/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g4x_dp.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" #include "intel_atomic.h" #include "intel_audio.h" #include "intel_backlight.h" #include "intel_combo_phy_regs.h" #include "intel_connector.h" #include "intel_crtc.h" #include "intel_cx0_phy.h" #include "intel_ddi.h" #include "intel_de.h" #include "intel_display_driver.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_dp_aux.h" #include "intel_dp_hdcp.h" #include "intel_dp_link_training.h" #include "intel_dp_mst.h" #include "intel_dp_tunnel.h" #include "intel_dpio_phy.h" #include "intel_dpll.h" #include "intel_drrs.h" #include "intel_fifo_underrun.h" #include "intel_hdcp.h" #include "intel_hdmi.h" #include "intel_hotplug.h" #include "intel_hotplug_irq.h" #include "intel_lspcon.h" #include "intel_lvds.h" #include "intel_panel.h" #include "intel_pch_display.h" #include "intel_pps.h" #include "intel_psr.h" #include "intel_tc.h" #include "intel_vdsc.h" #include "intel_vrr.h" #include "intel_crtc_state_dump.h" /* DP DSC throughput values used for slice count calculations KPixels/s */ #define DP_DSC_PEAK_PIXEL_RATE 2720000 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 /* Max DSC line buffer depth supported by HW. */ #define INTEL_DP_DSC_MAX_LINE_BUF_DEPTH 13 /* DP DSC FEC Overhead factor in ppm = 1/(0.972261) = 1.028530 */ #define DP_DSC_FEC_OVERHEAD_FACTOR 1028530 /* Compliance test status bits */ #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) /* Constants for DP DSC configurations */ static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; /* With Single pipe configuration, HW is capable of supporting maximum * of 4 slices per line. */ static const u8 valid_dsc_slicecount[] = {1, 2, 4}; /** * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) * @intel_dp: DP struct * * If a CPU or PCH DP output is attached to an eDP panel, this function * will return true, and false otherwise. * * This function is not safe to use prior to encoder type being set. */ bool intel_dp_is_edp(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); return dig_port->base.type == INTEL_OUTPUT_EDP; } bool intel_dp_as_sdp_supported(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); return HAS_AS_SDP(i915) && drm_dp_as_sdp_supported(&intel_dp->aux, intel_dp->dpcd); } static void intel_dp_unset_edid(struct intel_dp *intel_dp); /* Is link rate UHBR and thus 128b/132b? */ bool intel_dp_is_uhbr(const struct intel_crtc_state *crtc_state) { return drm_dp_is_uhbr_rate(crtc_state->port_clock); } /** * intel_dp_link_symbol_size - get the link symbol size for a given link rate * @rate: link rate in 10kbit/s units * * Returns the link symbol size in bits/symbol units depending on the link * rate -> channel coding. */ int intel_dp_link_symbol_size(int rate) { return drm_dp_is_uhbr_rate(rate) ? 32 : 10; } /** * intel_dp_link_symbol_clock - convert link rate to link symbol clock * @rate: link rate in 10kbit/s units * * Returns the link symbol clock frequency in kHz units depending on the * link rate and channel coding. */ int intel_dp_link_symbol_clock(int rate) { return DIV_ROUND_CLOSEST(rate * 10, intel_dp_link_symbol_size(rate)); } static int max_dprx_rate(struct intel_dp *intel_dp) { if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp)) return drm_dp_tunnel_max_dprx_rate(intel_dp->tunnel); return drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); } static int max_dprx_lane_count(struct intel_dp *intel_dp) { if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp)) return drm_dp_tunnel_max_dprx_lane_count(intel_dp->tunnel); return drm_dp_max_lane_count(intel_dp->dpcd); } static void intel_dp_set_default_sink_rates(struct intel_dp *intel_dp) { intel_dp->sink_rates[0] = 162000; intel_dp->num_sink_rates = 1; } /* update sink rates from dpcd */ static void intel_dp_set_dpcd_sink_rates(struct intel_dp *intel_dp) { static const int dp_rates[] = { 162000, 270000, 540000, 810000 }; int i, max_rate; int max_lttpr_rate; if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) { /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */ static const int quirk_rates[] = { 162000, 270000, 324000 }; memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates)); intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates); return; } /* * Sink rates for 8b/10b. */ max_rate = max_dprx_rate(intel_dp); max_lttpr_rate = drm_dp_lttpr_max_link_rate(intel_dp->lttpr_common_caps); if (max_lttpr_rate) max_rate = min(max_rate, max_lttpr_rate); for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { if (dp_rates[i] > max_rate) break; intel_dp->sink_rates[i] = dp_rates[i]; } /* * Sink rates for 128b/132b. If set, sink should support all 8b/10b * rates and 10 Gbps. */ if (drm_dp_128b132b_supported(intel_dp->dpcd)) { u8 uhbr_rates = 0; BUILD_BUG_ON(ARRAY_SIZE(intel_dp->sink_rates) < ARRAY_SIZE(dp_rates) + 3); drm_dp_dpcd_readb(&intel_dp->aux, DP_128B132B_SUPPORTED_LINK_RATES, &uhbr_rates); if (drm_dp_lttpr_count(intel_dp->lttpr_common_caps)) { /* We have a repeater */ if (intel_dp->lttpr_common_caps[0] >= 0x20 && intel_dp->lttpr_common_caps[DP_MAIN_LINK_CHANNEL_CODING_PHY_REPEATER - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] & DP_PHY_REPEATER_128B132B_SUPPORTED) { /* Repeater supports 128b/132b, valid UHBR rates */ uhbr_rates &= intel_dp->lttpr_common_caps[DP_PHY_REPEATER_128B132B_RATES - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV]; } else { /* Does not support 128b/132b */ uhbr_rates = 0; } } if (uhbr_rates & DP_UHBR10) intel_dp->sink_rates[i++] = 1000000; if (uhbr_rates & DP_UHBR13_5) intel_dp->sink_rates[i++] = 1350000; if (uhbr_rates & DP_UHBR20) intel_dp->sink_rates[i++] = 2000000; } intel_dp->num_sink_rates = i; } static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; intel_dp_set_dpcd_sink_rates(intel_dp); if (intel_dp->num_sink_rates) return; drm_err(&dp_to_i915(intel_dp)->drm, "[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD with no link rates, using defaults\n", connector->base.base.id, connector->base.name, encoder->base.base.id, encoder->base.name); intel_dp_set_default_sink_rates(intel_dp); } static void intel_dp_set_default_max_sink_lane_count(struct intel_dp *intel_dp) { intel_dp->max_sink_lane_count = 1; } static void intel_dp_set_max_sink_lane_count(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; intel_dp->max_sink_lane_count = max_dprx_lane_count(intel_dp); switch (intel_dp->max_sink_lane_count) { case 1: case 2: case 4: return; } drm_err(&dp_to_i915(intel_dp)->drm, "[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD max lane count (%d), using default\n", connector->base.base.id, connector->base.name, encoder->base.base.id, encoder->base.name, intel_dp->max_sink_lane_count); intel_dp_set_default_max_sink_lane_count(intel_dp); } /* Get length of rates array potentially limited by max_rate. */ static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) { int i; /* Limit results by potentially reduced max rate */ for (i = 0; i < len; i++) { if (rates[len - i - 1] <= max_rate) return len - i; } return 0; } /* Get length of common rates array potentially limited by max_rate. */ static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, int max_rate) { return intel_dp_rate_limit_len(intel_dp->common_rates, intel_dp->num_common_rates, max_rate); } static int intel_dp_common_rate(struct intel_dp *intel_dp, int index) { if (drm_WARN_ON(&dp_to_i915(intel_dp)->drm, index < 0 || index >= intel_dp->num_common_rates)) return 162000; return intel_dp->common_rates[index]; } /* Theoretical max between source and sink */ int intel_dp_max_common_rate(struct intel_dp *intel_dp) { return intel_dp_common_rate(intel_dp, intel_dp->num_common_rates - 1); } static int intel_dp_max_source_lane_count(struct intel_digital_port *dig_port) { int vbt_max_lanes = intel_bios_dp_max_lane_count(dig_port->base.devdata); int max_lanes = dig_port->max_lanes; if (vbt_max_lanes) max_lanes = min(max_lanes, vbt_max_lanes); return max_lanes; } /* Theoretical max between source and sink */ int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); int source_max = intel_dp_max_source_lane_count(dig_port); int sink_max = intel_dp->max_sink_lane_count; int lane_max = intel_tc_port_max_lane_count(dig_port); int lttpr_max = drm_dp_lttpr_max_lane_count(intel_dp->lttpr_common_caps); if (lttpr_max) sink_max = min(sink_max, lttpr_max); return min3(source_max, sink_max, lane_max); } int intel_dp_max_lane_count(struct intel_dp *intel_dp) { switch (intel_dp->max_link_lane_count) { case 1: case 2: case 4: return intel_dp->max_link_lane_count; default: MISSING_CASE(intel_dp->max_link_lane_count); return 1; } } /* * The required data bandwidth for a mode with given pixel clock and bpp. This * is the required net bandwidth independent of the data bandwidth efficiency. * * TODO: check if callers of this functions should use * intel_dp_effective_data_rate() instead. */ int intel_dp_link_required(int pixel_clock, int bpp) { /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ return DIV_ROUND_UP(pixel_clock * bpp, 8); } /** * intel_dp_effective_data_rate - Return the pixel data rate accounting for BW allocation overhead * @pixel_clock: pixel clock in kHz * @bpp_x16: bits per pixel .4 fixed point format * @bw_overhead: BW allocation overhead in 1ppm units * * Return the effective pixel data rate in kB/sec units taking into account * the provided SSC, FEC, DSC BW allocation overhead. */ int intel_dp_effective_data_rate(int pixel_clock, int bpp_x16, int bw_overhead) { return DIV_ROUND_UP_ULL(mul_u32_u32(pixel_clock * bpp_x16, bw_overhead), 1000000 * 16 * 8); } /** * intel_dp_max_link_data_rate: Calculate the maximum rate for the given link params * @intel_dp: Intel DP object * @max_dprx_rate: Maximum data rate of the DPRX * @max_dprx_lanes: Maximum lane count of the DPRX * * Calculate the maximum data rate for the provided link parameters taking into * account any BW limitations by a DP tunnel attached to @intel_dp. * * Returns the maximum data rate in kBps units. */ int intel_dp_max_link_data_rate(struct intel_dp *intel_dp, int max_dprx_rate, int max_dprx_lanes) { int max_rate = drm_dp_max_dprx_data_rate(max_dprx_rate, max_dprx_lanes); if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp)) max_rate = min(max_rate, drm_dp_tunnel_available_bw(intel_dp->tunnel)); return max_rate; } bool intel_dp_has_bigjoiner(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); /* eDP MSO is not compatible with joiner */ if (intel_dp->mso_link_count) return false; return DISPLAY_VER(dev_priv) >= 12 || (DISPLAY_VER(dev_priv) == 11 && encoder->port != PORT_A); } static int dg2_max_source_rate(struct intel_dp *intel_dp) { return intel_dp_is_edp(intel_dp) ? 810000 : 1350000; } static int icl_max_source_rate(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; if (intel_encoder_is_combo(encoder) && !intel_dp_is_edp(intel_dp)) return 540000; return 810000; } static int ehl_max_source_rate(struct intel_dp *intel_dp) { if (intel_dp_is_edp(intel_dp)) return 540000; return 810000; } static int mtl_max_source_rate(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; if (intel_encoder_is_c10phy(encoder)) return 810000; return 2000000; } static int vbt_max_link_rate(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; int max_rate; max_rate = intel_bios_dp_max_link_rate(encoder->devdata); if (intel_dp_is_edp(intel_dp)) { struct intel_connector *connector = intel_dp->attached_connector; int edp_max_rate = connector->panel.vbt.edp.max_link_rate; if (max_rate && edp_max_rate) max_rate = min(max_rate, edp_max_rate); else if (edp_max_rate) max_rate = edp_max_rate; } return max_rate; } static void intel_dp_set_source_rates(struct intel_dp *intel_dp) { /* The values must be in increasing order */ static const int mtl_rates[] = { 162000, 216000, 243000, 270000, 324000, 432000, 540000, 675000, 810000, 1000000, 2000000, }; static const int icl_rates[] = { 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000, 1000000, 1350000, }; static const int bxt_rates[] = { 162000, 216000, 243000, 270000, 324000, 432000, 540000 }; static const int skl_rates[] = { 162000, 216000, 270000, 324000, 432000, 540000 }; static const int hsw_rates[] = { 162000, 270000, 540000 }; static const int g4x_rates[] = { 162000, 270000 }; struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); const int *source_rates; int size, max_rate = 0, vbt_max_rate; /* This should only be done once */ drm_WARN_ON(&dev_priv->drm, intel_dp->source_rates || intel_dp->num_source_rates); if (DISPLAY_VER(dev_priv) >= 14) { source_rates = mtl_rates; size = ARRAY_SIZE(mtl_rates); max_rate = mtl_max_source_rate(intel_dp); } else if (DISPLAY_VER(dev_priv) >= 11) { source_rates = icl_rates; size = ARRAY_SIZE(icl_rates); if (IS_DG2(dev_priv)) max_rate = dg2_max_source_rate(intel_dp); else if (IS_ALDERLAKE_P(dev_priv) || IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) max_rate = 810000; else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) max_rate = ehl_max_source_rate(intel_dp); else max_rate = icl_max_source_rate(intel_dp); } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { source_rates = bxt_rates; size = ARRAY_SIZE(bxt_rates); } else if (DISPLAY_VER(dev_priv) == 9) { source_rates = skl_rates; size = ARRAY_SIZE(skl_rates); } else if ((IS_HASWELL(dev_priv) && !IS_HASWELL_ULX(dev_priv)) || IS_BROADWELL(dev_priv)) { source_rates = hsw_rates; size = ARRAY_SIZE(hsw_rates); } else { source_rates = g4x_rates; size = ARRAY_SIZE(g4x_rates); } vbt_max_rate = vbt_max_link_rate(intel_dp); if (max_rate && vbt_max_rate) max_rate = min(max_rate, vbt_max_rate); else if (vbt_max_rate) max_rate = vbt_max_rate; if (max_rate) size = intel_dp_rate_limit_len(source_rates, size, max_rate); intel_dp->source_rates = source_rates; intel_dp->num_source_rates = size; } static int intersect_rates(const int *source_rates, int source_len, const int *sink_rates, int sink_len, int *common_rates) { int i = 0, j = 0, k = 0; while (i < source_len && j < sink_len) { if (source_rates[i] == sink_rates[j]) { if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) return k; common_rates[k] = source_rates[i]; ++k; ++i; ++j; } else if (source_rates[i] < sink_rates[j]) { ++i; } else { ++j; } } return k; } /* return index of rate in rates array, or -1 if not found */ static int intel_dp_rate_index(const int *rates, int len, int rate) { int i; for (i = 0; i < len; i++) if (rate == rates[i]) return i; return -1; } static void intel_dp_set_common_rates(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); drm_WARN_ON(&i915->drm, !intel_dp->num_source_rates || !intel_dp->num_sink_rates); intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, intel_dp->num_source_rates, intel_dp->sink_rates, intel_dp->num_sink_rates, intel_dp->common_rates); /* Paranoia, there should always be something in common. */ if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) { intel_dp->common_rates[0] = 162000; intel_dp->num_common_rates = 1; } } static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, u8 lane_count) { /* * FIXME: we need to synchronize the current link parameters with * hardware readout. Currently fast link training doesn't work on * boot-up. */ if (link_rate == 0 || link_rate > intel_dp->max_link_rate) return false; if (lane_count == 0 || lane_count > intel_dp_max_lane_count(intel_dp)) return false; return true; } static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, int link_rate, u8 lane_count) { /* FIXME figure out what we actually want here */ const struct drm_display_mode *fixed_mode = intel_panel_preferred_fixed_mode(intel_dp->attached_connector); int mode_rate, max_rate; mode_rate = intel_dp_link_required(fixed_mode->clock, 18); max_rate = intel_dp_max_link_data_rate(intel_dp, link_rate, lane_count); if (mode_rate > max_rate) return false; return true; } int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, int link_rate, u8 lane_count) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int index; /* * TODO: Enable fallback on MST links once MST link compute can handle * the fallback params. */ if (intel_dp->is_mst) { drm_err(&i915->drm, "Link Training Unsuccessful\n"); return -1; } if (intel_dp_is_edp(intel_dp) && !intel_dp->use_max_params) { drm_dbg_kms(&i915->drm, "Retrying Link training for eDP with max parameters\n"); intel_dp->use_max_params = true; return 0; } index = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, link_rate); if (index > 0) { if (intel_dp_is_edp(intel_dp) && !intel_dp_can_link_train_fallback_for_edp(intel_dp, intel_dp_common_rate(intel_dp, index - 1), lane_count)) { drm_dbg_kms(&i915->drm, "Retrying Link training for eDP with same parameters\n"); return 0; } intel_dp->max_link_rate = intel_dp_common_rate(intel_dp, index - 1); intel_dp->max_link_lane_count = lane_count; } else if (lane_count > 1) { if (intel_dp_is_edp(intel_dp) && !intel_dp_can_link_train_fallback_for_edp(intel_dp, intel_dp_max_common_rate(intel_dp), lane_count >> 1)) { drm_dbg_kms(&i915->drm, "Retrying Link training for eDP with same parameters\n"); return 0; } intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); intel_dp->max_link_lane_count = lane_count >> 1; } else { drm_err(&i915->drm, "Link Training Unsuccessful\n"); return -1; } return 0; } u32 intel_dp_mode_to_fec_clock(u32 mode_clock) { return div_u64(mul_u32_u32(mode_clock, DP_DSC_FEC_OVERHEAD_FACTOR), 1000000U); } int intel_dp_bw_fec_overhead(bool fec_enabled) { /* * TODO: Calculate the actual overhead for a given mode. * The hard-coded 1/0.972261=2.853% overhead factor * corresponds (for instance) to the 8b/10b DP FEC 2.4% + * 0.453% DSC overhead. This is enough for a 3840 width mode, * which has a DSC overhead of up to ~0.2%, but may not be * enough for a 1024 width mode where this is ~0.8% (on a 4 * lane DP link, with 2 DSC slices and 8 bpp color depth). */ return fec_enabled ? DP_DSC_FEC_OVERHEAD_FACTOR : 1000000; } static int small_joiner_ram_size_bits(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 13) return 17280 * 8; else if (DISPLAY_VER(i915) >= 11) return 7680 * 8; else return 6144 * 8; } u32 intel_dp_dsc_nearest_valid_bpp(struct drm_i915_private *i915, u32 bpp, u32 pipe_bpp) { u32 bits_per_pixel = bpp; int i; /* Error out if the max bpp is less than smallest allowed valid bpp */ if (bits_per_pixel < valid_dsc_bpp[0]) { drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n", bits_per_pixel, valid_dsc_bpp[0]); return 0; } /* From XE_LPD onwards we support from bpc upto uncompressed bpp-1 BPPs */ if (DISPLAY_VER(i915) >= 13) { bits_per_pixel = min(bits_per_pixel, pipe_bpp - 1); /* * According to BSpec, 27 is the max DSC output bpp, * 8 is the min DSC output bpp. * While we can still clamp higher bpp values to 27, saving bandwidth, * if it is required to oompress up to bpp < 8, means we can't do * that and probably means we can't fit the required mode, even with * DSC enabled. */ if (bits_per_pixel < 8) { drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min 8\n", bits_per_pixel); return 0; } bits_per_pixel = min_t(u32, bits_per_pixel, 27); } else { /* Find the nearest match in the array of known BPPs from VESA */ for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { if (bits_per_pixel < valid_dsc_bpp[i + 1]) break; } drm_dbg_kms(&i915->drm, "Set dsc bpp from %d to VESA %d\n", bits_per_pixel, valid_dsc_bpp[i]); bits_per_pixel = valid_dsc_bpp[i]; } return bits_per_pixel; } static u32 get_max_compressed_bpp_with_joiner(struct drm_i915_private *i915, u32 mode_clock, u32 mode_hdisplay, bool bigjoiner) { u32 max_bpp_small_joiner_ram; /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / mode_hdisplay; if (bigjoiner) { int bigjoiner_interface_bits = DISPLAY_VER(i915) >= 14 ? 