// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2017-2018, The Linux Foundation. All rights reserved. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SE_I2C_TX_TRANS_LEN 0x26c #define SE_I2C_RX_TRANS_LEN 0x270 #define SE_I2C_SCL_COUNTERS 0x278 #define SE_I2C_ERR (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |\ M_GP_IRQ_1_EN | M_GP_IRQ_3_EN | M_GP_IRQ_4_EN) #define SE_I2C_ABORT BIT(1) /* M_CMD OP codes for I2C */ #define I2C_WRITE 0x1 #define I2C_READ 0x2 #define I2C_WRITE_READ 0x3 #define I2C_ADDR_ONLY 0x4 #define I2C_BUS_CLEAR 0x6 #define I2C_STOP_ON_BUS 0x7 /* M_CMD params for I2C */ #define PRE_CMD_DELAY BIT(0) #define TIMESTAMP_BEFORE BIT(1) #define STOP_STRETCH BIT(2) #define TIMESTAMP_AFTER BIT(3) #define POST_COMMAND_DELAY BIT(4) #define IGNORE_ADD_NACK BIT(6) #define READ_FINISHED_WITH_ACK BIT(7) #define BYPASS_ADDR_PHASE BIT(8) #define SLV_ADDR_MSK GENMASK(15, 9) #define SLV_ADDR_SHFT 9 /* I2C SCL COUNTER fields */ #define HIGH_COUNTER_MSK GENMASK(29, 20) #define HIGH_COUNTER_SHFT 20 #define LOW_COUNTER_MSK GENMASK(19, 10) #define LOW_COUNTER_SHFT 10 #define CYCLE_COUNTER_MSK GENMASK(9, 0) #define I2C_PACK_TX BIT(0) #define I2C_PACK_RX BIT(1) enum geni_i2c_err_code { GP_IRQ0, NACK, GP_IRQ2, BUS_PROTO, ARB_LOST, GP_IRQ5, GENI_OVERRUN, GENI_ILLEGAL_CMD, GENI_ABORT_DONE, GENI_TIMEOUT, }; #define DM_I2C_CB_ERR ((BIT(NACK) | BIT(BUS_PROTO) | BIT(ARB_LOST)) \ << 5) #define I2C_AUTO_SUSPEND_DELAY 250 #define KHZ(freq) (1000 * freq) #define PACKING_BYTES_PW 4 #define ABORT_TIMEOUT HZ #define XFER_TIMEOUT HZ #define RST_TIMEOUT HZ struct geni_i2c_dev { struct geni_se se; u32 tx_wm; int irq; int err; struct i2c_adapter adap; struct completion done; struct i2c_msg *cur; int cur_wr; int cur_rd; spinlock_t lock; struct clk *core_clk; u32 clk_freq_out; const struct geni_i2c_clk_fld *clk_fld; int suspended; void *dma_buf; size_t xfer_len; dma_addr_t dma_addr; struct dma_chan *tx_c; struct dma_chan *rx_c; bool gpi_mode; bool abort_done; }; struct geni_i2c_desc { bool has_core_clk; char *icc_ddr; bool no_dma_support; unsigned int tx_fifo_depth; }; struct geni_i2c_err_log { int err; const char *msg; }; static const struct geni_i2c_err_log gi2c_log[] = { [GP_IRQ0] = {-EIO, "Unknown I2C err GP_IRQ0"}, [NACK] = {-ENXIO, "NACK: slv unresponsive, check its power/reset-ln"}, [GP_IRQ2] = {-EIO, "Unknown I2C err GP IRQ2"}, [BUS_PROTO] = {-EPROTO, "Bus proto err, noisy/unexpected start/stop"}, [ARB_LOST] = {-EAGAIN, "Bus arbitration lost, clock line undriveable"}, [GP_IRQ5] = {-EIO, "Unknown I2C err GP IRQ5"}, [GENI_OVERRUN] = {-EIO, "Cmd overrun, check GENI cmd-state machine"}, [GENI_ILLEGAL_CMD] = {-EIO, "Illegal cmd, check GENI cmd-state machine"}, [GENI_ABORT_DONE] = {-ETIMEDOUT, "Abort after timeout successful"}, [GENI_TIMEOUT] = {-ETIMEDOUT, "I2C TXN timed out"}, }; struct geni_i2c_clk_fld { u32 clk_freq_out; u8 clk_div; u8 t_high_cnt; u8 t_low_cnt; u8 t_cycle_cnt; }; /* * Hardware uses the underlying formula to calculate time periods of * SCL clock cycle. Firmware uses some additional cycles excluded from the * below formula and it is confirmed that the time periods are within * specification limits. * * time of high period of SCL: t_high = (t_high_cnt * clk_div) / source_clock * time of low period of SCL: t_low = (t_low_cnt * clk_div) / source_clock * time of full period of SCL: t_cycle = (t_cycle_cnt * clk_div) / source_clock * clk_freq_out = t / t_cycle * source_clock = 19.2 MHz */ static const struct geni_i2c_clk_fld geni_i2c_clk_map[] = { {KHZ(100), 7, 10, 11, 26}, {KHZ(400), 2, 5, 12, 24}, {KHZ(1000), 1, 3, 9, 18}, }; static int geni_i2c_clk_map_idx(struct geni_i2c_dev *gi2c) { int i; const struct geni_i2c_clk_fld *itr = geni_i2c_clk_map; for (i = 0; i < ARRAY_SIZE(geni_i2c_clk_map); i++, itr++) { if (itr->clk_freq_out == gi2c->clk_freq_out) { gi2c->clk_fld = itr; return 0; } } return -EINVAL; } static void qcom_geni_i2c_conf(struct geni_i2c_dev *gi2c) { const struct geni_i2c_clk_fld *itr = gi2c->clk_fld; u32 val; writel_relaxed(0, gi2c->se.base + SE_GENI_CLK_SEL); val = (itr->clk_div << CLK_DIV_SHFT) | SER_CLK_EN; writel_relaxed(val, gi2c->se.base + GENI_SER_M_CLK_CFG); val = itr->t_high_cnt << HIGH_COUNTER_SHFT; val |= itr->t_low_cnt << LOW_COUNTER_SHFT; val |= itr->t_cycle_cnt; writel_relaxed(val, gi2c->se.base + SE_I2C_SCL_COUNTERS); } static void geni_i2c_err_misc(struct geni_i2c_dev *gi2c) { u32 m_cmd = readl_relaxed(gi2c->se.base + SE_GENI_M_CMD0); u32 m_stat = readl_relaxed(gi2c->se.base + SE_GENI_M_IRQ_STATUS); u32 geni_s = readl_relaxed(gi2c->se.base + SE_GENI_STATUS); u32 geni_ios = readl_relaxed(gi2c->se.base + SE_GENI_IOS); u32 dma = readl_relaxed(gi2c->se.base + SE_GENI_DMA_MODE_EN); u32 rx_st, tx_st; if (dma) { rx_st = readl_relaxed(gi2c->se.base + SE_DMA_RX_IRQ_STAT); tx_st = readl_relaxed(gi2c->se.base + SE_DMA_TX_IRQ_STAT); } else { rx_st = readl_relaxed(gi2c->se.base + SE_GENI_RX_FIFO_STATUS); tx_st = readl_relaxed(gi2c->se.base + SE_GENI_TX_FIFO_STATUS); } dev_dbg(gi2c->se.dev, "DMA:%d tx_stat:0x%x, rx_stat:0x%x, irq-stat:0x%x\n", dma, tx_st, rx_st, m_stat); dev_dbg(gi2c->se.dev, "m_cmd:0x%x, geni_status:0x%x, geni_ios:0x%x\n", m_cmd, geni_s, geni_ios); } static void geni_i2c_err(struct geni_i2c_dev *gi2c, int err) { if (!gi2c->err) gi2c->err = gi2c_log[err].err; if (gi2c->cur) dev_dbg(gi2c->se.dev, "len:%d, slv-addr:0x%x, RD/WR:%d\n", gi2c->cur->len, gi2c->cur->addr, gi2c->cur->flags); switch (err) { case GENI_ABORT_DONE: gi2c->abort_done = true; break; case NACK: case GENI_TIMEOUT: dev_dbg(gi2c->se.dev, "%s\n", gi2c_log[err].msg); break; default: dev_err(gi2c->se.dev, "%s\n", gi2c_log[err].msg); geni_i2c_err_misc(gi2c); break; } } static irqreturn_t geni_i2c_irq(int irq, void *dev) { struct geni_i2c_dev *gi2c = dev; void __iomem *base = gi2c->se.base; int j, p; u32 m_stat; u32 rx_st; u32 dm_tx_st; u32 dm_rx_st; u32 dma; u32 val; struct i2c_msg *cur; spin_lock(&gi2c->lock); m_stat = readl_relaxed(base + SE_GENI_M_IRQ_STATUS); rx_st = readl_relaxed(base + SE_GENI_RX_FIFO_STATUS); dm_tx_st = readl_relaxed(base + SE_DMA_TX_IRQ_STAT); dm_rx_st = readl_relaxed(base + SE_DMA_RX_IRQ_STAT); dma = readl_relaxed(base + SE_GENI_DMA_MODE_EN); cur = gi2c->cur; if (!cur || m_stat & (M_CMD_FAILURE_EN | M_CMD_ABORT_EN) || dm_rx_st & (DM_I2C_CB_ERR)) { if (m_stat & M_GP_IRQ_1_EN) geni_i2c_err(gi2c, NACK); if (m_stat & M_GP_IRQ_3_EN) geni_i2c_err(gi2c, BUS_PROTO); if (m_stat & M_GP_IRQ_4_EN) geni_i2c_err(gi2c, ARB_LOST); if (m_stat & M_CMD_OVERRUN_EN) geni_i2c_err(gi2c, GENI_OVERRUN); if (m_stat & M_ILLEGAL_CMD_EN) geni_i2c_err(gi2c, GENI_ILLEGAL_CMD); if (m_stat & M_CMD_ABORT_EN) geni_i2c_err(gi2c, GENI_ABORT_DONE); if (m_stat & M_GP_IRQ_0_EN) geni_i2c_err(gi2c, GP_IRQ0); /* Disable the TX Watermark interrupt to stop TX */ if (!dma) writel_relaxed(0, base + SE_GENI_TX_WATERMARK_REG); } else if (dma) { dev_dbg(gi2c->se.dev, "i2c dma tx:0x%x, dma rx:0x%x\n", dm_tx_st, dm_rx_st); } else if (cur->flags & I2C_M_RD && m_stat & (M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN)) { u32 rxcnt = rx_st & RX_FIFO_WC_MSK; for (j = 0; j < rxcnt; j++) { p = 0; val = readl_relaxed(base + SE_GENI_RX_FIFOn); while (gi2c->cur_rd < cur->len && p < sizeof(val)) { cur->buf[gi2c->cur_rd++] = val & 0xff; val >>= 8; p++; } if (gi2c->cur_rd == cur->len) break; } } else if (!(cur->flags & I2C_M_RD) && m_stat & M_TX_FIFO_WATERMARK_EN) { for (j = 0; j < gi2c->tx_wm; j++) { u32 temp; val = 0; p = 0; while (gi2c->cur_wr < cur->len && p < sizeof(val)) { temp = cur->buf[gi2c->cur_wr++]; val |= temp << (p * 8); p++; } writel_relaxed(val, base + SE_GENI_TX_FIFOn); /* TX Complete, Disable the TX Watermark interrupt */ if (gi2c->cur_wr == cur->len) { writel_relaxed(0, base + SE_GENI_TX_WATERMARK_REG); break; } } } if (m_stat) writel_relaxed(m_stat, base + SE_GENI_M_IRQ_CLEAR); if (dma && dm_tx_st) writel_relaxed(dm_tx_st, base + SE_DMA_TX_IRQ_CLR); if (dma && dm_rx_st) writel_relaxed(dm_rx_st, base + SE_DMA_RX_IRQ_CLR); /* if this is err with done-bit not set, handle that through timeout. */ if (m_stat & M_CMD_DONE_EN || m_stat & M_CMD_ABORT_EN || dm_tx_st & TX_DMA_DONE || dm_tx_st & TX_RESET_DONE || dm_rx_st & RX_DMA_DONE || dm_rx_st & RX_RESET_DONE) complete(&gi2c->done); spin_unlock(&gi2c->lock); return IRQ_HANDLED; } static void geni_i2c_abort_xfer(struct geni_i2c_dev *gi2c) { unsigned long time_left = ABORT_TIMEOUT; unsigned long flags; spin_lock_irqsave(&gi2c->lock, flags); geni_i2c_err(gi2c, GENI_TIMEOUT); gi2c->cur = NULL; gi2c->abort_done = false; geni_se_abort_m_cmd(&gi2c->se); spin_unlock_irqrestore(&gi2c->lock, flags); do { time_left = wait_for_completion_timeout(&gi2c->done, time_left); } while (!gi2c->abort_done && time_left); if (!time_left) dev_err(gi2c->se.dev, "Timeout abort_m_cmd\n"); } static void geni_i2c_rx_fsm_rst(struct geni_i2c_dev *gi2c) { u32 val; unsigned long time_left = RST_TIMEOUT; writel_relaxed(1, gi2c->se.base + SE_DMA_RX_FSM_RST); do { time_left = wait_for_completion_timeout(&gi2c->done, time_left); val = readl_relaxed(gi2c->se.base + SE_DMA_RX_IRQ_STAT); } while (!(val & RX_RESET_DONE) && time_left); if (!(val & RX_RESET_DONE)) dev_err(gi2c->se.dev, "Timeout resetting RX_FSM\n"); } static void geni_i2c_tx_fsm_rst(struct geni_i2c_dev *gi2c) { u32 val; unsigned long time_left = RST_TIMEOUT; writel_relaxed(1, gi2c->se.base + SE_DMA_TX_FSM_RST); do { time_left = wait_for_completion_timeout(&gi2c->done, time_left); val = readl_relaxed(gi2c->se.base + SE_DMA_TX_IRQ_STAT); } while (!(val & TX_RESET_DONE) && time_left); if (!