// SPDX-License-Identifier: GPL-2.0 /* * Hantro VP9 codec driver * * Copyright (C) 2021 Collabora Ltd. */ #include "media/videobuf2-core.h" #include "media/videobuf2-dma-contig.h" #include "media/videobuf2-v4l2.h" #include #include #include #include #include "hantro.h" #include "hantro_vp9.h" #include "hantro_g2_regs.h" enum hantro_ref_frames { INTRA_FRAME = 0, LAST_FRAME = 1, GOLDEN_FRAME = 2, ALTREF_FRAME = 3, MAX_REF_FRAMES = 4 }; static int start_prepare_run(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame **dec_params) { const struct v4l2_ctrl_vp9_compressed_hdr *prob_updates; struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; struct v4l2_ctrl *ctrl; unsigned int fctx_idx; /* v4l2-specific stuff */ hantro_start_prepare_run(ctx); ctrl = v4l2_ctrl_find(&ctx->ctrl_handler, V4L2_CID_STATELESS_VP9_FRAME); if (WARN_ON(!ctrl)) return -EINVAL; *dec_params = ctrl->p_cur.p; ctrl = v4l2_ctrl_find(&ctx->ctrl_handler, V4L2_CID_STATELESS_VP9_COMPRESSED_HDR); if (WARN_ON(!ctrl)) return -EINVAL; prob_updates = ctrl->p_cur.p; vp9_ctx->cur.tx_mode = prob_updates->tx_mode; /* * vp9 stuff * * by this point the userspace has done all parts of 6.2 uncompressed_header() * except this fragment: * if ( FrameIsIntra || error_resilient_mode ) { * setup_past_independence ( ) * if ( frame_type == KEY_FRAME || error_resilient_mode == 1 || * reset_frame_context == 3 ) { * for ( i = 0; i < 4; i ++ ) { * save_probs( i ) * } * } else if ( reset_frame_context == 2 ) { * save_probs( frame_context_idx ) * } * frame_context_idx = 0 * } */ fctx_idx = v4l2_vp9_reset_frame_ctx(*dec_params, vp9_ctx->frame_context); vp9_ctx->cur.frame_context_idx = fctx_idx; /* 6.1 frame(sz): load_probs() and load_probs2() */ vp9_ctx->probability_tables = vp9_ctx->frame_context[fctx_idx]; /* * The userspace has also performed 6.3 compressed_header(), but handling the * probs in a special way. All probs which need updating, except MV-related, * have been read from the bitstream and translated through inv_map_table[], * but no 6.3.6 inv_recenter_nonneg(v, m) has been performed. The values passed * by userspace are either translated values (there are no 0 values in * inv_map_table[]), or zero to indicate no update. All MV-related probs which need * updating have been read from the bitstream and (mv_prob << 1) | 1 has been * performed. The values passed by userspace are either new values * to replace old ones (the above mentioned shift and bitwise or never result in * a zero) or zero to indicate no update. * fw_update_probs() performs actual probs updates or leaves probs as-is * for values for which a zero was passed from userspace. */ v4l2_vp9_fw_update_probs(&vp9_ctx->probability_tables, prob_updates, *dec_params); return 0; } static struct hantro_decoded_buffer * get_ref_buf(struct hantro_ctx *ctx, struct vb2_v4l2_buffer *dst, u64 timestamp) { struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx; struct vb2_queue *cap_q = &m2m_ctx->cap_q_ctx.q; struct vb2_buffer *buf; /* * If a ref is unused or invalid, address of current destination * buffer is returned. */ buf = vb2_find_buffer(cap_q, timestamp); if (!buf) buf = &dst->vb2_buf; return vb2_to_hantro_decoded_buf(buf); } static void update_dec_buf_info(struct hantro_decoded_buffer *buf, const struct v4l2_ctrl_vp9_frame *dec_params) { buf->vp9.width = dec_params->frame_width_minus_1 + 1; buf->vp9.height = dec_params->frame_height_minus_1 + 1; buf->vp9.bit_depth = dec_params->bit_depth; } static void update_ctx_cur_info(struct hantro_vp9_dec_hw_ctx *vp9_ctx, struct hantro_decoded_buffer *buf, const struct v4l2_ctrl_vp9_frame *dec_params) { vp9_ctx->cur.valid = true; vp9_ctx->cur.reference_mode = dec_params->reference_mode; vp9_ctx->cur.interpolation_filter = dec_params->interpolation_filter; vp9_ctx->cur.flags = dec_params->flags; vp9_ctx->cur.timestamp = buf->base.vb.vb2_buf.timestamp; } static void config_output(struct hantro_ctx *ctx, struct hantro_decoded_buffer *dst, const struct