// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */ #include #include #include #include #include #include #include #include #include #include "wx_type.h" #include "wx_lib.h" #include "wx_hw.h" /* Lookup table mapping the HW PTYPE to the bit field for decoding */ static struct wx_dec_ptype wx_ptype_lookup[256] = { /* L2: mac */ [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2), [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), /* L2: ethertype filter */ [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), /* L3: ip non-tunnel */ [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3), [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3), [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4), [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4), [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4), [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3), [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3), [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3), [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4), [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4), /* L2: fcoe */ [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), /* IPv4 --> IPv4/IPv6 */ [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3), [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3), [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4), [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4), [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4), [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3), [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3), [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4), [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4), [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4), /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */ [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3), [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3), [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3), [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4), [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4), [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4), [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3), [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3), [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4), [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4), [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4), /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */ [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3), [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3), [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3), [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4), [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4), [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4), [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3), [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3), [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4), [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4), [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4), /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */ [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3), [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3), [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3), [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4), [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4), [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4), [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3), [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3), [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4), [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4), [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4), /* IPv6 --> IPv4/IPv6 */ [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3), [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3), [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4), [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4), [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4), [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3), [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3), [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4), [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4), [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4), /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */ [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3), [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3), [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3), [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4), [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4), [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4), [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3), [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3), [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4), [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4), [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4), /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */ [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3), [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3), [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3), [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4), [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4), [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4), [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3), [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3), [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4), [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4), [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4), /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */ [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3), [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3), [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3), [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4), [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4), [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4), [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3), [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3), [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4), [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4), [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4), }; static struct wx_dec_ptype wx_decode_ptype(const u8 ptype) { return wx_ptype_lookup[ptype]; } /* wx_test_staterr - tests bits in Rx descriptor status and error fields */ static __le32 wx_test_staterr(union wx_rx_desc *rx_desc, const u32 stat_err_bits) { return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); } static void wx_dma_sync_frag(struct wx_ring *rx_ring, struct wx_rx_buffer *rx_buffer) { struct sk_buff *skb = rx_buffer->skb; skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; dma_sync_single_range_for_cpu(rx_ring->dev, WX_CB(skb)->dma, skb_frag_off(frag), skb_frag_size(frag), DMA_FROM_DEVICE); /* If the page was released, just unmap it. */ if (unlikely(WX_CB(skb)->page_released)) page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); } static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring, union wx_rx_desc *rx_desc, struct sk_buff **skb, int *rx_buffer_pgcnt) { struct wx_rx_buffer *rx_buffer; unsigned int size; rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; size = le16_to_cpu(rx_desc->wb.upper.length); #if (PAGE_SIZE < 8192) *rx_buffer_pgcnt = page_count(rx_buffer->page); #else *rx_buffer_pgcnt = 0; #endif prefetchw(rx_buffer->page); *skb = rx_buffer->skb; /* Delay unmapping of the first packet. It carries the header * information, HW may still access the header after the writeback. * Only unmap it when EOP is reached */ if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) { if (!