_WRITE_REG0 0x50 #define M_MASK GENMASK(9, 0) #define M(x) FIELD_PREP(M_MASK, ((x) - 2)) #define N_MASK GENMASK(13, 10) #define N(x) FIELD_PREP(N_MASK, ((x) - 1)) #define VCO_CTRL_MASK GENMASK(19, 14) #define VCO_CTRL(x) FIELD_PREP(VCO_CTRL_MASK, (x)) #define PROP_CTRL_MASK GENMASK(25, 20) #define PROP_CTRL(x) FIELD_PREP(PROP_CTRL_MASK, (x)) #define INT_CTRL_MASK GENMASK(31, 26) #define INT_CTRL(x) FIELD_PREP(INT_CTRL_MASK, (x)) #define DSI_WRITE_REG1 0x54 #define GMP_CTRL_MASK GENMASK(1, 0) #define GMP_CTRL(x) FIELD_PREP(GMP_CTRL_MASK, (x)) #define CPBIAS_CTRL_MASK GENMASK(8, 2) #define CPBIAS_CTRL(x) FIELD_PREP(CPBIAS_CTRL_MASK, (x)) #define PLL_SHADOW_CTRL BIT(9) /* display mux control register */ #define DISPLAY_MUX 0x60 #define MIPI_DSI_RGB666_MAP_CFG GENMASK(7, 6) #define RGB666_CONFIG1 FIELD_PREP(MIPI_DSI_RGB666_MAP_CFG, 0) #define RGB666_CONFIG2 FIELD_PREP(MIPI_DSI_RGB666_MAP_CFG, 1) #define MIPI_DSI_RGB565_MAP_CFG GENMASK(5, 4) #define RGB565_CONFIG1 FIELD_PREP(MIPI_DSI_RGB565_MAP_CFG, 0) #define RGB565_CONFIG2 FIELD_PREP(MIPI_DSI_RGB565_MAP_CFG, 1) #define RGB565_CONFIG3 FIELD_PREP(MIPI_DSI_RGB565_MAP_CFG, 2) #define LCDIF_CROSS_LINE_PATTERN GENMASK(3, 0) #define RGB888_TO_RGB888 FIELD_PREP(LCDIF_CROSS_LINE_PATTERN, 0) #define RGB888_TO_RGB666 FIELD_PREP(LCDIF_CROSS_LINE_PATTERN, 6) #define RGB565_TO_RGB565 FIELD_PREP(LCDIF_CROSS_LINE_PATTERN, 7) #define MHZ(x) ((x) * 1000000UL) #define REF_CLK_RATE_MAX MHZ(64) #define REF_CLK_RATE_MIN MHZ(2) #define FOUT_MAX MHZ(1250) #define FOUT_MIN MHZ(40) #define FVCO_DIV_FACTOR MHZ(80) #define MBPS(x) ((x) * 1000000UL) #define DATA_RATE_MAX_SPEED MBPS(2500) #define DATA_RATE_MIN_SPEED MBPS(80) #define M_MAX 625UL #define M_MIN 64UL #define N_MAX 16U #define N_MIN 1U struct imx93_dsi { struct device *dev; struct regmap *regmap; struct clk *clk_pixel; struct clk *clk_ref; struct clk *clk_cfg; struct dw_mipi_dsi *dmd; struct dw_mipi_dsi_plat_data pdata; union phy_configure_opts phy_cfg; unsigned long ref_clk_rate; u32 format; }; struct dphy_pll_cfg { u32 m; /* PLL Feedback Multiplication Ratio */ u32 n; /* PLL Input Frequency Division Ratio */ }; struct dphy_pll_vco_prop { unsigned long max_fout; u8 vco_cntl; u8 prop_cntl; }; struct dphy_pll_hsfreqrange { unsigned long max_mbps; u8 hsfreqrange; }; /* DPHY Databook Table 3-13 Charge-pump Programmability */ static const struct dphy_pll_vco_prop vco_prop_map[] = { { 55, 0x3f, 0x0d }, { 82, 0x37, 0x0d }, { 110, 0x2f, 0x0d }, { 165, 0x27, 0x0d }, { 220, 0x1f, 0x0d }, { 330, 0x17, 0x0d }, { 440, 0x0f, 0x0d }, { 660, 0x07, 0x0d }, { 1149, 0x03, 0x0d }, { 1152, 0x01, 0x0d }, { 1250, 0x01, 0x0e }, }; /* DPHY Databook Table 5-7 Frequency Ranges and Defaults */ static const struct dphy_pll_hsfreqrange hsfreqrange_map[] = { { 89, 0x00 }, { 99, 0x10 }, { 109, 0x20 }, { 119, 0x30 }, { 129, 0x01 }, { 139, 0x11 }, { 149, 0x21 }, { 159, 0x31 }, { 169, 0x02 }, { 179, 0x12 }, { 189, 0x22 }, { 204, 0x32 }, { 219, 0x03 }, { 234, 0x13 }, { 249, 0x23 }, { 