36 : 24; /* With bigjoiner multiple dsc engines are used in parallel so PPC is 2 */ int ppc = 2; u32 max_bpp_bigjoiner = i915->display.cdclk.max_cdclk_freq * ppc * bigjoiner_interface_bits / intel_dp_mode_to_fec_clock(mode_clock); max_bpp_small_joiner_ram *= 2; return min(max_bpp_small_joiner_ram, max_bpp_bigjoiner); } return max_bpp_small_joiner_ram; } u16 intel_dp_dsc_get_max_compressed_bpp(struct drm_i915_private *i915, u32 link_clock, u32 lane_count, u32 mode_clock, u32 mode_hdisplay, bool bigjoiner, enum intel_output_format output_format, u32 pipe_bpp, u32 timeslots) { u32 bits_per_pixel, joiner_max_bpp; /* * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* * (LinkSymbolClock)* 8 * (TimeSlots / 64) * for SST -> TimeSlots is 64(i.e all TimeSlots that are available) * for MST -> TimeSlots has to be calculated, based on mode requirements * * Due to FEC overhead, the available bw is reduced to 97.2261%. * To support the given mode: * Bandwidth required should be <= Available link Bandwidth * FEC Overhead * =>ModeClock * bits_per_pixel <= Available Link Bandwidth * FEC Overhead * =>bits_per_pixel <= Available link Bandwidth * FEC Overhead / ModeClock * =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock) * 8 (TimeSlots / 64) / * (ModeClock / FEC Overhead) * =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock * TimeSlots) / * (ModeClock / FEC Overhead * 8) */ bits_per_pixel = ((link_clock * lane_count) * timeslots) / (intel_dp_mode_to_fec_clock(mode_clock) * 8); /* Bandwidth required for 420 is half, that of 444 format */ if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) bits_per_pixel *= 2; /* * According to DSC 1.2a Section 4.1.1 Table 4.1 the maximum * supported PPS value can be 63.9375 and with the further * mention that for 420, 422 formats, bpp should be programmed double * the target bpp restricting our target bpp to be 31.9375 at max. */ if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) bits_per_pixel = min_t(u32, bits_per_pixel, 31); drm_dbg_kms(&i915->drm, "Max link bpp is %u for %u timeslots " "total bw %u pixel clock %u\n", bits_per_pixel, timeslots, (link_clock * lane_count * 8), intel_dp_mode_to_fec_clock(mode_clock)); joiner_max_bpp = get_max_compressed_bpp_with_joiner(i915, mode_clock, mode_hdisplay, bigjoiner); bits_per_pixel = min(bits_per_pixel, joiner_max_bpp); bits_per_pixel = intel_dp_dsc_nearest_valid_bpp(i915, bits_per_pixel, pipe_bpp); return bits_per_pixel; } u8 intel_dp_dsc_get_slice_count(const struct intel_connector *connector, int mode_clock, int mode_hdisplay, bool bigjoiner) { struct drm_i915_private *i915 = to_i915(connector->base.dev); u8 min_slice_count, i; int max_slice_width; if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) min_slice_count = DIV_ROUND_UP(mode_clock, DP_DSC_MAX_ENC_THROUGHPUT_0); else min_slice_count = DIV_ROUND_UP(mode_clock, DP_DSC_MAX_ENC_THROUGHPUT_1); /* * Due to some DSC engine BW limitations, we need to enable second * slice and VDSC engine, whenever we approach close enough to max CDCLK */ if (mode_clock >= ((i915->display.cdclk.max_cdclk_freq * 85) / 100)) min_slice_count = max_t(u8, min_slice_count, 2); max_slice_width = drm_dp_dsc_sink_max_slice_width(connector->dp.dsc_dpcd); if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { drm_dbg_kms(&i915->drm, "Unsupported slice width %d by DP DSC Sink device\n", max_slice_width); return 0; } /* Also take into account max slice width */ min_slice_count = max_t(u8, min_slice_count, DIV_ROUND_UP(mode_hdisplay, max_slice_width)); /* Find the closest match to the valid slice count values */ for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { u8 test_slice_count = valid_dsc_slicecount[i] << bigjoiner; if (test_slice_count > drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, false)) break; /* big joiner needs small joiner to be enabled */ if (bigjoiner && test_slice_count < 4) continue; if (min_slice_count <= test_slice_count) return test_slice_count; } drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n", min_slice_count); return 0; } static bool source_can_output(struct intel_dp *intel_dp, enum intel_output_format format) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); switch (format) { case INTEL_OUTPUT_FORMAT_RGB: return true; case INTEL_OUTPUT_FORMAT_YCBCR444: /* * No YCbCr output support on gmch platforms. * Also, ILK doesn't seem capable of DP YCbCr output. * The displayed image is severly corrupted. SNB+ is fine. */ return !HAS_GMCH(i915) && !IS_IRONLAKE(i915); case INTEL_OUTPUT_FORMAT_YCBCR420: /* Platform < Gen 11 cannot output YCbCr420 format */ return DISPLAY_VER(i915) >= 11; default: MISSING_CASE(format); return false; } } static bool dfp_can_convert_from_rgb(struct intel_dp *intel_dp, enum intel_output_format sink_format) { if (!drm_dp_is_branch(intel_dp->dpcd)) return false; if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444) return intel_dp->dfp.rgb_to_ycbcr; if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) return intel_dp->dfp.rgb_to_ycbcr && intel_dp->dfp.ycbcr_444_to_420; return false; } static bool dfp_can_convert_from_ycbcr444(struct intel_dp *intel_dp, enum intel_output_format sink_format) { if (!drm_dp_is_branch(intel_dp->dpcd)) return false; if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) return intel_dp->dfp.ycbcr_444_to_420; return false; } static bool dfp_can_convert(struct intel_dp *intel_dp, enum intel_output_format output_format, enum intel_output_format sink_format) { switch (output_format) { case INTEL_OUTPUT_FORMAT_RGB: return dfp_can_convert_from_rgb(intel_dp, sink_format); case INTEL_OUTPUT_FORMAT_YCBCR444: return dfp_can_convert_from_ycbcr444(intel_dp, sink_format); default: MISSING_CASE(output_format); return false; } return false; } static enum intel_output_format intel_dp_output_format(struct intel_connector *connector, enum intel_output_format sink_format) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct drm_i915_private *i915 = dp_to_i915(intel_dp); enum intel_output_format force_dsc_output_format = intel_dp->force_dsc_output_format; enum intel_output_format output_format; if (force_dsc_output_format) { if (source_can_output(intel_dp, force_dsc_output_format) && (!drm_dp_is_branch(intel_dp->dpcd) || sink_format != force_dsc_output_format || dfp_can_convert(intel_dp, force_dsc_output_format, sink_format))) return force_dsc_output_format; drm_dbg_kms(&i915->drm, "Cannot force DSC output format\n"); } if (sink_format == INTEL_OUTPUT_FORMAT_RGB || dfp_can_convert_from_rgb(intel_dp, sink_format)) output_format = INTEL_OUTPUT_FORMAT_RGB; else if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444 || dfp_can_convert_from_ycbcr444(intel_dp, sink_format)) output_format = INTEL_OUTPUT_FORMAT_YCBCR444; else output_format = INTEL_OUTPUT_FORMAT_YCBCR420; drm_WARN_ON(&i915->drm, !source_can_output(intel_dp, output_format)); return output_format; } int intel_dp_min_bpp(enum intel_output_format output_format) { if (output_format == INTEL_OUTPUT_FORMAT_RGB) return 6 * 3; else return 8 * 3; } int intel_dp_output_bpp(enum intel_output_format output_format, int bpp) { /* * bpp value was assumed to RGB format. And YCbCr 4:2:0 output * format of the number of bytes per pixel will be half the number * of bytes of RGB pixel. */ if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) bpp /= 2; return bpp; } static enum intel_output_format intel_dp_sink_format(struct intel_connector *connector, const struct drm_display_mode *mode) { const struct drm_display_info *info = &connector->base.display_info; if (drm_mode_is_420_only(info, mode)) return INTEL_OUTPUT_FORMAT_YCBCR420; return INTEL_OUTPUT_FORMAT_RGB; } static int intel_dp_mode_min_output_bpp(struct intel_connector *connector, const struct drm_display_mode *mode) { enum intel_output_format output_format, sink_format; sink_format = intel_dp_sink_format(connector, mode); output_format = intel_dp_output_format(connector, sink_format); return intel_dp_output_bpp(output_format, intel_dp_min_bpp(output_format)); } static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, int hdisplay) { /* * Older platforms don't like hdisplay==4096 with DP. * * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline * and frame counter increment), but we don't get vblank interrupts, * and the pipe underruns immediately. The link also doesn't seem * to get trained properly. * * On CHV the vblank interrupts don't seem to disappear but * otherwise the symptoms are similar. * * TODO: confirm the behaviour on HSW+ */ return hdisplay == 4096 && !HAS_DDI(dev_priv); } static int intel_dp_max_tmds_clock(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; const struct drm_display_info *info = &connector->base.display_info; int max_tmds_clock = intel_dp->dfp.max_tmds_clock; /* Only consider the sink's max TMDS clock if we know this is a HDMI DFP */ if (max_tmds_clock && info->max_tmds_clock) max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock); return max_tmds_clock; } static enum drm_mode_status intel_dp_tmds_clock_valid(struct intel_dp *intel_dp, int clock, int bpc, enum intel_output_format sink_format, bool respect_downstream_limits) { int tmds_clock, min_tmds_clock, max_tmds_clock; if (!respect_downstream_limits) return MODE_OK; tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format); min_tmds_clock = intel_dp->dfp.min_tmds_clock; max_tmds_clock = intel_dp_max_tmds_clock(intel_dp); if (min_tmds_clock && tmds_clock < min_tmds_clock) return MODE_CLOCK_LOW; if (max_tmds_clock && tmds_clock > max_tmds_clock) return MODE_CLOCK_HIGH; return MODE_OK; } static enum drm_mode_status intel_dp_mode_valid_downstream(struct intel_connector *connector, const struct drm_display_mode *mode, int target_clock) { struct intel_dp *intel_dp = intel_attached_dp(connector); const struct drm_display_info *info = &connector->base.display_info; enum drm_mode_status status; enum intel_output_format sink_format; /* If PCON supports FRL MODE, check FRL bandwidth constraints */ if (intel_dp->dfp.pcon_max_frl_bw) { int target_bw; int max_frl_bw; int bpp = intel_dp_mode_min_output_bpp(connector, mode); target_bw = bpp * target_clock; max_frl_bw = intel_dp->dfp.pcon_max_frl_bw; /* converting bw from Gbps to Kbps*/ max_frl_bw = max_frl_bw * 1000000; if (target_bw > max_frl_bw) return MODE_CLOCK_HIGH; return MODE_OK; } if (intel_dp->dfp.max_dotclock && target_clock > intel_dp->dfp.max_dotclock) return MODE_CLOCK_HIGH; sink_format = intel_dp_sink_format(connector, mode); /* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */ status = intel_dp_tmds_clock_valid(intel_dp, target_clock, 8, sink_format, true); if (status != MODE_OK) { if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 || !connector->base.ycbcr_420_allowed || !drm_mode_is_420_also(info, mode)) return status; sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; status = intel_dp_tmds_clock_valid(intel_dp, target_clock, 8, sink_format, true); if (status != MODE_OK) return status; } return MODE_OK; } bool intel_dp_need_bigjoiner(struct intel_dp *intel_dp, struct intel_connector *connector, int hdisplay, int clock) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!intel_dp_has_bigjoiner(intel_dp)) return false; return clock > i915->display.cdclk.max_dotclk_freq || hdisplay > 5120 || connector->force_bigjoiner_enable; } static enum drm_mode_status intel_dp_mode_valid(struct drm_connector *_connector, struct drm_display_mode *mode) { struct intel_connector *connector = to_intel_connector(_connector); struct intel_dp *intel_dp = intel_attached_dp(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); const struct drm_display_mode *fixed_mode; int target_clock = mode->clock; int max_rate, mode_rate, max_lanes, max_link_clock; int max_dotclk = dev_priv->display.cdclk.max_dotclk_freq; u16 dsc_max_compressed_bpp = 0; u8 dsc_slice_count = 0; enum drm_mode_status status; bool dsc = false, bigjoiner = false; status = intel_cpu_transcoder_mode_valid(dev_priv, mode); if (status != MODE_OK) return status; if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_H_ILLEGAL; if (mode->clock < 10000) return MODE_CLOCK_LOW; fixed_mode = intel_panel_fixed_mode(connector, mode); if (intel_dp_is_edp(intel_dp) && fixed_mode) { status = intel_panel_mode_valid(connector, mode); if (status != MODE_OK) return status; target_clock = fixed_mode->clock; } if (intel_dp_need_bigjoiner(intel_dp, connector, mode->hdisplay, target_clock)) { bigjoiner = true; max_dotclk *= 2; } if (target_clock > max_dotclk) return MODE_CLOCK_HIGH; if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) return MODE_H_ILLEGAL; max_link_clock = intel_dp_max_link_rate(intel_dp); max_lanes = intel_dp_max_lane_count(intel_dp); max_rate = intel_dp_max_link_data_rate(intel_dp, max_link_clock, max_lanes); mode_rate = intel_dp_link_required(target_clock, intel_dp_mode_min_output_bpp(connector, mode)); if (HAS_DSC(dev_priv) && drm_dp_sink_supports_dsc(connector->dp.dsc_dpcd)) { enum intel_output_format sink_format, output_format; int pipe_bpp; sink_format = intel_dp_sink_format(connector, mode); output_format = intel_dp_output_format(connector, sink_format); /* * TBD pass the connector BPC, * for now U8_MAX so that max BPC on that platform would be picked */ pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, U8_MAX); /* * Output bpp is stored in 6.4 format so right shift by 4 to get the * integer value since we support only integer values of bpp. */ if (intel_dp_is_edp(intel_dp)) { dsc_max_compressed_bpp = drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd) >> 4; dsc_slice_count = drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, true); } else if (drm_dp_sink_supports_fec(connector->dp.fec_capability)) { dsc_max_compressed_bpp = intel_dp_dsc_get_max_compressed_bpp(dev_priv, max_link_clock, max_lanes, target_clock, mode->hdisplay, bigjoiner, output_format, pipe_bpp, 64); dsc_slice_count = intel_dp_dsc_get_slice_count(connector, target_clock, mode->hdisplay, bigjoiner); } dsc = dsc_max_compressed_bpp && dsc_slice_count; } if (intel_dp_joiner_needs_dsc(dev_priv, bigjoiner) && !dsc) return MODE_CLOCK_HIGH; if (mode_rate > max_rate && !dsc) return MODE_CLOCK_HIGH; status = intel_dp_mode_valid_downstream(connector, mode, target_clock); if (status != MODE_OK) return status; return intel_mode_valid_max_plane_size(dev_priv, mode, bigjoiner); } bool intel_dp_source_supports_tps3(struct drm_i915_private *i915) { return DISPLAY_VER(i915) >= 9 || IS_BROADWELL(i915) || IS_HASWELL(i915); } bool intel_dp_source_supports_tps4(struct drm_i915_private *i915) { return DISPLAY_VER(i915) >= 10; } static void snprintf_int_array(char *str, size_t len, const int *array, int nelem) { int i; str[0] = '\0'; for (i = 0; i < nelem; i++) { int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); if (r >= len) return; str += r; len -= r; } } static void intel_dp_print_rates(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); char str[128]; /* FIXME: too big for stack? */ if (!drm_debug_enabled(DRM_UT_KMS)) return; snprintf_int_array(str, sizeof(str), intel_dp->source_rates, intel_dp->num_source_rates); drm_dbg_kms(&i915->drm, "source rates: %s\n", str); snprintf_int_array(str, sizeof(str), intel_dp->sink_rates, intel_dp->num_sink_rates); drm_dbg_kms(&i915->drm, "sink rates: %s\n", str); snprintf_int_array(str, sizeof(str), intel_dp->common_rates, intel_dp->num_common_rates); drm_dbg_kms(&i915->drm, "common rates: %s\n", str); } int intel_dp_max_link_rate(struct intel_dp *intel_dp) { int len; len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); return intel_dp_common_rate(intel_dp, len - 1); } int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int i = intel_dp_rate_index(intel_dp->sink_rates, intel_dp->num_sink_rates, rate); if (drm_WARN_ON(&i915->drm, i < 0)) i = 0; return i; } void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, u8 *link_bw, u8 *rate_select) { /* eDP 1.4 rate select method. */ if (intel_dp->use_rate_select) { *link_bw = 0; *rate_select = intel_dp_rate_select(intel_dp, port_clock); } else { *link_bw = drm_dp_link_rate_to_bw_code(port_clock); *rate_select = 0; } } bool intel_dp_has_hdmi_sink(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; return connector->base.display_info.is_hdmi; } static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, const struct intel_crtc_state *pipe_config) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (DISPLAY_VER(dev_priv) >= 12) return true; if (DISPLAY_VER(dev_priv) == 11 && encoder->port != PORT_A && !intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) return true; return false; } bool intel_dp_supports_fec(struct intel_dp *intel_dp, const struct intel_connector *connector, const struct intel_crtc_state *pipe_config) { return intel_dp_source_supports_fec(intel_dp, pipe_config) && drm_dp_sink_supports_fec(connector->dp.fec_capability); } static bool intel_dp_supports_dsc(const struct intel_connector *connector, const struct intel_crtc_state *crtc_state) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP) && !crtc_state->fec_enable) return false; return intel_dsc_source_support(crtc_state) && connector->dp.dsc_decompression_aux && drm_dp_sink_supports_dsc(connector->dp.dsc_dpcd); } static int intel_dp_hdmi_compute_bpc(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, int bpc, bool respect_downstream_limits) { int clock = crtc_state->hw.adjusted_mode.crtc_clock; /* * Current bpc could already be below 8bpc due to * FDI bandwidth constraints or other limits. * HDMI minimum is 8bpc however. */ bpc = max(bpc, 8); /* * We will never exceed downstream TMDS clock limits while * attempting deep color. If the user insists on forcing an * out of spec mode they will have to be satisfied with 8bpc. */ if (!respect_downstream_limits) bpc = 8; for (; bpc >= 8; bpc -= 2) { if (intel_hdmi_bpc_possible(crtc_state, bpc, intel_dp_has_hdmi_sink(intel_dp)) && intel_dp_tmds_clock_valid(intel_dp, clock, bpc, crtc_state->sink_format, respect_downstream_limits) == MODE_OK) return bpc; } return -EINVAL; } static int intel_dp_max_bpp(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, bool respect_downstream_limits) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_connector *intel_connector = intel_dp->attached_connector; int bpp, bpc; bpc = crtc_state->pipe_bpp / 3; if (intel_dp->dfp.max_bpc) bpc = min_t(int, bpc, intel_dp->dfp.max_bpc); if (intel_dp->dfp.min_tmds_clock) { int max_hdmi_bpc; max_hdmi_bpc = intel_dp_hdmi_compute_bpc(intel_dp, crtc_state, bpc, respect_downstream_limits); if (max_hdmi_bpc < 0) return 0; bpc = min(bpc, max_hdmi_bpc); } bpp = bpc * 3; if (intel_dp_is_edp(intel_dp)) { /* Get bpp from vbt only for panels that dont have bpp in edid */ if (intel_connector->base.display_info.bpc == 0 && intel_connector->panel.vbt.edp.bpp && intel_connector->panel.vbt.edp.bpp < bpp) { drm_dbg_kms(&dev_priv->drm, "clamping bpp for eDP panel to BIOS-provided %i\n", intel_connector->panel.vbt.edp.bpp); bpp = intel_connector->panel.vbt.edp.bpp; } } return bpp; } /* Adjust link config limits based on compliance test requests. */ void intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct link_config_limits *limits) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); /* For DP Compliance we override the computed bpp for the pipe */ if (intel_dp->compliance.test_data.bpc != 0) { int bpp = 3 * intel_dp->compliance.test_data.bpc; limits->pipe.min_bpp = limits->pipe.max_bpp = bpp; pipe_config->dither_force_disable = bpp == 6 * 3; drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp); } /* Use values requested by Compliance Test Request */ if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { int index; /* Validate the compliance test data since max values * might have changed due to link train fallback. */ if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, intel_dp->compliance.test_lane_count)) { index = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, intel_dp->compliance.test_link_rate); if (index >= 0) limits->min_rate = limits->max_rate = intel_dp->compliance.test_link_rate; limits->min_lane_count = limits->max_lane_count = intel_dp->compliance.test_lane_count; } } } static bool has_seamless_m_n(struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->base.dev); /* * Seamless M/N reprogramming only implemented * for BDW+ double buffered M/N registers so far. */ return HAS_DOUBLE_BUFFERED_M_N(i915) && intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS; } static int intel_dp_mode_clock(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_connector *connector = to_intel_connector(conn_state->connector); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; /* FIXME a bit of a mess wrt clock vs. crtc_clock */ if (has_seamless_m_n(connector)) return intel_panel_highest_mode(connector, adjusted_mode)->clock; else return adjusted_mode->crtc_clock; } /* Optimize link config in order: max bpp, min clock, min lanes */ static int intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state, const struct link_config_limits *limits) { int bpp, i, lane_count, clock = intel_dp_mode_clock(pipe_config, conn_state); int mode_rate, link_rate, link_avail; for (bpp = to_bpp_int(limits->link.max_bpp_x16); bpp >= to_bpp_int(limits->link.min_bpp_x16); bpp -= 2 * 3) { int link_bpp = intel_dp_output_bpp(pipe_config->output_format, bpp); mode_rate = intel_dp_link_required(clock, link_bpp); for (i = 0; i < intel_dp->num_common_rates; i++) { link_rate = intel_dp_common_rate(intel_dp, i); if (link_rate < limits->min_rate || link_rate > limits->max_rate) continue; for (lane_count = limits->min_lane_count; lane_count <= limits->max_lane_count; lane_count <<= 1) { link_avail = intel_dp_max_link_data_rate(intel_dp, link_rate, lane_count); if (mode_rate <= link_avail) { pipe_config->lane_count = lane_count; pipe_config->pipe_bpp = bpp; pipe_config->port_clock = link_rate; return 0; } } } } return -EINVAL; } static u8 intel_dp_dsc_max_src_input_bpc(struct drm_i915_private *i915) { /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ if (DISPLAY_VER(i915) >= 12) return 12; if (DISPLAY_VER(i915) == 11) return 10; return 0; } int intel_dp_dsc_compute_max_bpp(const struct intel_connector *connector, u8 max_req_bpc) { struct drm_i915_private *i915 = to_i915(connector->base.dev); int i, num_bpc; u8 dsc_bpc[3] = {}; u8 dsc_max_bpc; dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(i915); if (!dsc_max_bpc) return dsc_max_bpc; dsc_max_bpc = min_t(u8, dsc_max_bpc, max_req_bpc); num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd, dsc_bpc); for (i = 0; i < num_bpc; i++) { if (dsc_max_bpc >= dsc_bpc[i]) return dsc_bpc[i] * 3; } return 0; } static int intel_dp_source_dsc_version_minor(struct drm_i915_private *i915) { return DISPLAY_VER(i915) >= 14 ? 