*skb) goto skip_sync; } else { if (*skb) wx_dma_sync_frag(rx_ring, rx_buffer); } /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, size, DMA_FROM_DEVICE); skip_sync: return rx_buffer; } static void wx_put_rx_buffer(struct wx_ring *rx_ring, struct wx_rx_buffer *rx_buffer, struct sk_buff *skb, int rx_buffer_pgcnt) { if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma) /* the page has been released from the ring */ WX_CB(skb)->page_released = true; /* clear contents of rx_buffer */ rx_buffer->page = NULL; rx_buffer->skb = NULL; } static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring, struct wx_rx_buffer *rx_buffer, union wx_rx_desc *rx_desc) { unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); #if (PAGE_SIZE < 8192) unsigned int truesize = WX_RX_BUFSZ; #else unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); #endif struct sk_buff *skb = rx_buffer->skb; if (!skb) { void *page_addr = page_address(rx_buffer->page) + rx_buffer->page_offset; /* prefetch first cache line of first page */ prefetch(page_addr); #if L1_CACHE_BYTES < 128 prefetch(page_addr + L1_CACHE_BYTES); #endif /* allocate a skb to store the frags */ skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256); if (unlikely(!skb)) return NULL; /* we will be copying header into skb->data in * pskb_may_pull so it is in our interest to prefetch * it now to avoid a possible cache miss */ prefetchw(skb->data); if (size <= WX_RXBUFFER_256) { memcpy(__skb_put(skb, size), page_addr, ALIGN(size, sizeof(long))); page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true); return skb; } skb_mark_for_recycle(skb); if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) WX_CB(skb)->dma = rx_buffer->dma; skb_add_rx_frag(skb, 0, rx_buffer->page, rx_buffer->page_offset, size, truesize); goto out; } else { skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, rx_buffer->page_offset, size, truesize); } out: #if (PAGE_SIZE < 8192) /* flip page offset to other buffer */ rx_buffer->page_offset ^= truesize; #else /* move offset up to the next cache line */ rx_buffer->page_offset += truesize; #endif return skb; } static bool wx_alloc_mapped_page(struct wx_ring *rx_ring, struct wx_rx_buffer *bi) { struct page *page = bi->page; dma_addr_t dma; /* since we are recycling buffers we should seldom need to alloc */ if (likely(page)) return true; page = page_pool_dev_alloc_pages(rx_ring->page_pool); WARN_ON(!page); dma = page_pool_get_dma_addr(page); bi->page_dma = dma; bi->page = page; bi->page_offset = 0; return true; } /** * wx_alloc_rx_buffers - Replace used receive buffers * @rx_ring: ring to place buffers on * @cleaned_count: number of buffers to replace **/ void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count) { u16 i = rx_ring->next_to_use; union wx_rx_desc *rx_desc; struct wx_rx_buffer *bi; /* nothing to do */ if (!cleaned_count) return; rx_desc = WX_RX_DESC(rx_ring, i); bi = &rx_ring->rx_buffer_info[i]; i -= rx_ring->count; do { if (!wx_alloc_mapped_page(rx_ring, bi)) break; /* sync the buffer for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, bi->dma, bi->page_offset, WX_RX_BUFSZ, DMA_FROM_DEVICE); rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma + bi->page_offset); rx_desc++; bi++; i++; if (unlikely(!i)) { rx_desc = WX_RX_DESC(rx_ring, 0); bi = rx_ring->rx_buffer_info; i -= rx_ring->count; } /* clear the status bits for the next_to_use descriptor */ rx_desc->wb.upper.status_error = 0; cleaned_count--; } while (cleaned_count); i += rx_ring->count; if (rx_ring->next_to_use != i) { rx_ring->next_to_use = i; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = i; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(i, rx_ring->tail); } } u16 wx_desc_unused(struct wx_ring *ring) { u16 ntc = ring->next_to_clean; u16 ntu = ring->next_to_use; return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1; } /** * wx_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer * @skb: Current socket buffer containing buffer in progress * * This function updates next to clean. If the buffer is an EOP buffer * this function exits returning false, otherwise it will place the * sk_buff in the next buffer to be chained and return true indicating * that this is in fact a non-EOP buffer. **/ static bool wx_is_non_eop(struct wx_ring *rx_ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { u32 ntc = rx_ring->next_to_clean + 1; /* fetch, update, and store next to clean */ ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(WX_RX_DESC(rx_ring, ntc)); /* if we are the last buffer then there is nothing else to do */ if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))) return false; rx_ring->rx_buffer_info[ntc].skb = skb; rx_ring->rx_stats.non_eop_descs++; return true; } static void wx_pull_tail(struct sk_buff *skb) { skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; unsigned int pull_len; unsigned char *va; /* it is valid to use page_address instead of kmap since we are * working with pages allocated out of the lomem pool per * alloc_page(GFP_ATOMIC) */ va = skb_frag_address(frag); /* we need the header to contain the greater of either ETH_HLEN or * 60 bytes if the skb->len is less than 60 for skb_pad. */ pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256); /* align pull length to size of long to optimize memcpy performance */ skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); /* update all of the pointers */ skb_frag_size_sub(frag, pull_len); skb_frag_off_add(frag, pull_len); skb->data_len -= pull_len; skb->tail += pull_len; } /** * wx_cleanup_headers - Correct corrupted or empty headers * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being fixed * * Check for corrupted packet headers caused by senders on the local L2 * embedded NIC switch not setting up their Tx Descriptors right. These * should be very rare. * * Also address the case where we are pulling data in on pages only * and as such no data is present in the skb header. * * In addition if skb is not at least 60 bytes we need to pad it so that * it is large enough to qualify as a valid Ethernet frame. * * Returns true if an error was encountered and skb was freed. **/ static bool wx_cleanup_headers(struct wx_ring *rx_ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { struct net_device *netdev = rx_ring->netdev; /* verify that the packet does not have any known errors */ if (!netdev || unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) && !(netdev->features & NETIF_F_RXALL))) { dev_kfree_skb_any(skb); return true; } /* place header in linear portion of buffer */ if (!skb_headlen(skb)) wx_pull_tail(skb); /* if eth_skb_pad returns an error the skb was freed */ if (eth_skb_pad(skb)) return true; return false; } static void wx_rx_hash(struct wx_ring *ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { u16 rss_type; if (!(ring->netdev->features & NETIF_F_RXHASH)) return; rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & WX_RXD_RSSTYPE_MASK; if (!rss_type) return; skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); } /** * wx_rx_checksum - indicate in skb if hw indicated a good cksum * @ring: structure containing ring specific data * @rx_desc: current Rx descriptor being processed * @skb: skb currently being received and modified **/ static void wx_rx_checksum(struct wx_ring *ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc)); skb_checksum_none_assert(skb); /* Rx csum disabled */ if (!