274, 0x33 }, { 299, 0x04 }, { 324, 0x14 }, { 349, 0x25 }, { 399, 0x35 }, { 449, 0x05 }, { 499, 0x16 }, { 549, 0x26 }, { 599, 0x37 }, { 649, 0x07 }, { 699, 0x18 }, { 749, 0x28 }, { 799, 0x39 }, { 849, 0x09 }, { 899, 0x19 }, { 949, 0x29 }, { 999, 0x3a }, { 1049, 0x0a }, { 1099, 0x1a }, { 1149, 0x2a }, { 1199, 0x3b }, { 1249, 0x0b }, { 1299, 0x1b }, { 1349, 0x2b }, { 1399, 0x3c }, { 1449, 0x0c }, { 1499, 0x1c }, { 1549, 0x2c }, { 1599, 0x3d }, { 1649, 0x0d }, { 1699, 0x1d }, { 1749, 0x2e }, { 1799, 0x3e }, { 1849, 0x0e }, { 1899, 0x1e }, { 1949, 0x2f }, { 1999, 0x3f }, { 2049, 0x0f }, { 2099, 0x40 }, { 2149, 0x41 }, { 2199, 0x42 }, { 2249, 0x43 }, { 2299, 0x44 }, { 2349, 0x45 }, { 2399, 0x46 }, { 2449, 0x47 }, { 2499, 0x48 }, { 2500, 0x49 }, }; static void dphy_pll_write(struct imx93_dsi *dsi, unsigned int reg, u32 value) { int ret; ret = regmap_write(dsi->regmap, reg, value); if (ret < 0) dev_err(dsi->dev, "failed to write 0x%08x to pll reg 0x%x: %d\n", value, reg, ret); } static inline unsigned long data_rate_to_fout(unsigned long data_rate) { /* Fout is half of data rate */ return data_rate / 2; } static int dphy_pll_get_configure_from_opts(struct imx93_dsi *dsi, struct phy_configure_opts_mipi_dphy *dphy_opts, struct dphy_pll_cfg *cfg) { struct device *dev = dsi->dev; unsigned long fin = dsi->ref_clk_rate; unsigned long fout; unsigned long best_fout = 0; unsigned int fvco_div; unsigned int min_n, max_n, n, best_n = UINT_MAX; unsigned long m, best_m = 0; unsigned long min_delta = ULONG_MAX; unsigned long delta; u64 tmp; if (dphy_opts->hs_clk_rate < DATA_RATE_MIN_SPEED || dphy_opts->hs_clk_rate > DATA_RATE_MAX_SPEED) { dev_dbg(dev, "invalid data rate per lane: %lu\n", dphy_opts->hs_clk_rate); return -EINVAL; } fout = data_rate_to_fout(dphy_opts->hs_clk_rate); /* DPHY Databook 3.3.6.1 Output Frequency */ /* Fout = Fvco / Fvco_div = (Fin * M) / (Fvco_div * N) */ /* Fvco_div could be 1/2/4/8 according to Fout range. */ fvco_div = 8UL / min(DIV_ROUND_UP(fout, FVCO_DIV_FACTOR), 8UL); /* limitation: 2MHz <= Fin / N <= 8MHz */ min_n = DIV_ROUND_UP_ULL((u64)fin, MHZ(8)); max_n = DIV_ROUND_DOWN_ULL((u64)fin, MHZ(2)); /* clamp possible N(s) */ min_n = clamp(min_n, N_MIN, N_MAX); max_n = clamp(max_n, N_MIN, N_MAX); dev_dbg(dev, "Fout = %lu, Fvco_div = %u, n_range = [%u, %u]\n", fout, fvco_div, min_n, max_n); for (n = min_n; n <= max_n; n++) { /* M = (Fout * N * Fvco_div) / Fin */ m = DIV_ROUND_CLOSEST(fout * n * fvco_div, fin); /* check M range */ if (m < M_MIN || m > M_MAX) continue; /* calculate temporary Fout */ tmp = m * fin; do_div(tmp, n * fvco_div); if (tmp < FOUT_MIN || tmp > FOUT_MAX) continue; delta = abs(fout - tmp); if (delta < min_delta) { best_n = n; best_m = m; min_delta = delta; best_fout = tmp; } } if (best_fout) { cfg->m = best_m; cfg->n = best_n; dev_dbg(dev, "best Fout = %lu, m = %u, n = %u\n", best_fout, cfg->m, cfg->n); } else { dev_dbg(dev, "failed to find best Fout\n"); return -EINVAL; } return 0; } static void