// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_guc.h" #include #include #include "abi/guc_actions_abi.h" #include "abi/guc_errors_abi.h" #include "regs/xe_gt_regs.h" #include "regs/xe_guc_regs.h" #include "xe_bo.h" #include "xe_device.h" #include "xe_force_wake.h" #include "xe_gt.h" #include "xe_guc_ads.h" #include "xe_guc_ct.h" #include "xe_guc_hwconfig.h" #include "xe_guc_log.h" #include "xe_guc_pc.h" #include "xe_guc_relay.h" #include "xe_guc_submit.h" #include "xe_memirq.h" #include "xe_mmio.h" #include "xe_platform_types.h" #include "xe_sriov.h" #include "xe_uc.h" #include "xe_uc_fw.h" #include "xe_wa.h" #include "xe_wopcm.h" /* GuC addresses above GUC_GGTT_TOP also don't map through the GTT */ #define GUC_GGTT_TOP 0xFEE00000 static u32 guc_bo_ggtt_addr(struct xe_guc *guc, struct xe_bo *bo) { struct xe_device *xe = guc_to_xe(guc); u32 addr = xe_bo_ggtt_addr(bo); xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc))); xe_assert(xe, addr < GUC_GGTT_TOP); xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr); return addr; } static u32 guc_ctl_debug_flags(struct xe_guc *guc) { u32 level = xe_guc_log_get_level(&guc->log); u32 flags = 0; if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) flags |= GUC_LOG_DISABLED; else flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << GUC_LOG_VERBOSITY_SHIFT; return flags; } static u32 guc_ctl_feature_flags(struct xe_guc *guc) { u32 flags = 0; if (!guc_to_xe(guc)->info.skip_guc_pc) flags |= GUC_CTL_ENABLE_SLPC; return flags; } static u32 guc_ctl_log_params_flags(struct xe_guc *guc) { u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT; u32 flags; #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) #define LOG_UNIT SZ_1M #define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS #else #define LOG_UNIT SZ_4K #define LOG_FLAG 0 #endif #if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0) #define CAPTURE_UNIT SZ_1M #define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS #else #define CAPTURE_UNIT SZ_4K #define CAPTURE_FLAG 0 #endif BUILD_BUG_ON(!CRASH_BUFFER_SIZE); BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT)); BUILD_BUG_ON(!DEBUG_BUFFER_SIZE); BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT)); BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE); BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT)); BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) > (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) > (GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT)); BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) > (GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT)); flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL | CAPTURE_FLAG | LOG_FLAG | ((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) | ((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) | ((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) << GUC_LOG_CAPTURE_SHIFT) | (offset << GUC_LOG_BUF_ADDR_SHIFT); #undef LOG_UNIT #undef LOG_FLAG #undef CAPTURE_UNIT #undef CAPTURE_FLAG return flags; } static u32 guc_ctl_ads_flags(struct xe_guc *guc) { u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT; u32 flags = ads << GUC_ADS_ADDR_SHIFT; return flags; } #define GUC_VER(maj, min, pat) (((maj) << 16) | ((min) << 8) | (pat)) static u32 guc_ctl_wa_flags(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); struct xe_gt *gt = guc_to_gt(guc); struct xe_uc_fw *uc_fw = &guc->fw; struct xe_uc_fw_version *version = &uc_fw->versions.found[XE_UC_FW_VER_RELEASE]; u32 flags = 0; if (XE_WA(gt, 22012773006)) flags |= GUC_WA_POLLCS; if (XE_WA(gt, 14014475959)) flags |= GUC_WA_HOLD_CCS_SWITCHOUT; if (XE_WA(gt, 22011391025)) flags |= GUC_WA_DUAL_QUEUE; /* * Wa_22011802037: FIXME - there's more to be done than simply setting * this flag: make sure each CS is stopped when preparing for GT reset * and wait for pending MI_FW. */ if (GRAPHICS_VERx100(xe) < 1270) flags |= GUC_WA_PRE_PARSER; if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685)) flags |= GUC_WA_CONTEXT_ISOLATION; if ((XE_WA(gt, 16015675438) || XE_WA(gt, 18020744125)) && !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER)) flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; if (XE_WA(gt, 1509372804)) flags |= GUC_WA_RENDER_RST_RC6_EXIT; if (XE_WA(gt, 14018913170)) { if (GUC_VER(version->major, version->minor, version->patch) >= GUC_VER(70, 7, 0)) flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6; else drm_dbg(&xe->drm, "Skip WA 14018913170: GUC version expected >= 70.7.0, found %u.%u.