(ring->netdev->features & NETIF_F_RXCSUM)) return; /* if IPv4 header checksum error */ if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) && wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) || (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) && wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) { ring->rx_stats.csum_err++; return; } /* L4 checksum offload flag must set for the below code to work */ if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS)) return; /* Hardware can't guarantee csum if IPv6 Dest Header found */ if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc)) return; /* if L4 checksum error */ if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) { ring->rx_stats.csum_err++; return; } /* It must be a TCP or UDP or SCTP packet with a valid checksum */ skb->ip_summed = CHECKSUM_UNNECESSARY; /* If there is an outer header present that might contain a checksum * we need to bump the checksum level by 1 to reflect the fact that * we are indicating we validated the inner checksum. */ if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG) __skb_incr_checksum_unnecessary(skb); ring->rx_stats.csum_good_cnt++; } static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { u16 ethertype; u8 idx = 0; if ((ring->netdev->features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) && wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) { idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 0x1c0) >> 6; ethertype = ring->q_vector->wx->tpid[idx]; __vlan_hwaccel_put_tag(skb, htons(ethertype), le16_to_cpu(rx_desc->wb.upper.vlan)); } } /** * wx_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, protocol, and * other fields within the skb. **/ static void wx_process_skb_fields(struct wx_ring *rx_ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { wx_rx_hash(rx_ring, rx_desc, skb); wx_rx_checksum(rx_ring, rx_desc, skb); wx_rx_vlan(rx_ring, rx_desc, skb); skb_record_rx_queue(skb, rx_ring->queue_index); skb->protocol = eth_type_trans(skb, rx_ring->netdev); } /** * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf * @q_vector: structure containing interrupt and ring information * @rx_ring: rx descriptor ring to transact packets on * @budget: Total limit on number of packets to process * * This function provides a "bounce buffer" approach to Rx interrupt * processing. The advantage to this is that on systems that have * expensive overhead for IOMMU access this provides a means of avoiding * it by maintaining the mapping of the page to the system. * * Returns amount of work completed. **/ static int wx_clean_rx_irq(struct wx_q_vector *q_vector, struct wx_ring *rx_ring, int budget) { unsigned int total_rx_bytes = 0, total_rx_packets = 0; u16 cleaned_count = wx_desc_unused(rx_ring); do { struct wx_rx_buffer *rx_buffer; union wx_rx_desc *rx_desc; struct sk_buff *skb; int rx_buffer_pgcnt; /* return some buffers to hardware, one at a time is too slow */ if (cleaned_count >= WX_RX_BUFFER_WRITE) { wx_alloc_rx_buffers(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean); if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD)) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we know the * descriptor has been written back */ dma_rmb(); rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt); /* retrieve a buffer from the ring */ skb = wx_build_skb(rx_ring, rx_buffer, rx_desc); /* exit if we failed to retrieve a buffer */ if (!skb) { rx_ring->rx_stats.alloc_rx_buff_failed++; break; } wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt); cleaned_count++; /* place incomplete frames back on ring for completion */ if (wx_is_non_eop(rx_ring, rx_desc, skb)) continue; /* verify the packet layout is correct */ if (wx_cleanup_headers(rx_ring, rx_desc, skb)) continue; /* probably a little skewed due to removing CRC */ total_rx_bytes += skb->len; /* populate checksum, timestamp, VLAN, and protocol */ wx_process_skb_fields(rx_ring, rx_desc, skb); napi_gro_receive(&q_vector->napi, skb); /* update budget accounting */ total_rx_packets++; } while (likely(total_rx_packets < budget)); u64_stats_update_begin(&rx_ring->syncp); rx_ring->stats.packets += total_rx_packets; rx_ring->stats.bytes += total_rx_bytes; u64_stats_update_end(&rx_ring->syncp); q_vector->rx.total_packets += total_rx_packets; q_vector->rx.total_bytes += total_rx_bytes; return total_rx_packets; } static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring) { return netdev_get_tx_queue(ring->netdev, ring->queue_index); } /** * wx_clean_tx_irq - Reclaim resources after transmit completes * @q_vector: structure containing interrupt and ring information * @tx_ring: tx ring to clean * @napi_budget: Used to determine if we are in netpoll **/ static bool wx_clean_tx_irq(struct wx_q_vector *q_vector, struct wx_ring *tx_ring, int napi_budget) { unsigned int budget = q_vector->wx->tx_work_limit; unsigned int total_bytes = 0, total_packets = 0; unsigned int i = tx_ring->next_to_clean; struct wx_tx_buffer *tx_buffer; union wx_tx_desc *tx_desc; if (!netif_carrier_ok(tx_ring->netdev)) return true; tx_buffer = &tx_ring->tx_buffer_info[i]; tx_desc = WX_TX_DESC(tx_ring, i); i -= tx_ring->count; do { union wx_tx_desc *eop_desc = tx_buffer->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; /* prevent any other reads prior to eop_desc */ smp_rmb(); /* if DD is not set pending work has not been completed */ if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD))) break; /* clear next_to_watch to prevent false hangs */ tx_buffer->next_to_watch = NULL; /* update the statistics for this packet */ total_bytes += tx_buffer->bytecount; total_packets += tx_buffer->gso_segs; /* free the skb */ napi_consume_skb(tx_buffer->skb, napi_budget); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* clear tx_buffer data */ dma_unmap_len_set(tx_buffer, len, 0); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = WX_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) { dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); } } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = WX_TX_DESC(tx_ring, 0); } /* issue prefetch for next Tx descriptor */ prefetch(tx_desc); /* update budget accounting */ budget--; } while (likely(budget)); i += tx_ring->count; tx_ring->next_to_clean = i; u64_stats_update_begin(&tx_ring->syncp); tx_ring->stats.bytes += total_bytes; tx_ring->stats.packets += total_packets; u64_stats_update_end(&tx_ring->syncp); q_vector->tx.total_bytes += total_bytes; q_vector->tx.total_packets += total_packets; netdev_tx_completed_queue(wx_txring_txq(tx_ring), total_packets, total_bytes); #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (__netif_subqueue_stopped(tx_ring->netdev, tx_ring->queue_index) && netif_running(tx_ring->netdev)) { netif_wake_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; } } return !!budget; } /** * wx_poll - NAPI polling RX/TX cleanup routine * @napi: napi struct with our devices info in it * @budget: amount of work driver is allowed to do this pass, in packets * * This function will clean all queues associated with a q_vector. **/ static int wx_poll(struct napi_struct *napi, int budget) { struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi); int per_ring_budget, work_done = 0; struct wx *wx = q_vector->wx; bool clean_complete = true; struct wx_ring *ring; wx_for_each_ring(ring, q_vector->tx) { if (!wx_clean_tx_irq(q_vector, ring, budget)) clean_complete = false; } /* Exit if we are called by netpoll */ if (budget <= 0) return budget; /* attempt to distribute budget to each queue fairly, but don't allow * the budget to go below 1 because we'll exit polling */ if (q_vector->rx.count > 1) per_ring_budget = max(budget / q_vector->rx.count, 1); else per_ring_budget = budget; wx_for_each_ring(ring, q_vector->rx) { int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget); work_done += cleaned; if (cleaned >= per_ring_budget) clean_complete = false; } /* If all work not completed, return budget and keep polling */ if (!clean_complete) return budget; /* all work done, exit the polling mode */ if (likely(napi_complete_done(napi, work_done))) { if (netif_running(wx->netdev)) wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx)); } return min(work_done, budget - 1); } static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size) { if (likely(wx_desc_unused(tx_ring) >= size)) return 0; netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); /* For the next check */ smp_mb(); /* We need to check again in a case another CPU has just * made room available. */ if (likely(wx_desc_unused(tx_ring) < size)) return -EBUSY; /* A reprieve! - use start_queue because it doesn't call schedule */ netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; return 0; } static u32 wx_tx_cmd_type(u32 tx_flags) { /* set type for advanced descriptor with frame checksum insertion */ u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS; /* set HW vlan bit if vlan is present */ cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE); /* set segmentation enable bits for TSO/FSO */ cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE); /* set timestamp bit if present */ cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP); cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC); return cmd_type; } static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc, u32 tx_flags, unsigned int paylen) { u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT; /* enable L4 