2 : 1; } static int intel_dp_sink_dsc_version_minor(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) { return (dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT; } static int intel_dp_get_slice_height(int vactive) { int slice_height; /* * VDSC 1.2a spec in Section 3.8 Options for Slices implies that 108 * lines is an optimal slice height, but any size can be used as long as * vertical active integer multiple and maximum vertical slice count * requirements are met. */ for (slice_height = 108; slice_height <= vactive; slice_height += 2) if (vactive % slice_height == 0) return slice_height; /* * Highly unlikely we reach here as most of the resolutions will end up * finding appropriate slice_height in above loop but returning * slice_height as 2 here as it should work with all resolutions. */ return 2; } static int intel_dp_dsc_compute_params(const struct intel_connector *connector, struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(connector->base.dev); struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; int ret; /* * RC_MODEL_SIZE is currently a constant across all configurations. * * FIXME: Look into using sink defined DPCD DP_DSC_RC_BUF_BLK_SIZE and * DP_DSC_RC_BUF_SIZE for this. */ vdsc_cfg->rc_model_size = DSC_RC_MODEL_SIZE_CONST; vdsc_cfg->pic_height = crtc_state->hw.adjusted_mode.crtc_vdisplay; vdsc_cfg->slice_height = intel_dp_get_slice_height(vdsc_cfg->pic_height); ret = intel_dsc_compute_params(crtc_state); if (ret) return ret; vdsc_cfg->dsc_version_major = (connector->dp.dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; vdsc_cfg->dsc_version_minor = min(intel_dp_source_dsc_version_minor(i915), intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd)); if (vdsc_cfg->convert_rgb) vdsc_cfg->convert_rgb = connector->dp.dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & DP_DSC_RGB; vdsc_cfg->line_buf_depth = min(INTEL_DP_DSC_MAX_LINE_BUF_DEPTH, drm_dp_dsc_sink_line_buf_depth(connector->dp.dsc_dpcd)); if (!vdsc_cfg->line_buf_depth) { drm_dbg_kms(&i915->drm, "DSC Sink Line Buffer Depth invalid\n"); return -EINVAL; } vdsc_cfg->block_pred_enable = connector->dp.dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & DP_DSC_BLK_PREDICTION_IS_SUPPORTED; return drm_dsc_compute_rc_parameters(vdsc_cfg); } static bool intel_dp_dsc_supports_format(const struct intel_connector *connector, enum intel_output_format output_format) { struct drm_i915_private *i915 = to_i915(connector->base.dev); u8 sink_dsc_format; switch (output_format) { case INTEL_OUTPUT_FORMAT_RGB: sink_dsc_format = DP_DSC_RGB; break; case INTEL_OUTPUT_FORMAT_YCBCR444: sink_dsc_format = DP_DSC_YCbCr444; break; case INTEL_OUTPUT_FORMAT_YCBCR420: if (min(intel_dp_source_dsc_version_minor(i915), intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd)) < 2) return false; sink_dsc_format = DP_DSC_YCbCr420_Native; break; default: return false; } return drm_dp_dsc_sink_supports_format(connector->dp.dsc_dpcd, sink_dsc_format); } static bool is_bw_sufficient_for_dsc_config(u16 compressed_bppx16, u32 link_clock, u32 lane_count, u32 mode_clock, enum intel_output_format output_format, int timeslots) { u32 available_bw, required_bw; available_bw = (link_clock * lane_count * timeslots * 16) / 8; required_bw = compressed_bppx16 * (intel_dp_mode_to_fec_clock(mode_clock)); return available_bw > required_bw; } static int dsc_compute_link_config(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct link_config_limits *limits, u16 compressed_bppx16, int timeslots) { const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; int link_rate, lane_count; int i; for (i = 0; i < intel_dp->num_common_rates; i++) { link_rate = intel_dp_common_rate(intel_dp, i); if (link_rate < limits->min_rate || link_rate > limits->max_rate) continue; for (lane_count = limits->min_lane_count; lane_count <= limits->max_lane_count; lane_count <<= 1) { if (!is_bw_sufficient_for_dsc_config(compressed_bppx16, link_rate, lane_count, adjusted_mode->clock, pipe_config->output_format, timeslots)) continue; pipe_config->lane_count = lane_count; pipe_config->port_clock = link_rate; return 0; } } return -EINVAL; } static u16 intel_dp_dsc_max_sink_compressed_bppx16(const struct intel_connector *connector, struct intel_crtc_state *pipe_config, int bpc) { u16 max_bppx16 = drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd); if (max_bppx16) return max_bppx16; /* * If support not given in DPCD 67h, 68h use the Maximum Allowed bit rate * values as given in spec Table 2-157 DP v2.0 */ switch (pipe_config->output_format) { case INTEL_OUTPUT_FORMAT_RGB: case INTEL_OUTPUT_FORMAT_YCBCR444: return (3 * bpc) << 4; case INTEL_OUTPUT_FORMAT_YCBCR420: return (3 * (bpc / 2)) << 4; default: MISSING_CASE(pipe_config->output_format); break; } return 0; } int intel_dp_dsc_sink_min_compressed_bpp(struct intel_crtc_state *pipe_config) { /* From Mandatory bit rate range Support Table 2-157 (DP v2.0) */ switch (pipe_config->output_format) { case INTEL_OUTPUT_FORMAT_RGB: case INTEL_OUTPUT_FORMAT_YCBCR444: return 8; case INTEL_OUTPUT_FORMAT_YCBCR420: return 6; default: MISSING_CASE(pipe_config->output_format); break; } return 0; } int intel_dp_dsc_sink_max_compressed_bpp(const struct intel_connector *connector, struct intel_crtc_state *pipe_config, int bpc) { return intel_dp_dsc_max_sink_compressed_bppx16(connector, pipe_config, bpc) >> 4; } static int dsc_src_min_compressed_bpp(void) { /* Min Compressed bpp supported by source is 8 */ return 8; } static int dsc_src_max_compressed_bpp(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); /* * Max Compressed bpp for Gen 13+ is 27bpp. * For earlier platform is 23bpp. (Bspec:49259). */ if (DISPLAY_VER(i915) < 13) return 23; else return 27; } /* * From a list of valid compressed bpps try different compressed bpp and find a * suitable link configuration that can support it. */ static int icl_dsc_compute_link_config(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct link_config_limits *limits, int dsc_max_bpp, int dsc_min_bpp, int pipe_bpp, int timeslots) { int i, ret; /* Compressed BPP should be less than the Input DSC bpp */ dsc_max_bpp = min(dsc_max_bpp, pipe_bpp - 1); for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp); i++) { if (valid_dsc_bpp[i] < dsc_min_bpp) continue; if (valid_dsc_bpp[i] > dsc_max_bpp) break; ret = dsc_compute_link_config(intel_dp, pipe_config, limits, valid_dsc_bpp[i] << 4, timeslots); if (ret == 0) { pipe_config->dsc.compressed_bpp_x16 = to_bpp_x16(valid_dsc_bpp[i]); return 0; } } return -EINVAL; } /* * From XE_LPD onwards we supports compression bpps in steps of 1 up to * uncompressed bpp-1. So we start from max compressed bpp and see if any * link configuration is able to support that compressed bpp, if not we * step down and check for lower compressed bpp. */ static int xelpd_dsc_compute_link_config(struct intel_dp *intel_dp, const struct intel_connector *connector, struct intel_crtc_state *pipe_config, struct link_config_limits *limits, int dsc_max_bpp, int dsc_min_bpp, int pipe_bpp, int timeslots) { u8 bppx16_incr = drm_dp_dsc_sink_bpp_incr(connector->dp.dsc_dpcd); struct drm_i915_private *i915 = dp_to_i915(intel_dp); u16 compressed_bppx16; u8 bppx16_step; int ret; if (DISPLAY_VER(i915) < 14 || bppx16_incr <= 1) bppx16_step = 16; else bppx16_step = 16 / bppx16_incr; /* Compressed BPP should be less than the Input DSC bpp */ dsc_max_bpp = min(dsc_max_bpp << 4, (pipe_bpp << 4) - bppx16_step); dsc_min_bpp = dsc_min_bpp << 4; for (compressed_bppx16 = dsc_max_bpp; compressed_bppx16 >= dsc_min_bpp; compressed_bppx16 -= bppx16_step) { if (intel_dp->force_dsc_fractional_bpp_en && !to_bpp_frac(compressed_bppx16)) continue; ret = dsc_compute_link_config(intel_dp, pipe_config, limits, compressed_bppx16, timeslots); if (ret == 0) { pipe_config->dsc.compressed_bpp_x16 = compressed_bppx16; if (intel_dp->force_dsc_fractional_bpp_en && to_bpp_frac(compressed_bppx16)) drm_dbg_kms(&i915->drm, "Forcing DSC fractional bpp\n"); return 0; } } return -EINVAL; } static int dsc_compute_compressed_bpp(struct intel_dp *intel_dp, const struct intel_connector *connector, struct intel_crtc_state *pipe_config, struct link_config_limits *limits, int pipe_bpp, int timeslots) { const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct drm_i915_private *i915 = dp_to_i915(intel_dp); int dsc_src_min_bpp, dsc_sink_min_bpp, dsc_min_bpp; int dsc_src_max_bpp, dsc_sink_max_bpp, dsc_max_bpp; int dsc_joiner_max_bpp; dsc_src_min_bpp = dsc_src_min_compressed_bpp(); dsc_sink_min_bpp = intel_dp_dsc_sink_min_compressed_bpp(pipe_config); dsc_min_bpp = max(dsc_src_min_bpp, dsc_sink_min_bpp); dsc_min_bpp = max(dsc_min_bpp, to_bpp_int_roundup(limits->link.min_bpp_x16)); dsc_src_max_bpp = dsc_src_max_compressed_bpp(intel_dp); dsc_sink_max_bpp = intel_dp_dsc_sink_max_compressed_bpp(connector, pipe_config, pipe_bpp / 3); dsc_max_bpp = dsc_sink_max_bpp ? min(dsc_sink_max_bpp, dsc_src_max_bpp) : dsc_src_max_bpp; dsc_joiner_max_bpp = get_max_compressed_bpp_with_joiner(i915, adjusted_mode->clock, adjusted_mode->hdisplay, pipe_config->bigjoiner_pipes); dsc_max_bpp = min(dsc_max_bpp, dsc_joiner_max_bpp); dsc_max_bpp = min(dsc_max_bpp, to_bpp_int(limits->link.max_bpp_x16)); if (DISPLAY_VER(i915) >= 13) return xelpd_dsc_compute_link_config(intel_dp, connector, pipe_config, limits, dsc_max_bpp, dsc_min_bpp, pipe_bpp, timeslots); return icl_dsc_compute_link_config(intel_dp, pipe_config, limits, dsc_max_bpp, dsc_min_bpp, pipe_bpp, timeslots); } static u8 intel_dp_dsc_min_src_input_bpc(struct drm_i915_private *i915) { /* Min DSC Input BPC for ICL+ is 8 */ return HAS_DSC(i915) ? 8 : 0; } static bool is_dsc_pipe_bpp_sufficient(struct drm_i915_private *i915, struct drm_connector_state *conn_state, struct link_config_limits *limits, int pipe_bpp) { u8 dsc_max_bpc, dsc_min_bpc, dsc_max_pipe_bpp, dsc_min_pipe_bpp; dsc_max_bpc = min(intel_dp_dsc_max_src_input_bpc(i915), conn_state->max_requested_bpc); dsc_min_bpc = intel_dp_dsc_min_src_input_bpc(i915); dsc_max_pipe_bpp = min(dsc_max_bpc * 3, limits->pipe.max_bpp); dsc_min_pipe_bpp = max(dsc_min_bpc * 3, limits->pipe.min_bpp); return pipe_bpp >= dsc_min_pipe_bpp && pipe_bpp <= dsc_max_pipe_bpp; } static int intel_dp_force_dsc_pipe_bpp(struct intel_dp *intel_dp, struct drm_connector_state *conn_state, struct link_config_limits *limits) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int forced_bpp; if (!intel_dp->force_dsc_bpc) return 0; forced_bpp = intel_dp->force_dsc_bpc * 3; if (is_dsc_pipe_bpp_sufficient(i915, conn_state, limits, forced_bpp)) { drm_dbg_kms(&i915->drm, "Input DSC BPC forced to %d\n", intel_dp->force_dsc_bpc); return forced_bpp; } drm_dbg_kms(&i915->drm, "Cannot force DSC BPC:%d, due to DSC BPC limits\n", intel_dp->force_dsc_bpc); return 0; } static int intel_dp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state, struct link_config_limits *limits, int timeslots) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); const struct intel_connector *connector = to_intel_connector(conn_state->connector); u8 max_req_bpc = conn_state->max_requested_bpc; u8 dsc_max_bpc, dsc_max_bpp; u8 dsc_min_bpc, dsc_min_bpp; u8 dsc_bpc[3] = {}; int forced_bpp, pipe_bpp; int num_bpc, i, ret; forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, conn_state, limits); if (forced_bpp) { ret = dsc_compute_compressed_bpp(intel_dp, connector, pipe_config, limits, forced_bpp, timeslots); if (ret == 0) { pipe_config->pipe_bpp = forced_bpp; return 0; } } dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(i915); if (!dsc_max_bpc) return -EINVAL; dsc_max_bpc = min_t(u8, dsc_max_bpc, max_req_bpc); dsc_max_bpp = min(dsc_max_bpc * 3, limits->pipe.max_bpp); dsc_min_bpc = intel_dp_dsc_min_src_input_bpc(i915); dsc_min_bpp = max(dsc_min_bpc * 3, limits->pipe.min_bpp); /* * Get the maximum DSC bpc that will be supported by any valid * link configuration and compressed bpp. */ num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd, dsc_bpc); for (i = 0; i < num_bpc; i++) { pipe_bpp = dsc_bpc[i] * 3; if (pipe_bpp < dsc_min_bpp) break; if (pipe_bpp > dsc_max_bpp) continue; ret = dsc_compute_compressed_bpp(intel_dp, connector, pipe_config, limits, pipe_bpp, timeslots); if (ret == 0) { pipe_config->pipe_bpp = pipe_bpp; return 0; } } return -EINVAL; } static int intel_edp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state, struct link_config_limits *limits) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_connector *connector = to_intel_connector(conn_state->connector); int pipe_bpp, forced_bpp; int dsc_src_min_bpp, dsc_sink_min_bpp, dsc_min_bpp; int dsc_src_max_bpp, dsc_sink_max_bpp, dsc_max_bpp; forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, conn_state, limits); if (forced_bpp) { pipe_bpp = forced_bpp; } else { int max_bpc = min(limits->pipe.max_bpp / 3, (int)conn_state->max_requested_bpc); /* For eDP use max bpp that can be supported with DSC. */ pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, max_bpc); if (!is_dsc_pipe_bpp_sufficient(i915, conn_state, limits, pipe_bpp)) { drm_dbg_kms(&i915->drm, "Computed BPC is not in DSC BPC limits\n"); return -EINVAL; } } pipe_config->port_clock = limits->max_rate; pipe_config->lane_count = limits->max_lane_count; dsc_src_min_bpp = dsc_src_min_compressed_bpp(); dsc_sink_min_bpp = intel_dp_dsc_sink_min_compressed_bpp(pipe_config); dsc_min_bpp = max(dsc_src_min_bpp, dsc_sink_min_bpp); dsc_min_bpp = max(dsc_min_bpp, to_bpp_int_roundup(limits->link.min_bpp_x16)); dsc_src_max_bpp = dsc_src_max_compressed_bpp(intel_dp); dsc_sink_max_bpp = intel_dp_dsc_sink_max_compressed_bpp(connector, pipe_config, pipe_bpp / 3); dsc_max_bpp = dsc_sink_max_bpp ? min(dsc_sink_max_bpp, dsc_src_max_bpp) : dsc_src_max_bpp; dsc_max_bpp = min(dsc_max_bpp, to_bpp_int(limits->link.max_bpp_x16)); /* Compressed BPP should be less than the Input DSC bpp */ dsc_max_bpp = min(dsc_max_bpp, pipe_bpp - 1); pipe_config->dsc.compressed_bpp_x16 = to_bpp_x16(max(dsc_min_bpp, dsc_max_bpp)); pipe_config->pipe_bpp = pipe_bpp; return 0; } int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state, struct link_config_limits *limits, int timeslots, bool compute_pipe_bpp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); const struct intel_connector *connector = to_intel_connector(conn_state->connector); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; int ret; pipe_config->fec_enable = pipe_config->fec_enable || (!intel_dp_is_edp(intel_dp) && intel_dp_supports_fec(intel_dp, connector, pipe_config)); if (!intel_dp_supports_dsc(connector, pipe_config)) return -EINVAL; if (!intel_dp_dsc_supports_format(connector, pipe_config->output_format)) return -EINVAL; /* * compute pipe bpp is set to false for DP MST DSC case * and compressed_bpp is calculated same time once * vpci timeslots are allocated, because overall bpp * calculation procedure is bit different for MST case. */ if (compute_pipe_bpp) { if (intel_dp_is_edp(intel_dp)) ret = intel_edp_dsc_compute_pipe_bpp(intel_dp, pipe_config, conn_state, limits); else ret = intel_dp_dsc_compute_pipe_bpp(intel_dp, pipe_config, conn_state, limits, timeslots); if (ret) { drm_dbg_kms(&dev_priv->drm, "No Valid pipe bpp for given mode ret = %d\n", ret); return ret; } } /* Calculate Slice count */ if (intel_dp_is_edp(intel_dp)) { pipe_config->dsc.slice_count = drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, true); if (!pipe_config->dsc.slice_count) { drm_dbg_kms(&dev_priv->drm, "Unsupported Slice Count %d\n", pipe_config->dsc.slice_count); return -EINVAL; } } else { u8 dsc_dp_slice_count; dsc_dp_slice_count = intel_dp_dsc_get_slice_count(connector, adjusted_mode->crtc_clock, adjusted_mode->crtc_hdisplay, pipe_config->bigjoiner_pipes); if (!dsc_dp_slice_count) { drm_dbg_kms(&dev_priv->drm, "Compressed Slice Count not supported\n"); return -EINVAL; } pipe_config->dsc.slice_count = dsc_dp_slice_count; } /* * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate * is greater than the maximum Cdclock and if slice count is even * then we need to use 2 VDSC instances. */ if (pipe_config->bigjoiner_pipes || pipe_config->dsc.slice_count > 1) pipe_config->dsc.dsc_split = true; ret = intel_dp_dsc_compute_params(connector, pipe_config); if (ret < 0) { drm_dbg_kms(&dev_priv->drm, "Cannot compute valid DSC parameters for Input Bpp = %d" "Compressed BPP = " BPP_X16_FMT "\n", pipe_config->pipe_bpp, BPP_X16_ARGS(pipe_config->dsc.compressed_bpp_x16)); return ret; } pipe_config->dsc.compression_enable = true; drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d " "Compressed Bpp = " BPP_X16_FMT " Slice Count = %d\n", pipe_config->pipe_bpp, BPP_X16_ARGS(pipe_config->dsc.compressed_bpp_x16), pipe_config->dsc.slice_count); return 0; } /** * intel_dp_compute_config_link_bpp_limits - compute output link bpp limits * @intel_dp: intel DP * @crtc_state: crtc state * @dsc: DSC compression mode * @limits: link configuration limits * * Calculates the output link min, max bpp values in @limits based on the * pipe bpp range, @crtc_state and @dsc mode. * * Returns %true in case of success. */ bool intel_dp_compute_config_link_bpp_limits(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, bool dsc, struct link_config_limits *limits) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; const struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; int max_link_bpp_x16; max_link_bpp_x16 = min(crtc_state->max_link_bpp_x16, to_bpp_x16(limits->pipe.max_bpp)); if (!dsc) { max_link_bpp_x16 = rounddown(max_link_bpp_x16, to_bpp_x16(2 * 3)); if (max_link_bpp_x16 < to_bpp_x16(limits->pipe.min_bpp)) return false; limits->link.min_bpp_x16 = to_bpp_x16(limits->pipe.min_bpp); } else { /* * TODO: set the DSC link limits already here, atm these are * initialized only later in intel_edp_dsc_compute_pipe_bpp() / * intel_dp_dsc_compute_pipe_bpp() */ limits->link.min_bpp_x16 = 0; } limits->link.max_bpp_x16 = max_link_bpp_x16; drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s][CRTC:%d:%s] DP link limits: pixel clock %d kHz DSC %s max lanes %d max rate %d max pipe_bpp %d max link_bpp " BPP_X16_FMT "\n", encoder->base.base.id, encoder->base.name, crtc->base.base.id, crtc->base.name, adjusted_mode->crtc_clock, dsc ? "on" : "off", limits->max_lane_count, limits->max_rate, limits->pipe.max_bpp, BPP_X16_ARGS(limits->link.max_bpp_x16)); return true; } static bool intel_dp_compute_config_limits(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, bool respect_downstream_limits, bool dsc, struct link_config_limits *limits) { limits->min_rate = intel_dp_common_rate(intel_dp, 0); limits->max_rate = intel_dp_max_link_rate(intel_dp); /* FIXME 128b/132b SST support missing */ limits->max_rate = min(limits->max_rate, 810000); limits->min_lane_count = 1; limits->max_lane_count = intel_dp_max_lane_count(intel_dp); limits->pipe.min_bpp = intel_dp_min_bpp(crtc_state->output_format); limits->pipe.max_bpp = intel_dp_max_bpp(intel_dp, crtc_state, respect_downstream_limits); if (intel_dp->use_max_params) { /* * Use the maximum clock and number of lanes the eDP panel * advertizes being capable of in case the initial fast * optimal params failed us. The panels are generally * designed to support only a single clock and lane * configuration, and typically on older panels these * values correspond to the native resolution of the panel. */ limits->min_lane_count = limits->max_lane_count; limits->min_rate = limits->max_rate; } intel_dp_adjust_compliance_config(intel_dp, crtc_state, limits); return intel_dp_compute_config_link_bpp_limits(intel_dp, crtc_state, dsc, limits); } int intel_dp_config_required_rate(const struct intel_crtc_state *crtc_state) { const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; int bpp = crtc_state->dsc.compression_enable ? to_bpp_int_roundup(crtc_state->dsc.compressed_bpp_x16) : crtc_state->pipe_bpp; return intel_dp_link_required(adjusted_mode->crtc_clock, bpp); } bool intel_dp_joiner_needs_dsc(struct drm_i915_private *i915, bool use_joiner) { /* * Pipe joiner needs compression up to display 12 due to bandwidth * limitation. DG2 onwards pipe joiner can be enabled without * compression. */ return DISPLAY_VER(i915) < 13 && use_joiner; } static int intel_dp_compute_link_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state, bool respect_downstream_limits) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct intel_connector *connector = to_intel_connector(conn_state->connector); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct link_config_limits limits; bool dsc_needed, joiner_needs_dsc; int ret = 0; if (pipe_config->fec_enable && !intel_dp_supports_fec(intel_dp, connector, pipe_config)) return -EINVAL; if (intel_dp_need_bigjoiner(intel_dp, connector, adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_clock)) pipe_config->bigjoiner_pipes = GENMASK(crtc->pipe + 1, crtc->pipe); joiner_needs_dsc = intel_dp_joiner_needs_dsc(i915, pipe_config->bigjoiner_pipes); dsc_needed = joiner_needs_dsc || intel_dp->force_dsc_en || !intel_dp_compute_config_limits(intel_dp, pipe_config, respect_downstream_limits, false, &limits); if (!dsc_needed) { /* * Optimize for slow and wide for everything, because there are some * eDP 1.3 and 1.4 panels don't work well with fast and narrow. */ ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, conn_state, &limits); if (ret) dsc_needed = true; } if (dsc_needed) { drm_dbg_kms(&i915->drm, "Try DSC (fallback=%s, joiner=%s, force=%s)\n", str_yes_no(ret), str_yes_no(joiner_needs_dsc), str_yes_no(intel_dp->force_dsc_en)); if (!intel_dp_compute_config_limits(intel_dp, pipe_config, respect_downstream_limits, true, &limits)) return -EINVAL; ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, conn_state, &limits, 64, true); if (ret < 0) return ret; } drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp input %d compressed " BPP_X16_FMT " link rate required %d available %d\n", pipe_config->lane_count, pipe_config->port_clock, pipe_config->pipe_bpp, BPP_X16_ARGS(pipe_config->dsc.compressed_bpp_x16), intel_dp_config_required_rate(pipe_config), intel_dp_max_link_data_rate(intel_dp, pipe_config->port_clock, pipe_config->lane_count)); return 0; } bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { const struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; /* * Our YCbCr output is always limited range. * crtc_state->limited_color_range only applies to RGB, * and it must never be set for YCbCr or we risk setting * some conflicting bits in TRANSCONF which will mess up * the colors on the monitor. */ if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) return false; if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { /* * See: * CEA-861-E - 5.1 Default Encoding Parameters * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry */ return crtc_state->pipe_bpp != 18 && drm_default_rgb_quant_range(adjusted_mode) == HDMI_QUANTIZATION_RANGE_LIMITED; } else { return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; } } static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, enum port port) { if (IS_G4X(dev_priv)) return false; if (DISPLAY_VER(dev_priv) < 12 && port == PORT_A) return false; return true; } static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state, struct drm_dp_vsc_sdp *vsc) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (crtc_state->has_panel_replay) { /* * Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223 * VSC SDP supporting 3D stereo, Panel Replay, and Pixel * Encoding/Colorimetry Format indication. */ vsc->revision = 0x7; } else { /* * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ * Colorimetry Format indication. */ vsc->revision = 0x5; } vsc->length = 0x13; /* DP 1.4a spec, Table 2-120 */ switch (crtc_state->output_format) { case INTEL_OUTPUT_FORMAT_YCBCR444: vsc->pixelformat = DP_PIXELFORMAT_YUV444; break; case INTEL_OUTPUT_FORMAT_YCBCR420: vsc->pixelformat = DP_PIXELFORMAT_YUV420; break; case INTEL_OUTPUT_FORMAT_RGB: default: vsc->pixelformat = DP_PIXELFORMAT_RGB; } switch (conn_state->colorspace) { case DRM_MODE_COLORIMETRY_BT709_YCC: vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; break; case DRM_MODE_COLORIMETRY_XVYCC_601: vsc->colorimetry = DP_COLORIMETRY_XVYCC_601; break; case DRM_MODE_COLORIMETRY_XVYCC_709: vsc->colorimetry = DP_COLORIMETRY_XVYCC_709; break; case DRM_MODE_COLORIMETRY_SYCC_601: vsc->colorimetry = DP_COLORIMETRY_SYCC_601; break; case DRM_MODE_COLORIMETRY_OPYCC_601: vsc->colorimetry = DP_COLORIMETRY_OPYCC_601; break; case DRM_MODE_COLORIMETRY_BT2020_CYCC: vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC; break; case DRM_MODE_COLORIMETRY_BT2020_RGB: vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB; break; case DRM_MODE_COLORIMETRY_BT2020_YCC: vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC; break; case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB; break; default: /* * RGB->YCBCR color conversion uses the BT.709 * color space. */ if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; else vsc->colorimetry = DP_COLORIMETRY_DEFAULT; break; } vsc->bpc = crtc_state->pipe_bpp / 3; /* only RGB pixelformat supports 6 bpc */ drm_WARN_ON(&dev_priv->drm, vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB); /* all YCbCr are always limited range */ vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA; vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED; } static void intel_dp_compute_as_sdp(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct drm_dp_as_sdp *as_sdp = &crtc_state->infoframes.as_sdp; const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; if (!crtc_state->vrr.enable || !intel_dp_as_sdp_supported(intel_dp)) return; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_ADAPTIVE_SYNC); /* Currently only DP_AS_SDP_AVT_FIXED_VTOTAL mode supported */ as_sdp->sdp_type = DP_SDP_ADAPTIVE_SYNC; as_sdp->length = 0x9; as_sdp->mode = DP_AS_SDP_AVT_FIXED_VTOTAL; as_sdp->vtotal = adjusted_mode->vtotal; as_sdp->target_rr = 0; as_sdp->duration_incr_ms = 0; as_sdp->duration_incr_ms = 0; } static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_dp_vsc_sdp *vsc; if ((!intel_dp->colorimetry_support || !intel_dp_needs_vsc_sdp(crtc_state, conn_state)) && !crtc_state->has_psr) return; vsc = &crtc_state->infoframes.vsc; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); vsc->sdp_type = DP_SDP_VSC; /* Needs colorimetry */ if (intel_dp_needs_vsc_sdp(crtc_state, conn_state)) { intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, vsc); } else if (crtc_state->has_sel_update) { /* * [PSR2 without colorimetry] * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11 * 3D stereo + PSR/PSR2 + Y-coordinate. */ vsc->revision = 0x4; vsc->length = 0xe; } else if (crtc_state->has_panel_replay) { /* * [Panel Replay without colorimetry info] * Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223 * VSC SDP supporting 3D stereo + Panel Replay. */ vsc->revision = 0x6; vsc->length = 0x10; } else { /* * [PSR1] * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or * higher). */ vsc->revision = 0x2; vsc->length = 0x8; } } static void intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { int ret; struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm; if (!conn_state->hdr_output_metadata) return; ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state); if (ret) { drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n"); return; } crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA); } static bool can_enable_drrs(struct intel_connector *connector, const struct intel_crtc_state *pipe_config, const struct drm_display_mode *downclock_mode) { struct drm_i915_private *i915 = to_i915(connector->base.dev); if (pipe_config->vrr.enable) return false; /* * DRRS and PSR can't be enable together, so giving preference to PSR * as it allows more power-savings by complete shutting down display, * so to guarantee this, intel_drrs_compute_config() must be called * after intel_psr_compute_config(). */ if (pipe_config->has_psr) return false; /* FIXME missing FDI M2/N2 etc. */ if (pipe_config->has_pch_encoder) return false; if (!intel_cpu_transcoder_has_drrs(i915, pipe_config->cpu_transcoder)) return false; return downclock_mode && intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS; } static void intel_dp_drrs_compute_config(struct intel_connector *connector, struct intel_crtc_state *pipe_config, int link_bpp_x16) { struct drm_i915_private *i915 = to_i915(connector->base.dev); const struct drm_display_mode *downclock_mode = intel_panel_downclock_mode(connector, &pipe_config->hw.adjusted_mode); int pixel_clock; /* * FIXME all joined pipes share the same transcoder. * Need to account for that when updating M/N live. */ if (has_seamless_m_n(connector) && !pipe_config->bigjoiner_pipes) pipe_config->update_m_n = true; if (!can_enable_drrs(connector, pipe_config, downclock_mode)) { if (intel_cpu_transcoder_has_m2_n2(i915, pipe_config->cpu_transcoder)) intel_zero_m_n(&pipe_config->dp_m2_n2); return; } if (IS_IRONLAKE(i915) || IS_SANDYBRIDGE(i915) || IS_IVYBRIDGE(i915)) pipe_config->msa_timing_delay = connector->panel.vbt.edp.drrs_msa_timing_delay; pipe_config->has_drrs = true; pixel_clock = downclock_mode->clock; if (pipe_config->splitter.enable) pixel_clock /= pipe_config->splitter.link_count; intel_link_compute_m_n(link_bpp_x16, pipe_config->lane_count, pixel_clock, pipe_config->port_clock, intel_dp_bw_fec_overhead(pipe_config->fec_enable), &pipe_config->dp_m2_n2); /* FIXME: abstract this better */ if (pipe_config->splitter.enable) pipe_config->dp_m2_n2.data_m *= pipe_config->splitter.link_count; } static bool intel_dp_has_audio(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); const struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); struct intel_connector *connector = to_intel_connector(conn_state->connector); if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) && !intel_dp_port_has_audio(i915, encoder->port)) return false; if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) return connector->base.display_info.has_audio; else return intel_conn_state->force_audio == HDMI_AUDIO_ON; } static int intel_dp_compute_output_format(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state, bool respect_downstream_limits) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_connector *connector = intel_dp->attached_connector; const struct drm_display_info *info = &connector->base.display_info; const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; bool ycbcr_420_only; int ret; ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode); if (ycbcr_420_only && !connector->base.ycbcr_420_allowed) { drm_dbg_kms(&i915->drm, "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n"); crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB; } else { crtc_state->sink_format = intel_dp_sink_format(connector, adjusted_mode); } crtc_state->output_format = intel_dp_output_format(connector, crtc_state->sink_format); ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state, respect_downstream_limits); if (ret) { if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 || !connector->base.ycbcr_420_allowed || !drm_mode_is_420_also(info, adjusted_mode)) return ret; crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; crtc_state->output_format = intel_dp_output_format(connector, crtc_state->sink_format); ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state, respect_downstream_limits); } return ret; } void intel_dp_audio_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { pipe_config->has_audio = intel_dp_has_audio(encoder, pipe_config, conn_state) && intel_audio_compute_config(encoder, pipe_config, conn_state); pipe_config->sdp_split_enable = pipe_config->has_audio && intel_dp_is_uhbr(pipe_config); } void intel_dp_queue_modeset_retry_work(struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->base.dev); drm_connector_get(&connector->base); if (!queue_work(i915->unordered_wq, &connector->modeset_retry_work)) drm_connector_put(&connector->base); } void intel_dp_queue_modeset_retry_for_link(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_connector *connector; struct intel_digital_connector_state *conn_state; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); int i; if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) { intel_dp_queue_modeset_retry_work(intel_dp->attached_connector); return; } for_each_new_intel_connector_in_state(state, connector, conn_state, i) { if (!conn_state->base.crtc) continue; if (connector->mst_port == intel_dp) intel_dp_queue_modeset_retry_work(connector); } } int intel_dp_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(conn_state->state); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); const struct drm_display_mode *fixed_mode; struct intel_connector *connector = intel_dp->attached_connector; int ret = 0, link_bpp_x16; if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && encoder->port != PORT_A) pipe_config->has_pch_encoder = true; fixed_mode = intel_panel_fixed_mode(connector, adjusted_mode); if (intel_dp_is_edp(intel_dp) && fixed_mode) { ret = intel_panel_compute_config(connector, adjusted_mode); if (ret) return ret; } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; if (!connector->base.interlace_allowed && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) return -EINVAL; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) return -EINVAL; if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) return -EINVAL; /* * Try to respect downstream TMDS clock limits first, if * that fails assume the user might know something we don't. */ ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, true); if (ret) ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, false); if (ret) return ret; if ((intel_dp_is_edp(intel_dp) && fixed_mode) || pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { ret = intel_panel_fitting(pipe_config, conn_state); if (ret) return ret; } pipe_config->limited_color_range = intel_dp_limited_color_range(pipe_config, conn_state); pipe_config->enhanced_framing = drm_dp_enhanced_frame_cap(intel_dp->dpcd); if (pipe_config->dsc.compression_enable) link_bpp_x16 = pipe_config->dsc.compressed_bpp_x16; else link_bpp_x16 = to_bpp_x16(intel_dp_output_bpp(pipe_config->output_format, pipe_config->pipe_bpp)); if (intel_dp->mso_link_count) { int n = intel_dp->mso_link_count; int overlap = intel_dp->mso_pixel_overlap; pipe_config->splitter.enable = true; pipe_config->splitter.link_count = n; pipe_config->splitter.pixel_overlap = overlap; drm_dbg_kms(&dev_priv->drm, "MSO link count %d, pixel overlap %d\n", n, overlap); adjusted_mode->crtc_hdisplay = adjusted_mode->crtc_hdisplay / n + overlap; adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hblank_start / n + overlap; adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_hblank_end / n + overlap; adjusted_mode->crtc_hsync_start = adjusted_mode->crtc_hsync_start / n + overlap; adjusted_mode->crtc_hsync_end = adjusted_mode->crtc_hsync_end / n + overlap; adjusted_mode->crtc_htotal = adjusted_mode->crtc_htotal / n + overlap; adjusted_mode->crtc_clock /= n; } intel_dp_audio_compute_config(encoder, pipe_config, conn_state); intel_link_compute_m_n(link_bpp_x16, pipe_config->lane_count, adjusted_mode->crtc_clock, pipe_config->port_clock, intel_dp_bw_fec_overhead(pipe_config->fec_enable), &pipe_config->dp_m_n); /* FIXME: abstract this better */ if (pipe_config->splitter.enable) pipe_config->dp_m_n.data_m *= pipe_config->splitter.link_count; if (!HAS_DDI(dev_priv)) g4x_dp_set_clock(encoder, pipe_config); intel_vrr_compute_config(pipe_config, conn_state); intel_dp_compute_as_sdp(intel_dp, pipe_config); intel_psr_compute_config(intel_dp, pipe_config, conn_state); intel_dp_drrs_compute_config(connector, pipe_config, link_bpp_x16); intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state); intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state); return intel_dp_tunnel_atomic_compute_stream_bw(state, intel_dp, connector, pipe_config); } void intel_dp_set_link_params(struct intel_dp *intel_dp, int link_rate, int lane_count) { memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); intel_dp->link_trained = false; intel_dp->link_rate = link_rate; intel_dp->lane_count = lane_count; } static void intel_dp_reset_max_link_params(struct intel_dp *intel_dp) { intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); } /* Enable backlight PWM and backlight PP control. */ void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!intel_dp_is_edp(intel_dp)) return; drm_dbg_kms(&i915->drm, "\n"); intel_backlight_enable(crtc_state, conn_state); intel_pps_backlight_on(intel_dp); } /* Disable backlight PP control and backlight PWM. */ void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!intel_dp_is_edp(intel_dp)) return; drm_dbg_kms(&i915->drm, "\n"); intel_pps_backlight_off(intel_dp); intel_backlight_disable(old_conn_state); } static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) { /* * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus * be capable of signalling downstream hpd with a long pulse. * Whether or not that means D3 is safe to use is not clear, * but let's assume so until proven otherwise. * * FIXME should really check all downstream ports... */ return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && drm_dp_is_branch(intel_dp->dpcd) && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; } static int write_dsc_decompression_flag(struct drm_dp_aux *aux, u8 flag, bool set) { int err; u8 val; err = drm_dp_dpcd_readb(aux, DP_DSC_ENABLE, &val); if (err < 0) return err; if (set) val |= flag; else val &= ~flag; return drm_dp_dpcd_writeb(aux, DP_DSC_ENABLE, val); } static void intel_dp_sink_set_dsc_decompression(struct intel_connector *connector, bool enable) { struct drm_i915_private *i915 = to_i915(connector->base.dev); if (write_dsc_decompression_flag(connector->dp.dsc_decompression_aux, DP_DECOMPRESSION_EN, enable) < 0) drm_dbg_kms(&i915->drm, "Failed to %s sink decompression state\n", str_enable_disable(enable)); } static void intel_dp_sink_set_dsc_passthrough(const struct intel_connector *connector, bool enable) { struct drm_i915_private *i915 = to_i915(connector->base.dev); struct drm_dp_aux *aux = connector->port ? connector->port->passthrough_aux : NULL; if (!aux) return; if (write_dsc_decompression_flag(aux, DP_DSC_PASSTHROUGH_EN, enable) < 0) drm_dbg_kms(&i915->drm, "Failed to %s sink compression passthrough state\n", str_enable_disable(enable)); } static int intel_dp_dsc_aux_ref_count(struct intel_atomic_state *state, const struct intel_connector *connector, bool for_get_ref) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct drm_connector *_connector_iter; struct drm_connector_state *old_conn_state; struct drm_connector_state *new_conn_state; int ref_count = 0; int i; /* * On SST the decompression AUX device won't be shared, each connector * uses for this its own AUX targeting the sink device. */ if (!connector->mst_port) return connector->dp.dsc_decompression_enabled ? 1 : 0; for_each_oldnew_connector_in_state(&state->base, _connector_iter, old_conn_state, new_conn_state, i) { const struct intel_connector * connector_iter = to_intel_connector(_connector_iter); if (connector_iter->mst_port != connector->mst_port) continue; if (!connector_iter->dp.dsc_decompression_enabled) continue; drm_WARN_ON(&i915->drm, (for_get_ref && !new_conn_state->crtc) || (!for_get_ref && !old_conn_state->crtc)); if (connector_iter->dp.dsc_decompression_aux == connector->dp.dsc_decompression_aux) ref_count++; } return ref_count; } static bool intel_dp_dsc_aux_get_ref(struct intel_atomic_state *state, struct intel_connector *connector) { bool ret = intel_dp_dsc_aux_ref_count(state, connector, true) == 0; connector->dp.dsc_decompression_enabled = true; return ret; } static bool intel_dp_dsc_aux_put_ref(struct intel_atomic_state *state, struct intel_connector *connector) { connector->dp.dsc_decompression_enabled = false; return intel_dp_dsc_aux_ref_count(state, connector, false) == 0; } /** * intel_dp_sink_enable_decompression - Enable DSC decompression in sink/last branch device * @state: atomic state * @connector: connector to enable the decompression for * @new_crtc_state: new state for the CRTC driving @connector * * Enable the DSC decompression if required in the %DP_DSC_ENABLE DPCD * register of the appropriate sink/branch device. On SST this is always the * sink device, whereas on MST based on each device's DSC capabilities it's * either the last branch device (enabling decompression in it) or both the * last branch device (enabling passthrough in it) and the sink device * (enabling decompression in it). */ void intel_dp_sink_enable_decompression(struct intel_atomic_state *state, struct intel_connector *connector, const struct intel_crtc_state *new_crtc_state) { struct drm_i915_private *i915 = to_i915(state->base.dev); if (!new_crtc_state->dsc.compression_enable) return; if (drm_WARN_ON(&i915->drm, !connector->dp.dsc_decompression_aux || connector->dp.dsc_decompression_enabled)) return; if (!intel_dp_dsc_aux_get_ref(state, connector)) return; intel_dp_sink_set_dsc_passthrough(connector, true); intel_dp_sink_set_dsc_decompression(connector, true); } /** * intel_dp_sink_disable_decompression - Disable DSC decompression in sink/last branch device * @state: atomic state * @connector: connector to disable the decompression for * @old_crtc_state: old state for the CRTC driving @connector * * Disable the DSC decompression if required in the %DP_DSC_ENABLE DPCD * register of the appropriate sink/branch device, corresponding to the * sequence in intel_dp_sink_enable_decompression(). */ void intel_dp_sink_disable_decompression(struct intel_atomic_state *state, struct intel_connector *connector, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *i915 = to_i915(state->base.dev); if (!old_crtc_state->dsc.compression_enable) return; if (drm_WARN_ON(&i915->drm, !connector->dp.dsc_decompression_aux || !connector->dp.dsc_decompression_enabled)) return; if (!intel_dp_dsc_aux_put_ref(state, connector)) return; intel_dp_sink_set_dsc_decompression(connector, false); intel_dp_sink_set_dsc_passthrough(connector, false); } static void intel_edp_init_source_oui(struct intel_dp *intel_dp, bool careful) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 oui[] = { 0x00, 0xaa, 0x01 }; u8 buf[3] = {}; /* * During driver init, we want to be careful and avoid changing the source OUI if it's * already set to what we want, so as to avoid clearing any state by accident */ if (careful) { if (drm_dp_dpcd_read(&intel_dp->aux, DP_SOURCE_OUI, buf, sizeof(buf)) < 0) drm_err(&i915->drm, "Failed to read source OUI\n"); if (memcmp(oui, buf, sizeof(oui)) == 0) return; } if (drm_dp_dpcd_write(&intel_dp->aux, DP_SOURCE_OUI, oui, sizeof(oui)) < 0) drm_err(&i915->drm, "Failed to write source OUI\n"); intel_dp->last_oui_write = jiffies; } void intel_dp_wait_source_oui(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; struct drm_i915_private *i915 = dp_to_i915(intel_dp); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] Performing OUI wait (%u ms)\n", connector->base.base.id, connector->base.name, connector->panel.vbt.backlight.hdr_dpcd_refresh_timeout); wait_remaining_ms_from_jiffies(intel_dp->last_oui_write, connector->panel.vbt.backlight.hdr_dpcd_refresh_timeout); } /* If the device supports it, try to set the power state appropriately */ void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *i915 = to_i915(encoder->base.dev); int ret, i; /* Should have a valid DPCD by this point */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (mode != DP_SET_POWER_D0) { if (downstream_hpd_needs_d0(intel_dp)) return; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); } else { struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); lspcon_resume(dp_to_dig_port(intel_dp)); /* Write