%u\n", version->major, version->minor, version->patch); } return flags; } static u32 guc_ctl_devid(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); return (((u32)xe->info.devid) << 16) | xe->info.revid; } static void guc_init_params(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); u32 *params = guc->params; int i; BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT); params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); params[GUC_CTL_FEATURE] = 0; params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); params[GUC_CTL_WA] = 0; params[GUC_CTL_DEVID] = guc_ctl_devid(guc); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) drm_dbg(&xe->drm, "GuC param[%2d] = 0x%08x\n", i, params[i]); } static void guc_init_params_post_hwconfig(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); u32 *params = guc->params; int i; BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT); params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); params[GUC_CTL_DEVID] = guc_ctl_devid(guc); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) drm_dbg(&xe->drm, "GuC param[%2d] = 0x%08x\n", i, params[i]); } /* * Initialize the GuC parameter block before starting the firmware * transfer. These parameters are read by the firmware on startup * and cannot be changed thereafter. */ static void guc_write_params(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); int i; xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); xe_mmio_write32(gt, SOFT_SCRATCH(0), 0); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]); } static void guc_fini(struct drm_device *drm, void *arg) { struct xe_guc *guc = arg; xe_force_wake_get(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL); xe_uc_fini_hw(&guc_to_gt(guc)->uc); xe_force_wake_put(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL); } /** * xe_guc_comm_init_early - early initialization of GuC communication * @guc: the &xe_guc to initialize * * Must be called prior to first MMIO communication with GuC firmware. */ void xe_guc_comm_init_early(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); if (xe_gt_is_media_type(gt)) guc->notify_reg = MED_GUC_HOST_INTERRUPT; else guc->notify_reg = GUC_HOST_INTERRUPT; } static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc) { struct xe_tile *tile = gt_to_tile(guc_to_gt(guc)); struct xe_device *xe = guc_to_xe(guc); int ret; if (!IS_DGFX(guc_to_xe(guc))) return 0; ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo); if (ret) return ret; ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo); if (ret) return ret; ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo); if (ret) return ret; ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo); if (ret) return ret; return 0; } int xe_guc_init(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); struct xe_gt *gt = guc_to_gt(guc); int ret; guc->fw.type = XE_UC_FW_TYPE_GUC; ret = xe_uc_fw_init(&guc->fw); if (ret) goto out; if (!xe_uc_fw_is_enabled(&guc->fw)) return 0; ret = xe_guc_log_init(&guc->log); if (ret) goto out; ret = xe_guc_ads_init(&guc->ads); if (ret) goto out; ret = xe_guc_ct_init(&guc->ct); if (ret) goto out; ret = xe_guc_relay_init(&guc->relay); if (ret) goto out; ret = drmm_add_action_or_reset(>_to_xe(gt)->drm, guc_fini, guc); if (ret) goto out; guc_init_params(guc); xe_guc_comm_init_early(guc); xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE); return 0; out: drm_err(&xe->drm, "GuC init failed with %d", ret); return ret; } /** * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load * @guc: The GuC object * * Return: 0 on success, negative error code on error. */ int xe_guc_init_post_hwconfig(struct xe_guc *guc) { int ret; ret = xe_guc_realloc_post_hwconfig(guc); if (ret) return ret; guc_init_params_post_hwconfig(guc); ret = xe_guc_pc_init(&guc->pc); if (ret) return ret; return xe_guc_ads_init_post_hwconfig(&guc->ads); } int xe_guc_post_load_init(struct xe_guc *guc) { xe_guc_ads_populate_post_load(&guc->ads); guc->submission_state.enabled = true; return 0; } int xe_guc_reset(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); struct xe_gt *gt = guc_to_gt(guc); u32 guc_status, gdrst; int ret; xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); xe_mmio_write32(gt, GDRST, GRDOM_GUC); ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false); if (ret) { drm_err(&xe->drm, "GuC reset timed out, GDRST=0x%8x\n", gdrst); goto err_out; } guc_status = xe_mmio_read32(gt, GUC_STATUS); if (!