// SPDX-License-Identifier: GPL-2.0-only /* * Atmel MultiMedia Card Interface driver * * Copyright (C) 2004-2008 Atmel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ATMCI_MAX_NR_SLOTS 2 /* * Superset of MCI IP registers integrated in Atmel AT91 Processor * Registers and bitfields marked with [2] are only available in MCI2 */ /* MCI Register Definitions */ #define ATMCI_CR 0x0000 /* Control */ #define ATMCI_CR_MCIEN BIT(0) /* MCI Enable */ #define ATMCI_CR_MCIDIS BIT(1) /* MCI Disable */ #define ATMCI_CR_PWSEN BIT(2) /* Power Save Enable */ #define ATMCI_CR_PWSDIS BIT(3) /* Power Save Disable */ #define ATMCI_CR_SWRST BIT(7) /* Software Reset */ #define ATMCI_MR 0x0004 /* Mode */ #define ATMCI_MR_CLKDIV(x) ((x) << 0) /* Clock Divider */ #define ATMCI_MR_PWSDIV(x) ((x) << 8) /* Power Saving Divider */ #define ATMCI_MR_RDPROOF BIT(11) /* Read Proof */ #define ATMCI_MR_WRPROOF BIT(12) /* Write Proof */ #define ATMCI_MR_PDCFBYTE BIT(13) /* Force Byte Transfer */ #define ATMCI_MR_PDCPADV BIT(14) /* Padding Value */ #define ATMCI_MR_PDCMODE BIT(15) /* PDC-oriented Mode */ #define ATMCI_MR_CLKODD(x) ((x) << 16) /* LSB of Clock Divider */ #define ATMCI_DTOR 0x0008 /* Data Timeout */ #define ATMCI_DTOCYC(x) ((x) << 0) /* Data Timeout Cycles */ #define ATMCI_DTOMUL(x) ((x) << 4) /* Data Timeout Multiplier */ #define ATMCI_SDCR 0x000c /* SD Card / SDIO */ #define ATMCI_SDCSEL_SLOT_A (0 << 0) /* Select SD slot A */ #define ATMCI_SDCSEL_SLOT_B (1 << 0) /* Select SD slot A */ #define ATMCI_SDCSEL_MASK (3 << 0) #define ATMCI_SDCBUS_1BIT (0 << 6) /* 1-bit data bus */ #define ATMCI_SDCBUS_4BIT (2 << 6) /* 4-bit data bus */ #define ATMCI_SDCBUS_8BIT (3 << 6) /* 8-bit data bus[2] */ #define ATMCI_SDCBUS_MASK (3 << 6) #define ATMCI_ARGR 0x0010 /* Command Argument */ #define ATMCI_CMDR 0x0014 /* Command */ #define ATMCI_CMDR_CMDNB(x) ((x) << 0) /* Command Opcode */ #define ATMCI_CMDR_RSPTYP_NONE (0 << 6) /* No response */ #define ATMCI_CMDR_RSPTYP_48BIT (1 << 6) /* 48-bit response */ #define ATMCI_CMDR_RSPTYP_136BIT (2 << 6) /* 136-bit response */ #define ATMCI_CMDR_SPCMD_INIT (1 << 8) /* Initialization command */ #define ATMCI_CMDR_SPCMD_SYNC (2 << 8) /* Synchronized command */ #define ATMCI_CMDR_SPCMD_INT (4 << 8) /* Interrupt command */ #define ATMCI_CMDR_SPCMD_INTRESP (5 << 8) /* Interrupt response */ #define ATMCI_CMDR_OPDCMD (1 << 11) /* Open Drain */ #define ATMCI_CMDR_MAXLAT_5CYC (0 << 12) /* Max latency 5 cycles */ #define ATMCI_CMDR_MAXLAT_64CYC (1 << 12) /* Max latency 64 cycles */ #define ATMCI_CMDR_START_XFER (1 << 16) /* Start data transfer */ #define ATMCI_CMDR_STOP_XFER (2 << 16) /* Stop data transfer */ #define ATMCI_CMDR_TRDIR_WRITE (0 << 18) /* Write data */ #define ATMCI_CMDR_TRDIR_READ (1 << 18) /* Read data */ #define ATMCI_CMDR_BLOCK (0 << 19) /* Single-block transfer */ #define ATMCI_CMDR_MULTI_BLOCK (1 << 19) /* Multi-block transfer */ #define ATMCI_CMDR_STREAM (2 << 19) /* MMC Stream transfer */ #define ATMCI_CMDR_SDIO_BYTE (4 << 19) /* SDIO Byte transfer */ #define ATMCI_CMDR_SDIO_BLOCK (5 << 19) /* SDIO Block transfer */ #define ATMCI_CMDR_SDIO_SUSPEND (1 << 24) /* SDIO Suspend Command */ #define ATMCI_CMDR_SDIO_RESUME (2 << 24) /* SDIO Resume Command */ #define ATMCI_BLKR 0x0018 /* Block */ #define ATMCI_BCNT(x) ((x) << 0) /* Data Block Count */ #define ATMCI_BLKLEN(x) ((x) << 16) /* Data Block Length */ #define ATMCI_CSTOR 0x001c /* Completion Signal Timeout[2] */ #define ATMCI_CSTOCYC(x) ((x) << 0) /* CST cycles */ #define ATMCI_CSTOMUL(x) ((x) << 4) /* CST multiplier */ #define ATMCI_RSPR 0x0020 /* Response 0 */ #define ATMCI_RSPR1 0x0024 /* Response 1 */ #define ATMCI_RSPR2 0x0028 /* Response 2 */ #define ATMCI_RSPR3 0x002c /* Response 3 */ #define ATMCI_RDR 0x0030 /* Receive Data */ #define ATMCI_TDR 0x0034 /* Transmit Data */ #define ATMCI_SR 0x0040 /* Status */ #define ATMCI_IER 0x0044 /* Interrupt Enable */ #define ATMCI_IDR 0x0048 /* Interrupt Disable */ #define ATMCI_IMR 0x004c /* Interrupt Mask */ #define ATMCI_CMDRDY BIT(0) /* Command Ready */ #define ATMCI_RXRDY BIT(1) /* Receiver Ready */ #define ATMCI_TXRDY BIT(2) /* Transmitter Ready */ #define ATMCI_BLKE BIT(3) /* Data Block Ended */ #define ATMCI_DTIP BIT(4) /* Data Transfer In Progress */ #define ATMCI_NOTBUSY BIT(5) /* Data Not Busy */ #define ATMCI_ENDRX BIT(6) /* End of RX Buffer */ #define ATMCI_ENDTX BIT(7) /* End of TX Buffer */ #define ATMCI_SDIOIRQA BIT(8) /* SDIO IRQ in slot A */ #define ATMCI_SDIOIRQB BIT(9) /* SDIO IRQ in slot B */ #define ATMCI_SDIOWAIT BIT(12) /* SDIO Read Wait Operation Status */ #define ATMCI_CSRCV BIT(13) /* CE-ATA Completion Signal Received */ #define ATMCI_RXBUFF BIT(14) /* RX Buffer Full */ #define ATMCI_TXBUFE BIT(15) /* TX Buffer Empty */ #define ATMCI_RINDE BIT(16) /* Response Index Error */ #define ATMCI_RDIRE BIT(17) /* Response Direction Error */ #define ATMCI_RCRCE BIT(18) /* Response CRC Error */ #define ATMCI_RENDE BIT(19) /* Response End Bit Error */ #define ATMCI_RTOE BIT(20) /* Response Time-Out Error */ #define ATMCI_DCRCE BIT(21) /* Data CRC Error */ #define ATMCI_DTOE BIT(22) /* Data Time-Out Error */ #define ATMCI_CSTOE BIT(23) /* Completion Signal Time-out Error */ #define ATMCI_BLKOVRE BIT(24) /* DMA Block Overrun Error */ #define ATMCI_DMADONE BIT(25) /* DMA Transfer Done */ #define ATMCI_FIFOEMPTY BIT(26) /* FIFO Empty Flag */ #define ATMCI_XFRDONE BIT(27) /* Transfer Done Flag */ #define ATMCI_ACKRCV BIT(28) /* Boot Operation Acknowledge Received */ #define ATMCI_ACKRCVE BIT(29) /* Boot Operation Acknowledge Error */ #define ATMCI_OVRE BIT(30) /* RX Overrun Error */ #define ATMCI_UNRE BIT(31) /* TX Underrun Error */ #define ATMCI_DMA 0x0050 /* DMA Configuration[2] */ #define ATMCI_DMA_OFFSET(x) ((x) << 0) /* DMA Write Buffer Offset */ #define ATMCI_DMA_CHKSIZE(x) ((x) << 4) /* DMA Channel Read and Write Chunk Size */ #define ATMCI_DMAEN BIT(8) /* DMA Hardware Handshaking Enable */ #define ATMCI_CFG 0x0054 /* Configuration[2] */ #define ATMCI_CFG_FIFOMODE_1DATA BIT(0) /* MCI Internal FIFO control mode */ #define ATMCI_CFG_FERRCTRL_COR BIT(4) /* Flow Error flag reset control mode */ #define ATMCI_CFG_HSMODE BIT(8) /* High Speed Mode */ #define ATMCI_CFG_LSYNC BIT(12) /* Synchronize on the last block */ #define ATMCI_WPMR 0x00e4 /* Write Protection Mode[2] */ #define ATMCI_WP_EN BIT(0) /* WP Enable */ #define ATMCI_WP_KEY (0x4d4349 << 8) /* WP Key */ #define ATMCI_WPSR 0x00e8 /* Write Protection Status[2] */ #define ATMCI_GET_WP_VS(x) ((x) & 0x0f) #define ATMCI_GET_WP_VSRC(x) (((x) >> 8) & 0xffff) #define ATMCI_VERSION 0x00FC /* Version */ #define ATMCI_FIFO_APERTURE 0x0200 /* FIFO Aperture[2] */ /* This is not including the FIFO Aperture on MCI2 */ #define ATMCI_REGS_SIZE 0x100 /* Register access macros */ #define atmci_readl(port, reg) \ __raw_readl((port)->regs + reg) #define atmci_writel(port, reg, value) \ __raw_writel((value), (port)->regs + reg) #define ATMCI_CMD_TIMEOUT_MS 2000 #define AUTOSUSPEND_DELAY 50 #define ATMCI_DATA_ERROR_FLAGS (ATMCI_DCRCE | ATMCI_DTOE | ATMCI_OVRE | ATMCI_UNRE) #define ATMCI_DMA_THRESHOLD 16 enum { EVENT_CMD_RDY = 0, EVENT_XFER_COMPLETE, EVENT_NOTBUSY, EVENT_DATA_ERROR, }; enum atmel_mci_state { STATE_IDLE = 0, STATE_SENDING_CMD, STATE_DATA_XFER, STATE_WAITING_NOTBUSY, STATE_SENDING_STOP, STATE_END_REQUEST, }; enum atmci_xfer_dir { XFER_RECEIVE = 0, XFER_TRANSMIT, }; enum atmci_pdc_buf { PDC_FIRST_BUF = 0, PDC_SECOND_BUF, }; /** * struct mci_slot_pdata - board-specific per-slot configuration * @bus_width: Number of data lines wired up the slot * @detect_pin: GPIO pin wired to the card detect switch * @wp_pin: GPIO pin wired to the write protect sensor * @non_removable: The slot is not removable, only detect once * * If a given slot is not present on the board, @bus_width should be * set to 0. The other fields are ignored in this case. * * Any pins that aren't available should be set to a negative value. * * Note that support for multiple slots is experimental -- some cards * might get upset if we don't get the clock management exactly right. * But in most cases, it should work just fine. */ struct mci_slot_pdata { unsigned int bus_width; struct gpio_desc *detect_pin; struct gpio_desc *wp_pin; bool non_removable; }; struct atmel_mci_caps { bool has_dma_conf_reg; bool has_pdc; bool has_cfg_reg; bool has_cstor_reg; bool has_highspeed; bool has_rwproof; bool has_odd_clk_div; bool has_bad_data_ordering; bool need_reset_after_xfer; bool need_blksz_mul_4; bool need_notbusy_for_read_ops; }; struct atmel_mci_dma { struct dma_chan *chan; struct dma_async_tx_descriptor *data_desc; }; /** * struct atmel_mci - MMC controller state