checksum for TSO and TX checksum offload */ olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS); /* enable IPv4 checksum for TSO */ olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS); /* enable outer IPv4 checksum for TSO */ olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4, WX_TXD_EIPCS); /* Check Context must be set if Tx switch is enabled, which it * always is for case where virtual functions are running */ olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC); olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC, WX_TXD_IPSEC); tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); } static void wx_tx_map(struct wx_ring *tx_ring, struct wx_tx_buffer *first, const u8 hdr_len) { struct sk_buff *skb = first->skb; struct wx_tx_buffer *tx_buffer; u32 tx_flags = first->tx_flags; u16 i = tx_ring->next_to_use; unsigned int data_len, size; union wx_tx_desc *tx_desc; skb_frag_t *frag; dma_addr_t dma; u32 cmd_type; cmd_type = wx_tx_cmd_type(tx_flags); tx_desc = WX_TX_DESC(tx_ring, i); wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); size = skb_headlen(skb); data_len = skb->data_len; dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); tx_buffer = first; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { if (dma_mapping_error(tx_ring->dev, dma)) goto dma_error; /* record length, and DMA address */ dma_unmap_len_set(tx_buffer, len, size); dma_unmap_addr_set(tx_buffer, dma, dma); tx_desc->read.buffer_addr = cpu_to_le64(dma); while (unlikely(size > WX_MAX_DATA_PER_TXD)) { tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = WX_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; dma += WX_MAX_DATA_PER_TXD; size -= WX_MAX_DATA_PER_TXD; tx_desc->read.buffer_addr = cpu_to_le64(dma); } if (likely(!data_len)) break; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = WX_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, DMA_TO_DEVICE); tx_buffer = &tx_ring->tx_buffer_info[i]; } /* write last descriptor with RS and EOP bits */ cmd_type |= size | WX_TXD_EOP | WX_TXD_RS; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount); skb_tx_timestamp(skb); /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. (Only applicable for weak-ordered * memory model archs, such as IA-64). * * We also need this memory barrier to make certain all of the * status bits have been updated before next_to_watch is written. */ wmb(); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; i++; if (i == tx_ring->count) i = 0; tx_ring->next_to_use = i; wx_maybe_stop_tx(tx_ring, DESC_NEEDED); if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more()) writel(i, tx_ring->tail); return; dma_error: dev_err(tx_ring->dev, "TX DMA map failed\n"); /* clear dma mappings for failed tx_buffer_info map */ for (;;) { tx_buffer = &tx_ring->tx_buffer_info[i]; if (dma_unmap_len(tx_buffer, len)) dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); if (tx_buffer == first) break; if (i == 0) i += tx_ring->count; i--; } dev_kfree_skb_any(first->skb); first->skb = NULL; tx_ring->next_to_use = i; } static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens, u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx) { struct wx_tx_context_desc *context_desc; u16 i = tx_ring->next_to_use; context_desc = WX_TX_CTXTDESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; /* set bits to identify this as an advanced context descriptor */ type_tucmd |= WX_TXD_DTYP_CTXT; context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof); context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); } static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr) { struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset); *nexthdr = hdr->nexthdr; offset += sizeof(struct ipv6hdr); while (ipv6_ext_hdr(*nexthdr)) { struct ipv6_opt_hdr _hdr, *hp; if (*nexthdr == NEXTHDR_NONE) return; hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr); if (!hp) return; if (*nexthdr == NEXTHDR_FRAGMENT) break; *nexthdr = hp->nexthdr; } } union network_header { struct iphdr *ipv4; struct ipv6hdr *ipv6; void *raw; }; static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first) { u8 tun_prot = 0, l4_prot = 0, ptype = 0; struct sk_buff *skb = first->skb; if (skb->encapsulation) { union network_header hdr; switch (first->protocol) { case htons(ETH_P_IP): tun_prot = ip_hdr(skb)->protocol; ptype = WX_PTYPE_TUN_IPV4; break; case htons(ETH_P_IPV6): wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot); ptype = WX_PTYPE_TUN_IPV6; break; default: return ptype; } if (tun_prot == IPPROTO_IPIP) { hdr.raw = (void *)inner_ip_hdr(skb); ptype |= WX_PTYPE_PKT_IPIP; } else if (tun_prot == IPPROTO_UDP) { hdr.raw = (void *)inner_ip_hdr(skb); if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || skb->inner_protocol != htons(ETH_P_TEB)) { ptype |= WX_PTYPE_PKT_IG; } else { if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto == htons(ETH_P_8021Q)) ptype |= WX_PTYPE_PKT_IGMV; else ptype |= WX_PTYPE_PKT_IGM; } } else if (tun_prot == IPPROTO_GRE) { hdr.raw = (void *)inner_ip_hdr(skb); if (skb->inner_protocol == htons(ETH_P_IP) || skb->inner_protocol == htons(ETH_P_IPV6)) { ptype |= WX_PTYPE_PKT_IG; } else { if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto == htons(ETH_P_8021Q)) ptype |= WX_PTYPE_PKT_IGMV; else ptype |= WX_PTYPE_PKT_IGM; } } else { return ptype; } switch (hdr.ipv4->version) { case IPVERSION: l4_prot = hdr.ipv4->protocol; break; case 6: wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot); ptype |= WX_PTYPE_PKT_IPV6; break; default: return ptype; } } else { switch (first->protocol) { case htons(ETH_P_IP): l4_prot = ip_hdr(skb)->protocol; ptype = WX_PTYPE_PKT_IP; break; case htons(ETH_P_IPV6): wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot); ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6; break; default: return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC; } } switch (l4_prot) { case IPPROTO_TCP: ptype |= WX_PTYPE_TYP_TCP; break; case IPPROTO_UDP: ptype |= WX_PTYPE_TYP_UDP; break; case IPPROTO_SCTP: ptype |= WX_PTYPE_TYP_SCTP; break; default: ptype |= WX_PTYPE_TYP_IP; break; } return ptype; } static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first, u8 *hdr_len, u8 ptype) { u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; struct net_device *netdev = tx_ring->netdev; u32 l4len, tunhdr_eiplen_tunlen = 0; struct sk_buff *skb = first->skb; bool enc = skb->encapsulation; struct ipv6hdr *ipv6h; struct tcphdr *tcph; struct iphdr *iph; u8 tun_prot = 0; int err; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; err = skb_cow_head(skb, 0); if (err < 0) return err; /* indicates the inner headers in the skbuff are valid. */ iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb); if (iph->version == 4) { tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); iph->tot_len = 0; iph->check = 0; tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); first->tx_flags |= WX_TX_FLAGS_TSO | WX_TX_FLAGS_CSUM | WX_TX_FLAGS_IPV4 | WX_TX_FLAGS_CC; } else if (iph->version == 6 && skb_is_gso_v6(skb)) { ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); ipv6h->payload_len = 0; tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0, IPPROTO_TCP, 0); first->tx_flags |= WX_TX_FLAGS_TSO | WX_TX_FLAGS_CSUM | WX_TX_FLAGS_CC; } /* compute header lengths */ l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); *hdr_len = enc ? skb_inner_transport_offset(skb) : skb_transport_offset(skb); *hdr_len += l4len; /* update gso size and bytecount with header size */ first->gso_segs = skb_shinfo(skb)->gso_segs; first->bytecount += (first->gso_segs - 1) * *hdr_len; /* mss_l4len_id: use 0 as index for TSO */ mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT; mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT; /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ if (enc) { switch (first->protocol) { case htons(ETH_P_IP): tun_prot = ip_hdr(skb)->protocol; first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4; break; case htons(ETH_P_IPV6): tun_prot = ipv6_hdr(skb)->nexthdr; break; default: break; } switch (tun_prot) { case IPPROTO_UDP: tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT) | (((skb_inner_mac_header(skb) - skb_transport_header(skb)) >> 1) << WX_TXD_TUNNEL_LEN_SHIFT); break; case IPPROTO_GRE: tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT) | (((skb_inner_mac_header(skb) - skb_transport_header(skb)) >> 1) << WX_TXD_TUNNEL_LEN_SHIFT); break; case IPPROTO_IPIP: tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - (char *)ip_hdr(skb)) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT; break; default: break; } vlan_macip_lens = skb_inner_network_header_len(skb) >> 1; } else { vlan_macip_lens = skb_network_header_len(skb) >> 1; } vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; type_tucmd = ptype << 24; if (skb->vlan_proto == htons(ETH_P_8021AD) && netdev->features & NETIF_F_HW_VLAN_STAG_TX) type_tucmd |= WX_SET_FLAG(first->tx_flags, WX_TX_FLAGS_HW_VLAN, 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, type_tucmd, mss_l4len_idx); return 1; } static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first, u8 ptype) { u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0; struct net_device *netdev = tx_ring->netdev; u32 mss_l4len_idx = 0, type_tucmd; struct sk_buff *skb = first->skb; u8 tun_prot = 0; if (skb->ip_summed != CHECKSUM_PARTIAL) { if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) && !