// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright(c) 2019-2020 Realtek Corporation */ #include "debug.h" #include "efuse.h" #include "mac.h" #include "reg.h" #define EF_FV_OFSET 0x5ea #define EF_CV_MASK GENMASK(7, 4) #define EF_CV_INV 15 enum rtw89_efuse_bank { RTW89_EFUSE_BANK_WIFI, RTW89_EFUSE_BANK_BT, }; static int rtw89_switch_efuse_bank(struct rtw89_dev *rtwdev, enum rtw89_efuse_bank bank) { u8 val; if (rtwdev->chip->chip_id != RTL8852A) return 0; val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1, B_AX_EF_CELL_SEL_MASK); if (bank == val) return 0; rtw89_write32_mask(rtwdev, R_AX_EFUSE_CTRL_1, B_AX_EF_CELL_SEL_MASK, bank); val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1, B_AX_EF_CELL_SEL_MASK); if (bank == val) return 0; return -EBUSY; } static void rtw89_enable_otp_burst_mode(struct rtw89_dev *rtwdev, bool en) { if (en) rtw89_write32_set(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST); else rtw89_write32_clr(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST); } static void rtw89_enable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev) { enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; struct rtw89_hal *hal = &rtwdev->hal; if (chip_id == RTL8852A) return; rtw89_write8_set(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK); rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14); fsleep(1000); rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15); rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE); if (chip_id == RTL8852B && hal->cv == CHIP_CAV) rtw89_enable_otp_burst_mode(rtwdev, true); } static void rtw89_disable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev) { enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id; struct rtw89_hal *hal = &rtwdev->hal; if (chip_id == RTL8852A) return; if (chip_id == RTL8852B && hal->cv == CHIP_CAV) rtw89_enable_otp_burst_mode(rtwdev, false); rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE); rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15); fsleep(1000); rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14); rtw89_write8_clr(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK); } static int rtw89_dump_physical_efuse_map_ddv(struct rtw89_dev *rtwdev, u8 *map, u32 dump_addr, u32 dump_size) { u32 efuse_ctl; u32 addr; int ret; rtw89_enable_efuse_pwr_cut_ddv(rtwdev); for (addr = dump_addr; addr < dump_addr + dump_size; addr++) { efuse_ctl = u32_encode_bits(addr, B_AX_EF_ADDR_MASK); rtw89_write32(rtwdev, R_AX_EFUSE_CTRL, efuse_ctl & ~B_AX_EF_RDY); ret = read_poll_timeout_atomic(rtw89_read32, efuse_ctl, efuse_ctl & B_AX_EF_RDY, 1, 1000000, true, rtwdev, R_AX_EFUSE_CTRL); if (ret) return -EBUSY; *map++ = (u8)(efuse_ctl & 0xff); } rtw89_disable_efuse_pwr_cut_ddv(rtwdev); return 0; } static int rtw89_dump_physical_efuse_map_dav(struct rtw89_dev *rtwdev, u8 *map, u32 dump_addr, u32 dump_size) { u32 addr; u8 val8; int err; int ret; for (addr = dump_addr; addr < dump_addr + dump_size; addr++) { ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0x40, FULL_BIT_MASK); if (ret) return ret; ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_LOW_ADDR, addr & 0xff, XTAL_SI_LOW_ADDR_MASK); if (ret) return ret; ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, addr >> 8, XTAL_SI_HIGH_ADDR_MASK); if (ret) return ret; ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0, XTAL_SI_MODE_SEL_MASK); if (ret) return ret; ret = read_poll_timeout_atomic(rtw89_mac_read_xtal_si, err, !err && (val8 & XTAL_SI_RDY), 1, 10000, false, rtwdev, XTAL_SI_CTRL, &val8); if (ret) { rtw89_warn(rtwdev, "failed to read dav efuse\n"); return ret; } ret = rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_READ_VAL, &val8); if (ret) return ret; *map++ = val8; } return 0; } static int rtw89_dump_physical_efuse_map(struct rtw89_dev *rtwdev, u8 *map, u32 dump_addr, u32 dump_size, bool dav) { int ret; if (!map || dump_size == 0) return 0; rtw89_switch_efuse_bank(rtwdev, RTW89_EFUSE_BANK_WIFI); if (dav) { ret = rtw89_dump_physical_efuse_map_dav(rtwdev, map, dump_addr, dump_size); if (ret) return ret; } else { ret = rtw89_dump_physical_efuse_map_ddv(rtwdev, map, dump_addr, dump_size); if (ret) return ret; } return 0; } #define invalid_efuse_header(hdr1, hdr2) \ ((hdr1) == 0xff || (hdr2) == 0xff) #define invalid_efuse_content(word_en, i) \ (((word_en) & BIT(i)) != 0x0) #define get_efuse_blk_idx(hdr1, hdr2) \ ((((hdr2) & 0xf0) >> 4) | (((hdr1) & 0x0f) << 4)) #define block_idx_to_logical_idx(blk_idx, i) \ (((blk_idx) << 3) + ((i) << 1)) static int rtw89_dump_logical_efuse_map(struct rtw89_dev *rtwdev, u8 *phy_map, u8 *log_map) { u32 physical_size = rtwdev->chip->physical_efuse_size; u32 logical_size = rtwdev->chip->logical_efuse_size; u8 sec_ctrl_size = rtwdev->chip->sec_ctrl_efuse_size; u32 phy_idx = sec_ctrl_size; u32 log_idx; u8 hdr1, hdr2; u8 blk_idx; u8 word_en; int i; if (!phy_map) return 0; while (phy_idx < physical_size - sec_ctrl_size) { hdr1 = phy_map[phy_idx]; hdr2 = phy_map[phy_idx + 1]; if (invalid_efuse_header(hdr1, hdr2)) break; blk_idx = get_efuse_blk_idx(hdr1, hdr2); word_en = hdr2 & 0xf; phy_idx += 2; for (i = 0; i < 4; i++) { if (invalid_efuse_content(word_en, i)) continue; log_idx = block_idx_to_logical_idx(blk_idx, i); if (phy_idx + 1 > physical_size - sec_ctrl_size - 1 || log_idx + 1 > logical_size) return -EINVAL; log_map[log_idx] = phy_map[phy_idx]; log_map[log_idx + 1] = phy_map[phy_idx + 1]; phy_idx += 2; } } return 0; } int rtw89_parse_efuse_map(struct rtw89_dev *rtwdev) { u32 phy_size = rtwdev->chip->physical_efuse_size; u32 log_size = rtwdev->chip->logical_efuse_size; u32 dav_phy_size = rtwdev->chip->dav_phy_efuse_size; u32 dav_log_size = rtwdev->chip->dav_log_efuse_size; u32 full_log_size = log_size + dav_log_size; u8 *phy_map = NULL; u8 *log_map = NULL; u8 *dav_phy_map = NULL; u8 *dav_log_map = NULL; int ret; if (rtw89_read16(rtwdev, R_AX_SYS_WL_EFUSE_CTRL) & B_AX_AUTOLOAD_SUS) rtwdev->efuse.valid = true; else rtw89_warn(rtwdev, "failed to check efuse autoload\n"); phy_map = kmalloc(phy_size, GFP_KERNEL); log_map = kmalloc(full_log_size, GFP_KERNEL); if (dav_phy_size && dav_log_size) { dav_phy_map = kmalloc(dav_phy_size, GFP_KERNEL); dav_log_map = log_map + log_size; } if (!phy_map || !log_map || (dav_phy_size && !dav_phy_map)) { ret = -ENOMEM; goto out_free; } ret = rtw89_dump_physical_efuse_map(rtwdev, phy_map, 0, phy_size, false); if (ret) { rtw89_warn(rtwdev, "failed to dump efuse physical map\n"); goto out_free; } ret = rtw89_dump_physical_efuse_map(rtwdev, dav_phy_map, 0, dav_phy_size, true); if (ret) { rtw89_warn(rtwdev, "failed to dump efuse dav physical map\n"); goto out_free; } memset(log_map, 0xff, full_log_size); ret = rtw89_dump_logical_efuse_map(rtwdev, phy_map, log_map); if (ret) { rtw89_warn(rtwdev, "failed to dump efuse logical map\n"); goto out_free; } ret = rtw89_dump_logical_efuse_map(rtwdev, dav_phy_map, dav_log_map); if (ret) { rtw89_warn(rtwdev, "failed to dump efuse dav logical map\n"); goto out_free; } rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "log_map: ", log_map, full_log_size); ret = rtwdev->chip->ops->read_efuse(rtwdev, log_map); if (ret) { rtw89_warn(rtwdev, "failed to read efuse map\n"); goto out_free; } out_free: kfree(dav_phy_map); kfree(log_map); kfree(phy_map); return ret; } int rtw89_parse_phycap_map(struct rtw89_dev *rtwdev) { u32 phycap_addr = rtwdev->chip->phycap_addr; u32 phycap_size = rtwdev->chip->phycap_size; u8 *phycap_map = NULL; int ret = 0; if (!phycap_size) return 0; phycap_map = kmalloc(phycap_size, GFP_KERNEL); if (!phycap_map) return -ENOMEM; ret = rtw89_dump_physical_efuse_map(rtwdev, phycap_map, phycap_addr, phycap_size, false); if (ret) { rtw89_warn(rtwdev, "failed to dump phycap map\n"); goto out_free; } ret = rtwdev->chip->ops->read_phycap(rtwdev, phycap_map); if (ret) { rtw89_warn(rtwdev, "failed to read phycap map\n"); goto out_free; } out_free: kfree(phycap_map); return ret; } int rtw89_read_efuse_ver(struct rtw89_dev *rtwdev, u8 *ecv) { int ret; u8 val; ret = rtw89_dump_physical_efuse_map(rtwdev, &val, EF_FV_OFSET, 1, false); if (ret) return ret; *ecv = u8_get_bits(val, EF_CV_MASK); if (*ecv == EF_CV_INV) return -ENOENT; return 0; } EXPORT_SYMBOL(rtw89_read_efuse_ver);