shared between all slots * @lock: Spinlock protecting the queue and associated data. * @regs: Pointer to MMIO registers. * @sg: Scatterlist entry currently being processed by PIO or PDC code. * @sg_len: Size of the scatterlist * @pio_offset: Offset into the current scatterlist entry. * @buffer: Buffer used if we don't have the r/w proof capability. We * don't have the time to switch pdc buffers so we have to use only * one buffer for the full transaction. * @buf_size: size of the buffer. * @buf_phys_addr: buffer address needed for pdc. * @cur_slot: The slot which is currently using the controller. * @mrq: The request currently being processed on @cur_slot, * or NULL if the controller is idle. * @cmd: The command currently being sent to the card, or NULL. * @data: The data currently being transferred, or NULL if no data * transfer is in progress. * @data_size: just data->blocks * data->blksz. * @dma: DMA client state. * @data_chan: DMA channel being used for the current data transfer. * @dma_conf: Configuration for the DMA slave * @cmd_status: Snapshot of SR taken upon completion of the current * command. Only valid when EVENT_CMD_COMPLETE is pending. * @data_status: Snapshot of SR taken upon completion of the current * data transfer. Only valid when EVENT_DATA_COMPLETE or * EVENT_DATA_ERROR is pending. * @stop_cmdr: Value to be loaded into CMDR when the stop command is * to be sent. * @tasklet: Tasklet running the request state machine. * @pending_events: Bitmask of events flagged by the interrupt handler * to be processed by the tasklet. * @completed_events: Bitmask of events which the state machine has * processed. * @state: Tasklet state. * @queue: List of slots waiting for access to the controller. * @need_clock_update: Update the clock rate before the next request. * @need_reset: Reset controller before next request. * @timer: Timer to balance the data timeout error flag which cannot rise. * @mode_reg: Value of the MR register. * @cfg_reg: Value of the CFG register. * @bus_hz: The rate of @mck in Hz. This forms the basis for MMC bus * rate and timeout calculations. * @mapbase: Physical address of the MMIO registers. * @mck: The peripheral bus clock hooked up to the MMC controller. * @dev: Device associated with the MMC controller. * @pdata: Per-slot configuration data. * @slot: Slots sharing this MMC controller. * @caps: MCI capabilities depending on MCI version. * @prepare_data: function to setup MCI before data transfer which * depends on MCI capabilities. * @submit_data: function to start data transfer which depends on MCI * capabilities. * @stop_transfer: function to stop data transfer which depends on MCI * capabilities. * * Locking * ======= * * @lock is a softirq-safe spinlock protecting @queue as well as * @cur_slot, @mrq and @state. These must always be updated * at the same time while holding @lock. * * @lock also protects mode_reg and need_clock_update since these are * used to synchronize mode register updates with the queue * processing. * * The @mrq field of struct atmel_mci_slot is also protected by @lock, * and must always be written at the same time as the slot is added to * @queue. * * @pending_events and @completed_events are accessed using atomic bit * operations, so they don't need any locking. * * None of the fields touched by the interrupt handler need any * locking. However, ordering is important: Before EVENT_DATA_ERROR or * EVENT_DATA_COMPLETE is set in @pending_events, all data-related * interrupts must be disabled and @data_status updated with a * snapshot of SR. Similarly, before EVENT_CMD_COMPLETE is set, the * CMDRDY interrupt must be disabled and @cmd_status updated with a * snapshot of SR, and before EVENT_XFER_COMPLETE can be set, the * bytes_xfered field of @data must be written. This is ensured by * using barriers. */ struct atmel_mci { spinlock_t lock; void __iomem *regs; struct scatterlist *sg; unsigned int sg_len; unsigned int pio_offset; unsigned int *buffer; unsigned int buf_size; dma_addr_t buf_phys_addr; struct atmel_mci_slot *cur_slot; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; unsigned int data_size; struct atmel_mci_dma dma; struct dma_chan *data_chan; struct dma_slave_config dma_conf; u32 cmd_status; u32 data_status; u32 stop_cmdr; struct tasklet_struct tasklet; unsigned long pending_events; unsigned long completed_events; enum atmel_mci_state state; struct list_head queue; bool need_clock_update; bool need_reset; struct timer_list timer; u32 mode_reg; u32 cfg_reg; unsigned long bus_hz; unsigned long mapbase; struct clk *mck; struct device *dev; struct mci_slot_pdata pdata[ATMCI_MAX_NR_SLOTS]; struct atmel_mci_slot *slot[ATMCI_MAX_NR_SLOTS]; struct atmel_mci_caps caps; u32 (*prepare_data)(struct atmel_mci *host, struct mmc_data *data); void (*submit_data)(struct atmel_mci *host, struct mmc_data *data); void (*stop_transfer)(struct atmel_mci *host); }; /** * struct atmel_mci_slot - MMC slot state * @mmc: The mmc_host representing this slot. * @host: The MMC controller this slot is using. * @sdc_reg: Value of SDCR to be written before using this slot. * @sdio_irq: SDIO irq mask for this slot. * @mrq: mmc_request currently being processed or waiting to be * processed, or NULL when the slot is idle. * @queue_node: List node for placing this node in the @queue list of * &struct atmel_mci. * @clock: Clock rate configured by set_ios(). Protected by host->lock. * @flags: Random state bits associated with the slot. * @detect_pin: GPIO pin used for card detection, or negative if not * available. * @wp_pin: GPIO pin used for card write protect sending, or negative * if not available. * @detect_timer: Timer used for debouncing @detect_pin interrupts. */ struct atmel_mci_slot { struct mmc_host *mmc; struct atmel_mci *host; u32 sdc_reg; u32 sdio_irq; struct mmc_request *mrq; struct list_head queue_node; unsigned int clock; unsigned long flags; #define ATMCI_CARD_PRESENT 0 #define ATMCI_CARD_NEED_INIT 1 #define ATMCI_SHUTDOWN 2 struct gpio_desc *detect_pin; struct gpio_desc *wp_pin; struct timer_list detect_timer; }; #define atmci_test_and_clear_pending(host, event) \ test_and_clear_bit(event, &host->pending_events) #define atmci_set_completed(host, event) \ set_bit(event, &host->completed_events) #define atmci_set_pending(host, event) \ set_bit(event, &host->pending_events) /* * The debugfs stuff below is mostly optimized away when * CONFIG_DEBUG_FS is not set. */ static int atmci_req_show(struct seq_file *s, void *v) { struct atmel_mci_slot *slot = s->private; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_command *stop; struct mmc_data *data; /* Make sure we get a consistent snapshot */ spin_lock_bh(&slot->host->lock); mrq = slot->mrq; if (mrq) { cmd = mrq->cmd; data = mrq->data; stop = mrq->stop; if (cmd) seq_printf(s, "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", cmd->opcode, cmd->arg, cmd->flags, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3], cmd->error); if (data) seq_printf(s, "DATA %u / %u * %u flg %x err %d\n", data->bytes_xfered, data->blocks, data->blksz, data->flags, data->error); if (stop) seq_printf(s, "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", stop->opcode, stop->arg, stop->flags, stop->resp[0], stop->resp[1], stop->resp[2], stop->resp[3], stop->error); } spin_unlock_bh(&slot->host->lock); return 0; } DEFINE_SHOW_ATTRIBUTE(atmci_req); static void atmci_show_status_reg(struct seq_file *s, const char *regname, u32 value) { static const char *sr_bit[] = { [0] = "CMDRDY", [1] = "RXRDY", [2] = "TXRDY", [3] = "BLKE", [4] = "DTIP", [5] = "NOTBUSY", [6] = "ENDRX", [7] = "ENDTX", [8] = "SDIOIRQA", [9] = "SDIOIRQB", [12] = "SDIOWAIT", [14] = "RXBUFF", [15] = "TXBUFE", [16] = "RINDE", [17] = "RDIRE", [18] = "RCRCE", [19] = "RENDE", [20] = "RTOE", [21] = "DCRCE", [22] = "DTOE", [23] = "CSTOE", [24] = "BLKOVRE", [25] = "DMADONE", [26] = "FIFOEMPTY", [27] = "XFRDONE", [30] = "OVRE", [31] = "UNRE", }; unsigned int i; seq_printf(s, "%s:\t0x%08x", regname, value); for (i = 0; i < ARRAY_SIZE(sr_bit); i++) { if (value & (1 << i)) { if (sr_bit[i]) seq_printf(s, " %s", sr_bit[i]); else seq_puts(s, " UNKNOWN"); } } seq_putc(s, '\n'); } static int atmci_regs_show(struct seq_file *s, void *v) { struct atmel_mci *host = s->private; struct device *dev = host->dev; u32 *buf; int ret = 0; buf = kmalloc(ATMCI_REGS_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; pm_runtime_get_sync(dev); /* * Grab a more or less consistent snapshot. Note that we're * not disabling interrupts, so IMR and SR may not be * consistent. */ spin_lock_bh(&host->lock); memcpy_fromio(buf, host->regs, ATMCI_REGS_SIZE); spin_unlock_bh(&host->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); seq_printf(s, "MR:\t0x%08x%s%s ", buf[ATMCI_MR / 4], buf[ATMCI_MR / 4] & ATMCI_MR_RDPROOF ? " RDPROOF" : "", buf[ATMCI_MR / 4] & ATMCI_MR_WRPROOF ? " WRPROOF" : ""); if (host->caps.has_odd_clk_div) seq_printf(s, "{CLKDIV,CLKODD}=%u\n", ((buf[ATMCI_MR / 4] & 0xff) << 1) | ((buf[ATMCI_MR / 4] >> 16) & 1)); else seq_printf(s, "CLKDIV=%u\n", (buf[ATMCI_MR / 4] & 0xff)); seq_printf(s, "DTOR:\t0x%08x\n", buf[ATMCI_DTOR / 4]); seq_printf(s, "SDCR:\t0x%08x\n", buf[ATMCI_SDCR / 4]); seq_printf(s, "ARGR:\t0x%08x\n", buf[ATMCI_ARGR / 4]); seq_printf(s, "BLKR:\t0x%08x BCNT=%u BLKLEN=%u\n", buf[ATMCI_BLKR / 4], buf[ATMCI_BLKR / 4] & 0xffff, (buf[ATMCI_BLKR / 4] >> 16) & 0xffff); if (host->caps.has_cstor_reg) seq_printf(s, "CSTOR:\t0x%08x\n", buf[ATMCI_CSTOR / 4]); /* Don't read RSPR and RDR; it will consume the data there */ atmci_show_status_reg(s, "SR", buf[ATMCI_SR / 4]); atmci_show_status_reg(s, "IMR", buf[ATMCI_IMR / 4]); if (host->caps.has_dma_conf_reg) { u32 val; val = buf[ATMCI_DMA / 4]; seq_printf(s, "DMA:\t0x%08x OFFSET=%u CHKSIZE=%u%s\n", val, val & 3, ((val >> 4) & 3) ? 