(first->tx_flags & WX_TX_FLAGS_CC)) return; vlan_macip_lens = skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; } else { u8 l4_prot = 0; union { struct iphdr *ipv4; struct ipv6hdr *ipv6; u8 *raw; } network_hdr; union { struct tcphdr *tcphdr; u8 *raw; } transport_hdr; if (skb->encapsulation) { network_hdr.raw = skb_inner_network_header(skb); transport_hdr.raw = skb_inner_transport_header(skb); vlan_macip_lens = skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; switch (first->protocol) { case htons(ETH_P_IP): tun_prot = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): tun_prot = ipv6_hdr(skb)->nexthdr; break; default: return; } switch (tun_prot) { case IPPROTO_UDP: tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT) | (((skb_inner_mac_header(skb) - skb_transport_header(skb)) >> 1) << WX_TXD_TUNNEL_LEN_SHIFT); break; case IPPROTO_GRE: tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT) | (((skb_inner_mac_header(skb) - skb_transport_header(skb)) >> 1) << WX_TXD_TUNNEL_LEN_SHIFT); break; case IPPROTO_IPIP: tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - (char *)ip_hdr(skb)) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT; break; default: break; } } else { network_hdr.raw = skb_network_header(skb); transport_hdr.raw = skb_transport_header(skb); vlan_macip_lens = skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; } switch (network_hdr.ipv4->version) { case IPVERSION: vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; l4_prot = network_hdr.ipv4->protocol; break; case 6: vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; l4_prot = network_hdr.ipv6->nexthdr; break; default: break; } switch (l4_prot) { case IPPROTO_TCP: mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) << WX_TXD_L4LEN_SHIFT; break; case IPPROTO_SCTP: mss_l4len_idx = sizeof(struct sctphdr) << WX_TXD_L4LEN_SHIFT; break; case IPPROTO_UDP: mss_l4len_idx = sizeof(struct udphdr) << WX_TXD_L4LEN_SHIFT; break; default: break; } /* update TX checksum flag */ first->tx_flags |= WX_TX_FLAGS_CSUM; } first->tx_flags |= WX_TX_FLAGS_CC; /* vlan_macip_lens: MACLEN, VLAN tag */ vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; type_tucmd = ptype << 24; if (skb->vlan_proto == htons(ETH_P_8021AD) && netdev->features & NETIF_F_HW_VLAN_STAG_TX) type_tucmd |= WX_SET_FLAG(first->tx_flags, WX_TX_FLAGS_HW_VLAN, 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, type_tucmd, mss_l4len_idx); } static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb, struct wx_ring *tx_ring) { u16 count = TXD_USE_COUNT(skb_headlen(skb)); struct wx_tx_buffer *first; u8 hdr_len = 0, ptype; unsigned short f; u32 tx_flags = 0; int tso; /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD, * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD, * + 2 desc gap to keep tail from touching head, * + 1 desc for context descriptor, * otherwise try next time */ for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)-> frags[f])); if (wx_maybe_stop_tx(tx_ring, count + 3)) { tx_ring->tx_stats.tx_busy++; return NETDEV_TX_BUSY; } /* record the location of the first descriptor for this packet */ first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; first->skb = skb; first->bytecount = skb->len; first->gso_segs = 1; /* if we have a HW VLAN tag being added default to the HW one */ if (skb_vlan_tag_present(skb)) { tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT; tx_flags |= WX_TX_FLAGS_HW_VLAN; } /* record initial flags and protocol */ first->tx_flags = tx_flags; first->protocol = vlan_get_protocol(skb); ptype = wx_encode_tx_desc_ptype(first); tso = wx_tso(tx_ring, first, &hdr_len, ptype); if (tso < 0) goto out_drop; else if (!tso) wx_tx_csum(tx_ring, first, ptype); wx_tx_map(tx_ring, first, hdr_len); return NETDEV_TX_OK; out_drop: dev_kfree_skb_any(first->skb); first->skb = NULL; return NETDEV_TX_OK; } netdev_tx_t wx_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { unsigned int r_idx = skb->queue_mapping; struct wx *wx = netdev_priv(netdev); struct wx_ring *tx_ring; if (!netif_carrier_ok(netdev)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* The minimum packet size for olinfo paylen is 17 so pad the skb * in order to meet this minimum size requirement. */ if (skb_put_padto(skb, 17)) return NETDEV_TX_OK; if (r_idx >= wx->num_tx_queues) r_idx = r_idx % wx->num_tx_queues; tx_ring = wx->tx_ring[r_idx]; return wx_xmit_frame_ring(skb, tx_ring); } EXPORT_SYMBOL(wx_xmit_frame); void wx_napi_enable_all(struct wx *wx) { struct wx_q_vector *q_vector; int q_idx; for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { q_vector = wx->q_vector[q_idx]; napi_enable(&q_vector->napi); } } EXPORT_SYMBOL(wx_napi_enable_all); void wx_napi_disable_all(struct wx *wx) { struct wx_q_vector *q_vector; int q_idx; for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { q_vector = wx->q_vector[q_idx]; napi_disable(&q_vector->napi); } } EXPORT_SYMBOL(wx_napi_disable_all); /** * wx_set_rss_queues: Allocate queues for RSS * @wx: board private structure to initialize * * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. * **/ static void wx_set_rss_queues(struct wx *wx) { struct wx_ring_feature *f; /* set mask for 16 queue limit of RSS */ f = &wx->ring_feature[RING_F_RSS]; f->indices = f->limit; wx->num_rx_queues = f->limit; wx->num_tx_queues = f->limit; } static void wx_set_num_queues(struct wx *wx) { /* Start with base case */ wx->num_rx_queues = 1; wx->num_tx_queues = 1; wx->queues_per_pool = 1; wx_set_rss_queues(wx); } /** * wx_acquire_msix_vectors - acquire MSI-X vectors * @wx: board private structure * * Attempts to acquire a suitable range of MSI-X vector interrupts. Will * return a negative error code if unable to acquire MSI-X vectors for any * reason. */ static int wx_acquire_msix_vectors(struct wx *wx) { struct irq_affinity affd = { .pre_vectors = 1 }; int nvecs, i; /* We start by asking for one vector per queue pair */ nvecs = max(wx->num_rx_queues, wx->num_tx_queues); nvecs = min_t(int, nvecs, num_online_cpus()); nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors); wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry), GFP_KERNEL); if (!wx->msix_q_entries) return -ENOMEM; /* One for non-queue interrupts */ nvecs += 1; wx->msix_entry = kcalloc(1, sizeof(struct msix_entry), GFP_KERNEL); if (!wx->msix_entry) { kfree(wx->msix_q_entries); wx->msix_q_entries = NULL; return -ENOMEM; } nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs, nvecs, PCI_IRQ_MSIX | PCI_IRQ_AFFINITY, &affd); if (nvecs < 0) { wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs); kfree(wx->msix_q_entries); wx->msix_q_entries = NULL; kfree(wx->msix_entry); wx->msix_entry = NULL; return nvecs; } wx->msix_entry->entry = 0; wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0); nvecs -= 1; for (i = 0; i < nvecs; i++) { wx->msix_q_entries[i].entry = i; wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i + 1); } wx->num_q_vectors = nvecs; return 0; } /** * wx_set_interrupt_capability - set MSI-X or MSI if supported * @wx: board private structure to initialize * * Attempt to configure the interrupts using the best available * capabilities of the hardware and the kernel. **/ static int wx_set_interrupt_capability(struct wx *wx) { struct pci_dev *pdev = wx->pdev; int nvecs, ret; /* We will try to get MSI-X interrupts first */ ret = wx_acquire_msix_vectors(wx); if (ret == 0 || (ret == -ENOMEM)) return ret; /* Disable RSS */ dev_warn(&wx->pdev->dev, "Disabling RSS support\n"); wx->ring_feature[RING_F_RSS].limit = 1; wx_set_num_queues(wx); /* minmum one for queue, one for misc*/ nvecs = 1; nvecs = pci_alloc_irq_vectors(pdev, nvecs, nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY); if (nvecs == 1) { if (pdev->msi_enabled) wx_err(wx, "Fallback to MSI.