(val & TX_RESET_DONE)) dev_err(gi2c->se.dev, "Timeout resetting TX_FSM\n"); } static void geni_i2c_rx_msg_cleanup(struct geni_i2c_dev *gi2c, struct i2c_msg *cur) { gi2c->cur_rd = 0; if (gi2c->dma_buf) { if (gi2c->err) geni_i2c_rx_fsm_rst(gi2c); geni_se_rx_dma_unprep(&gi2c->se, gi2c->dma_addr, gi2c->xfer_len); i2c_put_dma_safe_msg_buf(gi2c->dma_buf, cur, !gi2c->err); } } static void geni_i2c_tx_msg_cleanup(struct geni_i2c_dev *gi2c, struct i2c_msg *cur) { gi2c->cur_wr = 0; if (gi2c->dma_buf) { if (gi2c->err) geni_i2c_tx_fsm_rst(gi2c); geni_se_tx_dma_unprep(&gi2c->se, gi2c->dma_addr, gi2c->xfer_len); i2c_put_dma_safe_msg_buf(gi2c->dma_buf, cur, !gi2c->err); } } static int geni_i2c_rx_one_msg(struct geni_i2c_dev *gi2c, struct i2c_msg *msg, u32 m_param) { dma_addr_t rx_dma = 0; unsigned long time_left; void *dma_buf; struct geni_se *se = &gi2c->se; size_t len = msg->len; struct i2c_msg *cur; dma_buf = i2c_get_dma_safe_msg_buf(msg, 32); if (dma_buf) geni_se_select_mode(se, GENI_SE_DMA); else geni_se_select_mode(se, GENI_SE_FIFO); writel_relaxed(len, se->base + SE_I2C_RX_TRANS_LEN); geni_se_setup_m_cmd(se, I2C_READ, m_param); if (dma_buf && geni_se_rx_dma_prep(se, dma_buf, len, &rx_dma)) { geni_se_select_mode(se, GENI_SE_FIFO); i2c_put_dma_safe_msg_buf(dma_buf, msg, false); dma_buf = NULL; } else { gi2c->xfer_len = len; gi2c->dma_addr = rx_dma; gi2c->dma_buf = dma_buf; } cur = gi2c->cur; time_left = wait_for_completion_timeout(&gi2c->done, XFER_TIMEOUT); if (!time_left) geni_i2c_abort_xfer(gi2c); geni_i2c_rx_msg_cleanup(gi2c, cur); return gi2c->err; } static int geni_i2c_tx_one_msg(struct geni_i2c_dev *gi2c, struct i2c_msg *msg, u32 m_param) { dma_addr_t tx_dma = 0; unsigned long time_left; void *dma_buf; struct geni_se *se = &gi2c->se; size_t len = msg->len; struct i2c_msg *cur; dma_buf = i2c_get_dma_safe_msg_buf(msg, 32); if (dma_buf) geni_se_select_mode(se, GENI_SE_DMA); else geni_se_select_mode(se, GENI_SE_FIFO); writel_relaxed(len, se->base + SE_I2C_TX_TRANS_LEN); geni_se_setup_m_cmd(se, I2C_WRITE, m_param); if (dma_buf && geni_se_tx_dma_prep(se, dma_buf, len, &tx_dma)) { geni_se_select_mode(se, GENI_SE_FIFO); i2c_put_dma_safe_msg_buf(dma_buf, msg, false); dma_buf = NULL; } else { gi2c->xfer_len = len; gi2c->dma_addr = tx_dma; gi2c->dma_buf = dma_buf; } if (!dma_buf) /* Get FIFO IRQ */ writel_relaxed(1, se->base + SE_GENI_TX_WATERMARK_REG); cur = gi2c->cur; time_left = wait_for_completion_timeout(&gi2c->done, XFER_TIMEOUT); if (!time_left) geni_i2c_abort_xfer(gi2c); geni_i2c_tx_msg_cleanup(gi2c, cur); return gi2c->err; } static void i2c_gpi_cb_result(void *cb, const struct dmaengine_result *result) { struct geni_i2c_dev *gi2c = cb; if (result->result != DMA_TRANS_NOERROR) { dev_err(gi2c->se.dev, "DMA txn failed:%d\n", result->result); gi2c->err = -EIO; } else if (result->residue) { dev_dbg(gi2c->se.dev, "DMA xfer has pending: %d\n", result->residue); } complete(&gi2c->done); } static void geni_i2c_gpi_unmap(struct geni_i2c_dev *gi2c, struct i2c_msg *msg, void *tx_buf, dma_addr_t tx_addr, void *rx_buf, dma_addr_t rx_addr) { if (tx_buf) { dma_unmap_single(gi2c->se.dev->parent, tx_addr, msg->len, DMA_TO_DEVICE); i2c_put_dma_safe_msg_buf(tx_buf, msg, !gi2c->err); } if (rx_buf) { dma_unmap_single(gi2c->se.dev->parent, rx_addr, msg->len, DMA_FROM_DEVICE); i2c_put_dma_safe_msg_buf(rx_buf, msg, !gi2c->err); } } static