v4l2_ctrl_vp9_frame *dec_params) { dma_addr_t luma_addr, chroma_addr, mv_addr; hantro_reg_write(ctx->dev, &g2_out_dis, 0); if (!ctx->dev->variant->legacy_regs) hantro_reg_write(ctx->dev, &g2_output_format, 0); luma_addr = hantro_get_dec_buf_addr(ctx, &dst->base.vb.vb2_buf); hantro_write_addr(ctx->dev, G2_OUT_LUMA_ADDR, luma_addr); chroma_addr = luma_addr + hantro_g2_chroma_offset(ctx); hantro_write_addr(ctx->dev, G2_OUT_CHROMA_ADDR, chroma_addr); dst->vp9.chroma_offset = hantro_g2_chroma_offset(ctx); mv_addr = luma_addr + hantro_g2_motion_vectors_offset(ctx); hantro_write_addr(ctx->dev, G2_OUT_MV_ADDR, mv_addr); dst->vp9.mv_offset = hantro_g2_motion_vectors_offset(ctx); } struct hantro_vp9_ref_reg { const struct hantro_reg width; const struct hantro_reg height; const struct hantro_reg hor_scale; const struct hantro_reg ver_scale; u32 y_base; u32 c_base; }; static void config_ref(struct hantro_ctx *ctx, struct hantro_decoded_buffer *dst, const struct hantro_vp9_ref_reg *ref_reg, const struct v4l2_ctrl_vp9_frame *dec_params, u64 ref_ts) { struct hantro_decoded_buffer *buf; dma_addr_t luma_addr, chroma_addr; u32 refw, refh; buf = get_ref_buf(ctx, &dst->base.vb, ref_ts); refw = buf->vp9.width; refh = buf->vp9.height; hantro_reg_write(ctx->dev, &ref_reg->width, refw); hantro_reg_write(ctx->dev, &ref_reg->height, refh); hantro_reg_write(ctx->dev, &ref_reg->hor_scale, (refw << 14) / dst->vp9.width); hantro_reg_write(ctx->dev, &ref_reg->ver_scale, (refh << 14) / dst->vp9.height); luma_addr = hantro_get_dec_buf_addr(ctx, &buf->base.vb.vb2_buf); hantro_write_addr(ctx->dev, ref_reg->y_base, luma_addr); chroma_addr = luma_addr + buf->vp9.chroma_offset; hantro_write_addr(ctx->dev, ref_reg->c_base, chroma_addr); } static void config_ref_registers(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params, struct hantro_decoded_buffer *dst, struct hantro_decoded_buffer *mv_ref) { static const struct hantro_vp9_ref_reg ref_regs[] = { { /* Last */ .width = vp9_lref_width, .height = vp9_lref_height, .hor_scale = vp9_lref_hor_scale, .ver_scale = vp9_lref_ver_scale, .y_base = G2_REF_LUMA_ADDR(0), .c_base = G2_REF_CHROMA_ADDR(0), }, { /* Golden */ .width = vp9_gref_width, .height = vp9_gref_height, .hor_scale = vp9_gref_hor_scale, .ver_scale = vp9_gref_ver_scale, .y_base = G2_REF_LUMA_ADDR(4), .c_base = G2_REF_CHROMA_ADDR(4), }, { /* Altref */ .width = vp9_aref_width, .height = vp9_aref_height, .hor_scale = vp9_aref_hor_scale, .ver_scale = vp9_aref_ver_scale, .y_base = G2_REF_LUMA_ADDR(5), .c_base = G2_REF_CHROMA_ADDR(5), }, }; dma_addr_t mv_addr; config_ref(ctx, dst, &ref_regs[0], dec_params, dec_params->last_frame_ts); config_ref(ctx, dst, &ref_regs[1], dec_params, dec_params->golden_frame_ts); config_ref(ctx, dst, &ref_regs[2], dec_params, dec_params->alt_frame_ts); mv_addr = hantro_get_dec_buf_addr(ctx, &mv_ref->base.vb.vb2_buf) + mv_ref->vp9.mv_offset; hantro_write_addr(ctx->dev, G2_REF_MV_ADDR(0), mv_addr); hantro_reg_write(ctx->dev, &vp9_last_sign_bias, dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_LAST ? 1 : 0); hantro_reg_write(ctx->dev, &vp9_gref_sign_bias, dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_GOLDEN ? 1 : 0); hantro_reg_write(ctx->dev, &vp9_aref_sign_bias, dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_ALT ? 1 : 0); } static void recompute_tile_info(unsigned short *tile_info, unsigned int tiles, unsigned int sbs) { int i; unsigned int accumulated = 0; unsigned int next_accumulated; for (i = 1; i <= tiles; ++i) { next_accumulated = i * sbs / tiles; *tile_info++ = next_accumulated - accumulated; accumulated = next_accumulated; } } static void recompute_tile_rc_info(struct hantro_ctx *ctx, unsigned int tile_r, unsigned int tile_c, unsigned int sbs_r, unsigned int sbs_c) { struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; recompute_tile_info(vp9_ctx->tile_r_info, tile_r, sbs_r); recompute_tile_info(vp9_ctx->tile_c_info, tile_c, sbs_c); vp9_ctx->last_tile_r = tile_r; vp9_ctx->last_tile_c = tile_c; vp9_ctx->last_sbs_r = sbs_r; vp9_ctx->last_sbs_c = sbs_c; } static inline unsigned int first_tile_row(unsigned int tile_r, unsigned int sbs_r) { if (tile_r == sbs_r + 1) return 1; if (tile_r == sbs_r + 2) return 2; return 0; } static void fill_tile_info(struct hantro_ctx *ctx, unsigned int tile_r, unsigned int tile_c, unsigned int sbs_r, unsigned int sbs_c, unsigned short *tile_mem) { struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; unsigned int i, j; bool first = true; for (i = first_tile_row(tile_r, sbs_r); i < tile_r; ++i) { unsigned short r_info = vp9_ctx->tile_r_info[i]; if (first) { if (i > 0) r_info += vp9_ctx->tile_r_info[0]; if (i == 2) r_info += vp9_ctx->tile_r_info[1]; first = false; } for (j = 0; j < tile_c; ++j) { *tile_mem++ = vp9_ctx->tile_c_info[j]; *tile_mem++ = r_info; } } } static void config_tiles(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params, struct hantro_decoded_buffer *dst) { struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; struct hantro_aux_buf *misc = &vp9_ctx->misc; struct hantro_aux_buf *tile_edge = &vp9_ctx->tile_edge; dma_addr_t addr; unsigned short *tile_mem; unsigned int rows, cols; addr = misc->dma + vp9_ctx->tile_info_offset; hantro_write_addr(ctx->dev, G2_TILE_SIZES_ADDR, addr); tile_mem = misc->cpu + vp9_ctx->tile_info_offset; if (dec_params->tile_cols_log2 || dec_params->tile_rows_log2) { unsigned int tile_r = (1 << dec_params->tile_rows_log2); unsigned int tile_c = (1 << dec_params->tile_cols_log2); unsigned int sbs_r = hantro_vp9_num_sbs(dst->vp9.height); unsigned int sbs_c = hantro_vp9_num_sbs(dst->vp9.width); if (tile_r != vp9_ctx->last_tile_r || tile_c != vp9_ctx->last_tile_c || sbs_r != vp9_ctx->last_sbs_r || sbs_c != vp9_ctx->last_sbs_c) recompute_tile_rc_info(ctx, tile_r, tile_c, sbs_r, sbs_c); fill_tile_info(ctx, tile_r, tile_c, sbs_r, sbs_c, tile_mem); cols = tile_c; rows = tile_r; hantro_reg_write(ctx->dev, &g2_tile_e, 1); } else { tile_mem[0] = hantro_vp9_num_sbs(dst->vp9.width); tile_mem[1] = hantro_vp9_num_sbs(dst->vp9.height); cols = 1; rows = 1; hantro_reg_write(ctx->dev, &g2_tile_e, 0); } if (ctx->dev->variant->legacy_regs) { hantro_reg_write(ctx->dev, &g2_num_tile_cols_old, cols); hantro_reg_write(ctx->dev, &g2_num_tile_rows_old, rows); } else { hantro_reg_write(ctx->dev, &g2_num_tile_cols, cols); hantro_reg_write(ctx->dev, &g2_num_tile_rows, rows); } /* provide aux buffers even if no tiles are used */ addr = tile_edge->dma; hantro_write_addr(ctx->dev, G2_TILE_FILTER_ADDR, addr); addr = tile_edge->dma + vp9_ctx->bsd_ctrl_offset; hantro_write_addr(ctx->dev, G2_TILE_BSD_ADDR, addr); } static void update_feat_and_flag(struct hantro_vp9_dec_hw_ctx *vp9_ctx, const struct v4l2_vp9_segmentation *seg, unsigned int feature, unsigned int segid) { u8 mask = V4L2_VP9_SEGMENT_FEATURE_ENABLED(feature); vp9_ctx->feature_data[segid][feature] = seg->feature_data[segid][feature]; vp9_ctx->feature_enabled[segid] &= ~mask; vp9_ctx->feature_enabled[segid] |= (seg->feature_enabled[segid] & mask); } static inline s16 clip3(s16 x, s16 y, s16 z) { return (z < x) ? x : (z > y) ? y : z; } static s16 feat_val_clip3(s16 feat_val, s16 feature_data, bool absolute, u8 clip) { if (absolute) return feature_data; return clip3(0, 255, feat_val + feature_data); } static void config_segment(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params) { struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; const struct v4l2_vp9_segmentation *seg; s16 feat_val; unsigned char feat_id; unsigned int segid; bool segment_enabled, absolute, update_data; static const struct hantro_reg seg_regs[8][V4L2_VP9_SEG_LVL_MAX] = { { vp9_quant_seg0, vp9_filt_level_seg0, vp9_refpic_seg0, vp9_skip_seg0 }, { vp9_quant_seg1, vp9_filt_level_seg1, vp9_refpic_seg1, vp9_skip_seg1 }, { vp9_quant_seg2, vp9_filt_level_seg2, vp9_refpic_seg2, vp9_skip_seg2 }, { vp9_quant_seg3, vp9_filt_level_seg3, vp9_refpic_seg3, vp9_skip_seg3 }, { vp9_quant_seg4, vp9_filt_level_seg4, vp9_refpic_seg4, vp9_skip_seg4 }, { vp9_quant_seg5, vp9_filt_level_seg5, vp9_refpic_seg5, vp9_skip_seg5 }, { vp9_quant_seg6, vp9_filt_level_seg6, vp9_refpic_seg6, vp9_skip_seg6 }, { vp9_quant_seg7, vp9_filt_level_seg7, vp9_refpic_seg7, vp9_skip_seg7 }, }; segment_enabled = !!