\n"); else wx_err(wx, "Fallback to LEGACY.\n"); } else { wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs); return nvecs; } pdev->irq = pci_irq_vector(pdev, 0); wx->num_q_vectors = 1; return 0; } /** * wx_cache_ring_rss - Descriptor ring to register mapping for RSS * @wx: board private structure to initialize * * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV. * **/ static void wx_cache_ring_rss(struct wx *wx) { u16 i; for (i = 0; i < wx->num_rx_queues; i++) wx->rx_ring[i]->reg_idx = i; for (i = 0; i < wx->num_tx_queues; i++) wx->tx_ring[i]->reg_idx = i; } static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head) { ring->next = head->ring; head->ring = ring; head->count++; } /** * wx_alloc_q_vector - Allocate memory for a single interrupt vector * @wx: board private structure to initialize * @v_count: q_vectors allocated on wx, used for ring interleaving * @v_idx: index of vector in wx struct * @txr_count: total number of Tx rings to allocate * @txr_idx: index of first Tx ring to allocate * @rxr_count: total number of Rx rings to allocate * @rxr_idx: index of first Rx ring to allocate * * We allocate one q_vector. If allocation fails we return -ENOMEM. **/ static int wx_alloc_q_vector(struct wx *wx, unsigned int v_count, unsigned int v_idx, unsigned int txr_count, unsigned int txr_idx, unsigned int rxr_count, unsigned int rxr_idx) { struct wx_q_vector *q_vector; int ring_count, default_itr; struct wx_ring *ring; /* note this will allocate space for the ring structure as well! */ ring_count = txr_count + rxr_count; q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); if (!q_vector) return -ENOMEM; /* initialize NAPI */ netif_napi_add(wx->netdev, &q_vector->napi, wx_poll); /* tie q_vector and wx together */ wx->q_vector[v_idx] = q_vector; q_vector->wx = wx; q_vector->v_idx = v_idx; if (cpu_online(v_idx)) q_vector->numa_node = cpu_to_node(v_idx); /* initialize pointer to rings */ ring = q_vector->ring; if (wx->mac.type == wx_mac_sp) default_itr = WX_12K_ITR; else default_itr = WX_7K_ITR; /* initialize ITR */ if (txr_count && !rxr_count) /* tx only vector */ q_vector->itr = wx->tx_itr_setting ? default_itr : wx->tx_itr_setting; else /* rx or rx/tx vector */ q_vector->itr = wx->rx_itr_setting ? default_itr : wx->rx_itr_setting; while (txr_count) { /* assign generic ring traits */ ring->dev = &wx->pdev->dev; ring->netdev = wx->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Tx values */ wx_add_ring(ring, &q_vector->tx); /* apply Tx specific ring traits */ ring->count = wx->tx_ring_count; ring->queue_index = txr_idx; /* assign ring to wx */ wx->tx_ring[txr_idx] = ring; /* update count and index */ txr_count--; txr_idx += v_count; /* push pointer to next ring */ ring++; } while (rxr_count) { /* assign generic ring traits */ ring->dev = &wx->pdev->dev; ring->netdev = wx->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Rx values */ wx_add_ring(ring, &q_vector->rx); /* apply Rx specific ring traits */ ring->count = wx->rx_ring_count; ring->queue_index = rxr_idx; /* assign ring to wx */ wx->rx_ring[rxr_idx] = ring; /* update count and index */ rxr_count--; rxr_idx += v_count; /* push pointer to next ring */ ring++; } return 0; } /** * wx_free_q_vector - Free memory allocated for specific interrupt vector * @wx: board private structure to initialize * @v_idx: Index of vector to be freed * * This function frees the memory allocated to the q_vector. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void wx_free_q_vector(struct wx *wx, int v_idx) { struct wx_q_vector *q_vector = wx->q_vector[v_idx]; struct wx_ring *ring; wx_for_each_ring(ring, q_vector->tx) wx->tx_ring[ring->queue_index] = NULL; wx_for_each_ring(ring, q_vector->rx) wx->rx_ring[ring->queue_index] = NULL; wx->q_vector[v_idx] = NULL; netif_napi_del(&q_vector->napi); kfree_rcu(q_vector, rcu); } /** * wx_alloc_q_vectors - Allocate memory for interrupt vectors * @wx: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int wx_alloc_q_vectors(struct wx *wx) { unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; unsigned int rxr_remaining = wx->num_rx_queues; unsigned int txr_remaining = wx->num_tx_queues; unsigned int q_vectors = wx->num_q_vectors; int rqpv, tqpv; int err; for (; v_idx < q_vectors; v_idx++) { rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); err = wx_alloc_q_vector(wx, q_vectors, v_idx, tqpv, txr_idx, rqpv, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining -= rqpv; txr_remaining -= tqpv; rxr_idx++; txr_idx++; } return 0; err_out: wx->num_tx_queues = 0; wx->num_rx_queues = 0; wx->num_q_vectors = 0; while (v_idx--) wx_free_q_vector(wx, v_idx); return -ENOMEM; } /** * wx_free_q_vectors - Free memory allocated for interrupt vectors * @wx: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void wx_free_q_vectors(struct wx *wx) { int v_idx = wx->num_q_vectors; wx->num_tx_queues = 0; wx->num_rx_queues = 0; wx->num_q_vectors = 0; while (v_idx--) wx_free_q_vector(wx, v_idx); } void wx_reset_interrupt_capability(struct wx *wx) { struct pci_dev *pdev = wx->pdev; if (!pdev->msi_enabled && !pdev->msix_enabled) return; if (pdev->msix_enabled) { kfree(wx->msix_q_entries); wx->msix_q_entries = NULL; kfree(wx->msix_entry); wx->msix_entry = NULL; } pci_free_irq_vectors(wx->pdev); } EXPORT_SYMBOL(wx_reset_interrupt_capability); /** * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings * @wx: board private structure to clear interrupt scheme on * * We go through and clear interrupt specific resources and reset the structure * to pre-load conditions **/ void wx_clear_interrupt_scheme(struct wx *wx) { wx_free_q_vectors(wx); wx_reset_interrupt_capability(wx); } EXPORT_SYMBOL(wx_clear_interrupt_scheme); int wx_init_interrupt_scheme(struct wx *wx) { int ret; /* Number of supported queues */ wx_set_num_queues(wx); /* Set interrupt mode */ ret = wx_set_interrupt_capability(wx); if (ret) { wx_err(wx, "Allocate irq vectors for failed.\n"); return ret; } /* Allocate memory for queues */ ret = wx_alloc_q_vectors(wx); if (ret) { wx_err(wx, "Unable to allocate memory for queue vectors.\n"); wx_reset_interrupt_capability(wx); return ret; } wx_cache_ring_rss(wx); return 0; } EXPORT_SYMBOL(wx_init_interrupt_scheme); irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data) { struct wx_q_vector *q_vector = data; /* EIAM disabled interrupts (on this vector) for us */ if (q_vector->rx.ring || q_vector->tx.ring) napi_schedule_irqoff(&q_vector->napi); return IRQ_HANDLED; } EXPORT_SYMBOL(wx_msix_clean_rings); void wx_free_irq(struct wx *wx) { struct pci_dev *pdev = wx->pdev; int vector; if (!