dphy_pll_clear_shadow(struct imx93_dsi *dsi) { /* Reference DPHY Databook Figure 3-3 Initialization Timing Diagram. */ /* Select clock generation first. */ dphy_pll_write(dsi, DSI_REG, CLKSEL_GEN); /* Clear shadow after clock selection is done a while. */ fsleep(1); dphy_pll_write(dsi, DSI_REG, CLKSEL_GEN | SHADOW_CLR); /* A minimum pulse of 5ns on shadow_clear signal. */ fsleep(1); dphy_pll_write(dsi, DSI_REG, CLKSEL_GEN); } static unsigned long dphy_pll_get_cfgclkrange(struct imx93_dsi *dsi) { /* * DPHY Databook Table 4-4 System Control Signals mentions an equation * for cfgclkfreqrange[5:0]. */ return (clk_get_rate(dsi->clk_cfg) / MHZ(1) - 17) * 4; } static u8 dphy_pll_get_hsfreqrange(struct phy_configure_opts_mipi_dphy *dphy_opts) { unsigned long mbps = dphy_opts->hs_clk_rate / MHZ(1); int i; for (i = 0; i < ARRAY_SIZE(hsfreqrange_map); i++) if (mbps <= hsfreqrange_map[i].max_mbps) return hsfreqrange_map[i].hsfreqrange; return 0; } static u8 dphy_pll_get_vco(struct phy_configure_opts_mipi_dphy *dphy_opts) { unsigned long fout = data_rate_to_fout(dphy_opts->hs_clk_rate) / MHZ(1); int i; for (i = 0; i < ARRAY_SIZE(vco_prop_map); i++) if (fout <= vco_prop_map[i].max_fout) return vco_prop_map[i].vco_cntl; return 0; } static u8 dphy_pll_get_prop(struct phy_configure_opts_mipi_dphy *dphy_opts) { unsigned long fout = data_rate_to_fout(dphy_opts->hs_clk_rate) / MHZ(1); int i; for (i = 0; i < ARRAY_SIZE(vco_prop_map); i++) if (fout <= vco_prop_map[i].max_fout) return vco_prop_map[i].prop_cntl; return 0; } static int dphy_pll_update(struct imx93_dsi *dsi) { int ret; ret = regmap_update_bits(dsi->regmap, DSI_REG, UPDATE_PLL, UPDATE_PLL); if (ret < 0) { dev_err(dsi->dev, "failed to set UPDATE_PLL: %d\n", ret); return ret; } /* * The updatepll signal should be asserted for a minimum of four clkin * cycles, according to DPHY Databook Figure 3-3 Initialization Timing * Diagram. */ fsleep(10); ret = regmap_update_bits(dsi->regmap, DSI_REG, UPDATE_PLL, 0); if (ret < 0) { dev_err(dsi->dev, "failed to clear UPDATE_PLL: %d\n", ret); return ret; } return 0; } static int dphy_pll_configure(struct imx93_dsi *dsi, union phy_configure_opts *opts) { struct dphy_pll_cfg cfg = { 0 }; u32 val; int ret; ret = dphy_pll_get_configure_from_opts(dsi, &opts->mipi_dphy, &cfg); if (ret) { dev_err(dsi->dev, "failed to get phy pll cfg %d\n", ret); return ret; } dphy_pll_clear_shadow(dsi); /* DSI_REG */ val = CLKSEL_GEN | CFGCLKFREQRANGE(dphy_pll_get_cfgclkrange(dsi)) | HSFREQRANGE(dphy_pll_get_hsfreqrange(&opts->mipi_dphy)); dphy_pll_write(dsi, DSI_REG, val); /* DSI_WRITE_REG0 */ val = M(cfg.m) | N(cfg.n) | INT_CTRL(0) | VCO_CTRL(dphy_pll_get_vco(&opts->mipi_dphy)) | PROP_CTRL(dphy_pll_get_prop(&opts->mipi_dphy)); dphy_pll_write(dsi, DSI_WRITE_REG0, val); /* DSI_WRITE_REG1 */ dphy_pll_write(dsi, DSI_WRITE_REG1, GMP_CTRL(1) | CPBIAS_CTRL(0x10)); ret = clk_prepare_enable(dsi->clk_ref); if (ret < 0) { dev_err(dsi->dev, "failed to enable ref clock: %d\n", ret); return ret; } /* * At least 10 refclk cycles are required before updatePLL assertion, * according to DPHY Databook Figure 3-3 Initialization Timing Diagram. */ fsleep(10); ret = dphy_pll_update(dsi); if (ret < 0) { clk_disable_unprepare(dsi->clk_ref); return ret; } return 0; } static void dphy_pll_clear_reg(struct imx93_dsi *dsi) { dphy_pll_write(dsi, DSI_REG, 0); dphy_pll_write(dsi, DSI_WRITE_REG0, 0); dphy_pll_write(dsi, DSI_WRITE_REG1, 0); } static int dphy_pll_init(struct imx93_dsi *dsi) { int ret; ret = clk_prepare_enable(dsi->clk_cfg); if (ret < 0) { dev_err(dsi->dev, "failed to enable config clock: %d\n", ret); return ret; } dphy_pll_clear_reg(dsi); return 0; } static void dphy_pll_uninit(struct imx93_dsi *dsi) { dphy_pll_clear_reg(dsi); clk_disable_unprepare(dsi->clk_cfg); } static void dphy_pll_power_off(struct imx93_dsi *dsi) { dphy_pll_clear_reg(dsi); clk_disable_unprepare(dsi->clk_ref); } static int imx93_dsi_get_phy_configure_opts(struct imx93_dsi *dsi, const struct drm_display_mode *mode, union phy_configure_opts *phy_cfg, u32 lanes, u32 format) { struct device *dev = dsi->dev; int bpp; int ret; bpp = mipi_dsi_pixel_format_to_bpp(format); if (bpp < 0) { dev_dbg(dev, "failed to get bpp for pixel format %d\n", format); return -EINVAL; } ret = phy_mipi_dphy_get_default_config(mode->clock * MSEC_PER_SEC, bpp, lanes, &phy_cfg->mipi_dphy); if (ret < 0) { dev_dbg(dev, "failed to get default phy cfg %d\n", ret); return ret; } return 0; } static enum drm_mode_status imx93_dsi_validate_mode(struct imx93_dsi *dsi, const struct drm_display_mode *mode) { struct drm_bridge *bridge = dw_mipi_dsi_get_bridge(dsi->dmd); /* Get the last bridge */ while (drm_bridge_get_next_bridge(bridge)) bridge = drm_bridge_get_next_bridge(bridge); if ((bridge->ops & DRM_BRIDGE_OP_DETECT) && (bridge->ops & DRM_BRIDGE_OP_EDID)) { unsigned long pixel_clock_rate = mode->clock * 1000; unsigned long rounded_rate; /* Allow +/-0.5% pixel clock rate deviation */ rounded_rate = clk_round_rate(dsi->clk_pixel, pixel_clock_rate); if (rounded_rate < pixel_clock_rate * 995 / 1000 || rounded_rate > pixel_clock_rate * 1005 / 1000) { dev_dbg(dsi->dev, "failed to round clock for mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); return MODE_NOCLOCK; } } return MODE_OK; } static enum drm_mode_status imx93_dsi_validate_phy(struct imx93_dsi *dsi, const struct drm_display_mode *mode, unsigned long mode_flags, u32 lanes, u32 format) { union phy_configure_opts phy_cfg; struct dphy_pll_cfg cfg = { 0 }; struct device *dev = dsi->dev; int ret; ret = imx93_dsi_get_phy_configure_opts(dsi, mode, &phy_cfg, lanes, format); if (ret < 0) { dev_dbg(dev, "failed to get phy cfg opts %d\n", ret); return MODE_ERROR; } ret = dphy_pll_get_configure_from_opts(dsi, &phy_cfg.mipi_dphy, &cfg); if (ret < 0) { dev_dbg(dev, "failed to get phy pll cfg %d\n", ret); return MODE_NOCLOCK; } return MODE_OK; } static enum drm_mode_status imx93_dsi_mode_valid(void *priv_data, const struct drm_display_mode *mode, unsigned long mode_flags, u32 lanes, u32 format) { struct imx93_dsi *dsi = priv_data; struct device *dev = dsi->dev; enum drm_mode_status ret; ret = imx93_dsi_validate_mode(dsi, mode); if (ret != MODE_OK) { dev_dbg(dev, "failed to validate mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); return ret; } ret = imx93_dsi_validate_phy(dsi, mode, mode_flags, lanes, format); if (ret != MODE_OK) { dev_dbg(dev, "failed to validate phy for mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); return ret; } return MODE_OK; } static bool imx93_dsi_mode_fixup(void *priv_data, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct imx93_dsi *dsi = priv_data; unsigned long pixel_clock_rate; unsigned long rounded_rate; pixel_clock_rate = mode->clock * 1000; rounded_rate = clk_round_rate(dsi->clk_pixel, pixel_clock_rate); memcpy(adjusted_mode, mode, sizeof(*mode)); adjusted_mode->clock = rounded_rate / 1000; dev_dbg(dsi->dev, "adj clock %d for mode " DRM_MODE_FMT "\n", adjusted_mode->clock, DRM_MODE_ARG(mode)); return true; } static u32 *imx93_dsi_get_input_bus_fmts(void *priv_data, struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts) { u32 *input_fmts, input_fmt; *num_input_fmts = 0; switch (output_fmt) { case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_RGB666_1X18: case MEDIA_BUS_FMT_FIXED: input_fmt = MEDIA_BUS_FMT_RGB888_1X24; break; case MEDIA_BUS_FMT_RGB565_1X16: input_fmt = output_fmt; break; default: return NULL; } input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL); if (!input_fmts) return NULL; input_fmts[0] = input_fmt; *num_input_fmts = 1; return input_fmts; } static int imx93_dsi_phy_init(void *priv_data) { struct imx93_dsi *dsi = priv_data; unsigned int fmt = 0; int ret; switch (dsi->format) { case MIPI_DSI_FMT_RGB888: fmt = RGB888_TO_RGB888; break; case MIPI_DSI_FMT_RGB666: fmt = RGB888_TO_RGB666; regmap_update_bits(dsi->regmap, DISPLAY_MUX, MIPI_DSI_RGB666_MAP_CFG, RGB666_CONFIG2); break; case MIPI_DSI_FMT_RGB666_PACKED: fmt = RGB888_TO_RGB666; regmap_update_bits(dsi->regmap, DISPLAY_MUX, MIPI_DSI_RGB666_MAP_CFG, RGB666_CONFIG1); break; case MIPI_DSI_FMT_RGB565: fmt = RGB565_TO_RGB565; regmap_update_bits(dsi->regmap, DISPLAY_MUX, MIPI_DSI_RGB565_MAP_CFG, RGB565_CONFIG1); break; } regmap_update_bits(dsi->regmap, DISPLAY_MUX, LCDIF_CROSS_LINE_PATTERN, fmt); ret = dphy_pll_init(dsi); if (ret < 0) { dev_err(dsi->dev, "failed to init phy pll: %d\n", ret); return ret; } ret = dphy_pll_configure(dsi, &dsi->phy_cfg); if (ret < 0) { dev_err(dsi->dev, "failed to configure phy pll: %d\n", ret); dphy_pll_uninit(dsi); return ret; } return 0; } static void imx93_dsi_phy_power_off(void *priv_data) { struct imx93_dsi *dsi = priv_data; dphy_pll_power_off(dsi); dphy_pll_uninit(dsi); } static int imx93_dsi_get_lane_mbps(void *priv_data, const struct drm_display_mode *mode, unsigned long mode_flags, u32 lanes, u32 format, unsigned int *lane_mbps) { struct imx93_dsi *dsi = priv_data; union phy_configure_opts