1 << (((val >> 4) & 3) + 1) : 1, val & ATMCI_DMAEN ? " DMAEN" : ""); } if (host->caps.has_cfg_reg) { u32 val; val = buf[ATMCI_CFG / 4]; seq_printf(s, "CFG:\t0x%08x%s%s%s%s\n", val, val & ATMCI_CFG_FIFOMODE_1DATA ? " FIFOMODE_ONE_DATA" : "", val & ATMCI_CFG_FERRCTRL_COR ? " FERRCTRL_CLEAR_ON_READ" : "", val & ATMCI_CFG_HSMODE ? " HSMODE" : "", val & ATMCI_CFG_LSYNC ? " LSYNC" : ""); } kfree(buf); return ret; } DEFINE_SHOW_ATTRIBUTE(atmci_regs); static void atmci_init_debugfs(struct atmel_mci_slot *slot) { struct mmc_host *mmc = slot->mmc; struct atmel_mci *host = slot->host; struct dentry *root; root = mmc->debugfs_root; if (!root) return; debugfs_create_file("regs", S_IRUSR, root, host, &atmci_regs_fops); debugfs_create_file("req", S_IRUSR, root, slot, &atmci_req_fops); debugfs_create_u32("state", S_IRUSR, root, &host->state); debugfs_create_xul("pending_events", S_IRUSR, root, &host->pending_events); debugfs_create_xul("completed_events", S_IRUSR, root, &host->completed_events); } static const struct of_device_id atmci_dt_ids[] = { { .compatible = "atmel,hsmci" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmci_dt_ids); static int atmci_of_init(struct atmel_mci *host) { struct device *dev = host->dev; struct device_node *np = dev->of_node; struct device_node *cnp; u32 slot_id; int err; if (!np) return dev_err_probe(dev, -EINVAL, "device node not found\n"); for_each_child_of_node(np, cnp) { if (of_property_read_u32(cnp, "reg", &slot_id)) { dev_warn(dev, "reg property is missing for %pOF\n", cnp); continue; } if (slot_id >= ATMCI_MAX_NR_SLOTS) { dev_warn(dev, "can't have more than %d slots\n", ATMCI_MAX_NR_SLOTS); of_node_put(cnp); break; } if (of_property_read_u32(cnp, "bus-width", &host->pdata[slot_id].bus_width)) host->pdata[slot_id].bus_width = 1; host->pdata[slot_id].detect_pin = devm_fwnode_gpiod_get(dev, of_fwnode_handle(cnp), "cd", GPIOD_IN, "cd-gpios"); err = PTR_ERR_OR_ZERO(host->pdata[slot_id].detect_pin); if (err) { if (err != -ENOENT) { of_node_put(cnp); return err; } host->pdata[slot_id].detect_pin = NULL; } host->pdata[slot_id].non_removable = of_property_read_bool(cnp, "non-removable"); host->pdata[slot_id].wp_pin = devm_fwnode_gpiod_get(dev, of_fwnode_handle(cnp), "wp", GPIOD_IN, "wp-gpios"); err = PTR_ERR_OR_ZERO(host->pdata[slot_id].wp_pin); if (err) { if (err != -ENOENT) { of_node_put(cnp); return err; } host->pdata[slot_id].wp_pin = NULL; } } return 0; } static inline unsigned int atmci_get_version(struct atmel_mci *host) { return atmci_readl(host, ATMCI_VERSION) & 0x00000fff; } /* * Fix sconfig's burst size according to atmel MCI. We need to convert them as: * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3. * With version 0x600, we need to convert them as: 1 -> 0, 2 -> 1, 4 -> 2, * 8 -> 3, 16 -> 4. * * This can be done by finding most significant bit set. */ static inline unsigned int atmci_convert_chksize(struct atmel_mci *host, unsigned int maxburst) { unsigned int version = atmci_get_version(host); unsigned int offset = 2; if (version >= 0x600) offset = 1; if (maxburst > 1) return fls(maxburst) - offset; else return 0; } static void atmci_timeout_timer(struct timer_list *t) { struct atmel_mci *host = from_timer(host, t, timer); struct device *dev = host->dev; dev_dbg(dev, "software timeout\n"); if (host->mrq->cmd->data) { host->mrq->cmd->data->error = -ETIMEDOUT; host->data = NULL; /* * With some SDIO modules, sometimes DMA transfer hangs. If * stop_transfer() is not called then the DMA request is not * removed, following ones are queued and never computed. */ if (host->state == STATE_DATA_XFER) host->stop_transfer(host); } else { host->mrq->cmd->error = -ETIMEDOUT; host->cmd = NULL; } host->need_reset = 1; host->state = STATE_END_REQUEST; smp_wmb(); tasklet_schedule(&host->tasklet); } static inline unsigned int atmci_ns_to_clocks(struct atmel_mci *host, unsigned int ns) { /* * It is easier here to use us instead of ns for the timeout, * it prevents from overflows during calculation. */ unsigned int us = DIV_ROUND_UP(ns, 1000); /* Maximum clock frequency is host->bus_hz/2 */ return us * (DIV_ROUND_UP(host->bus_hz, 2000000)); } static void atmci_set_timeout(struct atmel_mci *host, struct atmel_mci_slot *slot, struct mmc_data *data) { static unsigned dtomul_to_shift[] = { 0, 4, 7, 8, 10, 12, 16, 20 }; unsigned timeout; unsigned dtocyc; unsigned dtomul; timeout = atmci_ns_to_clocks(host, data->timeout_ns) + data->timeout_clks; for (dtomul = 0; dtomul < 8; dtomul++) { unsigned shift = dtomul_to_shift[dtomul]; dtocyc = (timeout + (1 << shift) - 1) >> shift; if (dtocyc < 15) break; } if (dtomul >= 8) { dtomul = 7; dtocyc = 15; } dev_vdbg(&slot->mmc->class_dev, "setting timeout to %u cycles\n", dtocyc << dtomul_to_shift[dtomul]); atmci_writel(host, ATMCI_DTOR, (ATMCI_DTOMUL(dtomul) | ATMCI_DTOCYC(dtocyc))); } /* * Return mask with command flags to be enabled for this command. */ static u32 atmci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd) { struct mmc_data *data; u32 cmdr; cmd->error = -EINPROGRESS; cmdr = ATMCI_CMDR_CMDNB(cmd->opcode); if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) cmdr |= ATMCI_CMDR_RSPTYP_136BIT; else cmdr |= ATMCI_CMDR_RSPTYP_48BIT; } /* * This should really be MAXLAT_5 for CMD2 and ACMD41, but * it's too difficult to determine whether this is an ACMD or * not. Better make it 64. */ cmdr |= ATMCI_CMDR_MAXLAT_64CYC; if (mmc->ios.bus_mode == MMC_BUSMODE_OPENDRAIN) cmdr |= ATMCI_CMDR_OPDCMD; data = cmd->data; if (data) { cmdr |= ATMCI_CMDR_START_XFER; if (cmd->opcode == SD_IO_RW_EXTENDED) { cmdr |= ATMCI_CMDR_SDIO_BLOCK; } else { if (data->blocks > 1) cmdr |= ATMCI_CMDR_MULTI_BLOCK; else cmdr |= ATMCI_CMDR_BLOCK; } if (data->flags & MMC_DATA_READ) cmdr |= ATMCI_CMDR_TRDIR_READ; } return cmdr; } static void atmci_send_command(struct atmel_mci *host, struct mmc_command *cmd, u32 cmd_flags) { struct device *dev = host->dev; unsigned int timeout_ms = cmd->busy_timeout ? cmd->busy_timeout : ATMCI_CMD_TIMEOUT_MS; WARN_ON(host->cmd); host->cmd = cmd; dev_vdbg(dev, "start command: ARGR=0x%08x CMDR=0x%08x\n", cmd->arg, cmd_flags); atmci_writel(host, ATMCI_ARGR, cmd->arg); atmci_writel(host, ATMCI_CMDR, cmd_flags); mod_timer(&host->timer, jiffies + msecs_to_jiffies(timeout_ms)); } static void atmci_send_stop_cmd(struct atmel_mci *host, struct mmc_data *data) { struct device *dev = host->dev; dev_dbg(dev, "send stop command\n"); atmci_send_command(host, data->stop, host->stop_cmdr); atmci_writel(host, ATMCI_IER, ATMCI_CMDRDY); } /* * Configure given PDC buffer taking care of alignement issues. * Update host->data_size and host->sg. */ static void atmci_pdc_set_single_buf(struct atmel_mci *host, enum atmci_xfer_dir dir, enum atmci_pdc_buf buf_nb) { u32 pointer_reg, counter_reg; unsigned int buf_size; if (dir == XFER_RECEIVE) { pointer_reg = ATMEL_PDC_RPR; counter_reg = ATMEL_PDC_RCR; } else { pointer_reg = ATMEL_PDC_TPR; counter_reg = ATMEL_PDC_TCR; } if (buf_nb == PDC_SECOND_BUF) { pointer_reg += ATMEL_PDC_SCND_BUF_OFF; counter_reg += ATMEL_PDC_SCND_BUF_OFF; } if (!host->caps.has_rwproof) { buf_size = host->buf_size; atmci_writel(host, pointer_reg, host->buf_phys_addr); } else { buf_size = sg_dma_len(host->sg); atmci_writel(host, pointer_reg, sg_dma_address(host->sg)); } if (host->data_size <= buf_size) { if (host->data_size & 0x3) { /* If size is different from modulo 4, transfer bytes */ atmci_writel(host, counter_reg, host->data_size); atmci_writel(host, ATMCI_MR, host->mode_reg | ATMCI_MR_PDCFBYTE); } else { /* Else transfer 32-bits words */ atmci_writel(host, counter_reg, host->data_size / 4); } host->data_size = 0; } else { /* We assume the size of a page is 32-bits aligned */ atmci_writel(host, counter_reg, sg_dma_len(host->sg) / 4); host->data_size -= sg_dma_len(host->sg); if (host->data_size) host->sg = sg_next(host->sg); } } /* * Configure PDC buffer according to the data size ie configuring one or two * buffers. Don't use this function if you want to configure only the second * buffer. In this case, use atmci_pdc_set_single_buf. */ static void atmci_pdc_set_both_buf(struct atmel_mci *host, int dir) { atmci_pdc_set_single_buf(host, dir, PDC_FIRST_BUF); if (host->data_size) atmci_pdc_set_single_buf(host, dir, PDC_SECOND_BUF); } /* * Unmap sg lists, called when transfer is finished. */ static void atmci_pdc_cleanup(struct atmel_mci *host) { struct mmc_data *data = host->data; struct device *dev = host->dev; if (data) dma_unmap_sg(dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); } /* * Disable PDC transfers. Update pending flags to EVENT_XFER_COMPLETE after * having received ATMCI_TXBUFE or ATMCI_RXBUFF interrupt. Enable ATMCI_NOTBUSY * interrupt needed for both transfer directions. */ static void atmci_pdc_complete(struct atmel_mci *host) { struct device *dev = host->dev; int transfer_size = host->data->blocks * host->data->blksz; int i; atmci_writel(host, ATMEL_PDC_PTCR, ATMEL_PDC_RXTDIS | ATMEL_PDC_TXTDIS); if ((!host->caps.has_rwproof) && (host->data->flags & MMC_DATA_READ)) { if (host->caps.has_bad_data_ordering) for (i = 0; i < transfer_size; i++) host->buffer[i] = swab32(host->buffer[i]); sg_copy_from_buffer(host->data->sg, host->data->sg_len, host->buffer, transfer_size); } atmci_pdc_cleanup(host); dev_dbg(dev, "(%s) set pending xfer complete\n", __func__); atmci_set_pending(host, EVENT_XFER_COMPLETE); tasklet_schedule(&host->tasklet); } static void atmci_dma_cleanup(struct atmel_mci *host) { struct mmc_data *data = host->data; if (data) dma_unmap_sg(host->dma.chan->device->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); } /* * This function is called by the DMA driver from tasklet context. */ static void atmci_dma_complete(void *arg) { struct atmel_mci *host = arg; struct mmc_data *data = host->data; struct device *dev = host->dev; dev_vdbg(dev, "DMA complete\n"); if (host->caps.has_dma_conf_reg) /* Disable DMA hardware handshaking on MCI */ atmci_writel(host, ATMCI_DMA, atmci_readl(host, ATMCI_DMA) & ~ATMCI_DMAEN); atmci_dma_cleanup(host); /* * If the card was removed, data will be NULL. No point trying * to send the stop command or waiting for NBUSY in this case. */ if (data) { dev_dbg(dev, "(%s) set pending xfer complete\n", __func__); atmci_set_pending(host, EVENT_XFER_COMPLETE); tasklet_schedule(&host->tasklet); /* * Regardless of what the documentation says, we have * to wait for NOTBUSY even after block read * operations. * * When the DMA transfer is complete, the controller * may still be reading the CRC from the card, i.e. * the data transfer is still in progress and we * haven't seen all the potential error bits yet. * * The interrupt handler will schedule a different * tasklet to finish things up when the data transfer * is completely done. * * We may not complete the mmc request here anyway * because the mmc layer may call back and cause us to * violate the "don't submit new operations from the * completion callback" rule of the dma engine * framework. */ atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY); } } /* * Returns a mask of interrupt flags to be enabled after the whole * request has been prepared. */ static u32 atmci_prepare_data(struct atmel_mci *host, struct mmc_data *data) { u32 iflags; data->error = -EINPROGRESS; host->sg = data->sg; host->sg_len = data->sg_len; host->data = data; host->data_chan = NULL; iflags = ATMCI_DATA_ERROR_FLAGS; /* * Errata: MMC data write operation with less than 12 * bytes is impossible. * * Errata: MCI Transmit Data Register (TDR) FIFO * corruption when length is not multiple of 4. */ if (data->blocks * data->blksz < 12 || (data->blocks * data->blksz) & 3) host->need_reset = true; host->pio_offset = 0; if (data->flags & MMC_DATA_READ) iflags |= ATMCI_RXRDY; else iflags |= ATMCI_TXRDY; return iflags; } /* * Set interrupt flags and set block length into the MCI mode register even * if this value is also accessible in the MCI block register. It seems to be * necessary before the High Speed MCI version. It also map sg and configure * PDC registers. */ static u32 atmci_prepare_data_pdc(struct atmel_mci *host, struct mmc_data *data) { struct device *dev = host->dev; u32 iflags, tmp; int i; data->error = -EINPROGRESS; host->data = data; host->sg = data->sg; iflags = ATMCI_DATA_ERROR_FLAGS; /* Enable pdc mode */ atmci_writel(host, ATMCI_MR, host->mode_reg | ATMCI_MR_PDCMODE); if (data->flags & MMC_DATA_READ) iflags |= ATMCI_ENDRX | ATMCI_RXBUFF; else iflags |= ATMCI_ENDTX | ATMCI_TXBUFE | ATMCI_BLKE; /* Set BLKLEN */ tmp = atmci_readl(host, ATMCI_MR); tmp &= 0x0000ffff; tmp |= ATMCI_BLKLEN(data->blksz); atmci_writel(host, ATMCI_MR, tmp); /* Configure PDC */ host->data_size = data->blocks * data->blksz; dma_map_sg(dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); if ((!host->caps.has_rwproof) && (host->data->flags & MMC_DATA_WRITE)) { sg_copy_to_buffer(host->data->sg, host->data->sg_len, host->buffer, host->data_size); if (host->caps.has_bad_data_ordering) for (i = 0; i < host->data_size; i++) host->buffer[i] = swab32(host->buffer[i]); } if (host->data_size) atmci_pdc_set_both_buf(host, data->flags & MMC_DATA_READ ? XFER_RECEIVE : XFER_TRANSMIT); return iflags; } static u32 atmci_prepare_data_dma(struct atmel_mci *host, struct mmc_data *data) { struct dma_chan *chan; struct dma_async_tx_descriptor *desc; struct scatterlist *sg; unsigned int i; enum dma_transfer_direction slave_dirn; unsigned int sglen; u32 maxburst; u32 iflags; data->error = -EINPROGRESS; WARN_ON(host->data); host->sg = NULL; host->data = data; iflags = ATMCI_DATA_ERROR_FLAGS; /* * We don't do DMA on "complex" transfers, i.e. with * non-word-aligned buffers or lengths. Also, we don't bother * with all the DMA setup overhead for short transfers. */ if (data->blocks * data->blksz < ATMCI_DMA_THRESHOLD) return atmci_prepare_data(host, data); if (data->blksz & 3) return atmci_prepare_data(host, data); for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->offset & 3 || sg->length & 3) return atmci_prepare_data(host, data); } /* If we don't have a channel, we can't do DMA */ if (!host->dma.chan) return -ENODEV; chan = host->dma.chan; host->data_chan = chan; if (data->flags & MMC_DATA_READ) { host->dma_conf.direction = slave_dirn = DMA_DEV_TO_MEM; maxburst = atmci_convert_chksize(host, host->dma_conf.src_maxburst); } else { host->dma_conf.direction = slave_dirn = DMA_MEM_TO_DEV; maxburst = atmci_convert_chksize(host, host->dma_conf.dst_maxburst); } if (host->caps.has_dma_conf_reg) atmci_writel(host, ATMCI_DMA, ATMCI_DMA_CHKSIZE(maxburst) | ATMCI_DMAEN); sglen = dma_map_sg(chan->device->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); dmaengine_slave_config(chan, &host->dma_conf); desc = dmaengine_prep_slave_sg(chan, data->sg, sglen, slave_dirn, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) goto unmap_exit; host->dma.data_desc = desc; desc->callback = atmci_dma_complete; desc->callback_param = host; return iflags; unmap_exit: dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); return -ENOMEM; } static void atmci_submit_data(struct atmel_mci *host, struct mmc_data *data) { return; } /* * Start PDC according to transfer direction. */ static void atmci_submit_data_pdc(struct atmel_mci *host, struct mmc_data *data) { if (data->flags & MMC_DATA_READ) atmci_writel(host, ATMEL_PDC_PTCR, ATMEL_PDC_RXTEN); else atmci_writel(host, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN); } static void atmci_submit_data_dma(struct atmel_mci *host, struct mmc_data *data) { struct dma_chan *chan = host->data_chan; struct dma_async_tx_descriptor *desc = host->dma.data_desc; if (chan) { dmaengine_submit(desc); dma_async_issue_pending(chan); } } static void atmci_stop_transfer(struct atmel_mci *host) { struct device *dev = host->dev; dev_dbg(dev, "(%s) set pending xfer complete\n", __func__); atmci_set_pending(host, EVENT_XFER_COMPLETE); atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY); } /* * Stop data transfer because error(s) occurred. */ static void atmci_stop_transfer_pdc(struct atmel_mci *host) { atmci_writel(host, ATMEL_PDC_PTCR, ATMEL_PDC_RXTDIS | ATMEL_PDC_TXTDIS); } static void atmci_stop_transfer_dma(struct atmel_mci *host) { struct dma_chan *chan = host->data_chan; struct device *dev = host->dev; if (chan) { dmaengine_terminate_all(chan); atmci_dma_cleanup(host); } else { /* Data transfer was stopped by the interrupt handler */ dev_dbg(dev, "(%s) set pending xfer complete\n", __func__); atmci_set_pending(host, EVENT_XFER_COMPLETE); atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY); } } /* * Start a request: prepare data if needed, prepare the command and activate * interrupts. */ static void atmci_start_request(struct atmel_mci *host, struct atmel_mci_slot *slot) { struct device *dev = host->dev; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; u32 iflags; u32 cmdflags; mrq = slot->mrq; host->cur_slot = slot; host->mrq = mrq; host->pending_events = 0; host->completed_events = 0; host->cmd_status = 0; host->data_status = 0; dev_dbg(dev, "start request: cmd %u\n", mrq->cmd->opcode); if (host->need_reset || host->caps.need_reset_after_xfer) { iflags = atmci_readl(host, ATMCI_IMR); iflags &= (ATMCI_SDIOIRQA | ATMCI_SDIOIRQB); atmci_writel(host, ATMCI_CR, ATMCI_CR_SWRST); atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIEN); atmci_writel(host, ATMCI_MR, host->mode_reg); if (host->caps.has_cfg_reg) atmci_writel(host, ATMCI_CFG, host->cfg_reg); atmci_writel(host, ATMCI_IER, iflags); host->need_reset = false; } atmci_writel(host, ATMCI_SDCR, slot->sdc_reg); iflags = atmci_readl(host, ATMCI_IMR); if (iflags & ~(ATMCI_SDIOIRQA | ATMCI_SDIOIRQB)) dev_dbg(&slot->mmc->class_dev, "WARNING: IMR=0x%08x\n", iflags); if (unlikely(test_and_clear_bit(ATMCI_CARD_NEED_INIT, &slot->flags))) { /* Send init sequence (74 clock cycles) */ atmci_writel(host, ATMCI_CMDR, ATMCI_CMDR_SPCMD_INIT); while (!(atmci_readl(host, ATMCI_SR) & ATMCI_CMDRDY)) cpu_relax(); } iflags = 0; data = mrq->data; if (data) { atmci_set_timeout(host, slot, data); /* Must set block count/size before sending command */ atmci_writel(host, ATMCI_BLKR, ATMCI_BCNT(data->blocks) | ATMCI_BLKLEN(data->blksz)); dev_vdbg(&slot->mmc->class_dev, "BLKR=0x%08x\n", ATMCI_BCNT(data->blocks) | ATMCI_BLKLEN(data->blksz)); iflags |= host->prepare_data(host, data); } iflags |= ATMCI_CMDRDY; cmd = mrq->cmd; cmdflags = atmci_prepare_command(slot->mmc, cmd); /* * DMA transfer should be started before sending the command to avoid * unexpected errors especially for read operations in SDIO mode. * Unfortunately, in PDC mode, command has to be sent before starting * the transfer. */ if (host->submit_data != &atmci_submit_data_dma) atmci_send_command(host, cmd, cmdflags); if (data) host->submit_data(host, data); if (host->submit_data == &atmci_submit_data_dma) atmci_send_command(host, cmd, cmdflags); if (mrq->stop) { host->stop_cmdr = atmci_prepare_command(slot->mmc, mrq->stop); host->stop_cmdr |= ATMCI_CMDR_STOP_XFER; if (!(data->flags & MMC_DATA_WRITE)) host->stop_cmdr |= ATMCI_CMDR_TRDIR_READ; host->stop_cmdr |= ATMCI_CMDR_MULTI_BLOCK; } /* * We could have enabled interrupts earlier, but I suspect * that would open up a nice can of interesting race * conditions (e.g. command and data complete, but stop not * prepared yet.) */ atmci_writel(host, ATMCI_IER, iflags); } static void atmci_queue_request(struct atmel_mci *host, struct atmel_mci_slot *slot, struct mmc_request *mrq) { struct device *dev = host->dev; dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n", host->state); spin_lock_bh(&host->lock); slot->mrq = mrq; if (host->state == STATE_IDLE) { host->state = STATE_SENDING_CMD; atmci_start_request(host, slot); } else { dev_dbg(dev, "queue request\n"); list_add_tail(&slot->queue_node, &host->queue); } spin_unlock_bh(&host->lock); } static void atmci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct atmel_mci_slot *slot = mmc_priv(mmc); struct atmel_mci *host = slot->host; struct device *dev = host->dev; struct mmc_data *data; WARN_ON(slot->mrq); dev_dbg(dev, "MRQ: cmd %u\n", mrq->cmd->opcode); /* * We may "know" the card is gone even though there's still an * electrical connection. If so, we really need to communicate * this to the MMC core since there won't be any more * interrupts as the card is completely removed. Otherwise, * the MMC core might believe the card is still there even * though the card was just removed very slowly. */ if (!test_bit(ATMCI_CARD_PRESENT, &slot->flags)) { mrq->cmd->error = -ENOMEDIUM; mmc_request_done(mmc, mrq); return; } /* We don't support multiple blocks of weird lengths. */ data = mrq->data; if (data && data->blocks > 1 && data->blksz & 3) { mrq->cmd->error = -EINVAL; mmc_request_done(mmc, mrq); } atmci_queue_request(host, slot, mrq); } static void atmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct atmel_mci_slot *slot = mmc_priv(mmc); struct atmel_mci *host = slot->host; unsigned int i; slot->sdc_reg &= ~ATMCI_SDCBUS_MASK; switch (ios->bus_width) { case MMC_BUS_WIDTH_1: slot->sdc_reg |= ATMCI_SDCBUS_1BIT; break; case MMC_BUS_WIDTH_4: slot->sdc_reg |= ATMCI_SDCBUS_4BIT; break; case MMC_BUS_WIDTH_8: slot->sdc_reg |= ATMCI_SDCBUS_8BIT; break; } if (ios->clock) { unsigned int clock_min = ~0U; int clkdiv; spin_lock_bh(&host->lock); if (!host->mode_reg) { atmci_writel(host, ATMCI_CR, ATMCI_CR_SWRST); atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIEN); if (host->caps.has_cfg_reg) atmci_writel(host, ATMCI_CFG, host->cfg_reg); } /* * Use mirror of ios->clock to prevent race with mmc * core ios update when finding the minimum. */ slot->clock = ios->clock; for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) { if (host->slot[i] && host->slot[i]->clock && host->slot[i]->clock < clock_min) clock_min = host->slot[i]->clock; } /* Calculate clock divider */ if (host->caps.has_odd_clk_div) { clkdiv = DIV_ROUND_UP(host->bus_hz, clock_min) - 2; if (clkdiv < 0) { dev_warn(&mmc->class_dev, "clock %u too fast; using %lu\n", clock_min, host->bus_hz / 2); clkdiv = 0; } else if (clkdiv > 511) { dev_warn(&mmc->class_dev, "clock %u too slow; using %lu\n", clock_min, host->bus_hz / (511 + 2)); clkdiv = 511; } host->mode_reg = ATMCI_MR_CLKDIV(clkdiv >> 1) | ATMCI_MR_CLKODD(clkdiv & 1); } else { clkdiv = DIV_ROUND_UP(host->bus_hz, 2 * clock_min) - 1; if (clkdiv > 255) { dev_warn(&mmc->class_dev, "clock %u too slow; using %lu\n", clock_min, host->bus_hz / (2 * 256)); clkdiv = 255; } host->mode_reg = ATMCI_MR_CLKDIV(clkdiv); } /* * WRPROOF and RDPROOF prevent overruns/underruns by * stopping the clock when the FIFO is full/empty. * This state is not expected to last for long. */ if (host->caps.has_rwproof) host->mode_reg |= (ATMCI_MR_WRPROOF | ATMCI_MR_RDPROOF); if (host->caps.has_cfg_reg) { /* setup High Speed mode in relation with card capacity */ if (ios->timing == MMC_TIMING_SD_HS) host->cfg_reg |= ATMCI_CFG_HSMODE; else host->cfg_reg &= ~ATMCI_CFG_HSMODE; } if (list_empty(&host->queue)) { atmci_writel(host, ATMCI_MR, host->mode_reg); if (host->caps.has_cfg_reg) atmci_writel(host, ATMCI_CFG, host->cfg_reg); } else { host->need_clock_update = true; } spin_unlock_bh(&host->lock); } else { bool any_slot_active = false; spin_lock_bh(&host->lock); slot->clock = 0; for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) { if (host->slot[i] && host->slot[i]->clock) { any_slot_active = true; break; } } if (!any_slot_active) { atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIDIS); if (host->mode_reg) { atmci_readl(host, ATMCI_MR); } host->mode_reg = 0; } spin_unlock_bh(&host->lock); } switch (ios->power_mode) { case MMC_POWER_OFF: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); break; case MMC_POWER_UP: set_bit(ATMCI_CARD_NEED_INIT, &slot->flags); if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); break; default: break; } } static int atmci_get_ro(struct mmc_host *mmc) { int read_only = -ENOSYS; struct atmel_mci_slot *slot = mmc_priv(mmc); if (slot->wp_pin) { read_only = gpiod_get_value(slot->wp_pin); dev_dbg(&mmc->class_dev, "card is %s\n", read_only ? "read-only" : "read-write"); } return read_only; } static int atmci_get_cd(struct mmc_host *mmc) { int present = -ENOSYS; struct atmel_mci_slot *slot = mmc_priv(mmc); if (slot->detect_pin) { present = gpiod_get_value_cansleep(slot->detect_pin); dev_dbg(&mmc->class_dev, "card is %spresent\n", present ? "" : "not "); } return present; } static void atmci_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct atmel_mci_slot *slot = mmc_priv(mmc); struct atmel_mci *host = slot->host; if (enable) atmci_writel(host, ATMCI_IER, slot->sdio_irq); else atmci_writel(host, ATMCI_IDR, slot->sdio_irq); } static const struct mmc_host_ops atmci_ops = { .request = atmci_request, .set_ios = atmci_set_ios, .get_ro = atmci_get_ro, .get_cd = atmci_get_cd, .enable_sdio_irq = atmci_enable_sdio_irq, }; /* Called with host->lock held */ static void atmci_request_end(struct atmel_mci *host, struct mmc_request *mrq) __releases(&host->lock) __acquires(&host->lock) { struct atmel_mci_slot *slot = NULL; struct mmc_host *prev_mmc = host->cur_slot->mmc; struct device *dev = host->dev; WARN_ON(host->cmd || host->data); del_timer(&host->timer); /* * Update the MMC clock rate if necessary. This may be * necessary if set_ios() is called when a different slot is * busy transferring data. */ if (host->need_clock_update) { atmci_writel(host, ATMCI_MR, host->mode_reg); if (host->caps.has_cfg_reg) atmci_writel(host, ATMCI_CFG, host->cfg_reg); } host->cur_slot->mrq = NULL; host->mrq = NULL; if (!list_empty(&host->queue)) { slot = list_entry(host->queue.next, struct atmel_mci_slot, queue_node); list_del(&slot->queue_node); dev_vdbg(dev, "list not empty: %s is next\n", mmc_hostname(slot->mmc)); host->state = STATE_SENDING_CMD; atmci_start_request(host, slot); } else { dev_vdbg(dev, "list empty\n"); host->state = STATE_IDLE; } spin_unlock(&host->lock); mmc_request_done(prev_mmc, mrq); spin_lock(&host->lock); } static void atmci_command_complete(struct atmel_mci *host, struct mmc_command *cmd) { u32 status = host->cmd_status; /* Read the response from the card (up to 16 bytes) */ cmd->resp[0] = atmci_readl(host, ATMCI_RSPR); cmd->resp[1] = atmci_readl(host, ATMCI_RSPR); cmd->resp[2] = atmci_readl(host, ATMCI_RSPR); cmd->resp[3] = atmci_readl(host, ATMCI_RSPR); if (status & ATMCI_RTOE) cmd->error = -ETIMEDOUT; else if ((cmd->flags & MMC_RSP_CRC) && (status & ATMCI_RCRCE)) cmd->error = -EILSEQ; else if (status & (ATMCI_RINDE | ATMCI_RDIRE | ATMCI_RENDE)) cmd->error = -EIO; else if (host->mrq->data && (host->mrq->data->blksz & 3)) { if (host->caps.need_blksz_mul_4) { cmd->error = -EINVAL; host->need_reset = 1; } } else cmd->error = 0; } static void atmci_detect_change(struct timer_list *t) { struct atmel_mci_slot *slot = from_timer(slot, t, detect_timer); bool present; bool present_old; /* * atmci_cleanup_slot() sets the ATMCI_SHUTDOWN flag before * freeing the interrupt. We must not re-enable the interrupt * if it has been freed, and if we're shutting down, it * doesn't really matter whether the card is present or not. */ smp_rmb(); if (test_bit(ATMCI_SHUTDOWN, &slot->flags)) return; enable_irq(gpiod_to_irq(slot->detect_pin)); present = gpiod_get_value_cansleep(slot->detect_pin); present_old = test_bit(ATMCI_CARD_PRESENT, &slot->flags); dev_vdbg(&slot->mmc->class_dev, "detect change: %d (was %d)\n", present, present_old); if (present != present_old) { struct atmel_mci *host = slot->host; struct mmc_request *mrq; dev_dbg(&slot->mmc->class_dev, "card %s\n", present ? "inserted" : "removed"); spin_lock(&host->lock); if (!present) clear_bit(ATMCI_CARD_PRESENT, &slot->flags); else set_bit(ATMCI_CARD_PRESENT, &slot->flags); /* Clean up queue if present */ mrq = slot->mrq; if (mrq) { if (mrq == host->mrq) { /* * Reset controller to terminate any ongoing * commands or data transfers. */ atmci_writel(host, ATMCI_CR, ATMCI_CR_SWRST); atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIEN); atmci_writel(host, ATMCI_MR, host->mode_reg); if (host->caps.has_cfg_reg) atmci_writel(host, ATMCI_CFG, host->cfg_reg); host->data = NULL; host->cmd = NULL; switch (host->state) { case STATE_IDLE: break; case STATE_SENDING_CMD: mrq->cmd->error = -ENOMEDIUM; if (mrq->data) host->stop_transfer(host); break; case STATE_DATA_XFER: mrq->data->error = -ENOMEDIUM; host->stop_transfer(host); break; case STATE_WAITING_NOTBUSY: mrq->data->error = -ENOMEDIUM; break; case STATE_SENDING_STOP: mrq->stop->error = -ENOMEDIUM; break; case STATE_END_REQUEST: break; } atmci_request_end(host, mrq); } else { list_del(&slot->queue_node); mrq->cmd->error = -ENOMEDIUM; if (mrq->data) mrq->data->error = -ENOMEDIUM; if (mrq->stop) mrq->stop->error = -ENOMEDIUM; spin_unlock(&host->lock); mmc_request_done(slot->mmc, mrq); spin_lock(&host->lock); } } spin_unlock(&host->lock); mmc_detect_change(slot->mmc, 0); } } static void atmci_tasklet_func(struct tasklet_struct *t) { struct atmel_mci *host = from_tasklet(host, t, tasklet); struct mmc_request *mrq = host->mrq; struct mmc_data *data = host->data; struct device *dev = host->dev; enum atmel_mci_state state = host->state; enum atmel_mci_state prev_state; u32 status; spin_lock(&host->lock); state = host->state; dev_vdbg(dev, "tasklet: state %u pending/completed/mask %lx/%lx/%x\n", state, host->pending_events, host->completed_events, atmci_readl(host, ATMCI_IMR)); do { prev_state = state; dev_dbg(dev, "FSM: state=%d\n", state); switch (state) { case STATE_IDLE: break; case STATE_SENDING_CMD: /* * Command has been sent, we are waiting for command * ready. Then we have three next states possible: * END_REQUEST by default, WAITING_NOTBUSY if it's a * command needing it or DATA_XFER if there is data. */ dev_dbg(dev, "FSM: cmd ready?\n"); if (!atmci_test_and_clear_pending(host, EVENT_CMD_RDY)) break; dev_dbg(dev, "set completed cmd ready\n"); host->cmd = NULL; atmci_set_completed(host, EVENT_CMD_RDY); atmci_command_complete(host, mrq->cmd); if (mrq->data) { dev_dbg(dev, "command with data transfer\n"); /* * If there is a command error don't start * data transfer. */ if (mrq->cmd->error) { host->stop_transfer(host); host->data = NULL; atmci_writel(host, ATMCI_IDR, ATMCI_TXRDY | ATMCI_RXRDY | ATMCI_DATA_ERROR_FLAGS); state = STATE_END_REQUEST; } else state = STATE_DATA_XFER; } else if ((!mrq->data) && (mrq->cmd->flags & MMC_RSP_BUSY)) { dev_dbg(dev, "command response need waiting notbusy\n"); atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY); state = STATE_WAITING_NOTBUSY; } else state = STATE_END_REQUEST; break; case STATE_DATA_XFER: if (atmci_test_and_clear_pending(host, EVENT_DATA_ERROR)) { dev_dbg(dev, "set completed data error\n"); atmci_set_completed(host, EVENT_DATA_ERROR); state = STATE_END_REQUEST; break; } /* * A data transfer is in progress. The event expected * to move to the next state depends of data transfer * type (PDC or DMA). Once transfer done we can move * to the next step which is WAITING_NOTBUSY in write * case and directly SENDING_STOP in read case. */ dev_dbg(dev, "FSM: xfer complete?\n"); if (!atmci_test_and_clear_pending(host, EVENT_XFER_COMPLETE)) break; dev_dbg(dev, "(%s) set completed xfer complete\n", __func__); atmci_set_completed(host, EVENT_XFER_COMPLETE); if (host->caps.need_notbusy_for_read_ops || (host->data->flags & MMC_DATA_WRITE)) { atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY); state = STATE_WAITING_NOTBUSY; } else if (host->mrq->stop) { atmci_send_stop_cmd(host, data); state = STATE_SENDING_STOP; } else { host->data = NULL; data->bytes_xfered = data->blocks * data->blksz; data->error = 0; state = STATE_END_REQUEST; } break; case STATE_WAITING_NOTBUSY: /* * We can be in the state for two reasons: a command * requiring waiting not busy signal (stop command * included) or a write operation. In the latest case, * we need to send a stop command. */ dev_dbg(dev, "FSM: not busy?\n"); if (!atmci_test_and_clear_pending(host, EVENT_NOTBUSY)) break; dev_dbg(dev, "set completed not busy\n"); atmci_set_completed(host, EVENT_NOTBUSY); if (host->data) { /* * For some commands such as CMD53, even if * there is data transfer, there is no stop * command to send. */ if (host->mrq->stop) { atmci_send_stop_cmd(host, data); state = STATE_SENDING_STOP; } else { host->data = NULL; data->bytes_xfered = data->blocks * data->blksz; data->error = 0; state = STATE_END_REQUEST; } } else state = STATE_END_REQUEST; break; case STATE_SENDING_STOP: /* * In this state, it is important to set host->data to * NULL (which is tested in the waiting notbusy state) * in order to go to the end request state instead of * sending stop again. */ dev_dbg(dev, "FSM: cmd ready?