(dec_params->seg.flags & V4L2_VP9_SEGMENTATION_FLAG_ENABLED); hantro_reg_write(ctx->dev, &vp9_segment_e, segment_enabled); hantro_reg_write(ctx->dev, &vp9_segment_upd_e, !!(dec_params->seg.flags & V4L2_VP9_SEGMENTATION_FLAG_UPDATE_MAP)); hantro_reg_write(ctx->dev, &vp9_segment_temp_upd_e, !!(dec_params->seg.flags & V4L2_VP9_SEGMENTATION_FLAG_TEMPORAL_UPDATE)); seg = &dec_params->seg; absolute = !!(seg->flags & V4L2_VP9_SEGMENTATION_FLAG_ABS_OR_DELTA_UPDATE); update_data = !!(seg->flags & V4L2_VP9_SEGMENTATION_FLAG_UPDATE_DATA); for (segid = 0; segid < 8; ++segid) { /* Quantizer segment feature */ feat_id = V4L2_VP9_SEG_LVL_ALT_Q; feat_val = dec_params->quant.base_q_idx; if (segment_enabled) { if (update_data) update_feat_and_flag(vp9_ctx, seg, feat_id, segid); if (v4l2_vp9_seg_feat_enabled(vp9_ctx->feature_enabled, feat_id, segid)) feat_val = feat_val_clip3(feat_val, vp9_ctx->feature_data[segid][feat_id], absolute, 255); } hantro_reg_write(ctx->dev, &seg_regs[segid][feat_id], feat_val); /* Loop filter segment feature */ feat_id = V4L2_VP9_SEG_LVL_ALT_L; feat_val = dec_params->lf.level; if (segment_enabled) { if (update_data) update_feat_and_flag(vp9_ctx, seg, feat_id, segid); if (v4l2_vp9_seg_feat_enabled(vp9_ctx->feature_enabled, feat_id, segid)) feat_val = feat_val_clip3(feat_val, vp9_ctx->feature_data[segid][feat_id], absolute, 63); } hantro_reg_write(ctx->dev, &seg_regs[segid][feat_id], feat_val); /* Reference frame segment feature */ feat_id = V4L2_VP9_SEG_LVL_REF_FRAME; feat_val = 0; if (segment_enabled) { if (update_data) update_feat_and_flag(vp9_ctx, seg, feat_id, segid); if (!(dec_params->flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME) && v4l2_vp9_seg_feat_enabled(vp9_ctx->feature_enabled, feat_id, segid)) feat_val = vp9_ctx->feature_data[segid][feat_id] + 1; } hantro_reg_write(ctx->dev, &seg_regs[segid][feat_id], feat_val); /* Skip segment feature */ feat_id = V4L2_VP9_SEG_LVL_SKIP; feat_val = 0; if (segment_enabled) { if (update_data) update_feat_and_flag(vp9_ctx, seg, feat_id, segid); feat_val = v4l2_vp9_seg_feat_enabled(vp9_ctx->feature_enabled, feat_id, segid) ? 1 : 0; } hantro_reg_write(ctx->dev, &seg_regs[segid][feat_id], feat_val); } } static void config_loop_filter(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params) { bool d = dec_params->lf.flags & V4L2_VP9_LOOP_FILTER_FLAG_DELTA_ENABLED; hantro_reg_write(ctx->dev, &vp9_filt_level, dec_params->lf.level); hantro_reg_write(ctx->dev, &g2_out_filtering_dis, dec_params->lf.level == 0); hantro_reg_write(ctx->dev, &vp9_filt_sharpness, dec_params->lf.sharpness); hantro_reg_write(ctx->dev, &vp9_filt_ref_adj_0, d ? dec_params->lf.ref_deltas[0] : 0); hantro_reg_write(ctx->dev, &vp9_filt_ref_adj_1, d ? dec_params->lf.ref_deltas[1] : 0); hantro_reg_write(ctx->dev, &vp9_filt_ref_adj_2, d ? dec_params->lf.ref_deltas[2] : 0); hantro_reg_write(ctx->dev, &vp9_filt_ref_adj_3, d ? dec_params->lf.ref_deltas[3] : 0); hantro_reg_write(ctx->dev, &vp9_filt_mb_adj_0, d ? dec_params->lf.mode_deltas[0] : 0); hantro_reg_write(ctx->dev, &vp9_filt_mb_adj_1, d ? dec_params->lf.mode_deltas[1] : 0); } static void config_picture_dimensions(struct hantro_ctx *ctx, struct hantro_decoded_buffer *dst) { u32 pic_w_4x4, pic_h_4x4; hantro_reg_write(ctx->dev, &g2_pic_width_in_cbs, (dst->vp9.width + 7) / 8); hantro_reg_write(ctx->dev, &g2_pic_height_in_cbs, (dst->vp9.height + 7) / 8); pic_w_4x4 = roundup(dst->vp9.width, 8) >> 2; pic_h_4x4 = roundup(dst->vp9.height, 8) >> 2; hantro_reg_write(ctx->dev, &g2_pic_width_4x4, pic_w_4x4); hantro_reg_write(ctx->dev, &g2_pic_height_4x4, pic_h_4x4); } static void config_bit_depth(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params) { if (ctx->dev->variant->legacy_regs) { hantro_reg_write(ctx->dev, &g2_bit_depth_y, dec_params->bit_depth); hantro_reg_write(ctx->dev, &g2_bit_depth_c, dec_params->bit_depth); hantro_reg_write(ctx->dev, &g2_pix_shift, 0); } else { hantro_reg_write(ctx->dev, &g2_bit_depth_y_minus8, dec_params->bit_depth - 8); hantro_reg_write(ctx->dev, &g2_bit_depth_c_minus8, dec_params->bit_depth - 8); } } static inline bool is_lossless(const struct v4l2_vp9_quantization *quant) { return quant->base_q_idx == 0 && quant->delta_q_uv_ac == 0 && quant->delta_q_uv_dc == 0 && quant->delta_q_y_dc == 0; } static void config_quant(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params) { hantro_reg_write(ctx->dev, &vp9_qp_delta_y_dc, dec_params->quant.delta_q_y_dc); hantro_reg_write(ctx->dev, &vp9_qp_delta_ch_dc, dec_params->quant.delta_q_uv_dc); hantro_reg_write(ctx->dev, &vp9_qp_delta_ch_ac, dec_params->quant.delta_q_uv_ac); hantro_reg_write(ctx->dev, &vp9_lossless_e, is_lossless(&dec_params->quant)); } static u32 hantro_interp_filter_from_v4l2(unsigned int interpolation_filter) { switch (interpolation_filter) { case V4L2_VP9_INTERP_FILTER_EIGHTTAP: return 0x1; case V4L2_VP9_INTERP_FILTER_EIGHTTAP_SMOOTH: return 0; case V4L2_VP9_INTERP_FILTER_EIGHTTAP_SHARP: return 0x2; case V4L2_VP9_INTERP_FILTER_BILINEAR: return 0x3; case V4L2_VP9_INTERP_FILTER_SWITCHABLE: return 0x4; } return 0; } static void config_others(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params, bool intra_only, bool resolution_change) { struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; hantro_reg_write(ctx->dev, &g2_idr_pic_e, intra_only); hantro_reg_write(ctx->dev, &vp9_transform_mode, vp9_ctx->cur.tx_mode); hantro_reg_write(ctx->dev, &vp9_mcomp_filt_type, intra_only ? 0 : hantro_interp_filter_from_v4l2(dec_params->interpolation_filter)); hantro_reg_write(ctx->dev, &vp9_high_prec_mv_e, !!(dec_params->flags & V4L2_VP9_FRAME_FLAG_ALLOW_HIGH_PREC_MV)); hantro_reg_write(ctx->dev, &vp9_comp_pred_mode, dec_params->reference_mode); hantro_reg_write(ctx->dev, &g2_tempor_mvp_e, !(dec_params->flags & V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT) && !(dec_params->flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME) && !(vp9_ctx->last.flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME) && !(dec_params->flags & V4L2_VP9_FRAME_FLAG_INTRA_ONLY) && !resolution_change && vp9_ctx->last.flags & V4L2_VP9_FRAME_FLAG_SHOW_FRAME ); hantro_reg_write(ctx->dev, &g2_write_mvs_e, !(dec_params->flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME)); } static void config_compound_reference(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params) { u32 comp_fixed_ref, comp_var_ref[2]; bool last_ref_frame_sign_bias; bool golden_ref_frame_sign_bias; bool alt_ref_frame_sign_bias; bool comp_ref_allowed = 0; comp_fixed_ref = 0; comp_var_ref[0] = 0; comp_var_ref[1] = 0; last_ref_frame_sign_bias = dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_LAST; golden_ref_frame_sign_bias = dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_GOLDEN; alt_ref_frame_sign_bias = dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_ALT; /* 6.3.12 Frame reference mode syntax */ comp_ref_allowed |= golden_ref_frame_sign_bias != last_ref_frame_sign_bias; comp_ref_allowed |= alt_ref_frame_sign_bias != last_ref_frame_sign_bias; if (comp_ref_allowed) { if (last_ref_frame_sign_bias == golden_ref_frame_sign_bias) { comp_fixed_ref = ALTREF_FRAME; comp_var_ref[0] = LAST_FRAME; comp_var_ref[1] = GOLDEN_FRAME; } else if (last_ref_frame_sign_bias == alt_ref_frame_sign_bias) { comp_fixed_ref = GOLDEN_FRAME; comp_var_ref[0] = LAST_FRAME; comp_var_ref[1] = ALTREF_FRAME; } else { comp_fixed_ref = LAST_FRAME; comp_var_ref[0] = GOLDEN_FRAME; comp_var_ref[1] = ALTREF_FRAME; } } hantro_reg_write(ctx->dev, &vp9_comp_pred_fixed_ref, comp_fixed_ref); hantro_reg_write(ctx->dev, &vp9_comp_pred_var_ref0, comp_var_ref[0]); hantro_reg_write(ctx->dev, &vp9_comp_pred_var_ref1, comp_var_ref[1]); } #define