the source OUI as early as possible */ if (intel_dp_is_edp(intel_dp)) intel_edp_init_source_oui(intel_dp, false); /* * When turning on, we need to retry for 1ms to give the sink * time to wake up. */ for (i = 0; i < 3; i++) { ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); if (ret == 1) break; msleep(1); } if (ret == 1 && lspcon->active) lspcon_wait_pcon_mode(lspcon); } if (ret != 1) drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Set power to %s failed\n", encoder->base.base.id, encoder->base.name, mode == DP_SET_POWER_D0 ? "D0" : "D3"); } static bool intel_dp_get_dpcd(struct intel_dp *intel_dp); /** * intel_dp_sync_state - sync the encoder state during init/resume * @encoder: intel encoder to sync * @crtc_state: state for the CRTC connected to the encoder * * Sync any state stored in the encoder wrt. HW state during driver init * and system resume. */ void intel_dp_sync_state(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); bool dpcd_updated = false; /* * Don't clobber DPCD if it's been already read out during output * setup (eDP) or detect. */ if (crtc_state && intel_dp->dpcd[DP_DPCD_REV] == 0) { intel_dp_get_dpcd(intel_dp); dpcd_updated = true; } intel_dp_tunnel_resume(intel_dp, crtc_state, dpcd_updated); if (crtc_state) intel_dp_reset_max_link_params(intel_dp); } bool intel_dp_initial_fastset_check(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); bool fastset = true; /* * If BIOS has set an unsupported or non-standard link rate for some * reason force an encoder recompute and full modeset. */ if (intel_dp_rate_index(intel_dp->source_rates, intel_dp->num_source_rates, crtc_state->port_clock) < 0) { drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Forcing full modeset due to unsupported link rate\n", encoder->base.base.id, encoder->base.name); crtc_state->uapi.connectors_changed = true; fastset = false; } /* * FIXME hack to force full modeset when DSC is being used. * * As long as we do not have full state readout and config comparison * of crtc_state->dsc, we have no way to ensure reliable fastset. * Remove once we have readout for DSC. */ if (crtc_state->dsc.compression_enable) { drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Forcing full modeset due to DSC being enabled\n", encoder->base.base.id, encoder->base.name); crtc_state->uapi.mode_changed = true; fastset = false; } if (CAN_PANEL_REPLAY(intel_dp)) { drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Forcing full modeset to compute panel replay state\n", encoder->base.base.id, encoder->base.name); crtc_state->uapi.mode_changed = true; fastset = false; } return fastset; } static void intel_dp_get_pcon_dsc_cap(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); /* Clear the cached register set to avoid using stale values */ memset(intel_dp->pcon_dsc_dpcd, 0, sizeof(intel_dp->pcon_dsc_dpcd)); if (drm_dp_dpcd_read(&intel_dp->aux, DP_PCON_DSC_ENCODER, intel_dp->pcon_dsc_dpcd, sizeof(intel_dp->pcon_dsc_dpcd)) < 0) drm_err(&i915->drm, "Failed to read DPCD register 0x%x\n", DP_PCON_DSC_ENCODER); drm_dbg_kms(&i915->drm, "PCON ENCODER DSC DPCD: %*ph\n", (int)sizeof(intel_dp->pcon_dsc_dpcd), intel_dp->pcon_dsc_dpcd); } static int intel_dp_pcon_get_frl_mask(u8 frl_bw_mask) { int bw_gbps[] = {9, 18, 24, 32, 40, 48}; int i; for (i = ARRAY_SIZE(bw_gbps) - 1; i >= 0; i--) { if (frl_bw_mask & (1 << i)) return bw_gbps[i]; } return 0; } static int intel_dp_pcon_set_frl_mask(int max_frl) { switch (max_frl) { case 48: return DP_PCON_FRL_BW_MASK_48GBPS; case 40: return DP_PCON_FRL_BW_MASK_40GBPS; case 32: return DP_PCON_FRL_BW_MASK_32GBPS; case 24: return DP_PCON_FRL_BW_MASK_24GBPS; case 18: return DP_PCON_FRL_BW_MASK_18GBPS; case 9: return DP_PCON_FRL_BW_MASK_9GBPS; } return 0; } static int intel_dp_hdmi_sink_max_frl(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; int max_frl_rate; int max_lanes, rate_per_lane; int max_dsc_lanes, dsc_rate_per_lane; max_lanes = connector->display_info.hdmi.max_lanes; rate_per_lane = connector->display_info.hdmi.max_frl_rate_per_lane; max_frl_rate = max_lanes * rate_per_lane; if (connector->display_info.hdmi.dsc_cap.v_1p2) { max_dsc_lanes = connector->display_info.hdmi.dsc_cap.max_lanes; dsc_rate_per_lane = connector->display_info.hdmi.dsc_cap.max_frl_rate_per_lane; if (max_dsc_lanes && dsc_rate_per_lane) max_frl_rate = min(max_frl_rate, max_dsc_lanes * dsc_rate_per_lane); } return max_frl_rate; } static bool intel_dp_pcon_is_frl_trained(struct intel_dp *intel_dp, u8 max_frl_bw_mask, u8 *frl_trained_mask) { if (drm_dp_pcon_hdmi_link_active(&intel_dp->aux) && drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, frl_trained_mask) == DP_PCON_HDMI_MODE_FRL && *frl_trained_mask >= max_frl_bw_mask) return true; return false; } static int intel_dp_pcon_start_frl_training(struct intel_dp *intel_dp) { #define TIMEOUT_FRL_READY_MS 500 #define TIMEOUT_HDMI_LINK_ACTIVE_MS 1000 struct drm_i915_private *i915 = dp_to_i915(intel_dp); int max_frl_bw, max_pcon_frl_bw, max_edid_frl_bw, ret; u8 max_frl_bw_mask = 0, frl_trained_mask; bool is_active; max_pcon_frl_bw = intel_dp->dfp.pcon_max_frl_bw; drm_dbg(&i915->drm, "PCON max rate = %d Gbps\n", max_pcon_frl_bw); max_edid_frl_bw = intel_dp_hdmi_sink_max_frl(intel_dp); drm_dbg(&i915->drm, "Sink max rate from EDID = %d Gbps\n", max_edid_frl_bw); max_frl_bw = min(max_edid_frl_bw, max_pcon_frl_bw); if (max_frl_bw <= 0) return -EINVAL; max_frl_bw_mask = intel_dp_pcon_set_frl_mask(max_frl_bw); drm_dbg(&i915->drm, "MAX_FRL_BW_MASK = %u\n", max_frl_bw_mask); if (intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask)) goto frl_trained; ret = drm_dp_pcon_frl_prepare(&intel_dp->aux, false); if (ret < 0) return ret; /* Wait for PCON to be FRL Ready */ wait_for(is_active = drm_dp_pcon_is_frl_ready(&intel_dp->aux) == true, TIMEOUT_FRL_READY_MS); if (!is_active) return -ETIMEDOUT; ret = drm_dp_pcon_frl_configure_1(&intel_dp->aux, max_frl_bw, DP_PCON_ENABLE_SEQUENTIAL_LINK); if (ret < 0) return ret; ret = drm_dp_pcon_frl_configure_2(&intel_dp->aux, max_frl_bw_mask, DP_PCON_FRL_LINK_TRAIN_NORMAL); if (ret < 0) return ret; ret = drm_dp_pcon_frl_enable(&intel_dp->aux); if (ret < 0) return ret; /* * Wait for FRL to be completed * Check if the HDMI Link is up and active. */ wait_for(is_active = intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask), TIMEOUT_HDMI_LINK_ACTIVE_MS); if (!is_active) return -ETIMEDOUT; frl_trained: drm_dbg(&i915->drm, "FRL_TRAINED_MASK = %u\n", frl_trained_mask); intel_dp->frl.trained_rate_gbps = intel_dp_pcon_get_frl_mask(frl_trained_mask); intel_dp->frl.is_trained = true; drm_dbg(&i915->drm, "FRL trained with : %d Gbps\n", intel_dp->frl.trained_rate_gbps); return 0; } static bool intel_dp_is_hdmi_2_1_sink(struct intel_dp *intel_dp) { if (drm_dp_is_branch(intel_dp->dpcd) && intel_dp_has_hdmi_sink(intel_dp) && intel_dp_hdmi_sink_max_frl(intel_dp) > 0) return true; return false; } static int intel_dp_pcon_set_tmds_mode(struct intel_dp *intel_dp) { int ret; u8 buf = 0; /* Set PCON source control mode */ buf |= DP_PCON_ENABLE_SOURCE_CTL_MODE; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); if (ret < 0) return ret; /* Set HDMI LINK ENABLE */ buf |= DP_PCON_ENABLE_HDMI_LINK; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); if (ret < 0) return ret; return 0; } void intel_dp_check_frl_training(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); /* * Always go for FRL training if: * -PCON supports SRC_CTL_MODE (VESA DP2.0-HDMI2.1 PCON Spec Draft-1 Sec-7) * -sink is HDMI2.1 */ if (!(intel_dp->downstream_ports[2] & DP_PCON_SOURCE_CTL_MODE) || !intel_dp_is_hdmi_2_1_sink(intel_dp) || intel_dp->frl.is_trained) return; if (intel_dp_pcon_start_frl_training(intel_dp) < 0) { int ret, mode; drm_dbg(&dev_priv->drm, "Couldn't set FRL mode, continuing with TMDS mode\n"); ret = intel_dp_pcon_set_tmds_mode(intel_dp); mode = drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, NULL); if (ret < 0 || mode != DP_PCON_HDMI_MODE_TMDS) drm_dbg(&dev_priv->drm, "Issue with PCON, cannot set TMDS mode\n"); } else { drm_dbg(&dev_priv->drm, "FRL training Completed\n"); } } static int intel_dp_pcon_dsc_enc_slice_height(const struct intel_crtc_state *crtc_state) { int vactive = crtc_state->hw.adjusted_mode.vdisplay; return intel_hdmi_dsc_get_slice_height(vactive); } static int intel_dp_pcon_dsc_enc_slices(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; int hdmi_throughput = connector->display_info.hdmi.dsc_cap.clk_per_slice; int hdmi_max_slices = connector->display_info.hdmi.dsc_cap.max_slices; int pcon_max_slices = drm_dp_pcon_dsc_max_slices(intel_dp->pcon_dsc_dpcd); int pcon_max_slice_width = drm_dp_pcon_dsc_max_slice_width(intel_dp->pcon_dsc_dpcd); return intel_hdmi_dsc_get_num_slices(crtc_state, pcon_max_slices, pcon_max_slice_width, hdmi_max_slices, hdmi_throughput); } static int intel_dp_pcon_dsc_enc_bpp(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, int num_slices, int slice_width) { struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; int output_format = crtc_state->output_format; bool hdmi_all_bpp = connector->display_info.hdmi.dsc_cap.all_bpp; int pcon_fractional_bpp = drm_dp_pcon_dsc_bpp_incr(intel_dp->pcon_dsc_dpcd); int hdmi_max_chunk_bytes = connector->display_info.hdmi.dsc_cap.total_chunk_kbytes * 1024; return intel_hdmi_dsc_get_bpp(pcon_fractional_bpp, slice_width, num_slices, output_format, hdmi_all_bpp, hdmi_max_chunk_bytes); } void intel_dp_pcon_dsc_configure(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { u8 pps_param[6]; int slice_height; int slice_width; int num_slices; int bits_per_pixel; int ret; struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_connector *connector; bool hdmi_is_dsc_1_2; if (!intel_dp_is_hdmi_2_1_sink(intel_dp)) return; if (!intel_connector) return; connector = &intel_connector->base; hdmi_is_dsc_1_2 = connector->display_info.hdmi.dsc_cap.v_1p2; if (!drm_dp_pcon_enc_is_dsc_1_2(intel_dp->pcon_dsc_dpcd) || !hdmi_is_dsc_1_2) return; slice_height = intel_dp_pcon_dsc_enc_slice_height(crtc_state); if (!slice_height) return; num_slices = intel_dp_pcon_dsc_enc_slices(intel_dp, crtc_state); if (!num_slices) return; slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, num_slices); bits_per_pixel = intel_dp_pcon_dsc_enc_bpp(intel_dp, crtc_state, num_slices, slice_width); if (!bits_per_pixel) return; pps_param[0] = slice_height & 0xFF; pps_param[1] = slice_height >> 8; pps_param[2] = slice_width & 0xFF; pps_param[3] = slice_width >> 8; pps_param[4] = bits_per_pixel & 0xFF; pps_param[5] = (bits_per_pixel >> 8) & 0x3; ret = drm_dp_pcon_pps_override_param(&intel_dp->aux, pps_param); if (ret < 0) drm_dbg_kms(&i915->drm, "Failed to set pcon DSC\n"); } void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); bool ycbcr444_to_420 = false; bool rgb_to_ycbcr = false; u8 tmp; if (intel_dp->dpcd[DP_DPCD_REV] < 0x13) return; if (!drm_dp_is_branch(intel_dp->dpcd)) return; tmp = intel_dp_has_hdmi_sink(intel_dp) ? DP_HDMI_DVI_OUTPUT_CONFIG : 0; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1) drm_dbg_kms(&i915->drm, "Failed to %s protocol converter HDMI mode\n", str_enable_disable(intel_dp_has_hdmi_sink(intel_dp))); if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) { switch (crtc_state->output_format) { case INTEL_OUTPUT_FORMAT_YCBCR420: break; case INTEL_OUTPUT_FORMAT_YCBCR444: ycbcr444_to_420 = true; break; case INTEL_OUTPUT_FORMAT_RGB: rgb_to_ycbcr = true; ycbcr444_to_420 = true; break; default: MISSING_CASE(crtc_state->output_format); break; } } else if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR444) { switch (crtc_state->output_format) { case INTEL_OUTPUT_FORMAT_YCBCR444: break; case INTEL_OUTPUT_FORMAT_RGB: rgb_to_ycbcr = true; break; default: MISSING_CASE(crtc_state->output_format); break; } } tmp = ycbcr444_to_420 ? DP_CONVERSION_TO_YCBCR420_ENABLE : 0; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1) drm_dbg_kms(&i915->drm, "Failed to %s protocol converter YCbCr 4:2:0 conversion mode\n", str_enable_disable(intel_dp->dfp.ycbcr_444_to_420)); tmp = rgb_to_ycbcr ? DP_CONVERSION_BT709_RGB_YCBCR_ENABLE : 0; if (drm_dp_pcon_convert_rgb_to_ycbcr(&intel_dp->aux, tmp) < 0) drm_dbg_kms(&i915->drm, "Failed to %s protocol converter RGB->YCbCr conversion mode\n", str_enable_disable(tmp)); } bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) { u8 dprx = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &dprx) != 1) return false; return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; } static void intel_dp_read_dsc_dpcd(struct drm_dp_aux *aux, u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) { if (drm_dp_dpcd_read(aux, DP_DSC_SUPPORT, dsc_dpcd, DP_DSC_RECEIVER_CAP_SIZE) < 0) { drm_err(aux->drm_dev, "Failed to read DPCD register 0x%x\n", DP_DSC_SUPPORT); return; } drm_dbg_kms(aux->drm_dev, "DSC DPCD: %*ph\n", DP_DSC_RECEIVER_CAP_SIZE, dsc_dpcd); } void intel_dp_get_dsc_sink_cap(u8 dpcd_rev, struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->base.dev); /* * Clear the cached register set to avoid using stale values * for the sinks that do not support DSC. */ memset(connector->dp.dsc_dpcd, 0, sizeof(connector->dp.dsc_dpcd)); /* Clear fec_capable to avoid using stale values */ connector->dp.fec_capability = 0; if (dpcd_rev < DP_DPCD_REV_14) return; intel_dp_read_dsc_dpcd(connector->dp.dsc_decompression_aux, connector->dp.dsc_dpcd); if (drm_dp_dpcd_readb(connector->dp.dsc_decompression_aux, DP_FEC_CAPABILITY, &connector->dp.fec_capability) < 0) { drm_err(&i915->drm, "Failed to read FEC DPCD register\n"); return; } drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n", connector->dp.fec_capability); } static void intel_edp_get_dsc_sink_cap(u8 edp_dpcd_rev, struct intel_connector *connector) { if (edp_dpcd_rev < DP_EDP_14) return; intel_dp_read_dsc_dpcd(connector->dp.dsc_decompression_aux, connector->dp.dsc_dpcd); } static void intel_edp_mso_mode_fixup(struct intel_connector *connector, struct drm_display_mode *mode) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct drm_i915_private *i915 = to_i915(connector->base.dev); int n = intel_dp->mso_link_count; int overlap = intel_dp->mso_pixel_overlap; if (!mode || !n) return; mode->hdisplay = (mode->hdisplay - overlap) * n; mode->hsync_start = (mode->hsync_start - overlap) * n; mode->hsync_end = (mode->hsync_end - overlap) * n; mode->htotal = (mode->htotal - overlap) * n; mode->clock *= n; drm_mode_set_name(mode); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] using generated MSO mode: " DRM_MODE_FMT "\n", connector->base.base.id, connector->base.name, DRM_MODE_ARG(mode)); } void intel_edp_fixup_vbt_bpp(struct intel_encoder *encoder, int pipe_bpp) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_connector *connector = intel_dp->attached_connector; if (connector->panel.vbt.edp.bpp && pipe_bpp > connector->panel.vbt.edp.bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ drm_dbg_kms(&dev_priv->drm, "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_bpp, connector->panel.vbt.edp.bpp); connector->panel.vbt.edp.bpp = pipe_bpp; } } static void intel_edp_mso_init(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; struct drm_display_info *info = &connector->base.display_info; u8 mso; if (intel_dp->edp_dpcd[0] < DP_EDP_14) return; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_EDP_MSO_LINK_CAPABILITIES, &mso) != 1) { drm_err(&i915->drm, "Failed to read MSO cap\n"); return; } /* Valid configurations are SST or MSO 2x1, 2x2, 4x1 */ mso &= DP_EDP_MSO_NUMBER_OF_LINKS_MASK; if (mso % 2 || mso > drm_dp_max_lane_count(intel_dp->dpcd)) { drm_err(&i915->drm, "Invalid MSO link count cap %u\n", mso); mso = 0; } if (mso) { drm_dbg_kms(&i915->drm, "Sink MSO %ux%u configuration, pixel overlap %u\n", mso, drm_dp_max_lane_count(intel_dp->dpcd) / mso, info->mso_pixel_overlap); if (!HAS_MSO(i915)) { drm_err(&i915->drm, "No source MSO support, disabling\n"); mso = 0; } } intel_dp->mso_link_count = mso; intel_dp->mso_pixel_overlap = mso ? info->mso_pixel_overlap : 0; } static bool intel_edp_init_dpcd(struct intel_dp *intel_dp, struct intel_connector *connector) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); /* this function is meant to be called only once */ drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0) return false; drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, drm_dp_is_branch(intel_dp->dpcd)); /* * Read the eDP display control registers. * * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it * set, but require eDP 1.4+ detection (e.g. for supported link rates * method). The display control registers should read zero if they're * not supported anyway. */ if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == sizeof(intel_dp->edp_dpcd)) { drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n", (int)sizeof(intel_dp->edp_dpcd), intel_dp->edp_dpcd); intel_dp->use_max_params = intel_dp->edp_dpcd[0] < DP_EDP_14; } /* * This has to be called after intel_dp->edp_dpcd is filled, PSR checks * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] */ intel_psr_init_dpcd(intel_dp); /* Clear the default sink rates */ intel_dp->num_sink_rates = 0; /* Read the eDP 1.4+ supported link rates. */ if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; int i; drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, sink_rates, sizeof(sink_rates)); for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { int val = le16_to_cpu(sink_rates[i]); if (val == 0) break; /* Value read multiplied by 200kHz gives the per-lane * link rate in kHz. The source rates are, however, * stored in terms of LS_Clk kHz. The full conversion * back to symbols is * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) */ intel_dp->sink_rates[i] = (val * 200) / 10; } intel_dp->num_sink_rates = i; } /* * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. */ if (intel_dp->num_sink_rates) intel_dp->use_rate_select = true; else intel_dp_set_sink_rates(intel_dp); intel_dp_set_max_sink_lane_count(intel_dp); /* Read the eDP DSC DPCD registers */ if (HAS_DSC(dev_priv)) intel_edp_get_dsc_sink_cap(intel_dp->edp_dpcd[0], connector); /* * If needed, program our source OUI so we can make various Intel-specific AUX services * available (such as HDR backlight controls) */ intel_edp_init_source_oui(intel_dp, true); return true; } static bool intel_dp_has_sink_count(struct intel_dp *intel_dp) { if (!intel_dp->attached_connector) return false; return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base, intel_dp->dpcd, &intel_dp->desc); } void intel_dp_update_sink_caps(struct intel_dp *intel_dp) { intel_dp_set_sink_rates(intel_dp); intel_dp_set_max_sink_lane_count(intel_dp); intel_dp_set_common_rates(intel_dp); } static bool intel_dp_get_dpcd(struct intel_dp *intel_dp) { int ret; if (intel_dp_init_lttpr_and_dprx_caps(intel_dp) < 0) return false; /* * Don't clobber cached eDP rates. Also skip re-reading * the OUI/ID since we know it won't change. */ if (!intel_dp_is_edp(intel_dp)) { drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, drm_dp_is_branch(intel_dp->dpcd)); intel_dp_update_sink_caps(intel_dp); } if (intel_dp_has_sink_count(intel_dp)) { ret = drm_dp_read_sink_count(&intel_dp->aux); if (ret < 0) return false; /* * Sink count can change between short pulse hpd hence * a member variable in intel_dp will track any changes * between short pulse interrupts. */ intel_dp->sink_count = ret; /* * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that * a dongle is present but no display. Unless we require to know * if a dongle is present or not, we don't need to update * downstream port information. So, an early return here saves * time from performing other operations which are not required. */ if (!intel_dp->sink_count) return false; } return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd, intel_dp->downstream_ports) == 0; } static const char *intel_dp_mst_mode_str(enum drm_dp_mst_mode mst_mode) { if (mst_mode == DRM_DP_MST) return "MST"; else if (mst_mode == DRM_DP_SST_SIDEBAND_MSG) return "SST w/ sideband messaging"; else return "SST"; } static enum drm_dp_mst_mode intel_dp_mst_mode_choose(struct intel_dp *intel_dp, enum drm_dp_mst_mode sink_mst_mode) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!i915->display.params.enable_dp_mst) return DRM_DP_SST; if (!intel_dp_mst_source_support(intel_dp)) return DRM_DP_SST; if (sink_mst_mode == DRM_DP_SST_SIDEBAND_MSG && !