phy_cfg; struct device *dev = dsi->dev; int ret; ret = imx93_dsi_get_phy_configure_opts(dsi, mode, &phy_cfg, lanes, format); if (ret < 0) { dev_dbg(dev, "failed to get phy cfg opts %d\n", ret); return ret; } *lane_mbps = DIV_ROUND_UP(phy_cfg.mipi_dphy.hs_clk_rate, USEC_PER_SEC); memcpy(&dsi->phy_cfg, &phy_cfg, sizeof(phy_cfg)); dev_dbg(dev, "get lane_mbps %u for mode " DRM_MODE_FMT "\n", *lane_mbps, DRM_MODE_ARG(mode)); return 0; } /* High-Speed Transition Times */ struct hstt { unsigned int maxfreq; struct dw_mipi_dsi_dphy_timing timing; }; #define HSTT(_maxfreq, _c_lp2hs, _c_hs2lp, _d_lp2hs, _d_hs2lp) \ { \ .maxfreq = (_maxfreq), \ .timing = { \ .clk_lp2hs = (_c_lp2hs), \ .clk_hs2lp = (_c_hs2lp), \ .data_lp2hs = (_d_lp2hs), \ .data_hs2lp = (_d_hs2lp), \ } \ } /* DPHY Databook Table A-4 High-Speed Transition Times */ static const struct hstt hstt_table[] = { HSTT(80, 21, 17, 15, 10), HSTT(90, 23, 17, 16, 10), HSTT(100, 22, 17, 16, 10), HSTT(110, 25, 18, 17, 11), HSTT(120, 26, 20, 18, 11), HSTT(130, 27, 19, 19, 11), HSTT(140, 27, 19, 19, 11), HSTT(150, 28, 20, 20, 12), HSTT(160, 30, 21, 22, 13), HSTT(170, 30, 21, 23, 13), HSTT(180, 31, 21, 23, 13), HSTT(190, 32, 22, 24, 13), HSTT(205, 35, 22, 25, 13), HSTT(220, 37, 26, 27, 15), HSTT(235, 38, 28, 27, 16), HSTT(250, 41, 29, 30, 17), HSTT(275, 43, 29, 32, 18), HSTT(300, 45, 32, 35, 19), HSTT(325, 48, 33, 36, 18), HSTT(350, 51, 35, 40, 20), HSTT(400, 59, 37, 44, 21), HSTT(450, 65, 40, 49, 23), HSTT(500, 71, 41, 54, 24), HSTT(550, 77, 44, 57, 26), HSTT(600, 82, 46, 64, 27), HSTT(650, 87, 48, 67, 28), HSTT(700, 94, 52, 71, 29), HSTT(750, 99, 52, 75, 31), HSTT(800, 105, 55, 82, 32), HSTT(850, 110, 58, 85, 32), HSTT(900, 115, 58, 88, 35), HSTT(950, 120, 62, 93, 36), HSTT(1000, 128, 63, 99, 38), HSTT(1050, 132, 65, 102, 38), HSTT(1100, 138, 67, 106, 39), HSTT(1150, 146, 69, 112, 42), HSTT(1200, 151, 71, 117, 43), HSTT(1250, 153, 74, 120, 45), HSTT(1300, 160, 73, 124, 46), HSTT(1350, 165, 76, 130, 47), HSTT(1400, 172, 78, 134, 49), HSTT(1450, 177, 80, 138, 49), HSTT(1500, 183, 81, 143, 52), HSTT(1550, 191, 84, 147, 52), HSTT(1600, 194, 85, 152, 52), HSTT(1650, 201, 86, 155, 53), HSTT(1700, 208, 88, 161, 53), HSTT(1750, 212, 89, 165, 53), HSTT(1800, 220, 90, 171, 54), HSTT(1850, 223, 92, 175, 54), HSTT(1900, 231, 91, 180, 55), HSTT(1950, 236, 95, 185, 56), HSTT(2000, 243, 97, 190, 56), HSTT(2050, 248, 99, 194, 58), HSTT(2100, 252, 100, 199, 59), HSTT(2150, 259, 102, 204, 61), HSTT(2200, 266, 105, 210, 62), HSTT(2250, 269, 109, 213, 63), HSTT(2300, 272, 109, 217, 65), HSTT(2350, 281, 112, 225, 66), HSTT(2400, 283, 115, 226, 66), HSTT(2450, 282, 115, 226, 67), HSTT(2500, 281, 118, 227, 67), }; static int imx93_dsi_phy_get_timing(void *priv_data, unsigned int lane_mbps, struct dw_mipi_dsi_dphy_timing *timing) { struct imx93_dsi *dsi = priv_data; struct device *dev = dsi->dev; int i; for (i = 0; i < ARRAY_SIZE(hstt_table); i++) if (lane_mbps <= hstt_table[i].maxfreq) break; if (i == ARRAY_SIZE(hstt_table)) { dev_err(dev, "failed to get phy timing for lane_mbps %u\n", lane_mbps); return -EINVAL; } *timing = hstt_table[i].timing; dev_dbg(dev, "get phy timing for %u <= %u (lane_mbps)\n", lane_mbps, hstt_table[i].maxfreq); return 0; } static const struct dw_mipi_dsi_phy_ops imx93_dsi_phy_ops = { .init = imx93_dsi_phy_init, .power_off = imx93_dsi_phy_power_off, .get_lane_mbps = imx93_dsi_get_lane_mbps, .get_timing = imx93_dsi_phy_get_timing, }; static int imx93_dsi_host_attach(void *priv_data, struct mipi_dsi_device *device) { struct imx93_dsi *dsi = priv_data; dsi->format = device->format; return 0; } static const struct dw_mipi_dsi_host_ops imx93_dsi_host_ops = { .attach = imx93_dsi_host_attach, }; static int imx93_dsi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct imx93_dsi *dsi; int ret; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dsi->regmap = syscon_regmap_lookup_by_phandle(np, "fsl,media-blk-ctrl"); if (IS_ERR(dsi->regmap)) { ret = PTR_ERR(dsi->regmap); dev_err(dev, "failed to get block ctrl regmap: %d\n", ret); return ret; } dsi->clk_pixel = devm_clk_get(dev, "pix"); if (IS_ERR(dsi->clk_pixel)) return dev_err_probe(dev, PTR_ERR(dsi->clk_pixel), "failed to get pixel clock\n"); dsi->clk_cfg = devm_clk_get(dev, "phy_cfg"); if (IS_ERR(dsi->clk_cfg)) return dev_err_probe(dev, PTR_ERR(dsi->clk_cfg), "failed to get phy cfg clock\n"); dsi->clk_ref = devm_clk_get(dev, "phy_ref"); if (IS_ERR(dsi->clk_ref)) return dev_err_probe(dev, PTR_ERR(dsi->clk_ref), "failed to get phy ref clock\n"); dsi->ref_clk_rate = clk_get_rate(dsi->clk_ref); if (dsi->ref_clk_rate < REF_CLK_RATE_MIN || dsi->ref_clk_rate > REF_CLK_RATE_MAX) { dev_err(dev, "invalid phy ref clock rate %lu\n", dsi->ref_clk_rate); return -EINVAL; } dev_dbg(dev, "phy ref clock rate: %lu\n", dsi->ref_clk_rate); dsi->dev = dev; dsi->pdata.max_data_lanes = 4; dsi->pdata.mode_valid = imx93_dsi_mode_valid; dsi->pdata.mode_fixup = imx93_dsi_mode_fixup; dsi->pdata.get_input_bus_fmts = imx93_dsi_get_input_bus_fmts; dsi->pdata.phy_ops = &imx93_dsi_phy_ops; dsi->pdata.host_ops = &imx93_dsi_host_ops; dsi->pdata.priv_data = dsi; platform_set_drvdata(pdev, dsi); dsi->dmd = dw_mipi_dsi_probe(pdev, &dsi->pdata); if (IS_ERR(dsi->dmd)) return dev_err_probe(dev, PTR_ERR(dsi->dmd), "failed to probe dw_mipi_dsi\n"); return 0; } static void imx93_dsi_remove(struct platform_device *pdev) { struct imx93_dsi *dsi = platform_get_drvdata(pdev); dw_mipi_dsi_remove(dsi->dmd); } static const struct of_device_id imx93_dsi_dt_ids[] = { { .compatible = "fsl,imx93-mipi-dsi", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, imx93_dsi_dt_ids); static struct platform_driver imx93_dsi_driver = { .probe = imx93_dsi_probe, .remove_new = imx93_dsi_remove, .driver = { .of_match_table = imx93_dsi_dt_ids, .name = "imx93_mipi_dsi", }, }; module_platform_driver(imx93_dsi_driver); MODULE_DESCRIPTION("Freescale i.MX93 MIPI DSI driver"); MODULE_AUTHOR("Liu Ying "); MODULE_LICENSE("GPL");