INNER_LOOP \ do { \ for (m = 0; m < ARRAY_SIZE(adaptive->coef[0][0][0][0]); ++m) { \ memcpy(adaptive->coef[i][j][k][l][m], \ probs->coef[i][j][k][l][m], \ sizeof(probs->coef[i][j][k][l][m])); \ \ adaptive->coef[i][j][k][l][m][3] = 0; \ } \ } while (0) static void config_probs(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params) { struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; struct hantro_aux_buf *misc = &vp9_ctx->misc; struct hantro_g2_all_probs *all_probs = misc->cpu; struct hantro_g2_probs *adaptive; struct hantro_g2_mv_probs *mv; const struct v4l2_vp9_segmentation *seg = &dec_params->seg; const struct v4l2_vp9_frame_context *probs = &vp9_ctx->probability_tables; int i, j, k, l, m; for (i = 0; i < ARRAY_SIZE(all_probs->kf_y_mode_prob); ++i) for (j = 0; j < ARRAY_SIZE(all_probs->kf_y_mode_prob[0]); ++j) { memcpy(all_probs->kf_y_mode_prob[i][j], v4l2_vp9_kf_y_mode_prob[i][j], ARRAY_SIZE(all_probs->kf_y_mode_prob[i][j])); all_probs->kf_y_mode_prob_tail[i][j][0] = v4l2_vp9_kf_y_mode_prob[i][j][8]; } memcpy(all_probs->mb_segment_tree_probs, seg->tree_probs, sizeof(all_probs->mb_segment_tree_probs)); memcpy(all_probs->segment_pred_probs, seg->pred_probs, sizeof(all_probs->segment_pred_probs)); for (i = 0; i < ARRAY_SIZE(all_probs->kf_uv_mode_prob); ++i) { memcpy(all_probs->kf_uv_mode_prob[i], v4l2_vp9_kf_uv_mode_prob[i], ARRAY_SIZE(all_probs->kf_uv_mode_prob[i])); all_probs->kf_uv_mode_prob_tail[i][0] = v4l2_vp9_kf_uv_mode_prob[i][8]; } adaptive = &all_probs->probs; for (i = 0; i < ARRAY_SIZE(adaptive->inter_mode); ++i) { memcpy(adaptive->inter_mode[i], probs->inter_mode[i], ARRAY_SIZE(probs->inter_mode[i])); adaptive->inter_mode[i][3] = 0; } memcpy(adaptive->is_inter, probs->is_inter, sizeof(adaptive->is_inter)); for (i = 0; i < ARRAY_SIZE(adaptive->uv_mode); ++i) { memcpy(adaptive->uv_mode[i], probs->uv_mode[i], sizeof(adaptive->uv_mode[i])); adaptive->uv_mode_tail[i][0] = probs->uv_mode[i][8]; } memcpy(adaptive->tx8, probs->tx8, sizeof(adaptive->tx8)); memcpy(adaptive->tx16, probs->tx16, sizeof(adaptive->tx16)); memcpy(adaptive->tx32, probs->tx32, sizeof(adaptive->tx32)); for (i = 0; i < ARRAY_SIZE(adaptive->y_mode); ++i) { memcpy(adaptive->y_mode[i], probs->y_mode[i], ARRAY_SIZE(adaptive->y_mode[i])); adaptive->y_mode_tail[i][0] = probs->y_mode[i][8]; } for (i = 0; i < ARRAY_SIZE(adaptive->partition[0]); ++i) { memcpy(adaptive->partition[0][i], v4l2_vp9_kf_partition_probs[i], sizeof(v4l2_vp9_kf_partition_probs[i])); adaptive->partition[0][i][3] = 0; } for (i = 0; i < ARRAY_SIZE(adaptive->partition[1]); ++i) { memcpy(adaptive->partition[1][i], probs->partition[i], sizeof(probs->partition[i])); adaptive->partition[1][i][3] = 0; } memcpy(adaptive->interp_filter, probs->interp_filter, sizeof(adaptive->interp_filter)); memcpy(adaptive->comp_mode, probs->comp_mode, sizeof(adaptive->comp_mode)); memcpy(adaptive->skip, probs->skip, sizeof(adaptive->skip)); mv = &adaptive->mv; memcpy(mv->joint, probs->mv.joint, sizeof(mv->joint)); memcpy(mv->sign, probs->mv.sign, sizeof(mv->sign)); memcpy(mv->class0_bit, probs->mv.class0_bit, sizeof(mv->class0_bit)); memcpy(mv->fr, probs->mv.fr, sizeof(mv->fr)); memcpy(mv->class0_hp, probs->mv.class0_hp, sizeof(mv->class0_hp)); memcpy(mv->hp, probs->mv.hp, sizeof(mv->hp)); memcpy(mv->classes, probs->mv.classes, sizeof(mv->classes)); memcpy(mv->class0_fr, probs->mv.class0_fr, sizeof(mv->class0_fr)); memcpy(mv->bits, probs->mv.bits, sizeof(mv->bits)); memcpy(adaptive->single_ref, probs->single_ref, sizeof(adaptive->single_ref)); memcpy(adaptive->comp_ref, probs->comp_ref, sizeof(adaptive->comp_ref)); for (i = 0; i < ARRAY_SIZE(adaptive->coef); ++i) for (j = 0; j < ARRAY_SIZE(adaptive->coef[0]); ++j) for (k = 0; k < ARRAY_SIZE(adaptive->coef[0][0]); ++k) for (l = 0; l < ARRAY_SIZE(adaptive->coef[0][0][0]); ++l) INNER_LOOP; hantro_write_addr(ctx->dev, G2_VP9_PROBS_ADDR, misc->dma); } static void config_counts(struct