int geni_i2c_gpi(struct geni_i2c_dev *gi2c, struct i2c_msg *msg, struct dma_slave_config *config, dma_addr_t *dma_addr_p, void **buf, unsigned int op, struct dma_chan *dma_chan) { struct gpi_i2c_config *peripheral; unsigned int flags; void *dma_buf; dma_addr_t addr; enum dma_data_direction map_dirn; enum dma_transfer_direction dma_dirn; struct dma_async_tx_descriptor *desc; int ret; peripheral = config->peripheral_config; dma_buf = i2c_get_dma_safe_msg_buf(msg, 1); if (!dma_buf) return -ENOMEM; if (op == I2C_WRITE) map_dirn = DMA_TO_DEVICE; else map_dirn = DMA_FROM_DEVICE; addr = dma_map_single(gi2c->se.dev->parent, dma_buf, msg->len, map_dirn); if (dma_mapping_error(gi2c->se.dev->parent, addr)) { i2c_put_dma_safe_msg_buf(dma_buf, msg, false); return -ENOMEM; } /* set the length as message for rx txn */ peripheral->rx_len = msg->len; peripheral->op = op; ret = dmaengine_slave_config(dma_chan, config); if (ret) { dev_err(gi2c->se.dev, "dma config error: %d for op:%d\n", ret, op); goto err_config; } peripheral->set_config = 0; peripheral->multi_msg = true; flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; if (op == I2C_WRITE) dma_dirn = DMA_MEM_TO_DEV; else dma_dirn = DMA_DEV_TO_MEM; desc = dmaengine_prep_slave_single(dma_chan, addr, msg->len, dma_dirn, flags); if (!desc) { dev_err(gi2c->se.dev, "prep_slave_sg failed\n"); ret = -EIO; goto err_config; } desc->callback_result = i2c_gpi_cb_result; desc->callback_param = gi2c; dmaengine_submit(desc); *buf = dma_buf; *dma_addr_p = addr; return 0; err_config: dma_unmap_single(gi2c->se.dev->parent, addr, msg->len, map_dirn); i2c_put_dma_safe_msg_buf(dma_buf, msg, false); return ret; } static int geni_i2c_gpi_xfer(struct geni_i2c_dev *gi2c, struct i2c_msg msgs[], int num) { struct dma_slave_config config = {}; struct gpi_i2c_config peripheral = {}; int i, ret = 0, timeout; dma_addr_t tx_addr, rx_addr; void *tx_buf = NULL, *rx_buf = NULL; const struct geni_i2c_clk_fld *itr = gi2c->clk_fld; config.peripheral_config = &peripheral; config.peripheral_size = sizeof(peripheral); peripheral.pack_enable = I2C_PACK_TX | I2C_PACK_RX; peripheral.cycle_count = itr->t_cycle_cnt; peripheral.high_count = itr->t_high_cnt; peripheral.low_count = itr->t_low_cnt; peripheral.clk_div = itr->clk_div; peripheral.set_config = 1; peripheral.multi_msg = false; for (i = 0; i < num; i++) { gi2c->cur = &msgs[i]; gi2c->err = 0; dev_dbg(gi2c->se.dev, "msg[%d].len:%d\n", i, gi2c->cur->len); peripheral.stretch = 0; if (i < num - 1) peripheral.stretch = 1; peripheral.addr = msgs[i].addr; if (msgs[i].flags & I2C_M_RD) { ret = geni_i2c_gpi(gi2c, &msgs[i], &config, &rx_addr, &rx_buf, I2C_READ, gi2c->rx_c); if (ret) goto err; } ret = geni_i2c_gpi(gi2c, &msgs[i], &config, &tx_addr, &tx_buf, I2C_WRITE, gi2c->tx_c); if (ret) goto err; if (msgs[i].flags & I2C_M_RD) dma_async_issue_pending(gi2c->rx_c); dma_async_issue_pending(gi2c->tx_c); timeout = wait_for_completion_timeout(&gi2c->done, XFER_TIMEOUT); if (!timeout) { dev_err(gi2c->se.dev, "I2C timeout gpi flags:%d addr:0x%x\n", gi2c->cur->flags, gi2c->cur->addr); gi2c->err = -ETIMEDOUT; } if (gi2c->err) { ret = gi2c->err; goto