(pdev->msix_enabled)) { if (!wx->misc_irq_domain) free_irq(pdev->irq, wx); return; } for (vector = 0; vector < wx->num_q_vectors; vector++) { struct wx_q_vector *q_vector = wx->q_vector[vector]; struct msix_entry *entry = &wx->msix_q_entries[vector]; /* free only the irqs that were actually requested */ if (!q_vector->rx.ring && !q_vector->tx.ring) continue; free_irq(entry->vector, q_vector); } if (!wx->misc_irq_domain) free_irq(wx->msix_entry->vector, wx); } EXPORT_SYMBOL(wx_free_irq); /** * wx_setup_isb_resources - allocate interrupt status resources * @wx: board private structure * * Return 0 on success, negative on failure **/ int wx_setup_isb_resources(struct wx *wx) { struct pci_dev *pdev = wx->pdev; if (wx->isb_mem) return 0; wx->isb_mem = dma_alloc_coherent(&pdev->dev, sizeof(u32) * 4, &wx->isb_dma, GFP_KERNEL); if (!wx->isb_mem) { wx_err(wx, "Alloc isb_mem failed\n"); return -ENOMEM; } return 0; } EXPORT_SYMBOL(wx_setup_isb_resources); /** * wx_free_isb_resources - allocate all queues Rx resources * @wx: board private structure * * Return 0 on success, negative on failure **/ void wx_free_isb_resources(struct wx *wx) { struct pci_dev *pdev = wx->pdev; dma_free_coherent(&pdev->dev, sizeof(u32) * 4, wx->isb_mem, wx->isb_dma); wx->isb_mem = NULL; } EXPORT_SYMBOL(wx_free_isb_resources); u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx) { u32 cur_tag = 0; cur_tag = wx->isb_mem[WX_ISB_HEADER]; wx->isb_tag[idx] = cur_tag; return (__force u32)cpu_to_le32(wx->isb_mem[idx]); } EXPORT_SYMBOL(wx_misc_isb); /** * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors * @wx: pointer to wx struct * @direction: 0 for Rx, 1 for Tx, -1 for other causes * @queue: queue to map the corresponding interrupt to * @msix_vector: the vector to map to the corresponding queue * **/ static void wx_set_ivar(struct wx *wx, s8 direction, u16 queue, u16 msix_vector) { u32 ivar, index; if (direction == -1) { /* other causes */ msix_vector |= WX_PX_IVAR_ALLOC_VAL; index = 0; ivar = rd32(wx, WX_PX_MISC_IVAR); ivar &= ~(0xFF << index); ivar |= (msix_vector << index); wr32(wx, WX_PX_MISC_IVAR, ivar); } else { /* tx or rx causes */ msix_vector += 1; /* offset for queue vectors */ msix_vector |= WX_PX_IVAR_ALLOC_VAL; index = ((16 * (queue & 1)) + (8 * direction)); ivar = rd32(wx, WX_PX_IVAR(queue >> 1)); ivar &= ~(0xFF << index); ivar |= (msix_vector << index); wr32(wx, WX_PX_IVAR(queue >> 1), ivar); } } /** * wx_write_eitr - write EITR register in hardware specific way * @q_vector: structure containing interrupt and ring information * * This function is made to be called by ethtool and by the driver * when it needs to update EITR registers at runtime. Hardware * specific quirks/differences are taken care of here. */ void wx_write_eitr(struct wx_q_vector *q_vector) { struct wx *wx = q_vector->wx; int v_idx = q_vector->v_idx; u32 itr_reg; if (wx->mac.type == wx_mac_sp) itr_reg = q_vector->itr & WX_SP_MAX_EITR; else itr_reg = q_vector->itr & WX_EM_MAX_EITR; itr_reg |= WX_PX_ITR_CNT_WDIS; wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg); } /** * wx_configure_vectors - Configure vectors for hardware * @wx: board private structure * * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY * interrupts. **/ void wx_configure_vectors(struct wx *wx) { struct pci_dev *pdev = wx->pdev; u32 eitrsel = 0; u16 v_idx; if (pdev->msix_enabled) { /* Populate MSIX to EITR Select */ wr32(wx, WX_PX_ITRSEL, eitrsel); /* use EIAM to auto-mask when MSI-X interrupt is asserted * this saves a register write for every interrupt */ wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL); } else { /* legacy interrupts, use EIAM to auto-mask when reading EICR, * specifically only auto mask tx and rx interrupts. */ wr32(wx, WX_PX_GPIE, 0); } /* Populate the IVAR table and set the ITR values to the * corresponding register. */ for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) { struct wx_q_vector *q_vector = wx->q_vector[v_idx]; struct wx_ring *ring; wx_for_each_ring(ring, q_vector->rx) wx_set_ivar(wx, 0, ring->reg_idx, v_idx); wx_for_each_ring(ring, q_vector->tx) wx_set_ivar(wx, 1, ring->reg_idx, v_idx); wx_write_eitr(q_vector); } wx_set_ivar(wx, -1, 0, 0); if (pdev->msix_enabled) wr32(wx, WX_PX_ITR(0), 1950); } EXPORT_SYMBOL(wx_configure_vectors); /** * wx_clean_rx_ring - Free Rx Buffers per Queue * @rx_ring: ring to free buffers from **/ static void wx_clean_rx_ring(struct wx_ring *rx_ring) { struct wx_rx_buffer *rx_buffer; u16 i = rx_ring->next_to_clean; rx_buffer = &rx_ring->rx_buffer_info[i]; /* Free all the Rx ring sk_buffs */ while (i != rx_ring->next_to_alloc) { if (rx_buffer->skb) { struct sk_buff *skb = rx_buffer->skb; if (WX_CB(skb)->page_released) page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); dev_kfree_skb(skb); } /* Invalidate cache lines that may have been written to by * device so that we avoid corrupting memory. */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, WX_RX_BUFSZ, DMA_FROM_DEVICE); /* free resources associated with mapping */ page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); i++; rx_buffer++; if (i == rx_ring->count) { i = 0; rx_buffer = rx_ring->rx_buffer_info; } } rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; } /** * wx_clean_all_rx_rings - Free Rx Buffers for all queues * @wx: board private structure **/ void wx_clean_all_rx_rings(struct wx *wx) { int i; for (i = 0; i < wx->num_rx_queues; i++) wx_clean_rx_ring(wx->rx_ring[i]); } EXPORT_SYMBOL(wx_clean_all_rx_rings); /** * wx_free_rx_resources - Free Rx Resources * @rx_ring: ring to clean the resources from * * Free all receive software resources **/ static void wx_free_rx_resources(struct wx_ring *rx_ring) { wx_clean_rx_ring(rx_ring); kvfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; /* if not set, then don't free */ if (!rx_ring->desc) return; dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; if (rx_ring->page_pool) { page_pool_destroy(rx_ring->page_pool); rx_ring->page_pool = NULL; } } /** * wx_free_all_rx_resources - Free Rx Resources for All Queues * @wx: pointer to hardware structure * * Free all receive software resources **/ static void wx_free_all_rx_resources(struct wx *wx) { int i; for (i = 0; i < wx->num_rx_queues; i++) wx_free_rx_resources(wx->rx_ring[i]); } /** * wx_clean_tx_ring - Free Tx Buffers * @tx_ring: ring to be cleaned **/ static void wx_clean_tx_ring(struct wx_ring *tx_ring) { struct wx_tx_buffer *tx_buffer; u16 i = tx_ring->next_to_clean; tx_buffer = &tx_ring->tx_buffer_info[i]; while (i != tx_ring->next_to_use) { union wx_tx_desc *eop_desc, *tx_desc; /* Free all the Tx ring sk_buffs */ dev_kfree_skb_any(tx_buffer->skb); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* check for eop_desc to determine the end of the packet */ eop_desc = tx_buffer->next_to_watch; tx_desc = WX_TX_DESC(tx_ring, i); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; tx_desc = WX_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; } } netdev_tx_reset_queue(wx_txring_txq(tx_ring)); /* reset next_to_use and next_to_clean */ tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; } /** * wx_clean_all_tx_rings - Free Tx Buffers for all queues * @wx: board private structure **/ void wx_clean_all_tx_rings(struct wx *wx) { int i; for (i = 0; i < wx->num_tx_queues; i++) wx_clean_tx_ring(wx->tx_ring[i]); } EXPORT_SYMBOL(wx_clean_all_tx_rings); /** * wx_free_tx_resources - Free Tx Resources per Queue * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources **/ static void wx_free_tx_resources(struct wx_ring *tx_ring) { wx_clean_tx_ring(tx_ring); kvfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; /* if not set, then don't free */ if (!tx_ring->desc) return; dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } /** * wx_free_all_tx_resources - Free Tx Resources for All Queues * @wx: pointer to hardware structure * * Free all transmit software resources **/ static void wx_free_all_tx_resources(struct wx *wx) { int i; for (i = 0; i < wx->num_tx_queues; i++) wx_free_tx_resources(wx->tx_ring[i]); } void wx_free_resources(struct wx *wx) { wx_free_all_rx_resources(wx); wx_free_all_tx_resources(wx); } EXPORT_SYMBOL(wx_free_resources); static int wx_alloc_page_pool(struct wx_ring *rx_ring) { int ret = 0; struct page_pool_params pp_params = { .