hantro_ctx *ctx) { struct hantro_vp9_dec_hw_ctx *vp9_dec = &ctx->vp9_dec; struct hantro_aux_buf *misc = &vp9_dec->misc; dma_addr_t addr = misc->dma + vp9_dec->ctx_counters_offset; hantro_write_addr(ctx->dev, G2_VP9_CTX_COUNT_ADDR, addr); } static void config_seg_map(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params, bool intra_only, bool update_map) { struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; struct hantro_aux_buf *segment_map = &vp9_ctx->segment_map; dma_addr_t addr; if (intra_only || (dec_params->flags & V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT)) { memset(segment_map->cpu, 0, segment_map->size); memset(vp9_ctx->feature_data, 0, sizeof(vp9_ctx->feature_data)); memset(vp9_ctx->feature_enabled, 0, sizeof(vp9_ctx->feature_enabled)); } addr = segment_map->dma + vp9_ctx->active_segment * vp9_ctx->segment_map_size; hantro_write_addr(ctx->dev, G2_VP9_SEGMENT_READ_ADDR, addr); addr = segment_map->dma + (1 - vp9_ctx->active_segment) * vp9_ctx->segment_map_size; hantro_write_addr(ctx->dev, G2_VP9_SEGMENT_WRITE_ADDR, addr); if (update_map) vp9_ctx->active_segment = 1 - vp9_ctx->active_segment; } static void config_source(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params, struct vb2_v4l2_buffer *vb2_src) { dma_addr_t stream_base, tmp_addr; unsigned int headres_size; u32 src_len, start_bit, src_buf_len; headres_size = dec_params->uncompressed_header_size + dec_params->compressed_header_size; stream_base = vb2_dma_contig_plane_dma_addr(&vb2_src->vb2_buf, 0); tmp_addr = stream_base + headres_size; if (ctx->dev->variant->legacy_regs) hantro_write_addr(ctx->dev, G2_STREAM_ADDR, (tmp_addr & ~0xf)); else hantro_write_addr(ctx->dev, G2_STREAM_ADDR, stream_base); start_bit = (tmp_addr & 0xf) * 8; hantro_reg_write(ctx->dev, &g2_start_bit, start_bit); src_len = vb2_get_plane_payload(&vb2_src->vb2_buf, 0); src_len += start_bit / 8 - headres_size; hantro_reg_write(ctx->dev, &g2_stream_len, src_len); if (!ctx->dev->variant->legacy_regs) { tmp_addr &= ~0xf; hantro_reg_write(ctx->dev, &g2_strm_start_offset, tmp_addr - stream_base); src_buf_len = vb2_plane_size(&vb2_src->vb2_buf, 0); hantro_reg_write(ctx->dev, &g2_strm_buffer_len, src_buf_len); } } static void config_registers(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params, struct vb2_v4l2_buffer *vb2_src, struct vb2_v4l2_buffer *vb2_dst) { struct hantro_decoded_buffer *dst, *last, *mv_ref; struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; const struct v4l2_vp9_segmentation *seg; bool intra_only, resolution_change; /* vp9 stuff */ dst = vb2_to_hantro_decoded_buf(&vb2_dst->vb2_buf); if (vp9_ctx->last.valid) last = get_ref_buf(ctx, &dst->base.vb, vp9_ctx->last.timestamp); else last = dst; update_dec_buf_info(dst, dec_params); update_ctx_cur_info(vp9_ctx, dst, dec_params); seg = &dec_params->seg; intra_only = !!(dec_params->flags & (V4L2_VP9_FRAME_FLAG_KEY_FRAME | V4L2_VP9_FRAME_FLAG_INTRA_ONLY)); if (!intra_only && !(dec_params->flags & V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT) && vp9_ctx->last.valid) mv_ref = last; else mv_ref = dst; resolution_change = dst->vp9.width != last->vp9.width || dst->vp9.height != last->vp9.height; /* configure basic registers */ hantro_reg_write(ctx->dev, &g2_mode, VP9_DEC_MODE); if (!ctx->dev->variant->legacy_regs) { hantro_reg_write(ctx->dev, &g2_strm_swap, 0xf); hantro_reg_write(ctx->dev, &g2_dirmv_swap, 0xf); hantro_reg_write(ctx->dev, &g2_compress_swap, 0xf); hantro_reg_write(ctx->dev, &g2_ref_compress_bypass, 1); } else { hantro_reg_write(ctx->dev, &g2_strm_swap_old, 0x1f); hantro_reg_write(ctx->dev, &g2_pic_swap, 0x10); hantro_reg_write(ctx->dev, &g2_dirmv_swap_old, 0x10); hantro_reg_write(ctx->dev, &g2_tab0_swap_old, 0x10); hantro_reg_write(ctx->dev, &g2_tab1_swap_old, 0x10); hantro_reg_write(ctx->dev, &g2_tab2_swap_old, 0x10); hantro_reg_write(ctx->dev, &g2_tab3_swap_old, 0x10); hantro_reg_write(ctx->dev, &g2_rscan_swap, 