err; } geni_i2c_gpi_unmap(gi2c, &msgs[i], tx_buf, tx_addr, rx_buf, rx_addr); } return num; err: dev_err(gi2c->se.dev, "GPI transfer failed: %d\n", ret); dmaengine_terminate_sync(gi2c->rx_c); dmaengine_terminate_sync(gi2c->tx_c); geni_i2c_gpi_unmap(gi2c, &msgs[i], tx_buf, tx_addr, rx_buf, rx_addr); return ret; } static int geni_i2c_fifo_xfer(struct geni_i2c_dev *gi2c, struct i2c_msg msgs[], int num) { int i, ret = 0; for (i = 0; i < num; i++) { u32 m_param = i < (num - 1) ? STOP_STRETCH : 0; m_param |= ((msgs[i].addr << SLV_ADDR_SHFT) & SLV_ADDR_MSK); gi2c->cur = &msgs[i]; if (msgs[i].flags & I2C_M_RD) ret = geni_i2c_rx_one_msg(gi2c, &msgs[i], m_param); else ret = geni_i2c_tx_one_msg(gi2c, &msgs[i], m_param); if (ret) return ret; } return num; } static int geni_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) { struct geni_i2c_dev *gi2c = i2c_get_adapdata(adap); int ret; gi2c->err = 0; reinit_completion(&gi2c->done); ret = pm_runtime_get_sync(gi2c->se.dev); if (ret < 0) { dev_err(gi2c->se.dev, "error turning SE resources:%d\n", ret); pm_runtime_put_noidle(gi2c->se.dev); /* Set device in suspended since resume failed */ pm_runtime_set_suspended(gi2c->se.dev); return ret; } qcom_geni_i2c_conf(gi2c); if (gi2c->gpi_mode) ret = geni_i2c_gpi_xfer(gi2c, msgs, num); else ret = geni_i2c_fifo_xfer(gi2c, msgs, num); pm_runtime_mark_last_busy(gi2c->se.dev); pm_runtime_put_autosuspend(gi2c->se.dev); gi2c->cur = NULL; gi2c->err = 0; return ret; } static u32 geni_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK); } static const struct i2c_algorithm geni_i2c_algo = { .master_xfer = geni_i2c_xfer, .functionality = geni_i2c_func, }; #ifdef CONFIG_ACPI static const struct acpi_device_id geni_i2c_acpi_match[] = { { "QCOM0220"}, { }, }; MODULE_DEVICE_TABLE(acpi, geni_i2c_acpi_match); #endif static void release_gpi_dma(struct geni_i2c_dev *gi2c) { if (gi2c->rx_c) dma_release_channel(gi2c->rx_c); if (gi2c->tx_c) dma_release_channel(gi2c->tx_c); } static int setup_gpi_dma(struct geni_i2c_dev *gi2c) { int ret; geni_se_select_mode(&gi2c->se, GENI_GPI_DMA); gi2c->tx_c = dma_request_chan(gi2c->se.dev, "tx"); if (IS_ERR(gi2c->tx_c)) { ret = dev_err_probe(gi2c->se.dev, PTR_ERR(gi2c->tx_c), "Failed to get tx DMA ch\n"); goto err_tx; } gi2c->rx_c = dma_request_chan(gi2c->se.dev, "rx"); if (IS_ERR(gi2c->rx_c)) { ret = dev_err_probe(gi2c->se.dev, PTR_ERR(gi2c->rx_c), "Failed to get rx DMA ch\n"); goto err_rx; } dev_dbg(gi2c->se.dev, "Grabbed GPI dma channels\n"); return 0; err_rx: dma_release_channel(gi2c->tx_c); err_tx: return ret; } static int geni_i2c_probe(struct platform_device *pdev) { struct geni_i2c_dev *gi2c; u32 proto, tx_depth, fifo_disable; int ret; struct device *dev = &pdev->dev; const struct geni_i2c_desc *desc = NULL; gi2c = devm_kzalloc(dev, sizeof(*gi2c), GFP_KERNEL); if (!gi2c) return -ENOMEM; gi2c->se.dev = dev; gi2c->se.wrapper = dev_get_drvdata(dev->parent); gi2c->se.base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(gi2c->se.base)) return PTR_ERR(gi2c->se.base); desc = device_get_match_data(&pdev->dev); if (desc && desc->has_core_clk) { gi2c->core_clk = devm_clk_get(dev, "core"); if (IS_ERR(gi2c->core_clk)) return PTR_ERR(gi2c->core_clk); } gi2c->se.clk = devm_clk_get(dev, "se"); if (IS_ERR(gi2c->se.clk) && !has_acpi_companion(dev)) return PTR_ERR(gi2c->se.clk); ret = device_property_read_u32(dev, "clock-frequency", &gi2c->clk_freq_out); if (ret) { dev_info(dev, "Bus frequency not specified, default to 100kHz.