(guc_status & GS_MIA_IN_RESET)) { drm_err(&xe->drm, "GuC status: 0x%x, MIA core expected to be in reset\n", guc_status); ret = -EIO; goto err_out; } return 0; err_out: return ret; } static void guc_prepare_xfer(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); struct xe_device *xe = guc_to_xe(guc); u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC | GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA | GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA | GUC_ENABLE_MIA_CLOCK_GATING; if (GRAPHICS_VERx100(xe) < 1250) shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES | GUC_ENABLE_MIA_CACHING; if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC) shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index); /* Must program this register before loading the ucode with DMA */ xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags); xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE); } /* * Supporting MMIO & in memory RSA */ static int guc_xfer_rsa(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); u32 rsa[UOS_RSA_SCRATCH_COUNT]; size_t copied; int i; if (guc->fw.rsa_size > 256) { u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) + xe_uc_fw_rsa_offset(&guc->fw); xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr); return 0; } copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa)); if (copied < sizeof(rsa)) return -ENOMEM; for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++) xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]); return 0; } static int guc_wait_ucode(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); u32 status; int ret; /* * Wait for the GuC to start up. * NB: Docs recommend not using the interrupt for completion. * Measurements indicate this should take no more than 20ms * (assuming the GT clock is at maximum frequency). So, a * timeout here indicates that the GuC has failed and is unusable. * (Higher levels of the driver may decide to reset the GuC and * attempt the ucode load again if this happens.) * * FIXME: There is a known (but exceedingly unlikely) race condition * where the asynchronous frequency management code could reduce * the GT clock while a GuC reload is in progress (during a full * GT reset). A fix is in progress but there are complex locking * issues to be resolved. In the meantime bump the timeout to * 200ms. Even at slowest clock, this should be sufficient. And * in the working case, a larger timeout makes no difference. */ ret = xe_mmio_wait32(guc_to_gt(guc), GUC_STATUS, GS_UKERNEL_MASK, FIELD_PREP(GS_UKERNEL_MASK, XE_GUC_LOAD_STATUS_READY), 200000, &status, false); if (ret) { struct drm_device *drm = &xe->drm; drm_info(drm, "GuC load failed: status = 0x%08X\n", status); drm_info(drm, "GuC load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n", REG_FIELD_GET(GS_MIA_IN_RESET, status), REG_FIELD_GET(GS_BOOTROM_MASK, status), REG_FIELD_GET(GS_UKERNEL_MASK, status), REG_FIELD_GET(GS_MIA_MASK, status), REG_FIELD_GET(GS_AUTH_STATUS_MASK, status)); if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) { drm_info(drm, "GuC firmware signature verification failed\n"); ret = -ENOEXEC; } if (REG_FIELD_GET(GS_UKERNEL_MASK, status) == XE_GUC_LOAD_STATUS_EXCEPTION) { drm_info(drm, "GuC firmware exception. EIP: %#x\n", xe_mmio_read32(guc_to_gt(guc), SOFT_SCRATCH(13))); ret = -ENXIO; } } else { drm_dbg(&xe->drm, "GuC successfully loaded"); } return ret; } static int __xe_guc_upload(struct xe_guc *guc) { int ret; guc_write_params(guc); guc_prepare_xfer(guc); /* * Note that GuC needs the CSS header plus uKernel code to be copied * by the DMA engine in one operation, whereas the RSA signature is * loaded separately, either by copying it to the UOS_RSA_SCRATCH * register (if key size <= 256) or through a ggtt-pinned vma (if key * size > 256). The RSA size and therefore the way we provide it to the * HW is fixed for each platform and hard-coded in the bootrom. */ ret = guc_xfer_rsa(guc); if (ret) goto out; /* * Current uCode expects the code to be loaded at 8k; locations below * this are used for the stack. */ ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE); if (ret) goto out; /* Wait for authentication */ ret = guc_wait_ucode(guc); if (ret) goto out; xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING); return 0; out: xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL); return 0 /* FIXME: ret, don't want to stop load currently */; } /** * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table * @guc: The GuC object * * This function uploads a minimal GuC that does not support submissions but * in a state where the hwconfig table can be read. Next, it reads and parses * the hwconfig table so it can be used for subsequent steps in the driver load. * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only). * * Return: 0 on success, negative error code on error. */ int xe_guc_min_load_for_hwconfig(struct xe_guc *guc) { int