0x10); } hantro_reg_write(ctx->dev, &g2_buswidth, BUS_WIDTH_128); hantro_reg_write(ctx->dev, &g2_max_burst, 16); hantro_reg_write(ctx->dev, &g2_apf_threshold, 8); hantro_reg_write(ctx->dev, &g2_clk_gate_e, 1); hantro_reg_write(ctx->dev, &g2_max_cb_size, 6); hantro_reg_write(ctx->dev, &g2_min_cb_size, 3); if (ctx->dev->variant->double_buffer) hantro_reg_write(ctx->dev, &g2_double_buffer_e, 1); config_output(ctx, dst, dec_params); if (!intra_only) config_ref_registers(ctx, dec_params, dst, mv_ref); config_tiles(ctx, dec_params, dst); config_segment(ctx, dec_params); config_loop_filter(ctx, dec_params); config_picture_dimensions(ctx, dst); config_bit_depth(ctx, dec_params); config_quant(ctx, dec_params); config_others(ctx, dec_params, intra_only, resolution_change); config_compound_reference(ctx, dec_params); config_probs(ctx, dec_params); config_counts(ctx); config_seg_map(ctx, dec_params, intra_only, seg->flags & V4L2_VP9_SEGMENTATION_FLAG_UPDATE_MAP); config_source(ctx, dec_params, vb2_src); } int hantro_g2_vp9_dec_run(struct hantro_ctx *ctx) { const struct v4l2_ctrl_vp9_frame *decode_params; struct vb2_v4l2_buffer *src; struct vb2_v4l2_buffer *dst; int ret; hantro_g2_check_idle(ctx->dev); ret = start_prepare_run(ctx, &decode_params); if (ret) { hantro_end_prepare_run(ctx); return ret; } src = hantro_get_src_buf(ctx); dst = hantro_get_dst_buf(ctx); config_registers(ctx, decode_params, src, dst); hantro_end_prepare_run(ctx); vdpu_write(ctx->dev, G2_REG_INTERRUPT_DEC_E, G2_REG_INTERRUPT); return 0; } #define copy_tx_and_skip(p1, p2) \ do { \ memcpy((p1)->tx8, (p2)->tx8, sizeof((p1)->tx8)); \ memcpy((p1)->tx16, (p2)->tx16, sizeof((p1)->tx16)); \ memcpy((p1)->tx32, (p2)->tx32, sizeof((p1)->tx32)); \ memcpy((p1)->skip, (p2)->skip, sizeof((p1)->skip)); \ } while (0) void hantro_g2_vp9_dec_done(struct hantro_ctx *ctx) { struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec; unsigned int fctx_idx; if (!(vp9_ctx->cur.flags & V4L2_VP9_FRAME_FLAG_REFRESH_FRAME_CTX)) goto out_update_last; fctx_idx = vp9_ctx->cur.frame_context_idx; if (!(vp9_ctx->cur.flags & V4L2_VP9_FRAME_FLAG_PARALLEL_DEC_MODE)) { /* error_resilient_mode == 0 && frame_parallel_decoding_mode == 0 */ struct v4l2_vp9_frame_context *probs = &vp9_ctx->probability_tables; bool frame_is_intra = vp9_ctx->cur.flags & (V4L2_VP9_FRAME_FLAG_KEY_FRAME | V4L2_VP9_FRAME_FLAG_INTRA_ONLY); struct tx_and_skip { u8 tx8[2][1]; u8 tx16[2][2]; u8 tx32[2][3]; u8 skip[3]; } _tx_skip, *tx_skip = &_tx_skip; struct v4l2_vp9_frame_symbol_counts *counts; struct symbol_counts *hantro_cnts; u32 tx16p[2][4]; int i; /* buffer the forward-updated TX and skip probs */ if (frame_is_intra) copy_tx_and_skip(tx_skip, probs); /* 6.1.2 refresh_probs(): load_probs() and load_probs2() */ *probs = vp9_ctx->frame_context[fctx_idx]; /* if FrameIsIntra then undo the effect of load_probs2() */ if (frame_is_intra) copy_tx_and_skip(probs, tx_skip); counts = &vp9_ctx->cnts; hantro_cnts = vp9_ctx->misc.cpu + vp9_ctx->ctx_counters_offset; for (i = 0; i < ARRAY_SIZE(tx16p); ++i) { memcpy(tx16p[i], hantro_cnts->tx16x16_count[i], sizeof(hantro_cnts->tx16x16_count[0])); tx16p[i][3] = 0; } counts->tx16p = &tx16p; v4l2_vp9_adapt_coef_probs(probs, counts, !vp9_ctx->last.valid || vp9_ctx->last.flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME, frame_is_intra); if (!frame_is_intra) { /* load_probs2() already done */ u32 mv_mode[7][4]; for (i = 0; i < ARRAY_SIZE(mv_mode); ++i) { mv_mode[i][0] = hantro_cnts->inter_mode_counts[i][1][0]; mv_mode[i][1] = hantro_cnts->inter_mode_counts[i][2][0]; mv_mode[i][2] = hantro_cnts->inter_mode_counts[i][0][0]; mv_mode[i][3] = hantro_cnts->inter_mode_counts[i][2][1]; } counts->mv_mode = &mv_mode; v4l2_vp9_adapt_noncoef_probs(&vp9_ctx->probability_tables, counts, vp9_ctx->cur.reference_mode, vp9_ctx->cur.interpolation_filter, vp9_ctx->cur.tx_mode, vp9_ctx->cur.flags); } } vp9_ctx->frame_context[fctx_idx] = vp9_ctx->probability_tables; out_update_last: vp9_ctx->last = vp9_ctx->cur; }