\n"); gi2c->clk_freq_out = KHZ(100); } if (has_acpi_companion(dev)) ACPI_COMPANION_SET(&gi2c->adap.dev, ACPI_COMPANION(dev)); gi2c->irq = platform_get_irq(pdev, 0); if (gi2c->irq < 0) return gi2c->irq; ret = geni_i2c_clk_map_idx(gi2c); if (ret) { dev_err(dev, "Invalid clk frequency %d Hz: %d\n", gi2c->clk_freq_out, ret); return ret; } gi2c->adap.algo = &geni_i2c_algo; init_completion(&gi2c->done); spin_lock_init(&gi2c->lock); platform_set_drvdata(pdev, gi2c); ret = devm_request_irq(dev, gi2c->irq, geni_i2c_irq, 0, dev_name(dev), gi2c); if (ret) { dev_err(dev, "Request_irq failed:%d: err:%d\n", gi2c->irq, ret); return ret; } /* Disable the interrupt so that the system can enter low-power mode */ disable_irq(gi2c->irq); i2c_set_adapdata(&gi2c->adap, gi2c); gi2c->adap.dev.parent = dev; gi2c->adap.dev.of_node = dev->of_node; strscpy(gi2c->adap.name, "Geni-I2C", sizeof(gi2c->adap.name)); ret = geni_icc_get(&gi2c->se, desc ? desc->icc_ddr : "qup-memory"); if (ret) return ret; /* * Set the bus quota for core and cpu to a reasonable value for * register access. * Set quota for DDR based on bus speed. */ gi2c->se.icc_paths[GENI_TO_CORE].avg_bw = GENI_DEFAULT_BW; gi2c->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW; if (!desc || desc->icc_ddr) gi2c->se.icc_paths[GENI_TO_DDR].avg_bw = Bps_to_icc(gi2c->clk_freq_out); ret = geni_icc_set_bw(&gi2c->se); if (ret) return ret; ret = clk_prepare_enable(gi2c->core_clk); if (ret) return ret; ret = geni_se_resources_on(&gi2c->se); if (ret) { dev_err(dev, "Error turning on resources %d\n", ret); clk_disable_unprepare(gi2c->core_clk); return ret; } proto = geni_se_read_proto(&gi2c->se); if (proto != GENI_SE_I2C) { dev_err(dev, "Invalid proto %d\n", proto); geni_se_resources_off(&gi2c->se); clk_disable_unprepare(gi2c->core_clk); return -ENXIO; } if (desc && desc->no_dma_support) fifo_disable = false; else fifo_disable = readl_relaxed(gi2c->se.base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE; if (fifo_disable) { /* FIFO is disabled, so we can only use GPI DMA */ gi2c->gpi_mode = true; ret = setup_gpi_dma(gi2c); if (ret) { geni_se_resources_off(&gi2c->se); clk_disable_unprepare(gi2c->core_clk); return dev_err_probe(dev, ret, "Failed to setup GPI DMA mode\n"); } dev_dbg(dev, "Using GPI DMA mode for I2C\n"); } else { gi2c->gpi_mode = false; tx_depth = geni_se_get_tx_fifo_depth(&gi2c->se); /* I2C Master Hub Serial Elements doesn't have the HW_PARAM_0 register */ if (!tx_depth && desc) tx_depth = desc->tx_fifo_depth; if (!tx_depth) { dev_err(dev, "Invalid TX FIFO depth\n"); geni_se_resources_off(&gi2c->se); clk_disable_unprepare(gi2c->core_clk); return -EINVAL; } gi2c->tx_wm = tx_depth - 1; geni_se_init(&gi2c->se, gi2c->tx_wm, tx_depth); geni_se_config_packing(&gi2c->se, BITS_PER_BYTE, PACKING_BYTES_PW, true, true, true); dev_dbg(dev, "i2c fifo/se-dma mode. fifo depth:%d\n", tx_depth); } clk_disable_unprepare(gi2c->core_clk); ret = geni_se_resources_off(&gi2c->se); if (ret) { dev_err(dev, "Error turning off resources %d\n", ret); goto err_dma; } ret = geni_icc_disable(&gi2c->se); if (ret) goto err_dma; gi2c->suspended = 1; pm_runtime_set_suspended(gi2c->se.dev); pm_runtime_set_autosuspend_delay(gi2c->se.dev, I2C_AUTO_SUSPEND_DELAY); pm_runtime_use_autosuspend(gi2c->se.dev); pm_runtime_enable(gi2c->se.dev); ret = i2c_add_adapter(&gi2c->adap); if (ret) { dev_err(dev, "Error adding i2c adapter %d\n", ret); pm_runtime_disable(gi2c->se.dev); goto err_dma; } dev_dbg(dev, "Geni-I2C adaptor successfully added\n"); return 0; err_dma: release_gpi_dma(gi2c); return ret; } static void geni_i2c_remove(struct platform_device *pdev) { struct geni_i2c_dev *gi2c = platform_get_drvdata(pdev); i2c_del_adapter(&gi2c->adap); release_gpi_dma(gi2c); pm_runtime_disable(gi2c->se.dev); } static void geni_i2c_shutdown(struct platform_device *pdev) { struct geni_i2c_dev *gi2c = platform_get_drvdata(pdev); /* Make client i2c transfers start failing */ i2c_mark_adapter_suspended(&gi2c->adap); } static int __maybe_unused geni_i2c_runtime_suspend(struct device *dev) { int ret; struct geni_i2c_dev *gi2c = dev_get_drvdata(dev); disable_irq(gi2c->irq); ret = geni_se_resources_off(&gi2c->se); if (ret) { enable_irq(gi2c->irq); return ret; } else { gi2c->suspended = 1; } clk_disable_unprepare(gi2c->core_clk); return geni_icc_disable(&gi2c->se); } static int __maybe_unused geni_i2c_runtime_resume(struct device *dev) { int ret; struct geni_i2c_dev *gi2c = dev_get_drvdata(dev); ret = geni_icc_enable(&gi2c->se); if (ret) return ret; ret = clk_prepare_enable(gi2c->core_clk); if (ret) return ret; ret = geni_se_resources_on(&gi2c->se); if (ret) return ret; enable_irq(gi2c->irq); gi2c->suspended = 0; return 0; } static int __maybe_unused geni_i2c_suspend_noirq(struct device *dev) { struct geni_i2c_dev *gi2c = dev_get_drvdata(dev); i2c_mark_adapter_suspended(&gi2c->adap); if (!gi2c->suspended) { geni_i2c_runtime_suspend(dev); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); pm_runtime_enable(dev); } return 0; } static int __maybe_unused geni_i2c_resume_noirq(struct device *dev) { struct geni_i2c_dev *gi2c = dev_get_drvdata(dev); i2c_mark_adapter_resumed(&gi2c->adap); return 0; } static const struct dev_pm_ops geni_i2c_pm_ops = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(geni_i2c_suspend_noirq, geni_i2c_resume_noirq) SET_RUNTIME_PM_OPS(geni_i2c_runtime_suspend, geni_i2c_runtime_resume, NULL) }; static const struct geni_i2c_desc i2c_master_hub = { .has_core_clk = true, .icc_ddr = NULL, .no_dma_support = true, .tx_fifo_depth = 16, }; static const struct of_device_id geni_i2c_dt_match[] = { { .compatible = "qcom,geni-i2c" }, { .compatible = "qcom,geni-i2c-master-hub", .data = &i2c_master_hub }, {} }; MODULE_DEVICE_TABLE(of, geni_i2c_dt_match); static struct platform_driver geni_i2c_driver = { .probe = geni_i2c_probe, .remove_new = geni_i2c_remove, .shutdown = geni_i2c_shutdown, .driver = { .name = "geni_i2c", .pm = &geni_i2c_pm_ops, .of_match_table = geni_i2c_dt_match, .acpi_match_table = ACPI_PTR(geni_i2c_acpi_match), }, }; module_platform_driver(geni_i2c_driver); MODULE_DESCRIPTION("I2C Controller Driver for GENI based QUP cores"); MODULE_LICENSE("GPL v2");