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, .order = 0, .pool_size = rx_ring->size, .nid = dev_to_node(rx_ring->dev), .dev = rx_ring->dev, .dma_dir = DMA_FROM_DEVICE, .offset = 0, .max_len = PAGE_SIZE, }; rx_ring->page_pool = page_pool_create(&pp_params); if (IS_ERR(rx_ring->page_pool)) { ret = PTR_ERR(rx_ring->page_pool); rx_ring->page_pool = NULL; } return ret; } /** * wx_setup_rx_resources - allocate Rx resources (Descriptors) * @rx_ring: rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ static int wx_setup_rx_resources(struct wx_ring *rx_ring) { struct device *dev = rx_ring->dev; int orig_node = dev_to_node(dev); int numa_node = NUMA_NO_NODE; int size, ret; size = sizeof(struct wx_rx_buffer) * rx_ring->count; if (rx_ring->q_vector) numa_node = rx_ring->q_vector->numa_node; rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); if (!rx_ring->rx_buffer_info) rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL); if (!rx_ring->rx_buffer_info) goto err; /* Round up to nearest 4K */ rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc); rx_ring->size = ALIGN(rx_ring->size, 4096); set_dev_node(dev, numa_node); rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) { set_dev_node(dev, orig_node); rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); } if (!rx_ring->desc) goto err; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; ret = wx_alloc_page_pool(rx_ring); if (ret < 0) { dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret); goto err_desc; } return 0; err_desc: dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma); err: kvfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); return -ENOMEM; } /** * wx_setup_all_rx_resources - allocate all queues Rx resources * @wx: pointer to hardware structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int wx_setup_all_rx_resources(struct wx *wx) { int i, err = 0; for (i = 0; i < wx->num_rx_queues; i++) { err = wx_setup_rx_resources(wx->rx_ring[i]); if (!err) continue; wx_err(wx, "Allocation for Rx Queue %u failed\n", i); goto err_setup_rx; } return 0; err_setup_rx: /* rewind the index freeing the rings as we go */ while (i--) wx_free_rx_resources(wx->rx_ring[i]); return err; } /** * wx_setup_tx_resources - allocate Tx resources (Descriptors) * @tx_ring: tx descriptor ring (for a specific queue) to setup * * Return 0 on success, negative on failure **/ static int wx_setup_tx_resources(struct wx_ring *tx_ring) { struct device *dev = tx_ring->dev; int orig_node = dev_to_node(dev); int numa_node = NUMA_NO_NODE; int size; size = sizeof(struct wx_tx_buffer) * tx_ring->count; if (tx_ring->q_vector) numa_node = tx_ring->q_vector->numa_node; tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); if (!tx_ring->tx_buffer_info) tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL); if (!tx_ring->tx_buffer_info) goto err; /* round up to nearest 4K */ tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc); tx_ring->size = ALIGN(tx_ring->size, 4096); set_dev_node(dev, numa_node); tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) { set_dev_node(dev, orig_node); tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); } if (!tx_ring->desc) goto err; tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; return 0; err: kvfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); return -ENOMEM; } /** * wx_setup_all_tx_resources - allocate all queues Tx resources * @wx: pointer to private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int wx_setup_all_tx_resources(struct wx *wx) { int i, err = 0; for (i = 0; i < wx->num_tx_queues; i++) { err = wx_setup_tx_resources(wx->tx_ring[i]); if (!err) continue; wx_err(wx, "Allocation for Tx Queue %u failed\n", i); goto err_setup_tx; } return 0; err_setup_tx: /* rewind the index freeing the rings as we go */ while (i--) wx_free_tx_resources(wx->tx_ring[i]); return err; } int wx_setup_resources(struct wx *wx) { int err; /* allocate transmit descriptors */ err = wx_setup_all_tx_resources(wx); if (err) return err; /* allocate receive descriptors */ err = wx_setup_all_rx_resources(wx); if (err) goto err_free_tx; err = wx_setup_isb_resources(wx); if (err) goto err_free_rx; return 0; err_free_rx: wx_free_all_rx_resources(wx); err_free_tx: wx_free_all_tx_resources(wx); return err; } EXPORT_SYMBOL(wx_setup_resources); /** * wx_get_stats64 - Get System Network Statistics * @netdev: network interface device structure * @stats: storage space for 64bit statistics */ void wx_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct wx *wx = netdev_priv(netdev); struct wx_hw_stats *hwstats; int i; wx_update_stats(wx); rcu_read_lock(); for (i = 0; i < wx->num_rx_queues; i++) { struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]); u64 bytes, packets; unsigned int start; if (ring) { do { start = u64_stats_fetch_begin(&ring->syncp); packets = ring->stats.packets; bytes = ring->stats.bytes; } while (u64_stats_fetch_retry(&ring->syncp, start)); stats->rx_packets += packets; stats->rx_bytes += bytes; } } for (i = 0; i < wx->num_tx_queues; i++) { struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]); u64 bytes, packets; unsigned int start; if (ring) { do { start = u64_stats_fetch_begin(&ring->syncp); packets = ring->stats.packets; bytes = ring->stats.bytes; } while (u64_stats_fetch_retry(&ring->syncp, start)); stats->tx_packets += packets; stats->tx_bytes += bytes; } } rcu_read_unlock(); hwstats = &wx->stats; stats->rx_errors = hwstats->crcerrs + hwstats->rlec; stats->multicast = hwstats->qmprc; stats->rx_length_errors = hwstats->rlec; stats->rx_crc_errors = hwstats->crcerrs; } EXPORT_SYMBOL(wx_get_stats64); int wx_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct wx *wx = netdev_priv(netdev); if (features & NETIF_F_RXHASH) { wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, WX_RDB_RA_CTL_RSS_EN); wx->rss_enabled = true; } else { wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0); wx->rss_enabled = false; } netdev->features = features; if (wx->mac.type == wx_mac_sp && changed & NETIF_F_HW_VLAN_CTAG_RX) wx->do_reset(netdev); else if (changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER)) wx_set_rx_mode(netdev); return 0; } EXPORT_SYMBOL(wx_set_features); #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ NETIF_F_HW_VLAN_STAG_RX) #define NETIF_VLAN_INSERTION_FEATURES (NETIF_F_HW_VLAN_CTAG_TX | \ NETIF_F_HW_VLAN_STAG_TX) #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ NETIF_F_HW_VLAN_STAG_FILTER) netdev_features_t wx_fix_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct wx *wx = netdev_priv(netdev); if (changed & NETIF_VLAN_STRIPPING_FEATURES) { if ((features & NETIF_VLAN_STRIPPING_FEATURES) != NETIF_VLAN_STRIPPING_FEATURES && (features & NETIF_VLAN_STRIPPING_FEATURES) != 0) { features &= ~NETIF_VLAN_STRIPPING_FEATURES; features |= netdev->features & NETIF_VLAN_STRIPPING_FEATURES; wx_err(wx, "802.1Q and 802.1ad VLAN stripping must be either both on or both off."); } } if (changed & NETIF_VLAN_INSERTION_FEATURES) { if ((features & NETIF_VLAN_INSERTION_FEATURES) != NETIF_VLAN_INSERTION_FEATURES && (features & NETIF_VLAN_INSERTION_FEATURES) != 0) { features &= ~NETIF_VLAN_INSERTION_FEATURES; features |= netdev->features & NETIF_VLAN_INSERTION_FEATURES; wx_err(wx, "802.1Q and 802.1ad VLAN insertion must be either both on or both off."); } } if (changed & NETIF_VLAN_FILTERING_FEATURES) { if ((features & NETIF_VLAN_FILTERING_FEATURES) != NETIF_VLAN_FILTERING_FEATURES && (features & NETIF_VLAN_FILTERING_FEATURES) != 0) { features &= ~NETIF_VLAN_FILTERING_FEATURES; features |= netdev->features & NETIF_VLAN_FILTERING_FEATURES; wx_err(wx, "802.1Q and 802.1ad VLAN filtering must be either both on or both off."); } } return features; } EXPORT_SYMBOL(wx_fix_features); void wx_set_ring(struct wx *wx, u32 new_tx_count, u32 new_rx_count, struct wx_ring *temp_ring) { int i, err = 0; /* Setup new Tx resources and free the old Tx resources in that order. * We can then assign the new resources to the rings via a memcpy. * The advantage to this approach is that we are guaranteed to still * have resources even in the case of an allocation failure. */ if (new_tx_count != wx->tx_ring_count) { for (i = 0; i < wx->num_tx_queues; i++) { memcpy(&temp_ring[i], wx->tx_ring[i], sizeof(struct wx_ring)); temp_ring[i].count = new_tx_count; err = wx_setup_tx_resources(&temp_ring[i]); if (err) { wx_err(wx, "setup new tx resources failed, keep using the old config\n"); while (i) { i--; wx_free_tx_resources(&temp_ring[i]); } return; } } for (i = 0; i < wx->num_tx_queues; i++) { wx_free_tx_resources(wx->tx_ring[i]); memcpy(wx->tx_ring[i], &temp_ring[i], sizeof(struct wx_ring)); } wx->tx_ring_count = new_tx_count; } /* Repeat the process for the Rx rings if needed */ if (new_rx_count != wx->rx_ring_count) { for (i = 0; i < wx->num_rx_queues; i++) { memcpy(&temp_ring[i], wx->rx_ring[i], sizeof(struct wx_ring)); temp_ring[i].count = new_rx_count; err = wx_setup_rx_resources(&temp_ring[i]); if (err) { wx_err(wx, "setup new rx resources failed, keep using the old config\n"); while (i) { i--; wx_free_rx_resources(&temp_ring[i]); } return; } } for (i = 0; i < wx->num_rx_queues; i++) { wx_free_rx_resources(wx->rx_ring[i]); memcpy(wx->rx_ring[i], &temp_ring[i], sizeof(struct wx_ring)); } wx->rx_ring_count = new_rx_count; } } EXPORT_SYMBOL(wx_set_ring); MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers."); MODULE_LICENSE("GPL");