ret; xe_guc_ads_populate_minimal(&guc->ads); /* Raise GT freq to speed up HuC/GuC load */ xe_guc_pc_init_early(&guc->pc); ret = __xe_guc_upload(guc); if (ret) return ret; ret = xe_guc_hwconfig_init(guc); if (ret) return ret; ret = xe_guc_enable_communication(guc); if (ret) return ret; return 0; } int xe_guc_upload(struct xe_guc *guc) { xe_guc_ads_populate(&guc->ads); return __xe_guc_upload(guc); } static void guc_handle_mmio_msg(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); u32 msg; xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); msg = xe_mmio_read32(gt, SOFT_SCRATCH(15)); msg &= XE_GUC_RECV_MSG_EXCEPTION | XE_GUC_RECV_MSG_CRASH_DUMP_POSTED; xe_mmio_write32(gt, SOFT_SCRATCH(15), 0); if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED) drm_err(&guc_to_xe(guc)->drm, "Received early GuC crash dump notification!\n"); if (msg & XE_GUC_RECV_MSG_EXCEPTION) drm_err(&guc_to_xe(guc)->drm, "Received early GuC exception notification!\n"); } static void guc_enable_irq(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); u32 events = xe_gt_is_media_type(gt) ? REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) : REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); /* Primary GuC and media GuC share a single enable bit */ xe_mmio_write32(gt, GUC_SG_INTR_ENABLE, REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST)); /* * There are separate mask bits for primary and media GuCs, so use * a RMW operation to avoid clobbering the other GuC's setting. */ xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0); } int xe_guc_enable_communication(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); int err; guc_enable_irq(guc); if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) { struct xe_gt *gt = guc_to_gt(guc); struct xe_tile *tile = gt_to_tile(gt); err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc); if (err) return err; } xe_mmio_rmw32(guc_to_gt(guc), PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0); err = xe_guc_ct_enable(&guc->ct); if (err) return err; guc_handle_mmio_msg(guc); return 0; } int xe_guc_suspend(struct xe_guc *guc) { int ret; u32 action[] = { XE_GUC_ACTION_CLIENT_SOFT_RESET, }; ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action)); if (ret) { drm_err(&guc_to_xe(guc)->drm, "GuC suspend: CLIENT_SOFT_RESET fail: %d!\n", ret); return ret; } xe_guc_sanitize(guc); return 0; } void xe_guc_notify(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); const u32 default_notify_data = 0; /* * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass * additional payload data to the GuC but this capability is not * used by the firmware yet. Use default value in the meantime. */ xe_mmio_write32(gt, guc->notify_reg, default_notify_data); } int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr) { u32 action[] = { XE_GUC_ACTION_AUTHENTICATE_HUC, rsa_addr }; return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action)); } int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request, u32 len, u32 *response_buf) { struct xe_device *xe = guc_to_xe(guc); struct xe_gt *gt = guc_to_gt(guc); u32 header, reply; struct xe_reg reply_reg = xe_gt_is_media_type(gt) ? MED_VF_SW_FLAG(0) : VF_SW_FLAG(0); const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1; int ret; int i; BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT); xe_assert(xe, !xe_guc_ct_enabled(&guc->ct)); xe_assert(xe, len); xe_assert(xe, len <= VF_SW_FLAG_COUNT); xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT); xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) == GUC_HXG_ORIGIN_HOST); xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) == GUC_HXG_TYPE_REQUEST); retry: /* Not in critical data-path, just do if else for GT type */ if (xe_gt_is_media_type(gt)) { for (i = 0; i < len; ++i) xe_mmio_write32(gt, MED_VF_SW_FLAG(i), request[i]); xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX)); } else { for (i = 0; i < len; ++i) xe_mmio_write32(gt, VF_SW_FLAG(i), request[i]); xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX)); } xe_guc_notify(guc); ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN, FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC), 50000, &reply, false); if (ret) { timeout: drm_err(&xe->drm, "mmio request %#x: no reply %#x\n", request[0], reply); return ret; } header = xe_mmio_read32(gt, reply_reg); if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { /* * Once we got a BUSY reply we must wait again for the final * response but this time we can't use ORIGIN mask anymore. * To spot a right change in the reply, we take advantage that * response SUCCESS and FAILURE differ only by the single bit * and all other bits are set and can be used as a new mask. */ u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE; u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits); BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS); BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1); ret = xe_mmio_wait32(gt, reply_reg, resp_mask, resp_mask, 1000000, &header, false); if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC)) goto proto; if (unlikely(ret)) { if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY) goto proto; goto timeout; } } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); drm_dbg(&xe->drm, "mmio request %#x: retrying, reason %#x\n", request[0], reason); goto retry; } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); drm_err(&xe->drm, "mmio request %#x: failure %#x/%#x\n", request[0], error, hint); return -ENXIO; } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { proto: drm_err(&xe->drm, "mmio request %#x: unexpected reply %#x\n", request[0], header); return -EPROTO; } /* Just copy entire possible message response */ if (response_buf) { response_buf[0] = header; for (i = 1; i < VF_SW_FLAG_COUNT; i++) { reply_reg.addr += sizeof(u32); response_buf[i] = xe_mmio_read32(gt, reply_reg); } } /* Use data from the GuC response as our return value */ return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); } int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len) { return xe_guc_mmio_send_recv(guc, request, len, NULL); } static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val) { struct xe_device *xe = guc_to_xe(guc); u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(val)), FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(val)), }; int ret; xe_assert(xe, len <= 2); xe_assert(xe, len != 1 || !upper_32_bits(val)); /* Self config must go over MMIO */ ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request)); if (unlikely(ret < 0)) return ret; if (unlikely(ret > 1)) return -EPROTO; if (unlikely(!ret)) return -ENOKEY; return 0; } int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val) { return guc_self_cfg(guc, key, 1, val); } int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val) { return guc_self_cfg(guc, key, 2, val); } void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir) { if (iir & GUC_INTR_GUC2HOST) xe_guc_ct_irq_handler(&guc->ct); } void xe_guc_sanitize(struct xe_guc *guc) { xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE); xe_guc_ct_disable(&guc->ct); guc->submission_state.enabled = false; } int xe_guc_reset_prepare(struct xe_guc *guc) { return xe_guc_submit_reset_prepare(guc); } void xe_guc_reset_wait(struct xe_guc *guc) { xe_guc_submit_reset_wait(guc); } void xe_guc_stop_prepare(struct xe_guc *guc) { XE_WARN_ON(xe_guc_pc_stop(&guc->pc)); } int xe_guc_stop(struct xe_guc *guc) { int ret; xe_guc_ct_stop(&guc->ct); ret = xe_guc_submit_stop(guc); if (ret) return ret; return 0; } int xe_guc_start(struct xe_guc *guc) { int ret; ret = xe_guc_pc_start(&guc->pc); XE_WARN_ON(ret); return xe_guc_submit_start(guc); } void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p) { struct xe_gt *gt = guc_to_gt(guc); u32 status; int err; int i; xe_uc_fw_print(&guc->fw, p); err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (err) return; status = xe_mmio_read32(gt, GUC_STATUS); drm_printf(p, "\nGuC status 0x%08x:\n", status); drm_printf(p, "\tBootrom status = 0x%x\n", REG_FIELD_GET(GS_BOOTROM_MASK, status)); drm_printf(p, "\tuKernel status = 0x%x\n", REG_FIELD_GET(GS_UKERNEL_MASK, status)); drm_printf(p, "\tMIA Core status = 0x%x\n", REG_FIELD_GET(GS_MIA_MASK, status)); drm_printf(p, "\tLog level = %d\n", xe_guc_log_get_level(&guc->log)); drm_puts(p, "\nScratch registers:\n"); for (i = 0; i < SOFT_SCRATCH_COUNT; i++) { drm_printf(p, "\t%2d: \t0x%x\n", i, xe_mmio_read32(gt, SOFT_SCRATCH(i))); } xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); xe_guc_ct_print(&guc->ct, p, false); xe_guc_submit_print(guc, p); } /** * xe_guc_in_reset() - Detect if GuC MIA is in reset. * @guc: The GuC object * * This function detects runtime resume from d3cold by leveraging * GUC_STATUS, GUC doesn't get reset during d3hot, * it strictly to be called from RPM resume handler. * * Return: true if failed to get forcewake or GuC MIA is in Reset, * otherwise false. */ bool xe_guc_in_reset(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); u32 status; int err; err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (err) return true; status = xe_mmio_read32(gt, GUC_STATUS); xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); return status & GS_MIA_IN_RESET; }