\n"); if (!atmci_test_and_clear_pending(host, EVENT_CMD_RDY)) break; dev_dbg(dev, "FSM: cmd ready\n"); host->cmd = NULL; data->bytes_xfered = data->blocks * data->blksz; data->error = 0; atmci_command_complete(host, mrq->stop); if (mrq->stop->error) { host->stop_transfer(host); atmci_writel(host, ATMCI_IDR, ATMCI_TXRDY | ATMCI_RXRDY | ATMCI_DATA_ERROR_FLAGS); state = STATE_END_REQUEST; } else { atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY); state = STATE_WAITING_NOTBUSY; } host->data = NULL; break; case STATE_END_REQUEST: atmci_writel(host, ATMCI_IDR, ATMCI_TXRDY | ATMCI_RXRDY | ATMCI_DATA_ERROR_FLAGS); status = host->data_status; if (unlikely(status)) { host->stop_transfer(host); host->data = NULL; if (data) { if (status & ATMCI_DTOE) { data->error = -ETIMEDOUT; } else if (status & ATMCI_DCRCE) { data->error = -EILSEQ; } else { data->error = -EIO; } } } atmci_request_end(host, host->mrq); goto unlock; /* atmci_request_end() sets host->state */ break; } } while (state != prev_state); host->state = state; unlock: spin_unlock(&host->lock); } static void atmci_read_data_pio(struct atmel_mci *host) { struct scatterlist *sg = host->sg; unsigned int offset = host->pio_offset; struct mmc_data *data = host->data; u32 value; u32 status; unsigned int nbytes = 0; do { value = atmci_readl(host, ATMCI_RDR); if (likely(offset + 4 <= sg->length)) { sg_pcopy_from_buffer(sg, 1, &value, sizeof(u32), offset); offset += 4; nbytes += 4; if (offset == sg->length) { flush_dcache_page(sg_page(sg)); host->sg = sg = sg_next(sg); host->sg_len--; if (!sg || !host->sg_len) goto done; offset = 0; } } else { unsigned int remaining = sg->length - offset; sg_pcopy_from_buffer(sg, 1, &value, remaining, offset); nbytes += remaining; flush_dcache_page(sg_page(sg)); host->sg = sg = sg_next(sg); host->sg_len--; if (!sg || !host->sg_len) goto done; offset = 4 - remaining; sg_pcopy_from_buffer(sg, 1, (u8 *)&value + remaining, offset, 0); nbytes += offset; } status = atmci_readl(host, ATMCI_SR); if (status & ATMCI_DATA_ERROR_FLAGS) { atmci_writel(host, ATMCI_IDR, (ATMCI_NOTBUSY | ATMCI_RXRDY | ATMCI_DATA_ERROR_FLAGS)); host->data_status = status; data->bytes_xfered += nbytes; return; } } while (status & ATMCI_RXRDY); host->pio_offset = offset; data->bytes_xfered += nbytes; return; done: atmci_writel(host, ATMCI_IDR, ATMCI_RXRDY); atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY); data->bytes_xfered += nbytes; smp_wmb(); atmci_set_pending(host, EVENT_XFER_COMPLETE); } static void atmci_write_data_pio(struct atmel_mci *host) { struct scatterlist *sg = host->sg; unsigned int offset = host->pio_offset; struct mmc_data *data = host->data; u32 value; u32 status; unsigned int nbytes = 0; do { if (likely(offset + 4 <= sg->length)) { sg_pcopy_to_buffer(sg, 1, &value, sizeof(u32), offset); atmci_writel(host, ATMCI_TDR, value); offset += 4; nbytes += 4; if (offset == sg->length) { host->sg = sg = sg_next(sg); host->sg_len--; if (!sg || !host->sg_len) goto done; offset = 0; } } else { unsigned int remaining = sg->length - offset; value = 0; sg_pcopy_to_buffer(sg, 1, &value, remaining, offset); nbytes += remaining; host->sg = sg = sg_next(sg); host->sg_len--; if (!sg || !host->sg_len) { atmci_writel(host, ATMCI_TDR, value); goto done; } offset = 4 - remaining; sg_pcopy_to_buffer(sg, 1, (u8 *)&value + remaining, offset, 0); atmci_writel(host, ATMCI_TDR, value); nbytes += offset; } status = atmci_readl(host, ATMCI_SR); if (status & ATMCI_DATA_ERROR_FLAGS) { atmci_writel(host, ATMCI_IDR, (ATMCI_NOTBUSY | ATMCI_TXRDY | ATMCI_DATA_ERROR_FLAGS)); host->data_status = status; data->bytes_xfered += nbytes; return; } } while (status & ATMCI_TXRDY); host->pio_offset = offset; data->bytes_xfered += nbytes; return; done: atmci_writel(host, ATMCI_IDR, ATMCI_TXRDY); atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY); data->bytes_xfered += nbytes; smp_wmb(); atmci_set_pending(host, EVENT_XFER_COMPLETE); } static void atmci_sdio_interrupt(struct atmel_mci *host, u32 status) { int i; for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) { struct atmel_mci_slot *slot = host->slot[i]; if (slot && (status & slot->sdio_irq)) { mmc_signal_sdio_irq(slot->mmc); } } } static irqreturn_t atmci_interrupt(int irq, void *dev_id) { struct atmel_mci *host = dev_id; struct device *dev = host->dev; u32 status, mask, pending; unsigned int pass_count = 0; do { status = atmci_readl(host, ATMCI_SR); mask = atmci_readl(host, ATMCI_IMR); pending = status & mask; if (!pending) break; if (pending & ATMCI_DATA_ERROR_FLAGS) { dev_dbg(dev, "IRQ: data error\n"); atmci_writel(host, ATMCI_IDR, ATMCI_DATA_ERROR_FLAGS | ATMCI_RXRDY | ATMCI_TXRDY | ATMCI_ENDRX | ATMCI_ENDTX | ATMCI_RXBUFF | ATMCI_TXBUFE); host->data_status = status; dev_dbg(dev, "set pending data error\n"); smp_wmb(); atmci_set_pending(host, EVENT_DATA_ERROR); tasklet_schedule(&host->tasklet); } if (pending & ATMCI_TXBUFE) { dev_dbg(dev, "IRQ: tx buffer empty\n"); atmci_writel(host, ATMCI_IDR, ATMCI_TXBUFE); atmci_writel(host, ATMCI_IDR, ATMCI_ENDTX); /* * We can receive this interruption before having configured * the second pdc buffer, so we need to reconfigure first and * second buffers again */ if (host->data_size) { atmci_pdc_set_both_buf(host, XFER_TRANSMIT); atmci_writel(host, ATMCI_IER, ATMCI_ENDTX); atmci_writel(host, ATMCI_IER, ATMCI_TXBUFE); } else { atmci_pdc_complete(host); } } else if (pending & ATMCI_ENDTX) { dev_dbg(dev, "IRQ: end of tx buffer\n"); atmci_writel(host, ATMCI_IDR, ATMCI_ENDTX); if (host->data_size) { atmci_pdc_set_single_buf(host, XFER_TRANSMIT, PDC_SECOND_BUF); atmci_writel(host, ATMCI_IER, ATMCI_ENDTX); } } if (pending & ATMCI_RXBUFF) { dev_dbg(dev, "IRQ: rx buffer full\n"); atmci_writel(host, ATMCI_IDR, ATMCI_RXBUFF); atmci_writel(host, ATMCI_IDR, ATMCI_ENDRX); /* * We can receive this interruption before having configured * the second pdc buffer, so we need to reconfigure first and * second buffers again */ if (host->data_size) { atmci_pdc_set_both_buf(host, XFER_RECEIVE); atmci_writel(host, ATMCI_IER, ATMCI_ENDRX); atmci_writel(host, ATMCI_IER, ATMCI_RXBUFF); } else { atmci_pdc_complete(host); } } else if (pending & ATMCI_ENDRX) { dev_dbg(dev, "IRQ: end of rx buffer\n"); atmci_writel(host, ATMCI_IDR, ATMCI_ENDRX); if (host->data_size) { atmci_pdc_set_single_buf(host, XFER_RECEIVE, PDC_SECOND_BUF); atmci_writel(host, ATMCI_IER, ATMCI_ENDRX); } } /* * First mci IPs, so mainly the ones having pdc, have some * issues with the notbusy signal. You can't get it after * data transmission if you have not sent a stop command. * The appropriate workaround is to use the BLKE signal. */ if (pending & ATMCI_BLKE) { dev_dbg(dev, "IRQ: blke\n"); atmci_writel(host, ATMCI_IDR, ATMCI_BLKE); smp_wmb(); dev_dbg(dev, "set pending notbusy\n"); atmci_set_pending(host, EVENT_NOTBUSY); tasklet_schedule(&host->tasklet); } if (pending & ATMCI_NOTBUSY) { dev_dbg(dev, "IRQ: not_busy\n"); atmci_writel(host, ATMCI_IDR, ATMCI_NOTBUSY); smp_wmb(); dev_dbg(dev, "set pending notbusy\n"); atmci_set_pending(host, EVENT_NOTBUSY); tasklet_schedule(&host->tasklet); } if (pending & ATMCI_RXRDY) atmci_read_data_pio(host); if (pending & ATMCI_TXRDY) atmci_write_data_pio(host); if (pending & ATMCI_CMDRDY) { dev_dbg(dev, "IRQ: cmd ready\n"); atmci_writel(host, ATMCI_IDR, ATMCI_CMDRDY); host->cmd_status = status; smp_wmb(); dev_dbg(dev, "set pending cmd rdy\n"); atmci_set_pending(host, EVENT_CMD_RDY); tasklet_schedule(&host->tasklet); } if (pending & (ATMCI_SDIOIRQA | ATMCI_SDIOIRQB)) atmci_sdio_interrupt(host, status); } while (pass_count++ < 5); return pass_count ? IRQ_HANDLED : IRQ_NONE; } static irqreturn_t atmci_detect_interrupt(int irq, void *dev_id) { struct atmel_mci_slot *slot = dev_id; /* * Disable interrupts until the pin has stabilized and check * the state then. Use mod_timer() since we may be in the * middle of the timer routine when this interrupt triggers. */ disable_irq_nosync(irq); mod_timer(&slot->detect_timer, jiffies + msecs_to_jiffies(20)); return IRQ_HANDLED; } static int atmci_init_slot(struct atmel_mci *host, struct mci_slot_pdata *slot_data, unsigned int id, u32 sdc_reg, u32 sdio_irq) { struct device *dev = host->dev; struct mmc_host *mmc; struct atmel_mci_slot *slot; int ret; mmc = mmc_alloc_host(sizeof(struct atmel_mci_slot), dev); if (!mmc) return -ENOMEM; slot = mmc_priv(mmc); slot->mmc = mmc; slot->host = host; slot->detect_pin = slot_data->detect_pin; slot->wp_pin = slot_data->wp_pin; slot->sdc_reg = sdc_reg; slot->sdio_irq = sdio_irq; dev_dbg(&mmc->class_dev, "slot[%u]: bus_width=%u, detect_pin=%d, " "detect_is_active_high=%s, wp_pin=%d\n", id, slot_data->bus_width, desc_to_gpio(slot_data->detect_pin), !gpiod_is_active_low(slot_data->detect_pin) ? "true" : "false", desc_to_gpio(slot_data->wp_pin)); mmc->ops = &atmci_ops; mmc->f_min = DIV_ROUND_UP(host->bus_hz, 512); mmc->f_max = host->bus_hz / 2; mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; if (sdio_irq) mmc->caps |= MMC_CAP_SDIO_IRQ; if (host->caps.has_highspeed) mmc->caps |= MMC_CAP_SD_HIGHSPEED; /* * Without the read/write proof capability, it is strongly suggested to * use only one bit for data to prevent fifo underruns and overruns * which will corrupt data. */ if ((slot_data->bus_width >= 4) && host->caps.has_rwproof) { mmc->caps |= MMC_CAP_4_BIT_DATA; if (slot_data->bus_width >= 8) mmc->caps |= MMC_CAP_8_BIT_DATA; } if (atmci_get_version(host) < 0x200) { mmc->max_segs = 256; mmc->max_blk_size = 4095; mmc->max_blk_count = 256; mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; mmc->max_seg_size = mmc->max_blk_size * mmc->max_segs; } else { mmc->max_segs = 64; mmc->max_req_size = 32768 * 512; mmc->max_blk_size = 32768; mmc->max_blk_count = 512; } /* Assume card is present initially */ set_bit(ATMCI_CARD_PRESENT, &slot->flags); if (slot->detect_pin) { if (!gpiod_get_value_cansleep(slot->detect_pin)) clear_bit(ATMCI_CARD_PRESENT, &slot->flags); } else { dev_dbg(&mmc->class_dev, "no detect pin available\n"); } if (!slot->detect_pin) { if (slot_data->non_removable) mmc->caps |= MMC_CAP_NONREMOVABLE; else mmc->caps |= MMC_CAP_NEEDS_POLL; } if (!slot->wp_pin) dev_dbg(&mmc->class_dev, "no WP pin available\n"); host->slot[id] = slot; mmc_regulator_get_supply(mmc); ret = mmc_add_host(mmc); if (ret) { mmc_free_host(mmc); return ret; } if (slot->detect_pin) { timer_setup(&slot->detect_timer, atmci_detect_change, 0); ret = request_irq(gpiod_to_irq(slot->detect_pin), atmci_detect_interrupt, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING, "mmc-detect", slot); if (ret) { dev_dbg(&mmc->class_dev, "could not request IRQ %d for detect pin\n", gpiod_to_irq(slot->detect_pin)); slot->detect_pin = NULL; } } atmci_init_debugfs(slot); return 0; } static void atmci_cleanup_slot(struct atmel_mci_slot *slot, unsigned int id) { /* Debugfs stuff is cleaned up by mmc core */ set_bit(ATMCI_SHUTDOWN, &slot->flags); smp_wmb(); mmc_remove_host(slot->mmc); if (slot->detect_pin) { free_irq(gpiod_to_irq(slot->detect_pin), slot); del_timer_sync(&slot->detect_timer); } slot->host->slot[id] = NULL; mmc_free_host(slot->mmc); } static int atmci_configure_dma(struct atmel_mci *host) { struct device *dev = host->dev; host->dma.chan = dma_request_chan(dev, "rxtx"); if (IS_ERR(host->dma.chan)) return PTR_ERR(host->dma.chan); dev_info(dev, "using %s for DMA transfers\n", dma_chan_name(host->dma.chan)); host->dma_conf.src_addr = host->mapbase + ATMCI_RDR; host->dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; host->dma_conf.src_maxburst = 1; host->dma_conf.dst_addr = host->mapbase + ATMCI_TDR; host->dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; host->dma_conf.dst_maxburst = 1; host->dma_conf.device_fc = false; return 0; } /* * HSMCI (High Speed MCI) module is not fully compatible with MCI module. * HSMCI provides DMA support and a new config register but no more supports * PDC. */ static void atmci_get_cap(struct atmel_mci *host) { struct device *dev = host->dev; unsigned int version; version = atmci_get_version(host); dev_info(dev, "version: 0x%x\n", version); host->caps.has_dma_conf_reg = false; host->caps.has_pdc = true; host->caps.has_cfg_reg = false; host->caps.has_cstor_reg = false; host->caps.has_highspeed = false; host->caps.has_rwproof = false; host->caps.has_odd_clk_div = false; host->caps.has_bad_data_ordering = true; host->caps.need_reset_after_xfer = true; host->caps.need_blksz_mul_4 = true; host->caps.need_notbusy_for_read_ops = false; /* keep only major version number */ switch (version & 0xf00) { case 0x600: case 0x500: host->caps.has_odd_clk_div = true; fallthrough; case 0x400: case 0x300: host->caps.has_dma_conf_reg = true; host->caps.has_pdc = false; host->caps.has_cfg_reg = true; host->caps.has_cstor_reg = true; host->caps.has_highspeed = true; fallthrough; case 0x200: host->caps.has_rwproof = true; host->caps.need_blksz_mul_4 = false; host->caps.need_notbusy_for_read_ops = true; fallthrough; case 0x100: host->caps.has_bad_data_ordering = false; host->caps.need_reset_after_xfer = false; fallthrough; case 0x0: break; default: host->caps.has_pdc = false; dev_warn(dev, "Unmanaged mci version, set minimum capabilities\n"); break; } } static int atmci_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct atmel_mci *host; struct resource *regs; unsigned int nr_slots; int irq; int ret, i; regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!regs) return -ENXIO; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) return -ENOMEM; host->dev = dev; spin_lock_init(&host->lock); INIT_LIST_HEAD(&host->queue); ret = atmci_of_init(host); if (ret) return dev_err_probe(dev, ret, "Slot information not available\n"); host->mck = devm_clk_get(dev, "mci_clk"); if (IS_ERR(host->mck)) return PTR_ERR(host->mck); host->regs = devm_ioremap(dev, regs->start, resource_size(regs)); if (!host->regs) return -ENOMEM; ret = clk_prepare_enable(host->mck); if (ret) return ret; atmci_writel(host, ATMCI_CR, ATMCI_CR_SWRST); host->bus_hz = clk_get_rate(host->mck); host->mapbase = regs->start; tasklet_setup(&host->tasklet, atmci_tasklet_func); ret = request_irq(irq, atmci_interrupt, 0, dev_name(dev), host); if (ret) { clk_disable_unprepare(host->mck); return ret; } /* Get MCI capabilities and set operations according to it */ atmci_get_cap(host); ret = atmci_configure_dma(host); if (ret == -EPROBE_DEFER) goto err_dma_probe_defer; if (ret == 0) { host->prepare_data = &atmci_prepare_data_dma; host->submit_data = &atmci_submit_data_dma; host->stop_transfer = &atmci_stop_transfer_dma; } else if (host->caps.has_pdc) { dev_info(dev, "using PDC\n"); host->prepare_data = &atmci_prepare_data_pdc; host->submit_data = &atmci_submit_data_pdc; host->stop_transfer = &atmci_stop_transfer_pdc; } else { dev_info(dev, "using PIO\n"); host->prepare_data = &atmci_prepare_data; host->submit_data = &atmci_submit_data; host->stop_transfer = &atmci_stop_transfer; } platform_set_drvdata(pdev, host); timer_setup(&host->timer, atmci_timeout_timer, 0); pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(dev); pm_runtime_enable(dev); /* We need at least one slot to succeed */ nr_slots = 0; ret = -ENODEV; if (host->pdata[0].bus_width) { ret = atmci_init_slot(host, &host->pdata[0], 0, ATMCI_SDCSEL_SLOT_A, ATMCI_SDIOIRQA); if (!ret) { nr_slots++; host->buf_size = host->slot[0]->mmc->max_req_size; } } if (host->pdata[1].bus_width) { ret = atmci_init_slot(host, &host->pdata[1], 1, ATMCI_SDCSEL_SLOT_B, ATMCI_SDIOIRQB); if (!ret) { nr_slots++; if (host->slot[1]->mmc->max_req_size > host->buf_size) host->buf_size = host->slot[1]->mmc->max_req_size; } } if (!nr_slots) { dev_err_probe(dev, ret, "init failed: no slot defined\n"); goto err_init_slot; } if (!host->caps.has_rwproof) { host->buffer = dma_alloc_coherent(dev, host->buf_size, &host->buf_phys_addr, GFP_KERNEL); if (!host->buffer) { ret = dev_err_probe(dev, -ENOMEM, "buffer allocation failed\n"); goto err_dma_alloc; } } dev_info(dev, "Atmel MCI controller at 0x%08lx irq %d, %u slots\n", host->mapbase, irq, nr_slots); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; err_dma_alloc: for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) { if (host->slot[i]) atmci_cleanup_slot(host->slot[i], i); } err_init_slot: clk_disable_unprepare(host->mck); pm_runtime_disable(dev); pm_runtime_put_noidle(dev); del_timer_sync(&host->timer); if (!IS_ERR(host->dma.chan)) dma_release_channel(host->dma.chan); err_dma_probe_defer: free_irq(irq, host); return ret; } static void atmci_remove(struct platform_device *pdev) { struct atmel_mci *host = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; unsigned int i; pm_runtime_get_sync(dev); if (host->buffer) dma_free_coherent(dev, host->buf_size, host->buffer, host->buf_phys_addr); for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) { if (host->slot[i]) atmci_cleanup_slot(host->slot[i], i); } atmci_writel(host, ATMCI_IDR, ~0UL); atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIDIS); atmci_readl(host, ATMCI_SR); del_timer_sync(&host->timer); if (!IS_ERR(host->dma.chan)) dma_release_channel(host->dma.chan); free_irq(platform_get_irq(pdev, 0), host); clk_disable_unprepare(host->mck); pm_runtime_disable(dev); pm_runtime_put_noidle(dev); } #ifdef CONFIG_PM static int atmci_runtime_suspend(struct device *dev) { struct atmel_mci *host = dev_get_drvdata(dev); clk_disable_unprepare(host->mck); pinctrl_pm_select_sleep_state(dev); return 0; } static int atmci_runtime_resume(struct device *dev) { struct atmel_mci *host = dev_get_drvdata(dev); pinctrl_select_default_state(dev); return clk_prepare_enable(host->mck); } #endif static const struct dev_pm_ops atmci_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(atmci_runtime_suspend, atmci_runtime_resume, NULL) }; static struct platform_driver atmci_driver = { .probe = atmci_probe, .remove_new = atmci_remove, .driver = { .name = "atmel_mci", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = atmci_dt_ids, .pm = &atmci_dev_pm_ops, }, }; module_platform_driver(atmci_driver); MODULE_DESCRIPTION("Atmel Multimedia Card Interface driver"); MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); MODULE_LICENSE("GPL v2");