(intel_dp->dpcd[DP_MAIN_LINK_CHANNEL_CODING] & DP_CAP_ANSI_128B132B)) return DRM_DP_SST; return sink_mst_mode; } static enum drm_dp_mst_mode intel_dp_mst_detect(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; enum drm_dp_mst_mode sink_mst_mode; enum drm_dp_mst_mode mst_detect; sink_mst_mode = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd); mst_detect = intel_dp_mst_mode_choose(intel_dp, sink_mst_mode); drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s -> enable: %s\n", encoder->base.base.id, encoder->base.name, str_yes_no(intel_dp_mst_source_support(intel_dp)), intel_dp_mst_mode_str(sink_mst_mode), str_yes_no(i915->display.params.enable_dp_mst), intel_dp_mst_mode_str(mst_detect)); return mst_detect; } static void intel_dp_mst_configure(struct intel_dp *intel_dp) { if (!intel_dp_mst_source_support(intel_dp)) return; intel_dp->is_mst = intel_dp->mst_detect != DRM_DP_SST; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); /* Avoid stale info on the next detect cycle. */ intel_dp->mst_detect = DRM_DP_SST; } static void intel_dp_mst_disconnect(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!intel_dp->is_mst) return; drm_dbg_kms(&i915->drm, "MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); } static bool intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *esi) { return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, esi, 4) == 4; } static bool intel_dp_ack_sink_irq_esi(struct intel_dp *intel_dp, u8 esi[4]) { int retry; for (retry = 0; retry < 3; retry++) { if (drm_dp_dpcd_write(&intel_dp->aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3) == 3) return true; } return false; } bool intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { /* * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication * of Color Encoding Format and Content Color Gamut], in order to * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. */ if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) return true; switch (conn_state->colorspace) { case DRM_MODE_COLORIMETRY_SYCC_601: case DRM_MODE_COLORIMETRY_OPYCC_601: case DRM_MODE_COLORIMETRY_BT2020_YCC: case DRM_MODE_COLORIMETRY_BT2020_RGB: case DRM_MODE_COLORIMETRY_BT2020_CYCC: return true; default: break; } return false; } static ssize_t intel_dp_as_sdp_pack(const struct drm_dp_as_sdp *as_sdp, struct dp_sdp *sdp, size_t size) { size_t length = sizeof(struct dp_sdp); if (size < length) return -ENOSPC; memset(sdp, 0, size); /* Prepare AS (Adaptive Sync) SDP Header */ sdp->sdp_header.HB0 = 0; sdp->sdp_header.HB1 = as_sdp->sdp_type; sdp->sdp_header.HB2 = 0x02; sdp->sdp_header.HB3 = as_sdp->length; /* Fill AS (Adaptive Sync) SDP Payload */ sdp->db[0] = as_sdp->mode; sdp->db[1] = as_sdp->vtotal & 0xFF; sdp->db[2] = (as_sdp->vtotal >> 8) & 0xFF; sdp->db[3] = as_sdp->target_rr & 0xFF; sdp->db[4] = (as_sdp->target_rr >> 8) & 0x3; return length; } static ssize_t intel_dp_hdr_metadata_infoframe_sdp_pack(struct drm_i915_private *i915, const struct hdmi_drm_infoframe *drm_infoframe, struct dp_sdp *sdp, size_t size) { size_t length = sizeof(struct dp_sdp); const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; ssize_t len; if (size < length) return -ENOSPC; memset(sdp, 0, size); len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf)); if (len < 0) { drm_dbg_kms(&i915->drm, "buffer size is smaller than hdr metadata infoframe\n"); return -ENOSPC; } if (len != infoframe_size) { drm_dbg_kms(&i915->drm, "wrong static hdr metadata size\n"); return -ENOSPC; } /* * Set up the infoframe sdp packet for HDR static metadata. * Prepare VSC Header for SU as per DP 1.4a spec, * Table 2-100 and Table 2-101 */ /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */ sdp->sdp_header.HB0 = 0; /* * Packet Type 80h + Non-audio INFOFRAME Type value * HDMI_INFOFRAME_TYPE_DRM: 0x87 * - 80h + Non-audio INFOFRAME Type value * - InfoFrame Type: 0x07 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame] */ sdp->sdp_header.HB1 = drm_infoframe->type; /* * Least Significant Eight Bits of (Data Byte Count – 1) * infoframe_size - 1 */ sdp->sdp_header.HB2 = 0x1D; /* INFOFRAME SDP Version Number */ sdp->sdp_header.HB3 = (0x13 << 2); /* CTA Header Byte 2 (INFOFRAME Version Number) */ sdp->db[0] = drm_infoframe->version; /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ sdp->db[1] = drm_infoframe->length; /* * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after * HDMI_INFOFRAME_HEADER_SIZE */ BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2); memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], HDMI_DRM_INFOFRAME_SIZE); /* * Size of DP infoframe sdp packet for HDR static metadata consists of * - DP SDP Header(struct dp_sdp_header): 4 bytes * - Two Data Blocks: 2 bytes * CTA Header Byte2 (INFOFRAME Version Number) * CTA Header Byte3 (Length of INFOFRAME) * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes * * Prior to GEN11's GMP register size is identical to DP HDR static metadata * infoframe size. But GEN11+ has larger than that size, write_infoframe * will pad rest of the size. */ return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE; } static void intel_write_dp_sdp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct dp_sdp sdp = {}; ssize_t len; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; switch (type) { case DP_SDP_VSC: len = drm_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp); break; case HDMI_PACKET_TYPE_GAMUT_METADATA: len = intel_dp_hdr_metadata_infoframe_sdp_pack(dev_priv, &crtc_state->infoframes.drm.drm, &sdp, sizeof(sdp)); break; case DP_SDP_ADAPTIVE_SYNC: len = intel_dp_as_sdp_pack(&crtc_state->infoframes.as_sdp, &sdp, sizeof(sdp)); break; default: MISSING_CASE(type); return; } if (drm_WARN_ON(&dev_priv->drm, len < 0)) return; dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len); } void intel_dp_set_infoframes(struct intel_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK; if (HAS_AS_SDP(dev_priv)) dip_enable |= VIDEO_DIP_ENABLE_AS_ADL; u32 val = intel_de_read(dev_priv, reg) & ~dip_enable; /* TODO: Sanitize DSC enabling wrt. intel_dsc_dp_pps_write(). */ if (!enable && HAS_DSC(dev_priv)) val &= ~VDIP_ENABLE_PPS; /* When PSR is enabled, this routine doesn't disable VSC DIP */ if (!crtc_state->has_psr) val &= ~VIDEO_DIP_ENABLE_VSC_HSW; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); if (!enable) return; intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC); intel_write_dp_sdp(encoder, crtc_state, DP_SDP_ADAPTIVE_SYNC); intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA); } static int intel_dp_as_sdp_unpack(struct drm_dp_as_sdp *as_sdp, const void *buffer, size_t size) { const struct dp_sdp *sdp = buffer; if (size < sizeof(struct dp_sdp)) return -EINVAL; memset(as_sdp, 0, sizeof(*as_sdp)); if (sdp->sdp_header.HB0 != 0) return -EINVAL; if (sdp->sdp_header.HB1 != DP_SDP_ADAPTIVE_SYNC) return -EINVAL; if (sdp->sdp_header.HB2 != 0x02) return -EINVAL; if ((sdp->sdp_header.HB3 & 0x3F) != 9) return -EINVAL; as_sdp->length = sdp->sdp_header.HB3 & DP_ADAPTIVE_SYNC_SDP_LENGTH; as_sdp->mode = sdp->db[0] & DP_ADAPTIVE_SYNC_SDP_OPERATION_MODE; as_sdp->vtotal = (sdp->db[2] << 8) | sdp->db[1]; as_sdp->target_rr = (u64)sdp->db[3] | ((u64)sdp->db[4] & 0x3); return 0; } static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc, const void *buffer, size_t size) { const struct dp_sdp *sdp = buffer; if (size < sizeof(struct dp_sdp)) return -EINVAL; memset(vsc, 0, sizeof(*vsc)); if (sdp->sdp_header.HB0 != 0) return -EINVAL; if (sdp->sdp_header.HB1 != DP_SDP_VSC) return -EINVAL; vsc->sdp_type = sdp->sdp_header.HB1; vsc->revision = sdp->sdp_header.HB2; vsc->length = sdp->sdp_header.HB3; if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) || (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) { /* * - HB2 = 0x2, HB3 = 0x8 * VSC SDP supporting 3D stereo + PSR * - HB2 = 0x4, HB3 = 0xe * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of * first scan line of the SU region (applies to eDP v1.4b * and higher). */ return 0; } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) { /* * - HB2 = 0x5, HB3 = 0x13 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry * Format. */ vsc->pixelformat = (sdp->db[16] >> 4) & 0xf; vsc->colorimetry = sdp->db[16] & 0xf; vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1; switch (sdp->db[17] & 0x7) { case 0x0: vsc->bpc = 6; break; case 0x1: vsc->bpc = 8; break; case 0x2: vsc->bpc = 10; break; case 0x3: vsc->bpc = 12; break; case 0x4: vsc->bpc = 16; break; default: MISSING_CASE(sdp->db[17] & 0x7); return -EINVAL; } vsc->content_type = sdp->db[18] & 0x7; } else { return -EINVAL; } return 0; } static void intel_read_dp_as_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_dp_as_sdp *as_sdp) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); unsigned int type = DP_SDP_ADAPTIVE_SYNC; struct dp_sdp sdp = {}; int ret; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); ret = intel_dp_as_sdp_unpack(as_sdp, &sdp, sizeof(sdp)); if (ret) drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP AS SDP\n"); } static int intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe, const void *buffer, size_t size) { int ret; const struct dp_sdp *sdp = buffer; if (size < sizeof(struct dp_sdp)) return -EINVAL; if (sdp->sdp_header.HB0 != 0) return -EINVAL; if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM) return -EINVAL; /* * Least Significant Eight Bits of (Data Byte Count – 1) * 1Dh (i.e., Data Byte Count = 30 bytes). */ if (sdp->sdp_header.HB2 != 0x1D) return -EINVAL; /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */ if ((sdp->sdp_header.HB3 & 0x3) != 0) return -EINVAL; /* INFOFRAME SDP Version Number */ if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13) return -EINVAL; /* CTA Header Byte 2 (INFOFRAME Version Number) */ if (sdp->db[0] != 1) return -EINVAL; /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE) return -EINVAL; ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2], HDMI_DRM_INFOFRAME_SIZE); return ret; } static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_dp_vsc_sdp *vsc) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); unsigned int type = DP_SDP_VSC; struct dp_sdp sdp = {}; int ret; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp)); if (ret) drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n"); } static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct hdmi_drm_infoframe *drm_infoframe) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA; struct dp_sdp sdp = {}; int ret; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp, sizeof(sdp)); if (ret) drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP HDR Metadata Infoframe SDP\n"); } void intel_read_dp_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, unsigned int type) { switch (type) { case DP_SDP_VSC: intel_read_dp_vsc_sdp(encoder, crtc_state, &crtc_state->infoframes.vsc); break; case HDMI_PACKET_TYPE_GAMUT_METADATA: intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state, &crtc_state->infoframes.drm.drm); break; case DP_SDP_ADAPTIVE_SYNC: intel_read_dp_as_sdp(encoder, crtc_state, &crtc_state->infoframes.as_sdp); break; default: MISSING_CASE(type); break; } } static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int status = 0; int test_link_rate; u8 test_lane_count, test_link_bw; /* (DP CTS 1.2) * 4.3.1.11 */ /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, &test_lane_count); if (status <= 0) { drm_dbg_kms(&i915->drm, "Lane count read failed\n"); return DP_TEST_NAK; } test_lane_count &= DP_MAX_LANE_COUNT_MASK; status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, &test_link_bw); if (status <= 0) { drm_dbg_kms(&i915->drm, "Link Rate read failed\n"); return DP_TEST_NAK; } test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); /* Validate the requested link rate and lane count */ if (!intel_dp_link_params_valid(intel_dp, test_link_rate, test_lane_count)) return DP_TEST_NAK; intel_dp->compliance.test_lane_count = test_lane_count; intel_dp->compliance.test_link_rate = test_link_rate; return DP_TEST_ACK; } static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 test_pattern; u8 test_misc; __be16 h_width, v_height; int status = 0; /* Read the TEST_PATTERN (DP CTS 3.1.5) */ status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, &test_pattern); if (status <= 0) { drm_dbg_kms(&i915->drm, "Test pattern read failed\n"); return DP_TEST_NAK; } if (test_pattern != DP_COLOR_RAMP) return DP_TEST_NAK; status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, &h_width, 2); if (status <= 0) { drm_dbg_kms(&i915->drm, "H Width read failed\n"); return DP_TEST_NAK; } status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, &v_height, 2); if (status <= 0) { drm_dbg_kms(&i915->drm, "V Height read failed\n"); return DP_TEST_NAK; } status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, &test_misc); if (status <= 0) { drm_dbg_kms(&i915->drm, "TEST MISC read failed\n"); return DP_TEST_NAK; } if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) return DP_TEST_NAK; if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) return DP_TEST_NAK; switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { case DP_TEST_BIT_DEPTH_6: intel_dp->compliance.test_data.bpc = 6; break; case DP_TEST_BIT_DEPTH_8: intel_dp->compliance.test_data.bpc = 8; break; default: return DP_TEST_NAK; } intel_dp->compliance.test_data.video_pattern = test_pattern; intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = true; return DP_TEST_ACK; } static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 test_result = DP_TEST_ACK; struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; if (intel_connector->detect_edid == NULL || connector->edid_corrupt || intel_dp->aux.i2c_defer_count > 6) { /* Check EDID read for NACKs, DEFERs and corruption * (DP CTS 1.2 Core r1.1) * 4.2.2.4 : Failed EDID read, I2C_NAK * 4.2.2.5 : Failed EDID read, I2C_DEFER * 4.2.2.6 : EDID corruption detected * Use failsafe mode for all cases */ if (intel_dp->aux.i2c_nack_count > 0 || intel_dp->aux.i2c_defer_count > 0) drm_dbg_kms(&i915->drm, "EDID read had %d NACKs, %d DEFERs\n", intel_dp->aux.i2c_nack_count, intel_dp->aux.i2c_defer_count); intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; } else { /* FIXME: Get rid of drm_edid_raw() */ const struct edid *block = drm_edid_raw(intel_connector->detect_edid); /* We have to write the checksum of the last block read */ block += block->extensions; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, block->checksum) <= 0) drm_dbg_kms(&i915->drm, "Failed to write EDID checksum\n"); test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; } /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = true; return test_result; } static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); struct drm_dp_phy_test_params *data = &intel_dp->compliance.test_data.phytest; struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; enum pipe pipe = crtc->pipe; u32 pattern_val; switch (data->phy_pattern) { case DP_LINK_QUAL_PATTERN_DISABLE: drm_dbg_kms(&dev_priv->drm, "Disable Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0); if (DISPLAY_VER(dev_priv) >= 10) intel_de_rmw(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), DP_TP_CTL_TRAIN_PAT4_SEL_MASK | DP_TP_CTL_LINK_TRAIN_MASK, DP_TP_CTL_LINK_TRAIN_NORMAL); break; case DP_LINK_QUAL_PATTERN_D10_2: drm_dbg_kms(&dev_priv->drm, "Set D10.2 Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2); break; case DP_LINK_QUAL_PATTERN_ERROR_RATE: drm_dbg_kms(&dev_priv->drm, "Set Error Count Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_SCRAMBLED_0); break; case DP_LINK_QUAL_PATTERN_PRBS7: drm_dbg_kms(&dev_priv->drm, "Set PRBS7 Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7); break; case DP_LINK_QUAL_PATTERN_80BIT_CUSTOM: /* * FIXME: Ideally pattern should come from DPCD 0x250. As * current firmware of DPR-100 could not set it, so hardcoding * now for complaince test. */ drm_dbg_kms(&dev_priv->drm, "Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n"); pattern_val = 0x3e0f83e0; intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val); pattern_val = 0x0f83e0f8; intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val); pattern_val = 0x0000f83e; intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_CUSTOM80); break; case DP_LINK_QUAL_PATTERN_CP2520_PAT_1: /* * FIXME: Ideally pattern should come from DPCD 0x24A. As * current firmware of DPR-100 could not set it, so hardcoding * now for complaince test. */ drm_dbg_kms(&dev_priv->drm, "Set HBR2 compliance Phy Test Pattern\n"); pattern_val = 0xFB; intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 | pattern_val); break; case DP_LINK_QUAL_PATTERN_CP2520_PAT_3: if (DISPLAY_VER(dev_priv) < 10) { drm_warn(&dev_priv->drm, "Platform does not support TPS4\n"); break; } drm_dbg_kms(&dev_priv->drm, "Set TPS4 compliance Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0); intel_de_rmw(dev_priv, dp_tp_ctl_reg(encoder, crtc_state), DP_TP_CTL_TRAIN_PAT4_SEL_MASK | DP_TP_CTL_LINK_TRAIN_MASK, DP_TP_CTL_TRAIN_PAT4_SEL_TP4A | DP_TP_CTL_LINK_TRAIN_PAT4); break; default: drm_warn(&dev_priv->drm, "Invalid Phy Test Pattern\n"); } } static void intel_dp_process_phy_request(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_dp_phy_test_params *data = &intel_dp->compliance.test_data.phytest; u8 link_status[DP_LINK_STATUS_SIZE]; if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX, link_status) < 0) { drm_dbg_kms(&i915->drm, "failed to get link status\n"); return; } /* retrieve vswing & pre-emphasis setting */ intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX, link_status); intel_dp_set_signal_levels(intel_dp, crtc_state, DP_PHY_DPRX); intel_dp_phy_pattern_update(intel_dp, crtc_state); drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET, intel_dp->train_set, crtc_state->lane_count); drm_dp_set_phy_test_pattern(&intel_dp->aux, data, intel_dp->dpcd[DP_DPCD_REV]); } static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_dp_phy_test_params *data = &intel_dp->compliance.test_data.phytest; if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) { drm_dbg_kms(&i915->drm, "DP Phy Test pattern AUX read failure\n"); return DP_TEST_NAK; } /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = true; return DP_TEST_ACK; } static void intel_dp_handle_test_request(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 response = DP_TEST_NAK; u8 request = 0; int status; status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); if (status <= 0) { drm_dbg_kms(&i915->drm, "Could not read test request from sink\n"); goto update_status; } switch (request) { case DP_TEST_LINK_TRAINING: drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n"); response = intel_dp_autotest_link_training(intel_dp); break; case DP_TEST_LINK_VIDEO_PATTERN: drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n"); response = intel_dp_autotest_video_pattern(intel_dp); break; case DP_TEST_LINK_EDID_READ: drm_dbg_kms(&i915->drm, "EDID test requested\n"); response = intel_dp_autotest_edid(intel_dp); break; case DP_TEST_LINK_PHY_TEST_PATTERN: drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n"); response = intel_dp_autotest_phy_pattern(intel_dp); break; default: drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n", request); break; } if (response & DP_TEST_ACK) intel_dp->compliance.test_type = request; update_status: status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); if (status <= 0) drm_dbg_kms(&i915->drm, "Could not write test response to sink\n"); } static bool intel_dp_link_ok(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *i915 = to_i915(encoder->base.dev); bool uhbr = intel_dp->link_rate >= 1000000; bool ok; if (uhbr) ok = drm_dp_128b132b_lane_channel_eq_done(link_status, intel_dp->lane_count); else ok = drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); if (ok) return true; intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status); drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] %s link not ok, retraining\n", encoder->base.base.id, encoder->base.name, uhbr ? "128b/132b" : "8b/10b"); return false; } static void intel_dp_mst_hpd_irq(struct intel_dp *intel_dp, u8 *esi, u8 *ack) { bool handled = false; drm_dp_mst_hpd_irq_handle_event(&intel_dp->mst_mgr, esi, ack, &handled); if (esi[1] & DP_CP_IRQ) { intel_hdcp_handle_cp_irq(intel_dp->attached_connector); ack[1] |= DP_CP_IRQ; } } static bool intel_dp_mst_link_status(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *i915 = to_i915(encoder->base.dev); u8 link_status[DP_LINK_STATUS_SIZE] = {}; const size_t esi_link_status_size = DP_LINK_STATUS_SIZE - 2; if (drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS_ESI, link_status, esi_link_status_size) != esi_link_status_size) { drm_err(&i915->drm, "[ENCODER:%d:%s] Failed to read link status\n", encoder->base.base.id, encoder->base.name); return false; } return intel_dp_link_ok(intel_dp, link_status); } /** * intel_dp_check_mst_status - service any pending MST interrupts, check link status * @intel_dp: Intel DP struct * * Read any pending MST interrupts, call MST core to handle these and ack the * interrupts. Check if the main and AUX link state is ok. * * Returns: * - %true if pending interrupts were serviced (or no interrupts were * pending) w/o detecting an error condition. * - %false if an error condition - like AUX failure or a loss of link - is * detected, or another condition - like a DP tunnel BW state change - needs * servicing from the hotplug work. */ static bool intel_dp_check_mst_status(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); bool link_ok = true; bool reprobe_needed = false; drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0); for (;;) { u8 esi[4] = {}; u8 ack[4] = {}; if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) { drm_dbg_kms(&i915->drm, "failed to get ESI - device may have failed\n"); link_ok = false; break; } drm_dbg_kms(&i915->drm, "DPRX ESI: %4ph\n", esi); if (intel_dp->active_mst_links > 0 && link_ok && esi[3] & LINK_STATUS_CHANGED) { if (!intel_dp_mst_link_status(intel_dp)) link_ok = false; ack[3] |= LINK_STATUS_CHANGED; } intel_dp_mst_hpd_irq(intel_dp, esi, ack); if (esi[3] & DP_TUNNELING_IRQ) { if (drm_dp_tunnel_handle_irq(i915->display.dp_tunnel_mgr, &intel_dp->aux)) reprobe_needed = true; ack[3] |= DP_TUNNELING_IRQ; } if (!memchr_inv(ack, 0, sizeof(ack))) break; if (!intel_dp_ack_sink_irq_esi(intel_dp, ack)) drm_dbg_kms(&i915->drm, "Failed to ack ESI\n"); if (ack[1] & (DP_DOWN_REP_MSG_RDY | DP_UP_REQ_MSG_RDY)) drm_dp_mst_hpd_irq_send_new_request(&intel_dp->mst_mgr); } return link_ok && !reprobe_needed; } static void intel_dp_handle_hdmi_link_status_change(struct intel_dp *intel_dp) { bool is_active; u8 buf = 0; is_active = drm_dp_pcon_hdmi_link_active(&intel_dp->aux); if (intel_dp->frl.is_trained && !is_active) { if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf) < 0) return; buf &= ~DP_PCON_ENABLE_HDMI_LINK; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf) < 0) return; drm_dp_pcon_hdmi_frl_link_error_count(&intel_dp->aux, &intel_dp->attached_connector->base); intel_dp->frl.is_trained = false; /* Restart FRL training or fall back to TMDS mode */ intel_dp_check_frl_training(intel_dp); } } static bool intel_dp_needs_link_retrain(struct intel_dp *intel_dp) { u8 link_status[DP_LINK_STATUS_SIZE]; if (!intel_dp->link_trained) return false; /* * While PSR source HW is enabled, it will control main-link sending * frames, enabling and disabling it so trying to do a retrain will fail * as the link would or not be on or it could mix training patterns * and frame data at the same time causing retrain to fail. * Also when exiting PSR, HW will retrain the link anyways fixing * any link status error. */ if (intel_psr_enabled(intel_dp)) return false; if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX, link_status) < 0) return false; /* * Validate the cached values of intel_dp->link_rate and * intel_dp->lane_count before attempting to retrain. * * FIXME would be nice to user the crtc state here, but since * we need to call this from the short HPD handler that seems * a bit hard. */ if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, intel_dp->lane_count)) return false; /* Retrain if link not ok */ return !intel_dp_link_ok(intel_dp, link_status); } static bool intel_dp_has_connector(struct intel_dp *intel_dp, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_encoder *encoder; enum pipe pipe; if (!conn_state->best_encoder) return false; /* SST */ encoder = &dp_to_dig_port(intel_dp)->base; if (conn_state->best_encoder == &encoder->base) return true; /* MST */ for_each_pipe(i915, pipe) { encoder = &intel_dp->mst_encoders[pipe]->base; if (conn_state->best_encoder == &encoder->base) return true; } return false; } int intel_dp_get_active_pipes(struct intel_dp *intel_dp, struct drm_modeset_acquire_ctx *ctx, u8 *pipe_mask) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_connector_list_iter conn_iter; struct intel_connector *connector; int ret = 0; *pipe_mask = 0; drm_connector_list_iter_begin(&i915->drm, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { struct drm_connector_state *conn_state = connector->base.state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; if (!intel_dp_has_connector(intel_dp, conn_state)) continue; crtc = to_intel_crtc(conn_state->crtc); if (!crtc) continue; ret = drm_modeset_lock(&crtc->base.mutex, ctx); if (ret) break; crtc_state = to_intel_crtc_state(crtc->base.state); drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state)); if (!crtc_state->hw.active) continue; if (conn_state->commit) drm_WARN_ON(&i915->drm, !wait_for_completion_timeout(&conn_state->commit->hw_done, msecs_to_jiffies(5000))); *pipe_mask |= BIT(crtc->pipe); } drm_connector_list_iter_end(&conn_iter); return ret; } static bool intel_dp_is_connected(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; return connector->base.status == connector_status_connected || intel_dp->is_mst; } int intel_dp_retrain_link(struct intel_encoder *encoder, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_crtc *crtc; u8 pipe_mask; int ret; if (!intel_dp_is_connected(intel_dp)) return 0; ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, ctx); if (ret) return ret; if (!intel_dp_needs_link_retrain(intel_dp)) return 0; ret = intel_dp_get_active_pipes(intel_dp, ctx, &pipe_mask); if (ret) return ret; if (pipe_mask == 0) return 0; if (!intel_dp_needs_link_retrain(intel_dp)) return 0; drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n", encoder->base.base.id, encoder->base.name); for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* Suppress underruns caused by re-training */ intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); if (crtc_state->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, intel_crtc_pch_transcoder(crtc), false); } for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* retrain on the MST master transcoder */ if (DISPLAY_VER(dev_priv) >= 12 && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) && !intel_dp_mst_is_master_trans(crtc_state)) continue; intel_dp->link_trained = false; intel_dp_check_frl_training(intel_dp); intel_dp_pcon_dsc_configure(intel_dp, crtc_state); intel_dp_start_link_train(intel_dp, crtc_state); intel_dp_stop_link_train(intel_dp, crtc_state); break; } for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* Keep underrun reporting disabled until things are stable */ intel_crtc_wait_for_next_vblank(crtc); intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); if (crtc_state->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, intel_crtc_pch_transcoder(crtc), true); } return 0; } static int intel_dp_prep_phy_test(struct intel_dp *intel_dp, struct drm_modeset_acquire_ctx *ctx, u8 *pipe_mask) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_connector_list_iter conn_iter; struct intel_connector *connector; int ret = 0; *pipe_mask = 0; drm_connector_list_iter_begin(&i915->drm, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { struct drm_connector_state *conn_state = connector->base.state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; if (!intel_dp_has_connector(intel_dp, conn_state)) continue; crtc = to_intel_crtc(conn_state->crtc); if (!crtc) continue; ret = drm_modeset_lock(&crtc->base.mutex, ctx); if (ret) break; crtc_state = to_intel_crtc_state(crtc->base.state); drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state)); if (!crtc_state->hw.active) continue; if (conn_state->commit && !try_wait_for_completion(&conn_state->commit->hw_done)) continue; *pipe_mask |= BIT(crtc->pipe); } drm_connector_list_iter_end(&conn_iter); return ret; } static int intel_dp_do_phy_test(struct intel_encoder *encoder, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_crtc *crtc; u8 pipe_mask; int ret; ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, ctx); if (ret) return ret; ret = intel_dp_prep_phy_test(intel_dp, ctx, &pipe_mask); if (ret) return ret; if (pipe_mask == 0) return 0; drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] PHY test\n", encoder->base.base.id, encoder->base.name); for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* test on the MST master transcoder */ if (DISPLAY_VER(dev_priv) >= 12 && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) && !intel_dp_mst_is_master_trans(crtc_state)) continue; intel_dp_process_phy_request(intel_dp, crtc_state); break; } return 0; } void intel_dp_phy_test(struct intel_encoder *encoder) { struct drm_modeset_acquire_ctx ctx; int ret; drm_modeset_acquire_init(&ctx, 0); for (;;) { ret = intel_dp_do_phy_test(encoder, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); continue; } break; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); drm_WARN(encoder->base.dev, ret, "Acquiring modeset locks failed with %i\n", ret); } static void intel_dp_check_device_service_irq(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 val; if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) return; drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); if (val & DP_AUTOMATED_TEST_REQUEST) intel_dp_handle_test_request(intel_dp); if (val & DP_CP_IRQ) intel_hdcp_handle_cp_irq(intel_dp->attached_connector); if (val & DP_SINK_SPECIFIC_IRQ) drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n"); } static bool intel_dp_check_link_service_irq(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); bool reprobe_needed = false; u8 val; if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return false; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_LINK_SERVICE_IRQ_VECTOR_ESI0, &val) != 1 || !val) return false; if ((val & DP_TUNNELING_IRQ) && drm_dp_tunnel_handle_irq(i915->display.dp_tunnel_mgr, &intel_dp->aux)) reprobe_needed = true; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_LINK_SERVICE_IRQ_VECTOR_ESI0, val) != 1) return reprobe_needed; if (val & HDMI_LINK_STATUS_CHANGED) intel_dp_handle_hdmi_link_status_change(intel_dp); return reprobe_needed; } /* * According to DP spec * 5.1.2: * 1. Read DPCD * 2. Configure link according to Receiver Capabilities * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 * 4. Check link status on receipt of hot-plug interrupt * * intel_dp_short_pulse - handles short pulse interrupts * when full detection is not required. * Returns %true if short pulse is handled and full detection * is NOT required and %false otherwise. */ static bool intel_dp_short_pulse(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 old_sink_count = intel_dp->sink_count; bool reprobe_needed = false; bool ret; /* * Clearing compliance test variables to allow capturing * of values for next automated test request. */ memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); /* * Now read the DPCD to see if it's actually running * If the current value of sink count doesn't match with * the value that was stored earlier or dpcd read failed * we need to do full detection */ ret = intel_dp_get_dpcd(intel_dp); if ((old_sink_count != intel_dp->sink_count) || !ret) { /* No need to proceed if we are going to do full detect */ return false; } intel_dp_check_device_service_irq(intel_dp); reprobe_needed = intel_dp_check_link_service_irq(intel_dp); /* Handle CEC interrupts, if any */ drm_dp_cec_irq(&intel_dp->aux); /* defer to the hotplug work for link retraining if needed */ if (intel_dp_needs_link_retrain(intel_dp)) return false; intel_psr_short_pulse(intel_dp); switch (intel_dp->compliance.test_type) { case DP_TEST_LINK_TRAINING: drm_dbg_kms(&dev_priv->drm, "Link Training Compliance Test requested\n"); /* Send a Hotplug Uevent to userspace to start modeset */ drm_kms_helper_hotplug_event(&dev_priv->drm); break; case DP_TEST_LINK_PHY_TEST_PATTERN: drm_dbg_kms(&dev_priv->drm, "PHY test pattern Compliance Test requested\n"); /* * Schedule long hpd to do the test * * FIXME get rid of the ad-hoc phy test modeset code * and properly incorporate it into the normal modeset. */ reprobe_needed = true; } return !reprobe_needed; } /* XXX this is probably wrong for multiple downstream ports */ static enum drm_connector_status intel_dp_detect_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); u8 *dpcd = intel_dp->dpcd; u8 type; if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp))) return connector_status_connected; lspcon_resume(dig_port); if (!intel_dp_get_dpcd(intel_dp)) return connector_status_disconnected; intel_dp->mst_detect = intel_dp_mst_detect(intel_dp); /* if there's no downstream port, we're done */ if (!drm_dp_is_branch(dpcd)) return connector_status_connected; /* If we're HPD-aware, SINK_COUNT changes dynamically */ if (intel_dp_has_sink_count(intel_dp) && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { return intel_dp->sink_count ? connector_status_connected : connector_status_disconnected; } if (intel_dp->mst_detect == DRM_DP_MST) return connector_status_connected; /* If no HPD, poke DDC gently */ if (drm_probe_ddc(&intel_dp->aux.ddc)) return connector_status_connected; /* Well we tried, say unknown for unreliable port types */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID) return connector_status_unknown; } else { type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK; if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || type == DP_DWN_STRM_PORT_TYPE_OTHER) return connector_status_unknown; } /* Anything else is out of spec, warn and ignore */ drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n"); return connector_status_disconnected; } static enum drm_connector_status edp_detect(struct intel_dp *intel_dp) { return connector_status_connected; } void intel_digital_port_lock(struct intel_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); if (dig_port->lock) dig_port->lock(dig_port); } void intel_digital_port_unlock(struct intel_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); if (dig_port->unlock) dig_port->unlock(dig_port); } /* * intel_digital_port_connected_locked - is the specified port connected? * @encoder: intel_encoder * * In cases where there's a connector physically connected but it can't be used * by our hardware we also return false, since the rest of the driver should * pretty much treat the port as disconnected. This is relevant for type-C * (starting on ICL) where there's ownership involved. * * The caller must hold the lock acquired by calling intel_digital_port_lock() * when calling this function. * * Return %true if port is connected, %false otherwise. */ bool intel_digital_port_connected_locked(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); bool is_glitch_free = intel_tc_port_handles_hpd_glitches(dig_port); bool is_connected = false; intel_wakeref_t wakeref; with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) { unsigned long wait_expires = jiffies + msecs_to_jiffies_timeout(4); do { is_connected = dig_port->connected(encoder); if (is_connected || is_glitch_free) break; usleep_range(10, 30); } while (time_before(jiffies, wait_expires)); } return is_connected; } bool intel_digital_port_connected(struct intel_encoder *encoder) { bool ret; intel_digital_port_lock(encoder); ret = intel_digital_port_connected_locked(encoder); intel_digital_port_unlock(encoder); return ret; } static const struct drm_edid * intel_dp_get_edid(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; const struct drm_edid *fixed_edid = connector->panel.fixed_edid; /* Use panel fixed edid if we have one */ if (fixed_edid) { /* invalid edid */ if (IS_ERR(fixed_edid)) return NULL; return drm_edid_dup(fixed_edid); } return drm_edid_read_ddc(&connector->base, &intel_dp->aux.ddc); } static void intel_dp_update_dfp(struct intel_dp *intel_dp, const struct drm_edid *drm_edid) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; intel_dp->dfp.max_bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports, drm_edid); intel_dp->dfp.max_dotclock = drm_dp_downstream_max_dotclock(intel_dp->dpcd, intel_dp->downstream_ports); intel_dp->dfp.min_tmds_clock = drm_dp_downstream_min_tmds_clock(intel_dp->dpcd, intel_dp->downstream_ports, drm_edid); intel_dp->dfp.max_tmds_clock = drm_dp_downstream_max_tmds_clock(intel_dp->dpcd, intel_dp->downstream_ports, drm_edid); intel_dp->dfp.pcon_max_frl_bw = drm_dp_get_pcon_max_frl_bw(intel_dp->dpcd, intel_dp->downstream_ports); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d, PCON Max FRL BW %dGbps\n", connector->base.base.id, connector->base.name, intel_dp->dfp.max_bpc, intel_dp->dfp.max_dotclock, intel_dp->dfp.min_tmds_clock, intel_dp->dfp.max_tmds_clock, intel_dp->dfp.pcon_max_frl_bw); intel_dp_get_pcon_dsc_cap(intel_dp); } static bool intel_dp_can_ycbcr420(struct intel_dp *intel_dp) { if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420) && (!drm_dp_is_branch(intel_dp->dpcd) || intel_dp->dfp.ycbcr420_passthrough)) return true; if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_RGB) && dfp_can_convert_from_rgb(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420)) return true; if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR444) && dfp_can_convert_from_ycbcr444(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420)) return true; return false; } static void intel_dp_update_420(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; intel_dp->dfp.ycbcr420_passthrough = drm_dp_downstream_420_passthrough(intel_dp->dpcd, intel_dp->downstream_ports); /* on-board LSPCON always assumed to support 4:4:4->4:2:0 conversion */ intel_dp->dfp.ycbcr_444_to_420 = dp_to_dig_port(intel_dp)->lspcon.active || drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd, intel_dp->downstream_ports); intel_dp->dfp.rgb_to_ycbcr = drm_dp_downstream_rgb_to_ycbcr_conversion(intel_dp->dpcd, intel_dp->downstream_ports, DP_DS_HDMI_BT709_RGB_YCBCR_CONV); connector->base.ycbcr_420_allowed = intel_dp_can_ycbcr420(intel_dp); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] RGB->YcbCr conversion? %s, YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n", connector->base.base.id, connector->base.name, str_yes_no(intel_dp->dfp.rgb_to_ycbcr), str_yes_no(connector->base.ycbcr_420_allowed), str_yes_no(intel_dp->dfp.ycbcr_444_to_420)); } static void intel_dp_set_edid(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; const struct drm_edid *drm_edid; bool vrr_capable; intel_dp_unset_edid(intel_dp); drm_edid = intel_dp_get_edid(intel_dp); connector->detect_edid = drm_edid; /* Below we depend on display info having been updated */ drm_edid_connector_update(&connector->base, drm_edid); vrr_capable = intel_vrr_is_capable(connector); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] VRR capable: %s\n", connector->base.base.id, connector->base.name, str_yes_no(vrr_capable)); drm_connector_set_vrr_capable_property(&connector->base, vrr_capable); intel_dp_update_dfp(intel_dp, drm_edid); intel_dp_update_420(intel_dp); drm_dp_cec_attach(&intel_dp->aux, connector->base.display_info.source_physical_address); } static void intel_dp_unset_edid(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; drm_dp_cec_unset_edid(&intel_dp->aux); drm_edid_free(connector->detect_edid); connector->detect_edid = NULL; intel_dp->dfp.max_bpc = 0; intel_dp->dfp.max_dotclock = 0; intel_dp->dfp.min_tmds_clock = 0; intel_dp->dfp.max_tmds_clock = 0; intel_dp->dfp.pcon_max_frl_bw = 0; intel_dp->dfp.ycbcr_444_to_420 = false; connector->base.ycbcr_420_allowed = false; drm_connector_set_vrr_capable_property(&connector->base, false); } static void intel_dp_detect_dsc_caps(struct intel_dp *intel_dp, struct intel_connector *connector) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ if (!HAS_DSC(i915)) return; if (intel_dp_is_edp(intel_dp)) intel_edp_get_dsc_sink_cap(intel_dp->edp_dpcd[0], connector); else intel_dp_get_dsc_sink_cap(intel_dp->dpcd[DP_DPCD_REV], connector); } static int intel_dp_detect(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_dp *intel_dp = intel_attached_dp(intel_connector); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &dig_port->base; enum drm_connector_status status; int ret; drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); drm_WARN_ON(&dev_priv->drm, !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); if (!intel_display_device_enabled(dev_priv)) return connector_status_disconnected; if (!intel_display_driver_check_access(dev_priv)) return connector->status; /* Can't disconnect eDP */ if (intel_dp_is_edp(intel_dp)) status = edp_detect(intel_dp); else if (intel_digital_port_connected(encoder)) status = intel_dp_detect_dpcd(intel_dp); else status = connector_status_disconnected; if (status == connector_status_disconnected) { memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); memset(intel_connector->dp.dsc_dpcd, 0, sizeof(intel_connector->dp.dsc_dpcd)); intel_dp->psr.sink_panel_replay_support = false; intel_dp_mst_disconnect(intel_dp); intel_dp_tunnel_disconnect(intel_dp); goto out; } ret = intel_dp_tunnel_detect(intel_dp, ctx); if (ret == -EDEADLK) return ret; if (ret == 1) intel_connector->base.epoch_counter++; if (!intel_dp_is_edp(intel_dp)) intel_psr_init_dpcd(intel_dp); intel_dp_detect_dsc_caps(intel_dp, intel_connector); intel_dp_mst_configure(intel_dp); /* * TODO: Reset link params when switching to MST mode, until MST * supports link training fallback params. */ if (intel_dp->reset_link_params || intel_dp->is_mst) { intel_dp_reset_max_link_params(intel_dp); intel_dp->reset_link_params = false; } intel_dp_print_rates(intel_dp); if (intel_dp->is_mst) { /* * If we are in MST mode then this connector * won't appear connected or have anything * with EDID on it */ status = connector_status_disconnected; goto out; } /* * Some external monitors do not signal loss of link synchronization * with an IRQ_HPD, so force a link status check. */ if (!intel_dp_is_edp(intel_dp)) { ret = intel_dp_retrain_link(encoder, ctx); if (ret) return ret; } /* * Clearing NACK and defer counts to get their exact values * while reading EDID which are required by Compliance tests * 4.2.2.4 and 4.2.2.5 */ intel_dp->aux.i2c_nack_count = 0; intel_dp->aux.i2c_defer_count = 0; intel_dp_set_edid(intel_dp); if (intel_dp_is_edp(intel_dp) || to_intel_connector(connector)->detect_edid) status = connector_status_connected; intel_dp_check_device_service_irq(intel_dp); out: if (status != connector_status_connected && !intel_dp->is_mst) intel_dp_unset_edid(intel_dp); if (!intel_dp_is_edp(intel_dp)) drm_dp_set_subconnector_property(connector, status, intel_dp->dpcd, intel_dp->downstream_ports); return status; } static void intel_dp_force(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *intel_encoder = &dig_port->base; struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); if (!intel_display_driver_check_access(dev_priv)) return; intel_dp_unset_edid(intel_dp); if (connector->status != connector_status_connected) return; intel_dp_set_edid(intel_dp); } static int intel_dp_get_modes(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); int num_modes; /* drm_edid_connector_update() done in ->detect() or ->force() */ num_modes = drm_edid_connector_add_modes(connector); /* Also add fixed mode, which may or may not be present in EDID */ if (intel_dp_is_edp(intel_attached_dp(intel_connector))) num_modes += intel_panel_get_modes(intel_connector); if (num_modes) return num_modes; if (!intel_connector->detect_edid) { struct intel_dp *intel_dp = intel_attached_dp(intel_connector); struct drm_display_mode *mode; mode = drm_dp_downstream_mode(connector->dev, intel_dp->dpcd, intel_dp->downstream_ports); if (mode) { drm_mode_probed_add(connector, mode); num_modes++; } } return num_modes; } static int intel_dp_connector_register(struct drm_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->dev); struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_lspcon *lspcon = &dig_port->lspcon; int ret; ret = intel_connector_register(connector); if (ret) return ret; drm_dbg_kms(&i915->drm, "registering %s bus for %s\n", intel_dp->aux.name, connector->kdev->kobj.name); intel_dp->aux.dev = connector->kdev; ret = drm_dp_aux_register(&intel_dp->aux); if (!ret) drm_dp_cec_register_connector(&intel_dp->aux, connector); if (!intel_bios_encoder_is_lspcon(dig_port->base.devdata)) return ret; /* * ToDo: Clean this up to handle lspcon init and resume more * efficiently and streamlined. */ if (lspcon_init(dig_port)) { lspcon_detect_hdr_capability(lspcon); if (lspcon->hdr_supported) drm_connector_attach_hdr_output_metadata_property(connector); } return ret; } static void intel_dp_connector_unregister(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); drm_dp_cec_unregister_connector(&intel_dp->aux); drm_dp_aux_unregister(&intel_dp->aux); intel_connector_unregister(connector); } void intel_dp_connector_sync_state(struct intel_connector *connector, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(connector->base.dev); if (crtc_state && crtc_state->dsc.compression_enable) { drm_WARN_ON(&i915->drm, !connector->dp.dsc_decompression_aux); connector->dp.dsc_decompression_enabled = true; } else { connector->dp.dsc_decompression_enabled = false; } } void intel_dp_encoder_flush_work(struct drm_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder)); struct intel_dp *intel_dp = &dig_port->dp; intel_dp_mst_encoder_cleanup(dig_port); intel_dp_tunnel_destroy(intel_dp); intel_pps_vdd_off_sync(intel_dp); /* * Ensure power off delay is respected on module remove, so that we can * reduce delays at driver probe. See pps_init_timestamps(). */ intel_pps_wait_power_cycle(intel_dp); intel_dp_aux_fini(intel_dp); } void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); intel_pps_vdd_off_sync(intel_dp); intel_dp_tunnel_suspend(intel_dp); } void intel_dp_encoder_shutdown(struct intel_encoder *intel_encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); intel_pps_wait_power_cycle(intel_dp); } static int intel_modeset_tile_group(struct intel_atomic_state *state, int tile_group_id) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct drm_connector_list_iter conn_iter; struct drm_connector *connector; int ret = 0; drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct drm_connector_state *conn_state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; if (!connector->has_tile || connector->tile_group->id != tile_group_id) continue; conn_state = drm_atomic_get_connector_state(&state->base, connector); if (IS_ERR(conn_state)) { ret = PTR_ERR(conn_state); break; } crtc = to_intel_crtc(conn_state->crtc); if (!crtc) continue; crtc_state = intel_atomic_get_new_crtc_state(state, crtc); crtc_state->uapi.mode_changed = true; ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); if (ret) break; } drm_connector_list_iter_end(&conn_iter); return ret; } static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; if (transcoders == 0) return 0; for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state; int ret; crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (!crtc_state->hw.enable) continue; if (!(transcoders & BIT(crtc_state->cpu_transcoder))) continue; crtc_state->uapi.mode_changed = true; ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); if (ret) return ret; ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); if (ret) return ret; transcoders &= ~BIT(crtc_state->cpu_transcoder); } drm_WARN_ON(&dev_priv->drm, transcoders != 0); return 0; } static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, struct drm_connector *connector) { const struct drm_connector_state *old_conn_state = drm_atomic_get_old_connector_state(&state->base, connector); const struct intel_crtc_state *old_crtc_state; struct intel_crtc *crtc; u8 transcoders; crtc = to_intel_crtc(old_conn_state->crtc); if (!crtc) return 0; old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); if (!old_crtc_state->hw.active) return 0; transcoders = old_crtc_state->sync_mode_slaves_mask; if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) transcoders |= BIT(old_crtc_state->master_transcoder); return intel_modeset_affected_transcoders(state, transcoders); } static int intel_dp_connector_atomic_check(struct drm_connector *conn, struct drm_atomic_state *_state) { struct drm_i915_private *dev_priv = to_i915(conn->dev); struct intel_atomic_state *state = to_intel_atomic_state(_state); struct drm_connector_state *conn_state = drm_atomic_get_new_connector_state(_state, conn); struct intel_connector *intel_conn = to_intel_connector(conn); struct intel_dp *intel_dp = enc_to_intel_dp(intel_conn->encoder); int ret; ret = intel_digital_connector_atomic_check(conn, &state->base); if (ret) return ret; if (intel_dp_mst_source_support(intel_dp)) { ret = drm_dp_mst_root_conn_atomic_check(conn_state, &intel_dp->mst_mgr); if (ret) return ret; } if (!intel_connector_needs_modeset(state, conn)) return 0; ret = intel_dp_tunnel_atomic_check_state(state, intel_dp, intel_conn); if (ret) return ret; /* * We don't enable port sync on BDW due to missing w/as and * due to not having adjusted the modeset sequence appropriately. */ if (DISPLAY_VER(dev_priv) < 9) return 0; if (conn->has_tile) { ret = intel_modeset_tile_group(state, conn->tile_group->id); if (ret) return ret; } return intel_modeset_synced_crtcs(state, conn); } static void intel_dp_oob_hotplug_event(struct drm_connector *connector, enum drm_connector_status hpd_state) { struct intel_encoder *encoder = intel_attached_encoder(to_intel_connector(connector)); struct drm_i915_private *i915 = to_i915(connector->dev); bool hpd_high = hpd_state == connector_status_connected; unsigned int hpd_pin = encoder->hpd_pin; bool need_work = false; spin_lock_irq(&i915->irq_lock); if (hpd_high != test_bit(hpd_pin, &i915->display.hotplug.oob_hotplug_last_state)) { i915->display.hotplug.event_bits |= BIT(hpd_pin); __assign_bit(hpd_pin, &i915->display.hotplug.oob_hotplug_last_state, hpd_high); need_work = true; } spin_unlock_irq(&i915->irq_lock); if (need_work) intel_hpd_schedule_detection(i915); } static const struct drm_connector_funcs intel_dp_connector_funcs = { .force = intel_dp_force, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_digital_connector_atomic_get_property, .atomic_set_property = intel_digital_connector_atomic_set_property, .late_register = intel_dp_connector_register, .early_unregister = intel_dp_connector_unregister, .destroy = intel_connector_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_digital_connector_duplicate_state, .oob_hotplug_event = intel_dp_oob_hotplug_event, }; static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { .detect_ctx = intel_dp_detect, .get_modes = intel_dp_get_modes, .mode_valid = intel_dp_mode_valid, .atomic_check = intel_dp_connector_atomic_check, }; enum irqreturn intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_dp *intel_dp = &dig_port->dp; u8 dpcd[DP_RECEIVER_CAP_SIZE]; if (dig_port->base.type == INTEL_OUTPUT_EDP && (long_hpd || !intel_pps_have_panel_power_or_vdd(intel_dp))) { /* * vdd off can generate a long/short pulse on eDP which * would require vdd on to handle it, and thus we * would end up in an endless cycle of * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..." */ drm_dbg_kms(&i915->drm, "ignoring %s hpd on eDP [ENCODER:%d:%s]\n", long_hpd ? "long" : "short", dig_port->base.base.base.id, dig_port->base.base.name); return IRQ_HANDLED; } drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n", dig_port->base.base.base.id, dig_port->base.base.name, long_hpd ? "long" : "short"); /* * TBT DP tunnels require the GFX driver to read out the DPRX caps in * response to long HPD pulses. The DP hotplug handler does that, * however the hotplug handler may be blocked by another * connector's/encoder's hotplug handler. Since the TBT CM may not * complete the DP tunnel BW request for the latter connector/encoder * waiting for this encoder's DPRX read, perform a dummy read here. */ if (long_hpd) intel_dp_read_dprx_caps(intel_dp, dpcd); if (long_hpd) { intel_dp->reset_link_params = true; return IRQ_NONE; } if (intel_dp->is_mst) { if (!intel_dp_check_mst_status(intel_dp)) return IRQ_NONE; } else if (!intel_dp_short_pulse(intel_dp)) { return IRQ_NONE; } return IRQ_HANDLED; } static bool _intel_dp_is_port_edp(struct drm_i915_private *dev_priv, const struct intel_bios_encoder_data *devdata, enum port port) { /* * eDP not supported on g4x. so bail out early just * for a bit extra safety in case the VBT is bonkers. */ if (DISPLAY_VER(dev_priv) < 5) return false; if (DISPLAY_VER(dev_priv) < 9 && port == PORT_A) return true; return devdata && intel_bios_encoder_supports_edp(devdata); } bool intel_dp_is_port_edp(struct drm_i915_private *i915, enum port port) { const struct intel_bios_encoder_data *devdata = intel_bios_encoder_data_lookup(i915, port); return _intel_dp_is_port_edp(i915, devdata, port); } static bool has_gamut_metadata_dip(struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; if (intel_bios_encoder_is_lspcon(encoder->devdata)) return false; if (DISPLAY_VER(i915) >= 11) return true; if (port == PORT_A) return false; if (IS_HASWELL(i915) || IS_BROADWELL(i915) || DISPLAY_VER(i915) >= 9) return true; return false; } static void intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); enum port port = dp_to_dig_port(intel_dp)->base.port; if (!intel_dp_is_edp(intel_dp)) drm_connector_attach_dp_subconnector_property(connector); if (!IS_G4X(dev_priv) && port != PORT_A) intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); if (HAS_GMCH(dev_priv)) drm_connector_attach_max_bpc_property(connector, 6, 10); else if (DISPLAY_VER(dev_priv) >= 5) drm_connector_attach_max_bpc_property(connector, 6, 12); /* Register HDMI colorspace for case of lspcon */ if (intel_bios_encoder_is_lspcon(dp_to_dig_port(intel_dp)->base.devdata)) { drm_connector_attach_content_type_property(connector); intel_attach_hdmi_colorspace_property(connector); } else { intel_attach_dp_colorspace_property(connector); } if (has_gamut_metadata_dip(&dp_to_dig_port(intel_dp)->base)) drm_connector_attach_hdr_output_metadata_property(connector); if (HAS_VRR(dev_priv)) drm_connector_attach_vrr_capable_property(connector); } static void intel_edp_add_properties(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; struct drm_i915_private *i915 = to_i915(connector->base.dev); const struct drm_display_mode *fixed_mode = intel_panel_preferred_fixed_mode(connector); intel_attach_scaling_mode_property(&connector->base); drm_connector_set_panel_orientation_with_quirk(&connector->base, i915->display.vbt.orientation, fixed_mode->hdisplay, fixed_mode->vdisplay); } static void intel_edp_backlight_setup(struct intel_dp *intel_dp, struct intel_connector *connector) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); enum pipe pipe = INVALID_PIPE; if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { /* * Figure out the current pipe for the initial backlight setup. * If the current pipe isn't valid, try the PPS pipe, and if that * fails just assume pipe A. */ pipe = vlv_active_pipe(intel_dp); if (pipe != PIPE_A && pipe != PIPE_B) pipe = intel_dp->pps.pps_pipe; if (pipe != PIPE_A && pipe != PIPE_B) pipe = PIPE_A; } intel_backlight_setup(connector, pipe); } static bool intel_edp_init_connector(struct intel_dp *intel_dp, struct intel_connector *intel_connector) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct drm_connector *connector = &intel_connector->base; struct drm_display_mode *fixed_mode; struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; bool has_dpcd; const struct drm_edid *drm_edid; if (!intel_dp_is_edp(intel_dp)) return true; /* * On IBX/CPT we may get here with LVDS already registered. Since the * driver uses the only internal power sequencer available for both * eDP and LVDS bail out early in this case to prevent interfering * with an already powered-on LVDS power sequencer. */ if (intel_get_lvds_encoder(dev_priv)) { drm_WARN_ON(&dev_priv->drm, !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); drm_info(&dev_priv->drm, "LVDS was detected, not registering eDP\n"); return false; } intel_bios_init_panel_early(dev_priv, &intel_connector->panel, encoder->devdata); if (!intel_pps_init(intel_dp)) { drm_info(&dev_priv->drm, "[ENCODER:%d:%s] unusable PPS, disabling eDP\n", encoder->base.base.id, encoder->base.name); /* * The BIOS may have still enabled VDD on the PPS even * though it's unusable. Make sure we turn it back off * and to release the power domain references/etc. */ goto out_vdd_off; } /* * Enable HPD sense for live status check. * intel_hpd_irq_setup() will turn it off again * if it's no longer needed later. * * The DPCD probe below will make sure VDD is on. */ intel_hpd_enable_detection(encoder); /* Cache DPCD and EDID for edp. */ has_dpcd = intel_edp_init_dpcd(intel_dp, intel_connector); if (!has_dpcd) { /* if this fails, presume the device is a ghost */ drm_info(&dev_priv->drm, "[ENCODER:%d:%s] failed to retrieve link info, disabling eDP\n", encoder->base.base.id, encoder->base.name); goto out_vdd_off; } /* * VBT and straps are liars. Also check HPD as that seems * to be the most reliable piece of information available. * * ... expect on devices that forgot to hook HPD up for eDP * (eg. Acer Chromebook C710), so we'll check it only if multiple * ports are attempting to use the same AUX CH, according to VBT. */ if (intel_bios_dp_has_shared_aux_ch(encoder->devdata)) { /* * If this fails, presume the DPCD answer came * from some other port using the same AUX CH. * * FIXME maybe cleaner to check this before the * DPCD read? Would need sort out the VDD handling... */ if (!intel_digital_port_connected(encoder)) { drm_info(&dev_priv->drm, "[ENCODER:%d:%s] HPD is down, disabling eDP\n", encoder->base.base.id, encoder->base.name); goto out_vdd_off; } /* * Unfortunately even the HPD based detection fails on * eg. Asus B360M-A (CFL+CNP), so as a last resort fall * back to checking for a VGA branch device. Only do this * on known affected platforms to minimize false positives. */ if (DISPLAY_VER(dev_priv) == 9 && drm_dp_is_branch(intel_dp->dpcd) && (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) == DP_DWN_STRM_PORT_TYPE_ANALOG) { drm_info(&dev_priv->drm, "[ENCODER:%d:%s] VGA converter detected, disabling eDP\n", encoder->base.base.id, encoder->base.name); goto out_vdd_off; } } mutex_lock(&dev_priv->drm.mode_config.mutex); drm_edid = drm_edid_read_ddc(connector, connector->ddc); if (!drm_edid) { /* Fallback to EDID from ACPI OpRegion, if any */ drm_edid = intel_opregion_get_edid(intel_connector); if (drm_edid) drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s] Using OpRegion EDID\n", connector->base.id, connector->name); } if (drm_edid) { if (drm_edid_connector_update(connector, drm_edid) || !drm_edid_connector_add_modes(connector)) { drm_edid_connector_update(connector, NULL); drm_edid_free(drm_edid); drm_edid = ERR_PTR(-EINVAL); } } else { drm_edid = ERR_PTR(-ENOENT); } intel_bios_init_panel_late(dev_priv, &intel_connector->panel, encoder->devdata, IS_ERR(drm_edid) ? NULL : drm_edid); intel_panel_add_edid_fixed_modes(intel_connector, true); /* MSO requires information from the EDID */ intel_edp_mso_init(intel_dp); /* multiply the mode clock and horizontal timings for MSO */ list_for_each_entry(fixed_mode, &intel_connector->panel.fixed_modes, head) intel_edp_mso_mode_fixup(intel_connector, fixed_mode); /* fallback to VBT if available for eDP */ if (!intel_panel_preferred_fixed_mode(intel_connector)) intel_panel_add_vbt_lfp_fixed_mode(intel_connector); mutex_unlock(&dev_priv->drm.mode_config.mutex); if (!intel_panel_preferred_fixed_mode(intel_connector)) { drm_info(&dev_priv->drm, "[ENCODER:%d:%s] failed to find fixed mode for the panel, disabling eDP\n", encoder->base.base.id, encoder->base.name); goto out_vdd_off; } intel_panel_init(intel_connector, drm_edid); intel_edp_backlight_setup(intel_dp, intel_connector); intel_edp_add_properties(intel_dp); intel_pps_init_late(intel_dp); return true; out_vdd_off: intel_pps_vdd_off_sync(intel_dp); return false; } static void intel_dp_modeset_retry_work_fn(struct work_struct *work) { struct intel_connector *intel_connector; struct drm_connector *connector; intel_connector = container_of(work, typeof(*intel_connector), modeset_retry_work); connector = &intel_connector->base; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* Grab the locks before changing connector property*/ mutex_lock(&connector->dev->mode_config.mutex); /* Set connector link status to BAD and send a Uevent to notify * userspace to do a modeset. */ drm_connector_set_link_status_property(connector, DRM_MODE_LINK_STATUS_BAD); mutex_unlock(&connector->dev->mode_config.mutex); /* Send Hotplug uevent so userspace can reprobe */ drm_kms_helper_connector_hotplug_event(connector); drm_connector_put(connector); } void intel_dp_init_modeset_retry_work(struct intel_connector *connector) { INIT_WORK(&connector->modeset_retry_work, intel_dp_modeset_retry_work_fn); } bool intel_dp_init_connector(struct intel_digital_port *dig_port, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_dp *intel_dp = &dig_port->dp; struct intel_encoder *intel_encoder = &dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum port port = intel_encoder->port; int type; /* Initialize the work for modeset in case of link train failure */ intel_dp_init_modeset_retry_work(intel_connector); if (drm_WARN(dev, dig_port->max_lanes < 1, "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", dig_port->max_lanes, intel_encoder->base.base.id, intel_encoder->base.name)) return false; intel_dp->reset_link_params = true; intel_dp->pps.pps_pipe = INVALID_PIPE; intel_dp->pps.active_pipe = INVALID_PIPE; /* Preserve the current hw state. */ intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); intel_dp->attached_connector = intel_connector; if (_intel_dp_is_port_edp(dev_priv, intel_encoder->devdata, port)) { /* * Currently we don't support eDP on TypeC ports, although in * theory it could work on TypeC legacy ports. */ drm_WARN_ON(dev, intel_encoder_is_tc(intel_encoder)); type = DRM_MODE_CONNECTOR_eDP; intel_encoder->type = INTEL_OUTPUT_EDP; /* eDP only on port B and/or C on vlv/chv */ if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && port != PORT_B && port != PORT_C)) return false; } else { type = DRM_MODE_CONNECTOR_DisplayPort; } intel_dp_set_default_sink_rates(intel_dp); intel_dp_set_default_max_sink_lane_count(intel_dp); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) intel_dp->pps.active_pipe = vlv_active_pipe(intel_dp); intel_dp_aux_init(intel_dp); intel_connector->dp.dsc_decompression_aux = &intel_dp->aux; drm_dbg_kms(&dev_priv->drm, "Adding %s connector on [ENCODER:%d:%s]\n", type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", intel_encoder->base.base.id, intel_encoder->base.name); drm_connector_init_with_ddc(dev, connector, &intel_dp_connector_funcs, type, &intel_dp->aux.ddc); drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); if (!HAS_GMCH(dev_priv) && DISPLAY_VER(dev_priv) < 12) connector->interlace_allowed = true; intel_connector->polled = DRM_CONNECTOR_POLL_HPD; intel_connector->base.polled = intel_connector->polled; intel_connector_attach_encoder(intel_connector, intel_encoder); if (HAS_DDI(dev_priv)) intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; else intel_connector->get_hw_state = intel_connector_get_hw_state; intel_connector->sync_state = intel_dp_connector_sync_state; if (!intel_edp_init_connector(intel_dp, intel_connector)) { intel_dp_aux_fini(intel_dp); goto fail; } intel_dp_set_source_rates(intel_dp); intel_dp_set_common_rates(intel_dp); intel_dp_reset_max_link_params(intel_dp); /* init MST on ports that can support it */ intel_dp_mst_encoder_init(dig_port, intel_connector->base.base.id); intel_dp_add_properties(intel_dp, connector); if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { int ret = intel_dp_hdcp_init(dig_port, intel_connector); if (ret) drm_dbg_kms(&dev_priv->drm, "HDCP init failed, skipping.\n"); } intel_dp->colorimetry_support = intel_dp_get_colorimetry_status(intel_dp); intel_dp->frl.is_trained = false; intel_dp->frl.trained_rate_gbps = 0; intel_psr_init(intel_dp); return true; fail: intel_display_power_flush_work(dev_priv); drm_connector_cleanup(connector); return false; } void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; if (!HAS_DISPLAY(dev_priv)) return; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_dp *intel_dp; if (encoder->type != INTEL_OUTPUT_DDI) continue; intel_dp = enc_to_intel_dp(encoder); if (!intel_dp_mst_source_support(intel_dp)) continue; if (intel_dp->is_mst) drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); } } void intel_dp_mst_resume(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; if (!HAS_DISPLAY(dev_priv)) return; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_dp *intel_dp; int ret; if (encoder->type != INTEL_OUTPUT_DDI) continue; intel_dp = enc_to_intel_dp(encoder); if (!intel_dp_mst_source_support(intel_dp)) continue; ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, true); if (ret) { intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, false); } } }